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Introduction
FATODE (forward, adjoint, and tangent linear integration of ODEs) is a library of explicit/im-
plicit Runge-Kutta and Rosenbrock solvers for the simulation of nonstiff and stiff ODEs. The
library performs forward simulations, and sensitivity analysis via the discrete adjoint and the
tangent linear methods. FATODE is partially based on the numerical library implemented in
the Kinetic PreProcessor KPP [1, 2] which is a widely used tool for the simulation of chemical
kinetics.

FATODE provides a variety of integrators for solving the initial value problem:

y ′ = f
(
t , y ; p

)
, t0 ≤ t ≤ t f , y(t0) = y0 , (1.1)

where y(t ) ∈Rd is the solution vector, y0 the initial condition, and p ∈Rm a vector of model
parameters.

Stiffness results from the existence of multiple dynamical scales, with the fastest character-
istic times being much smaller than the time scales of interest in the simulation. It is well known
that the numerical solution of stiff systems requires unconditionally stable discretizations which
allow time steps that are not bounded by the fastest time scales in the system [3]. Here we as-
sume that the system parameters p are independent of time. In the context of the ODE system
(1.1), sensitivity analysis yields derivatives of the solution with respect to the initial conditions
or system parameters, as follows

Sℓ(t ) = ∂y(t )

∂pℓ
, 1 ≤ ℓ≤ m. (1.2)

Two main approaches are available in FATODE for computing the sensitivities (1.2). The
direct (or tangent linear) method is efficient when the number of parameters is smaller than the
dimension of the system (m ≪ d), while the adjoint method is efficient when the number of
parameters is larger than the dimension of the system (m ≫ d).

This guide is organized as follows:

• Section 1 introduces FATODE library.

• Section 2 lists all the families of integrators in FATODE and describes their mathematical
background briefly.

• Section 3 describes code organization including both logical structure and directory struc-
ture of the Code.

• Section 4 covers several topics on basic usage of FATODE, including prerequisites, third-
parties libraries needed for sparse linear solvers, makefiles, and functions that user must
provide when using FATODE.

• Section 5 describes the user interfaces that FATODE uses for ODE solution, tangent linear
sensitivity analysis and adjoint sensitivity analysis respectively.
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• Section 6 gives an example which shows how FATODE can be used in real application.

• Section 7 talks about how the linear solvers are implemented and how users can add their
own linear solvers.

• Section 8 introduces an automatic differentiation tool TAMC, which can facilitate users to
generate complex hessian related functions conveniently.
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Integrators in FATODE
FATODE implements four families of methods: explicit Runge-Kutta, Rosenbrock, fully implicit
Runge-Kutta, and singly diagonally implicit Runge-Kutta, as well as their tangent linear models
and discrete adjoint models. Explicit Runge-Kutta methods [4] are well suited for solving nons-
tiff systems of ODEs. Implicit methods are preferred for solving stiff systems due to their better
numerical stability properties.

2.1 Forward solution

Explicit Runge-Kutta methods

A general s-stage Runge-Kutta method reads [4]

Ti = tn +c j h , Yi = yn +h
s∑

j=1
ai , j f

(
T j , Y j

)
, i = 1, . . . , s , (2.1a)

yn+1 = yn +h
s∑

j=1
b j f

(
T j , Y j

)
. (2.1b)

where the coefficients

A = [
ai , j

]
1≤i , j≤s , b = [bi ]1≤i≤s , c = [ci ]1≤i≤s = A ·1(s,1) , (2.2)

define the method and determine its accuracy and stability properties. Explicit Runge-Kutta
methods are characterized by the coefficients ai , j = 0 for all i and j ≥ i . Table 2.1 lists all the
methods implemented in explicit Runge-Kutta methods family.

Table 2.1: Time stepping methods implemented in ERK family

Method Stages Order Stability properties
RK2(3) [4] 3 2 conditionally stable
RK3(2) [4] 4 3 conditionally stable
RK4(3) [4] 5 4 conditionally stable
DOPRI-5 [4] 7 5 conditionally stable
Verner [4] 8 6 conditionally stable
DOPRI-853 [4] 12 8 conditionally stable

Singly Diagonally Implicit Runge-Kutta methods

Singly diagonal implicit Runge-Kutta methods are defined by (2.1) with the coefficients ai ,i = γ

and ai , j = 0 for all i and j > i . See Table 2.2 for details.
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Table 2.2: Time stepping methods implemented in SDIRK family

Method Stages Order Stability properties Stiffly-accurate
Sdirk-2a 2 2 L-stable Y
Sdirk-2b 2 2 L-stable Y
Sdirk-3a 3 2 L-stable Y
Sdirk-4a [3] 5 4 L-stable Y
Sdirk-4b [3] 5 4 L-stable Y

Fully Implicit Runge-Kutta methods

Fully implicit methods have three stages and require a coupled solution of all of them.
Detailed information on available Runge-Kutta methods is given in Table 2.3.

Table 2.3: Time stepping methods implemented in FIRK family

Method Stages Order Stability properties Stiffly-accurate
Radau-1A [3] 3 5 L-stable N
Radau-2A [3] 3 5 L-stable Y
Lobatto-3C [3] 3 4 L-stable Y
Gauss [3] 3 6 weakly L-stable N

Rosenbrock methods

An s-stage Rosenbrock method [4] is given by the formulas

Ti = tn +αi h , Yi = yn +
i−1∑
j=1

αi , j k j , (2.3a)

ki = h f (Ti ,Yi )+h f y (tn , yn) ·
i∑

j=1
γi , j k j +γi h2 ft (tn , yn), i = 1, . . . , s , (2.3b)

yn+1 = yn +
s∑

j=1
b j k j , (2.3c)

where particular methods are defined by their coefficients

α= [
αi , j

]
1≤i , j≤s , b = [bi ]1≤i≤s , γ= [

γi , j
]

1≤i , j≤s , (2.4)

and

αi =
s∑

j=1
αi , j , γi =

s∑
j=1

γi , j ; γi ,i = γ , αi ,i = 0; αi , j = γi , j = 0, ∀ i > j .

We have γi ,i = γ for all i for computational efficiency. Here f y = ∂ f /∂y represents the Jaco-
bian of the ODE function, as discussed in Appendix A. We will denote matrices and tensors by
bold symbols, and vectors and scalar by regular symbols. Rosenbrock methods are attractive
because of their outstanding stability properties and conservation of the linear invariants of
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the system. They typically outperform backward differentiation formulas such as those imple-
mented in SMVGEAR [5] for medium accuracy solutions.

Detailed information regarding these methods is given in Table 2.4. The fifth column shows
the stability properties for each method. The method is A-stable if the region of the absolute
stability contains the left half plane. The method is L-stable if it is A-stable and the stability
function ϕ(z) → 0 as |z| →∞. The last column specifies wether the method is stiffly accurate.
A multistage method is called stiffly accurate if the last stage solution the the final solution co-
incide. Stiff accuracy is an essential property in the solution of differential algebraic equations
and stiff ODEs.

