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Abstract To preserve client privacy in the data mining process, a variety of
techniques based on random perturbation of individual data records have been propo-
sed recently. In this paper, we present FRAPP, a generalized matrix-theoretic frame-
work of random perturbation, which facilitates a systematic approach to the design of
perturbation mechanisms for privacy-preserving mining. Specifically, FRAPP is used
to demonstrate that (a) the prior techniques differ only in their choices for the per-
turbation matrix elements, and (b) a symmetric positive-definite perturbation matrix
with minimal condition number can be identified, substantially enhancing the accuracy
even under strict privacy requirements. We also propose a novel perturbation mecha-
nism wherein the matrix elements are themselves characterized as random variables,
and demonstrate that this feature provides significant improvements in privacy at
only a marginal reduction in accuracy. The quantitative utility of FRAPP, which is
a general-purpose random-perturbation-based privacy-preserving mining technique,
is evaluated specifically with regard to association and classification rule mining on
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a variety of real datasets. Our experimental results indicate that, for a given privacy
requirement, either substantially lower modeling errors are incurred as compared to
the prior techniques, or the errors are comparable to those of direct mining on the true
database.

Keywords Privacy · Data mining

1 Introduction

The knowledge models produced through data mining techniques are only as good
as the accuracy of their input data. One source of data inaccuracy is when users,
due to privacy concerns, deliberately provide wrong information. This is especially
common with regard to customers asked to provide personal information on Web forms
to E-commerce service providers. The standard approach to address this problem is
for the service providers to assure the users that the databases obtained from their
information would be anonymized through the variety of techniques proposed in the
statistical database literature (see Adam and Wortman 1989; Shoshani 1982), before
being supplied to the data miners. For example, the swapping of values between
different customer records, as proposed by Denning (1982). However, in today’s world,
most users are (perhaps justifiably) cynical about such assurances, and it is therefore
imperative to demonstrably provide privacy at the point of data collection itself, that
is, at the user site.

For the above “B2C (business-to-customer)” privacy environment (Zhang et al.
2004), a variety of privacy-preserving data mining techniques have been proposed in
the last few years (e.g. Aggarwal and Yu 2004; Agrawal and Srikant 2000; Evfimievski
et al. 2002; Rizvi and Haritsa 2002), in an effort to encourage users to submit correct
inputs. The goal of these techniques is to ensure the privacy of the raw local data but,
at the same time, support accurate reconstruction of the global data mining models.
Most of the techniques are based on a data perturbation approach, wherein the user
data is distorted in a probabilistic manner that is disclosed to the eventual miner.
For example, in the MASK technique Rizvi and Haritsa (2002), intended for privacy-
preserving association-rule mining on sparse boolean databases, each bit in the original
(true) user transaction vector is independently flipped with a parametrized probability.

1.1 The FRAPP framework

The trend in the prior literature has been to propose specific perturbation techniques,
which are then analyzed for their privacy and accuracy properties. We move on, in
this paper, to proposing FRAPP1 (FRamework for Accuracy in Privacy-Preserving
mining), a generalized matrix-theoretic framework that facilitates a systematic
approach to the design of random perturbation schemes for privacy-preserving mining.
It supports “amplification”, a particularly strong notion of privacy proposed by

1 Also the name of a popular coffee-based beverage, where the ingredients are perturbed and hidden under
foam http://en.wikibooks.org/wiki/Cookbook:Frapp%C3%A9_Coffee.
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Evfimievski et al. (2003), which guarantees strict limits on privacy breaches of indivi-
dual user information, independent of the distribution of the original (true) data. The
distinguishing feature of FRAPP is its quantitative characterization of the sources of
error in the random data perturbation and model reconstruction processes.

We first demonstrate that the prior techniques differ only in their choices for the
elements in the FRAPP perturbation matrix. Next, and more importantly, we show that
through appropriate choices of matrix elements, new perturbation techniques can be
constructed that provide highly accurate mining results even under strict amplification-
based (Evfimievski et al. 2003) privacy guarantees. In fact, we identify a perturbation
matrix with provably minimal condition number,2 substantially improving the accu-
racy under the given constraints. An efficient implementation for this optimal pertur-
bation matrix is also presented.

FRAPP’s quantification of reconstruction error highlights that, apart from the choice
of perturbation matrix, the size of the dataset also has significant impact on the accu-
racy of the mining model. We