Table 2.4: Time stepping methods implemented in ROSENBROCK family

Method Stages Order Stability properties Stiffly-accurate
Ros-2 [6] 2 2 L-stable N
Ros-3 [7] 3 3 L-stable Y
Rodas-3 [7] 4 3 L-stable Y
Ros-4 [3] 4 4 L-stable N
Rodas-4 [3] 6 4 L-stable Y

2.2 Tangent linear model integration

Small changes δy0 in the initial conditions result in small perturbations δy(t ) of the solution
of ODE system (1.1). Let ẏ = δy/

∥∥δy0
∥∥ be the directions of solution change. These directions

propagate forward in time according to the tangent linear ODE:

ẏ ′ = f y (t , y) · ẏ , t0 ≤ t ≤ t f , ẏ(t0) = ẏ0 , ẏ(t ) ∈Rd . (2.5)

The sensitivity equations (2.5) are solved forward in time together with original ODE system
(1.1). Tangent linear models are derived for direct sensitivity analysis with each of the fami-
lies of methods in FATODE. Highly efficient implementations are obtained by re-using the LU
decompositions from the forward solution on the sensitivity equations [8].

2.3 Adjoint model integration

Adjoint sensitivity analysis provides an efficient alternative to the direct method when gradients
of a relatively few derived functionals with respect to many model parameters required. The
continuous (differentiate then discretize) and the discrete (discretize-then-differentiate) adjoint
approaches lead, in general, to different computational results [9]. The continuous adjoint ap-
proach requires interpolation to obtain intermediate state variables at the times required by
the backward integration, which brings additional computational effort. The discrete adjoint
approach follows exactly the same sequence of time steps as the forward integration, but in
reverse order.

FATODE implements discrete adjoints of all the methods. Such discrete adjoints have good
theoretical properties, in the sense that they are consistent discretizations of the adjoint ODE
[10, 11]. For efficiency our implementation distinguishes between sensitivities with respect to
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initial conditions and sensitivities with respect to parameters. We first discuss sensitivities with
respect to initial conditions.

The goal is to evaluate the sensitivities of a scalar function of interest

Ψ= g (y(tF )) (2.6)

with respect to the initial conditions. The discrete adjoint model equations are obtained directly
from the discrete forward model equations

yn+1 =Φn(yn), n = 0, . . . , N −1 (2.7)

where Φn represents the one-step numerical integration formula which advances the solution
from tn to tn+1.

The discrete adjoint model equations propagate the adjoint variables λn backwards in time

λN = g T
y (yN ) ; λn =Φn

y (yn)T ·λn+1, n = N −1, . . . ,1. (2.8)

The adjoint solution at the initial time represents the sensitivities(
∂Ψ/∂y0

)T =λ0. (2.9)

For details on derivation see [1, 10].
A more general case is that the adjoint sensitivity is computed with respect to a time inde-

pendent vector of parameters p ∈Rm which appears in the right hand side of (1.1). The quantity
of interest is a scalar derived function in the general form

Ψ= g
(
y(tF ), p

)+∫ tF

t0

r
(
t , y(t ), p

)
d t . (2.10)

To account for the evolution of the parameters we add the formal equations for the parameter
evolution p ′ = 0. To compute the cost function (2.10) we add the quadrature variables q ∈ R
whose evolution is defined by q(t0) = 0 and q ′ = r

(
y, p

)
. We have that Ψ = g

(
y(tF ), p

)+ q(tF ).
The equation (1.1) becomes y

p
q

′

=
 f

(
t , y, p

)
0

r
(
t , y, p

)
 , t0 ≤ t ≤ t f ;

 y(t0)
p(t0)
q(t0)

=
 y0

p
0

 . (2.11)

The numerical solution of (2.11) provides the discrete yn and qn . The discrete adjoint model
equations calculate the adjoint variables λn and µn backward in time, such that

λN = g T
y (yN , p) , µN = g T

p (yN , p) ; λ0 =
(
∂Ψ/∂y0

)T , µ0 =
(
∂Ψ/∂p

)T . (2.12)

For further information see [12].
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3

Code Organization
FATODE implements four types of methods: explicit, fully implicit, and singly diagonally im-
plicit Runge-Kutta methods, and Rosenbrock methods. For each family of methods, a module is
given for the main integrator, a module for linear system solver interface, and a set of modules
for generic linear system solvers. They form the basic structure shown in Figure (3.1).

3.1 Logical structure

The main integration module provides the basic time stepping framework, and is independent
of the linear system solver. The forward integrator calls the user-supplied right-hand side func-
tion and Jacobian and accesses the linear system solver, in order to compute the ODE solution.
The tangent linear integrator and the adjoint integrator require users to also specify the param-
eters of interest as additional inputs. The tangent linear integrator, by default, considers the
initial conditions of the ODE system as the parameters of interest and computes the sensitiv-
ity of the ODE solution with respect to them. The adjoint integrator, by default, computes the
sensitivity of an objective function Ψ with respect to the initial conditions. The function and its
derivatives are supplied by the user; function derivatives are used to define the adjoint initial
conditions. FATODE also implements sensitivities of a general cost function (2.10) with respect
to parameters other than the initial conditions (e.g., reaction coefficients in a chemical kinetic
ODE system).

Figure 3.1: Logical structure of FATODE.
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3.2 Directory structure

The root directory of FATODE contains the following items:

FATODE/README
general instructions (single file)

FATODE/GPL.txt
GPL license (single file)

FATODE/FWD/
forward model integrators (directory)

FATODE/ADJ/
adjoint model integrators (directory)

FATODE/TLM/
tangent linear model integrators (directory)

FATODE/LSS_LIBS/
linear solvers (directory)

FATODE/EXAMPLES/
example programs (directory)

FATODE/DOC/
documentation (directory)

The full listing of files in FATODE is shown as below.

FATODE directory structure

.

|-- FWD

| |-- ERK

| | ‘-- ERK_f90_Integrator.F90

| |-- RK

| | |-- LS_Solver.F90

| | ‘-- RK_f90_Integrator.F90

| |-- ROS

| | |-- LS_Solver.F90

| | ‘-- ROS_f90_Integrator.F90

| ‘-- SDIRK

| |-- LS_Solver.F90

| ‘-- SDIRK_f90_Integrator.F90

|-- ADJ

| |-- ERK_ADJ

| | ‘-- ERK_ADJ_f90_Integrator.F90

| |-- RK_ADJ

| | |-- LS_Solver.F90

| | ‘-- RK_ADJ_f90_Integrator.F90

| |-- ROS_ADJ
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| | |-- LS_Solver.F90

| | ‘-- ROS_ADJ_f90_Integrator.F90

| ‘-- SDIRK_ADJ

| |-- LS_Solver.F90

| ‘-- SDIRK_ADJ_f90_Integrator.F90

|-- TLM

| |-- ERK_TLM

| | ‘-- ERK_TLM_f90_Integrator.F90

| |-- RK_TLM

| | |-- LS_Solver.F90

| | ‘-- RK_TLM_f90_Integrator.F90

| |-- ROS_TLM

| | |-- LS_Solver.F90

| | ‘-- ROS_TLM_f90_Integrator.F90

| ‘-- SDIRK_TLM

| |-- LS_Solver.F90

| ‘-- SDIRK_TLM_f90_Integrator.F90

|-- EXAMPLES

| |-- roberts

| | |-- ROBERTS_RK_ADJ

| | | |-- Makefile

| | | |-- roberts_rk_adj

| | | ‘-- roberts_rk_adj_dr.F90

| | |-- ROBERTS_ROS_ADJ

| | | |-- Makefile

| | | |-- roberts_ros_adj

| | | ‘-- roberts_ros_adj_dr.F90

| | ‘-- ROBERTS_SDIRK_ADJ

| | |-- Makefile

| | |-- roberts_sdirk_adj

| | ‘-- roberts_sdirk_adj_dr.F90

| |-- small_strato

| | |-- small_rk

| | | |-- Makefile

| | | |-- small_strato

| | | |-- small_strato_dr.F90

| | | ‘-- User_Parameters.F90

| | |-- small_ros

| | | |-- Makefile

| | | |-- small_strato

| | | |-- small_strato_dr.F90

| | | ‘-- User_Parameters.F90

| | |-- small_ros_adj

| | | |-- Makefile

| | | |-- small_strato

| | | |-- small_strato_dr.F90

| | | ‘-- User_Parameters.F90

| | ‘-- small_sdirk
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| | |-- Makefile

| | |-- small_strato

| | |-- small_strato_dr.F90

| | ‘-- User_Parameters.F90

| ‘-- swe

| |-- SWE_ERK

| | |-- Makefile

| | |-- swe2D_erk

| | |-- swe2D_erk_dr.F90

| | |-- swe2D_upwind.F90

| | ‘-- swe_lsode_sol.txt

| |-- SWE_ERK_ADJ

| | |-- Makefile

| | |-- swe2D_erk_adj

| | |-- swe2D_erk_adj_dr.F90

| | ‘-- swe2D_upwind.F90

| |-- SWE_ERK_TLM

| | |-- Makefile

| | |-- swe2D_erk_tlm

| | |-- swe2D_erk_tlm_dr.F90

| | ‘-- swe2D_upwind.F90

| |-- SWE_RK

| | |-- Makefile

| | |-- swe2D_rk

| | |-- swe2D_rk_dr.F90

| | |-- swe2D_upwind.F90

| | ‘-- swe_lsode_sol.txt

| |-- SWE_RK_ADJ

| | |-- Makefile

| | |-- swe2D_rk_adj

| | |-- swe2D_rk_adj_dr.F90

| | ‘-- swe2D_upwind.F90

| |-- SWE_RK_TLM

| | |-- Makefile

| | |-- swe2D_rk_tlm

| | |-- swe2D_rk_tlm_dr.F90

| | ‘-- swe2D_upwind.F90

| |-- SWE_ROS

| | |-- Makefile

| | |-- swe2D_ros

| | |-- swe2D_ros_dr.F90

| | |-- swe2D_upwind.F90

| | ‘-- swe_lsode_sol.txt

| |-- SWE_ROS_ADJ

| | |-- Makefile

| | |-- swe2D_ros_adj

| | |-- swe2D_ros_adj_dr.F90

| | ‘-- swe2D_upwind.F90
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| |-- SWE_ROS_TLM

| | |-- Makefile

| | |-- swe2D_ros_tlm

| | |-- swe2D_ros_tlm_dr.F90

| | ‘-- swe2D_upwind.F90

| |-- SWE_SDIRK

| | |-- Makefile

| | |-- swe2D_sdirk

| | |-- swe2D_upwind.F90

| | ‘-- swe_lsode_sol.txt

| |-- SWE_SDIRK_ADJ

| | |-- Makefile

| | |-- swe2D_sdirk_adj

| | |-- swe2D_sdirk_adj_dr.F90

| | ‘-- swe2D_upwind.F90

| ‘-- SWE_SDIRK_TLM

| |-- Makefile

| |-- swe2D_sdirk_tlm

| |-- swe2D_sdirk_tlm_dr.F90

| ‘-- swe2D_upwind.F90

|-- LSS_LIBS

| ‘-- x86_64_Linux

| |-- SUPERLU

| | |-- c_fortran_dgssv.c

| | |-- c_fortran_dgssv.o

| | |-- c_fortran_zgssv.c

| | |-- c_fortran_zgssv.o

| | |-- libsuperlu_4.2.a

| | ‘-- Makefile

| ‘-- UMFPACK

| |-- libamd.a

| |-- libumfpack.a

| |-- Makefile

| |-- umf4_f77wrapper.c

| |-- umf4_f77wrapper.o

| |-- umf4_f77zwrapper.c

| ‘-- umf4_f77zwrapper.o

|-- LSS_LIBS

| |-- FATODE_user_guide.pdf

|-- GPL.txt

‘-- README
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4

How to use FATODE

4.1 Prerequisites

The following resources need to be installed on your system before FATODE could be used.

A Fortran compiler
FATODE is written in Fortran 90, taking advantage of modules. Any Fortran 90/95
compiler should work with FATODE. All the code has been tested under the fol-
lowing compilers: Portland group’s pgf90, Lahey’s lf95, Sun’s sunf90, gfortran, g95,
Absoft.

A Unix-like environment
In principle you can compile your program incorporating FATODE under any
operating system, but the instruction and support provided in this guide is only
for a Unix-like environment.

GNU make GNU make is a free and widely used version of make. Our makefiles are tested
with GNU make. They are likely to also work with other versions of make, but
that has not yet been tested. Use: make –version to check whether you have
GNU make. If not, you may get it from http://www.gnu.org.

BLAS, LAPACK
FATODE relies on BLAS and LAPACK for dense linear algebra operations. You will
therefore need a working installation of them.

The BLAS (Basic Linear ALgebra Subprograms) is a collection of routines that pro-
vide standard building blocks for performing basic vector and matrix operations.
A Fortran reference implementation of BLAS as well as installation information
may be found at http://www.netlib.org/blas/index.html, but it is recom-
mended to use a machine-optimized library if one is available.

LAPACK (Linear ALgebra Package) is a public domain software and can be down-
loaded from http://www.netlib.org/lapack. If you are using Linux, note that
LAPACK comes along with many Linux distributions.

If these two libraries are installed successfully, you may find the library files , e.g.
libblas.a and liblapack.a (names may differ), on your system. Their path
needs to be used in makefiles. Alternatively, you configure the system environ-
ment variables to point to the location of these libraries; e.g., for bash shell use:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/some/directory/xxx.a
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Another option is to copy the appropriate lib files manually to a location you like
(typically your working directory) and link them when compiling.

Remark 1 Some compilers, such as Absoft, Sun’s sunf90, Portland Group’s pgf90 and LAHEY’s
lf95, come with their own optimized version of BLAS and LAPACK. Examples of linking these
libraries can be found in makefiles under EXAMPLES directory.

Remark 2 For compilers which do not provide BLAS and LAPACK, we suggest the users to com-
pile the sources of these libraries with the same compiler as for FATODE for compatibility con-
siderations.

4.2 Optional third party libraries for sparse linear algebra

For efficiently solving sparse linear systems, some widely used third-party linear solvers are in-
corporated in FATODE. Interfaces to the following libraries are provided. Installing these sparse
solvers is optional, but they greatly enhance efficiency when dealing with large sparse linear sys-
tems which typically arise in semi-discretized PDE problems.

UMFPACK UMFPACK [13] is a set of routines for solving unsymmetric sparse linear systems
using the Unsymmetric MultiFrontal method. The code is available from http://
www.cise.ufl.edu/research/sparse/umfpack. It supports double precision
real and complex data. We have tested version 5.1.

SuperLU SUPERLU [14] is a general purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance machines, avail-
able from http://crd.lbl.gov/~xiaoye/SuperLU; provides serial factorization
and triangular system solution for single and double precision, real and complex
data. We have tested version 4.2.

Remark 3 Both UMFPACK and SUPERLU are written in C. Fortran wrappers for relevant C calls
are provided in FATODE. We also include corresponding makefiles to help users generate object
files from the libraries and wrapper functions. The object files will be linked if a sparse linear
solver is specified to be used with FATODE. The libumfpack.a, libamd.a, and libsuperlu_4.2.a
supplied with FATODE are built on an x86_64 linux system. If you are using a different OS, make
sure to replace these binary lib files with your own. Next, type make inside the corresponding di-
rectory to generate new object files.

4.3 Makefile

To use FATODE it may be necessary to slightly adapt the Makefile to reflect the appropriate
settings for your system. All the example programs in FATODE source directory come with
Makefiles and these Makefiles can serve as templates for users.

Makefile

############################################################################

#
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# Module: Makefile

#

# Purpose: Top-level Makefile

#

# Creation date: Feb 27, 2011

#

# Modified:

#

# Send bug reports, comments or suggestions to zhang@vt.edu

#

############################################################################

export ARCH=ar -cr

export RANLIB=ranlib

#Configuration flags for linear solvers. Must choose one from the following three options.

# -DFULL_ALGEBRA use BLAS and LAPACK library (full algebra)

# -DSPARSE_UMF use UMFpack (sparse format)

# -DSPARSE_LU use SuperLU (sparse format)

#

LS_CONFIG = -DSPARSE_UMF

#~~~> NAG fortran

#export FC=nagfor

#export FFLAGS = -O3 $(LS_CONFIG)

#BLAS = ~/nagfor_libs/libblas.a

#LAPACK = ~/nagfor_libs/liblapack.a

#~~~> absoft fortran

#export FC=f90

#export FFLAGS = -O3 $(LS_CONFIG)

#BLAS = /Applications/Absoft10.1/lib/libblas.a

#LAPACK = /Applications/Absoft10.1/lib/liblapack.a

#~~~> intel fortran

#export FC=ifort

#export FFLAGS= -cpp -O3 -nogen-interface $(LS_CONFIG) -warn all

#BLAS= /opt/ifort_libs/libblas.a

#LAPACK = /opt/ifort_libs/liblapack.a

#~~~> sunf90

#export FC = /opt/oracle/solstudio12.2/bin/sunf90

#export FFLAGS = -fpp -O3 -free $(LS_CONFIG)

#BLAS = -xlic_lib=sunperf

#LAPACK = 1,1 Top

#~~~> gfortran (GNU FORTRAN Compiler)
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export FC = gfortran

export FFLAGS = -cpp -O3 -ffree-line-length-none $(LS_CONFIG)

BLAS=/opt/gfortran_libs/libblas.a

LAPACK=/opt/gfortran_libs/liblapack.a

#~~~> PGF90 (Portland Group Compiler)

#export FC=pgf90

#export FFLAGS=-O3 -fastsse -Mcache_align -tp=penryn-64 -Mflushz -Minform=warn

-Mpreprocess $(LS_CONFIG)

#BLAS=/opt/pgi/linux86-64/7.2-5/lib/libblas.a

#LAPACK=/opt/pgi/linux86-64/7.2-5/lib/liblapack.a

#other libraries

#XERBLA = -lpgftnrtl -pgf90libs

#~~~> LAHEY

#export FC = lf95

#export FFLAGS = -O3 -Cpp $(LS_CONFIG)

#BLAS = -lssl2mt

#LAPACK =

FATDIR = ../../..

LIBDIR = $(FATDIR)/LSS_LIBS/x86_64_Linux

MODEL = ADJ

FAMILY = RK_ADJ

APP = swe2D_rk_adj

PAR = swe2D_upwind.o

LSSOLVER = LS_Solver.o

FAMILY = RK_ADJ

INTEGRATOR= $(FAMILY)_f90_Integrator.o

default: driver

swe2D_upwind.o: swe2D_upwind.F90

$(FC) $(FFLAGS) -c $<

LS_Solver.o: $(FATDIR)/$(MODEL)/$(FAMILY)/LS_Solver.F90

$(FC) $(FFLAGS) -c $<

$(FAMILY)_f90_Integrator.o: $(FATDIR)/$(MODEL)/$(FAMILY)/$(FAMILY)_f90_Integrator.F90

$(FC) $(FFLAGS) -c $<

swe2D_rk_adj_dr.o: swe2D_rk_adj_dr.F90 $(PAR) $(LSSOLVER) $(INTEGRATOR)

$(FC) $(FFLAGS) -c $<
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LIB = -lm

LUPACK = $(LIBDIR)/SUPERLU/libsuperlu_4.2.a

LUWRAP = $(LIBDIR)/SUPERLU/c_fortran_dgssv.o $(LIBDIR)/SUPERLU/c_fortran_zgssv.o

UMFPACK = $(LIBDIR)/UMFPACK/libumfpack.a $(LIBDIR)/UMFPACK/libamd.a

UMFWRAP = $(LIBDIR)/UMFPACK/umf4_f77wrapper.o $(LIBDIR)/UMFPACK/umf4_f77zwrapper.o

default: driver

driver: swe2D_rk_adj_dr.o $(PAR) $(LSSOLVER) $(INTEGRATOR)

$(FC) $(FFLAGS) -o $(APP) $< $(LUWRAP) $(LUPACK) $(UMFWRAP) $(UMFPACK) $(LSSOLVER)

$(INTEGRATOR) $(PAR) $(LAPACK) $(BLAS) $(XERBLA) $(LIB)

purge: clean

clean:

rm -f *~ *.mod *.o

help:

@$(ECHO) "usage: make ?"

4.4 User supplied functions

Two basic functions are required by the integrators in FATODE. One is the right-hand side func-
tion defining the ODE. The other is the Jacobian of the ODE function (needed by all integrators
except the forward explicit Runge-Kutta). They must be defined with the following argument
lists:

right hand side function

subroutine fun(n,t,y,f)

integer,intent(in) :: n

double precision,intent(in) :: t,y(n)

double precision,intent(inout) :: f(n)

...

end subroutine fun

Jacobian function

subroutine jac(n,t,y,fjac)

integer,intent(in) :: n

double precision,intent(in) :: t,y(n)

double precision,intent(inout) :: fjac(n,n)

...

end subroutine jac
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n dimension of the ODE.

t current value of the independent variable (time).

y current value of the dependent variable y(t ) (state).

f output vector f (t , y) = d y/d t .

fjac output Jacobian matrix ∂ f /∂y

] ] ]

Adjoint integrators require an additional function adjinit to initialize the adjoint variable be-
fore the backward run.

adjoint variables initialization function

subroutine adjinit(n,np,nadj,t,y,lambda,mu)

integer,intent(in) :: n,np,nadj,k

double precision,intent(in) :: t,y(n),lambda(n,nadj)

double precision, optional,intent(inout) :: mu(np,nadj)

...

end subroutine

n,t,y same as in functions fun and jac.

np number of input parameters of interest (with respect to which sensitivities are com-
puted).

nadj number of output functionals of interest (whose sensitivities are computed).

lambda input and output adjoint variables denoting the sensitivities of given cost functional
g w.r.t. initial conditions ∂g /∂y .

mu input and output adjoint variables denoting the sensitivities of given cost functional
g w.r.t. to parameters ∂g /∂p.

] ] ]

For sensitivity analysis, users may need to provide some or all of these subroutines:

• DRDP
computes the partial derivative of the function r, which is defined in (2.10), w.r.t. a set of
parameters.
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DRDP

subroutine DRDP(nadj,n,nr,t,y,rp)

integer, intent(in) :: nadj,n,nr

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: rp(nr,nadj)

...

end subroutine DRDP

• DRDY
computes the partial derivative of the function r, which is defined in (2.10), w.r.t. the state
vector y.

DRDY

subroutine DRDY(nadj,n,nr,t,y,ry)

integer, intent(in) :: nadj,n,nry

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: ry(nr,nadj)

...

end subroutine DRDY

• JACP
computes the jacobian of the ODE function f w.r.t. a set of parameters.

JACP

subroutine JACP(n,np,t,y,fpjac)

integer, intent(in) :: n,np

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: fpjac(n,np)

...

end subroutine JACP

• QFUN
computes the function r, which is defined in (2.10).

QFUN

subroutine QFUN(n,nr,t,y,r)

integer, intent(in) :: n,nr

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: r(nr)

...

end subroutine JACP

The variables used in the above subroutines are summerized below:

nr dimension of the quadrature function.

20



np number of parameters of interest.

r integrand in the given cost functional r (t , y, p).

ry ∂r /∂y , derivative of the integrand r w.r.t y .

rp ∂r /∂p, derivative of the integrand r w.r.t p.

fpjac ∂ f /∂p, Jacobian matrix with respect to to p.

The behavior of the integrators will be determined by the presence of these subroutines to-
gether with the values of some parameters as shown in Figure (4.1). Note that JACP is needed if
the sensitivities with respect to parameters are desired; QFUN, DRDP, DRDY are related to the
quadrature term in the given cost functional.

] ] ]

Sensitivity analysis with Rosenbrock methods require an additional function calculating the
Hessian times a vector (in tangent linear model):

Hessian times vector

subroutine hess_vec(n,t,y,u,v,hv)

! hv = (f_yy x v) * u = (d(u*f_y)/dy) * v

integer, intent(in) :: n

double precision, intent(in) :: t,y(n),u(n),v(n)

double precision, intent(inout) :: hv(n)

...

end subroutine hess_vec

or the Hessian transpose times a vector (in adjoint model):

Hessian transpose times vector

subroutine hesstr_vec(n,t,y,u,v,htv)

! htv = (f_yy x v)^T * u = (d(f_y^T * u)/dy) * v

integer, intent(in) :: n

double precision, intent(in) :: t,y(n),u(n),v(n)

double precision, intent(inout) :: htv(n)

...

end subroutine hesstr_vec

The arguments are as follows:

u,v user defined input vectors of dimension n.

hv output vector of dimension n storing the result of Hessian times vector.

htv output vector of dimension n storing the result of Hessian transpose times vector.
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Figure 4.1: The behavior of adjoint integrators is driven by the user supplied functions.

22



The vectors hv and ht v can be regarded as the derivatives of Jacobian-vector product times
another vector, and the derivative of Jacobian-transposed-vector product times another vector,
respectively:

hv := ∂
(

J (t , y, p) · v
)

∂y
·u = (

fy y ·u
) · v, (4.1)

ht v := ∂
(

J (t , y, p)T · v
)

∂y
·u = (

u · fy y
) · v . (4.2)

] ] ]

To perform adjoint sensitivity analysis with respect to parameters using a Rosenbrock method
the function HESSTR_VEC_F_PY is needed. In addition, the function HESSTR_VEC_F_PY is also
needed when the cost functional is defined using a quadrature term (time integration).

Hessian (F_PY)transpose times vector

subroutine HESSTR_VEC_F_PY(ny,np,t,y,u,k,htvg)

! htvg = (f_py x k)^T * u = (d(f_p^T * u)/dy) * k

integer :: ny,np

double precision :: t,y(ny),u(ny),k(ny),htvg(np)

Hessian (R_PY) transpose times vector

subroutine HESSTR_VEC_R_PY(ny,np,t,y,u,k,htvr)

! htvr = (f_py x k)^T * u = (d(f_p^T * u)/dy) * k

integer :: ny,np

double precision :: t,y(ny),u(ny),k(ny),htvr(np)

The output vectors htvg and htvr stand for

ht v g := ∂
(

J (t , y, p)T ·k
)

∂y
·u = (u · fpy ) ·k, (4.3)

ht vr := ∂
(

JR(t , y, p)T ·k
)

∂y
·u = (u · rpy ) ·k, (4.4)

where JR is the Jacobian of function R. The Hessian related functions may be too complex to be
obtained analytically. In this case, we suggest users to take advantage of automatic differential
techniques. Section 8 gives instructions on how to use TAMC [17] to generate these functions.
Users can of course choose other automatic differential tools.
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5

User interface
This section describes the interfaces used to call FATODE routines for forward ODE integra-
tion, direct sensitivity analysis via tangent linear models, and computing sensitivities of a cost
function with respect to initial conditions and specified parameters via adjoint models.

FATODE provides standard interfaces which are very similar to those of classic ODE solvers
such as LSODE, VODE, RADAU5. Users who are comfortable with these classic tools should
also feel comfortable when use FATODE. For each specific purpose, a uniform interface is pro-
vided for all four solver families in FATODE. This interface allows users to control nearly every
aspect of the solution process, such as method selection, step size adjustment, error estimation,
convergence of simplified Newton iterations, and so on.

5.1 Options

An integer array ICNTRL and a real array RCNTRL (both of length 20), as optional arguments in
all the solver interfaces, are used to control parameters. Table 5.1 and 5.2 describes the full set
of options available in each family, as well as default settings. Default values are assigned to
these parameters after careful experimenting and using [4]. One can simply take advantage of
default settings either by assigning 0 to the array elements or not providing the arrays as input
arguments to the interfaces.
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5.2 Forward ODE integration

The call to the forward integrator routine is as follows:

CALL INTEGRATE(TIN,TOUT,NVAR,NNZERO,VAR,RTOL,ATOL,FUN,

ICNTRL,RCNTRL,ISTATUS,RSTATUS,IERR)

All arguments except ISTATUS, RSTATUS, IERR are input arguments. ICNTRL, RCNTRL, ISTA-
TUS, RSTATUS, IERR are optional. The arguments have the following meaning:

TIN start time

TOUT end time

NVAR number of ordinary differential equations to be solved

NNZERO number of non-zero elements in the Jacobian matrix

VAR vector of length NVAR containing the initial values of the dependent variables. Upon
return, VAR is the numerical solution at the last step.

RTOL relative error tolerance

ATOL absolute error tolerance

FUN name of the user-supplied function that computes the f in the ODE

ICNTRL optional integer-valued array containing input parameters

RCNTRL optional real-valued array containing input parameters

ISTATUS optional integer-valued array containing output statistics

RSTATUS optional real-valued array containing output statistics

IERR job status upon return

The value of variable NNZERO is only needed in the case that a sparse linear solver is used.
ICNTRL (an integer array) and RCNTRL (a real array) provide a wide range of options for users
to tune the behavior of the integrator. Details can be found in Table 5.1 and 5.2. Note that not all
elements in ICNTRL and RCNTRL are used, those not listed in the tables are reserved for future
use.

Some options are common to all families while some others are only given to specific fam-
ilies of methods. The third columns in the tables show the name of methods in which the cor-
responding options can be used. For example, simplified Newton iterations are only used in
fully implicit and singly diagonally implicit Runge-Kutta methods. For these two families, users
can specify the maximum number of Newton iterations, stopping criterion, bounds on step de-
crease, increase, and on step rejection. Additional options regarding step size control and error
estimation are provided for the fully implicit Runge-Kutta family. In this family two step-size
strategies are implemented: the classical approach and the modified predictive controller [15].
There are also two strategies implemented for error estimation: the classical error estimation
[4] using the embedded third order method based on an additional explicit stage, and an error
estimator based on an additional SDIRK stage which re-uses the real LU decomposition from
the main method.
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5.3 Tangent linear methods and forward sensitivity
calculations

The tangent linear model integrator can be called as follows:

CALL INTEGRATE_TLM(NVAR,NTLM,NNZERO,Y,Y_TLM,TIN,TOUT,ATOL_TLM,RTOL_TLM,ATOL,RTOL,

FUN,ICNTRL,RCNTRL,ISTATUS,RSTATUS,IERR)

There are four additional arguments compared to the forward integrator: NTLM specifies the
number of sensitivity coefficients to be computed, Y_TLM contains sensitivities of Y with respect
to the specified coefficients, and ATOL_TLM and RTOL_TLM are used to calculate error estimates
for sensitivity coefficients if the switch ICNTRL(9) is set to 1. All the options of the forward code
also apply to TLM code. Several TLM-specific options are as follows:

ICNTRL(7) solve TLM equations directly if its value is nonzero, or by Newton iterations if
value is zero.

ICNTRL(9) switch for TLM Newton iteration error estimation strategies: same as forward
integration if value equal to zero, otherwise use RTOL_TLM and ATOL_TLM to
calculate an additional error estimate (for fully implicit Runge-Kutta and SDIRK
families).

ICNTRL(12) use forward error estimation only if its value is zero, otherwise control the trun-
cation errors for both the forward and the sensitivity solutions. (For both Newton
iteration and truncation error FATODE takes the maximum between the forward
error and the error of any column of the matrix of sensitivities).

The TLM integrators generate sensitivity results along with the numerical solution of forward
ODE system. When sensitivities of y(t ) with respect to fixed model parameters are desired
the augmenting technique described in [12] can be applied. Note that the argument list for
the Rosenbrock method includes the additional function HESS_VEC for calculating the Hessian
times vector term.

5.4 Adjoint methods and discrete adjoint sensitivity
calculations

The adjoint model integrator is called as follows:

CALL INTEGRATE_ADJ(NVAR,NP,NADJ,NNZERO,Y,Lambda,Mu,TIN,TOUT,ATOL_adj,

RTOL_adj,ATOL,RTOL,FUN,JAC,ADJINIT,HESSTR_VEC,JACP,

DRDY,DRDP,HESSTR_VEC_F_PY,HESSTR_VEC_R_PY,HESSTR_VEC_R,

ICNTRL_U,RCNTRL_U,ISTATUS_U,RSTATUS_U,Q,QFUN)
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The integer arguments NADJ and NP specify the number of cost functionals and the number of
system parameters for which adjoint sensitivities are evaluated simultaneously. Lambda (of di-
mension NVAR × NADJ) and Mu (optional variable of dimension NP × NADJ) contain the sensi-
tivities of the cost functional(s) with respect to the initial conditions and with respect to system
parameters, respectively. ADJINIT is a user-provided routine for initializing the adjoint vari-
ables; it is called after the forward run ends, and before the backward run starts. The optional
variable Q represents the quadrature term in the cost functional and the optional routine QFUN
computes the integrand for the quadrature term. JACP, DRDY, DRDP are optional routines to cal-
culate the derivatives fp , r y , and rp discussed in section 4.4.

Several additional optional arguments (with names beginning with HESS), perform Hessian
related operations and are only available in the interface of the Rosenbrock methods. The be-
havior of the program is controlled by the user through the following optional arguments.

• Mu and JACP are required when the sensitivities with respect to system parameters are
desired.

• Q and QFUN are required when the cost functional(s) contain(s) a quadrature term. Upon
completion Q stores the value of the quadrature term at the final step.

• DRDY (DRDP) are required when the cost functional(s) contain(s) a quadrature term and
the sensitivities with respect to initial conditions (or system parameters, respectively) are
desired.

The integrator performs a forward run from t0 (specified by TIN) to tF (specified by TOUT)
followed by a backward, adjoint run from tF to t0. ATOL and RTOL define the tolerances for the
forward run while ATOL_ADJ and RTOL_ADJ for the backward run. Tolerance settings are highly
problem dependent. The value should never be smaller than the roundoff error of the machine
(usually around 1.0E −15). RTOL of the value 1.0E −3 is often sufficient for getting a meaningful
result. ATOL is a threshold below which the corresponding solution is unimportant. Note that
ATOL_ADJ and RTOL_ADJ control the convergence of the iterations (only when Newton itera-
tions are applied), not the time steps since the backward run follows exactly the same sequence
of time steps as the forward run in reverse order. To be specific, adjoint RK integrator requires
an appropriate setting of ATOL_ADJ and RTOL_ADJ. Adjoint SDIRK integrator need them if the
option (ICNTRL(7)) which determines whether to solve the adjoint equations using Newton it-
erations is not of the value 1; Otherwise they take no effect. Adjoint Rosenbrock integrator does
not rely on Newton iterations in the backward run thus ATOL_ADJ and RTOL_ADJ are useless. The
definition of these variables is still kept in the code not only for the purpose of future expansion
but also for consistence with the argument lists of other integrators.

All options available in forward integration are inherited by adjoint integrators. For fully
implicit Runge-Kutta family, there is an additional option provided by ICNTRL(7) which deter-
mines how to the linear adjoint system is solved. If the value is 0 or 1, modified Newton re-using
LU with a fixed number of iterations will be used; if 2, a direct linear algebra solution is em-
ployed; if 3,an adaptive strategy is applies which means that if the simplified Newton iterations
for solving the adjoint stage variables do not converge, the code switches automatically to a
direct solution method – at the expense of additional LU decompositions.
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6

Example
To demonstrate the usage of FATODE, several examples are provided in the source package.
Here we just show one of them covering all three different purposes.

6.1 Description of the example problem

We illustrate the capabilities of FATODE with the two-dimensional Saint-Venant system of shal-
low water equations

∂

∂t
h + ∂

∂x
(uh)+ ∂

∂y
(vh) = 0,

∂

∂t
(uh)+ ∂

∂x
(u2 + 1

2
g h2)+ ∂

∂y
(uvh) = 0, (6.1)

∂

∂t
(vh)+ ∂

∂t
(uvh)+ ∂

∂y
(v2h + 1

2
g h2) = 0,

on the spatial domain Ω= [−3, 3]2, where u(t , x, y), v(t , x, y) are the components of the velocity
field, h(t , x, y) is the fluid layer thickness, and g denotes the standard value of the gravitational
acceleration.

The shallow water equations (6.1) are converted to a semi-discrete form using third order
upwind finite differences. The spatial domain is covered by a grid of size 40×40, resulting in an
ODE system of dimension 40×40×3 = 4800 which is solved by FATODE.

6.2 Using FATODE for IVP

The velocity field and fluid layer thickness are stored in a two-dimensional matrix and up-
dated by the subroutine compute_f. The standard right hand side function accepts only one-
dimensional vector. So two subroutines vec2grid and grid2vec are used for transformation be-
tween matrices and vectors.

right hand side function

subroutine fun(n,t, y, p )

use swe2dxy_parameters

implicit none

integer, intent(in) :: n

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: p(n)

call vec2grid(y, temp_par)

call compute_f(temp_par,fz_par,feigvalues_par,geigvalues_par)

call grid2vec(fz_par, p)

end subroutine fun
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The function computing Jacobian matrix compute_jac is generated by the automatic differ-
ential tool TAMC based on compute_f.

Jacobian function

subroutine jac(n,t,y,fjac)

use swe2dxy_parameters

implicit none

integer, intent(in) :: n

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: fjac(n,n)

call vec2grid(y,u_par)

call compute_f(u_par,f_par,feigvalues_par,geigvalues_par)

call compute_jacf(u_par,feigvalues_par,geigvalues_par)

fjac(:,:)=jf(:,:)

end subroutine jac

Since there might be optional variables in the middle of the argument list, we specify the names
of the parameters in the procedure call. And this specification style must be followed by users
to call FATODE integrators correctly.

calling the forward integrator

call integrate( tin=tstart, tout=tend, nvar=ndim, nnzero = nnz,var=var,&

rtol=rtol, atol=atol,fun=fun,jac=jac,rstatus_u=rstate,&

rcntrl_u=rcntrl, istatus_u=istate, icntrl_u=icntrl)

The meaning of each parameter has been elaborated in Section 5.

6.3 Using FATODE for direct sensitivity analysis

We are interested to compute the sensitivity of the final solution (at time tend) with respect to all
initial conditions (ntlm = nvar ). This simple case doesn’t require any additional input beyond
the basic right hand side and Jacobian functions. But the sensitivity variable y_t l m should be
initialized as the derivative of y(t ) with respect to y0 at start time t = t0, yielding an identity
matrix. We set the control parameters i cntr l and r cntr l to zero so that the default setting will
be used. The sensitivity results are stored in yt lm upon return from the subroutine.

calling the TLM integrator

call integrate_tlm(tin=tstart, tout=tend, n=nvar, nnzero=nnz, &

y_tlm=y_tlm, y=var, rtol=rtol, atol=atol, ntlm=ntlm,&

atol_tlm=atol_tlm, rtol_tlm=rtol_tlm, fun=fun, jac=jac,&

rstatus_u=rstate,rcntrl_u=rcntrl, istatus_u=istate,&

icntrl_u=icntrl)
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6.4 Using FATODE for discrete adjoint sensitivity analysis

The adjoint is initialized at tF . If we use nadj=nvar, and each variable at the final time is a func-
tional, then we initialize with identity. The initialization function is given in the following:

Adjoint variable initialization

subroutine adjinit(n,np,nadj,t,y,lambda,mu)

integer, intent(in) :: n,np,nadj,k

double precision, intent(in) :: t,y(n)

double precision, intent(inout) :: lambda(n,nadj)

double precision, optional, intent(inout) :: mu(np,nadj)

!~~~> if number of parameters is not zero, extra adjoint variable mu

! should be defined

if(NP>0 .and. .not. present(mu)) stop ’undefined argument mu’

!~~~> the adjoint values at the final time

lambda(1:n,1:nadj) = 0.0d0

do k=1,nadj

lambda(k,k) = 1.0d0

end do

end subroutine

Then we can call the adjoint integrator in the main procedure:

calling the ADJ integrator

call integrate_adj(tin=tstart, tout=tend, np=np,nvar=ndim,nnzero=nnz, &

lambda=y_adj, y=var, rtol=rtol, atol=atol, nadj=nadj,&

atol_adj=atol_adj, rtol_adj=rtol_adj, fun=fun, jac=jac,&

adjinit=adjinit, rstatus_u=rstate,rcntrl_u=rcntrl, &

istatus_u=istate, icntrl_u=icntrl)

Remark 4 If one desires the full sensitivity matrix, both TLM integrators and ADJ integrators can
be used with settings ntlm = nvar and nad j = nvar respectively. Both the TLM variable y_tl m
and the ADJ variable l ambd a are initialized with identity matrices and generate the same sen-
sitivity results after integration. If we set ntlm = 1 for TLM integrators and nad j = 1 for ADJ
integrators, then the results differ. y_t l m gives the sensitivity of the final solution with respect to
the first element of the initial vector (i.e., the first column of the sensitivity matrix), while l ambd a
corresponds to the sensitivity of the first element of the finial solution with respect to initial con-
ditions (i.e., the first row of the sensitivity matrix).

Remark 5 In our example, Rosenbrock methods require Hessian times vector function hess_vec
for tangent linear model integration and Hessian transpose times vector function hesstr_vec for
adjoint integration.
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7

FATODE linear solvers
The linear system solver module provides interfaces to generic linear solvers, which are called
transparently by the integration routines. Specifically, we provide interfaces to the following
four generic routines: LS_Init, LS_Decomp, LS_Solve, and LS_Free.

• LS_Init deals with initialization and memory allocation required by the specific linear
solver.

• LS_Decomp performs the LU decomposition.

• LU_Solve solves the triangular systems by substitution.

• LS_Free frees the memory allocated and clears the objects created during the initializa-
tion stage.

The main integrator makes calls to these functions without having to consider the implementa-
tion details of these routines; many linear algebra packages can be used without having to mod-
ify the time stepping code. The user can choose one of the linear solvers provided (LAPACK,
UMFPACK, SUPERLU), or can add a new linear solver by providing their own implementation
and adding it to this module. The linear system solver module also contains several routines
related to computing the Jacobian and its transpose, and taking the product of the Jacobian (or
its transpose) with a vector. The implementation of these operations depends critically on the
data structures used to represent the Jacobian. For example, the Jacobian matrix could be stored
in either dense format or in one of the many available sparse formats, and each representation
leads to a different implementation. For computational efficiency users should take advantage
of Jacobian matrix data structures that work well for their application. All the required code
modifications are done within this single module.

Different families of methods require solving different types of linear systems. Fully implicit
Runge-Kutta methods involve real and complex linear systems of dimension d ×d , or real linear
systems of dimension d s×d s. Singly diagonally implicit Runge-Kutta and Rosenbrock methods
deal with only real-valued linear systems of dimension d ×d . Jacobian related operations also
vary greatly between the three families of implicit methods. To manage this complexity we pro-
vide individual linear solver modules for each of the implicit time stepping families in FATODE.

The linear system modules in FATODE currently include three linear solvers: LAPACK [16],
UMFPACK [13] and SUPERLU [14]. Each requires its own data format, e.g., a full matrix is used
with the LAPACK version, while a compressed column sparse matrix is needed with UMFPACK
or SUPERLU versions. The existing linear solvers can be used as templates for users who wish
to add their own. A new solver requires the user to provide the four basic solution routines, as
well as the Jacobian related routines if necessary. Though the framework is originally designed
for direct solvers, it may apply to iterative solvers if one leaves the routine LS_Decomp blank and
implements iterative solvers only in LU_Solve.
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8

Automatic Differentiation
In the following we illustrate the use of theautomatic differentiation tool TAMC for code gener-
ation. Detailed information on TAMC is given in the user’s manual [17].

Consider a given subroutine with the following parameter list:

subroutine fun(n, t, y, f)

! dimension of state vector y

integer :: n

double precision :: t

! y is the numerical solution at time t and p is the

! right hand side function at time t

double precision :: y(n), f(n)

The forward mode of TAMC can generate derivative code to compute the sensitivity of the
dependent variable f with respect to the independent variable y by:

./stamc -reply <your_email> -toplevel fun -input y

-output f -forward -pure -Jacobian <m> <source file name>

The generated code has the following parameter list:

subroutine g_fun(n, t, y, g_y, g_f)

! dimension of state vector y

integer :: n

double precision :: t

! y is the numerical solution at time t and p is the

! right hand side function at time t

double precision :: y(n), p(n)

double precision :: g_y(n,m), g_f(n,m)

If you specify the number after option ’-Jacobian’ with the number of dependent variables and
initialize the input variable g _ f with identity matrix, full Jacobian will be obtained and stored
in g _y . Otherwise, the number after option ’-Jacobian’ defines the number of columns of a seed
matrix C , denoted by m.

∂ f

∂y
·C[n×m] (8.1)

The backward mode of TAMC can generate derivative code to compute the sensitivity of the
dependent variable with respect to the many independent variables by:
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./stamc -reply <your_email> -toplevel fun -input y

-output f -reverse -pure -Jacobian <m> <source file name>

The generated code has the following parameter list:

subroutine adfun(n, t, y, ady, adf)

! dimension of state vector y

integer :: n

double precision :: t

! y is the numerical solution at time t and p is the

! right hand side function at time t

double precision :: y(n), p(n)

double precision :: ady(m,n), adf(m,n)

If you specify the number after option ’-Jacobian’ with the number of dependent variables and
initialize the input variable ad f with identity matrix, full Jacobian will be obtained and stored
in ad y . Otherwise, the number after option ’-Jacobian’ defines the number of rows of a seed
matrix C , denoted by m.

C[m×n] · ∂ f

∂y
(8.2)

Note that if you use the option ’-Jacobian 1’, product of Jacobian times a vector ∂ f
∂y ·v is provided

by the forward mode while product of Jacobian transpose times a vector
(
∂ f
∂y

)T ·v is provided by

the backward mode.
To obtain the code calculating the Hessian times vector term (u · H) · v , we run TAMC in

forward over reverse mode

./stamc -reply <your_email> -toplevel fun -input y

-output f -reverse -pure -Jacobian 1 <source file name>

./stamc -reply <your_email> -toplevel fun -input y

-output g_y -forward -pure -Jacobian 1 <source file name>

The generated code has the following parameter list:

subroutine g_adfun(n, t, y, adf, g_y, g_ady)

! dimension of state vector y

integer :: n

double precision :: t

! y is the numerical solution at time t and p is the

! right hand side function at time t

double precision :: y(n), p(n)

double precision :: g_y(1,n), adf(1,n),g_ady(1,n)
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where the variable ad f corresponds to the vector v and g y correspond to the vector u.
Similarly the Hessian transpose times vector term (u ·H T )·v can be obtained by two consec-

utive forward runs:

./stamc -reply <your_email> -toplevel fun -input y

-output f -forward -pure -Jacobian 1 <source file name>

./stamc -reply <your_email> -toplevel fun -input y

-output g_y -forward -pure -Jacobian 1 <source file name>

The generated code has the following parameter list:

subroutine g_g_fun(n, t, y, g_y, g_f, g_g_y)

! dimension of state vector y

integer :: n

double precision :: t

! y is the numerical solution at time t and p is the

! right hand side function at time t

double precision :: y(n), p(n)

double precision :: g_y(1,n), g_f(1,n),g_g_y(1,n)

where the variable g _ f corresponds to the vector v and g _y correspond to the vector u.
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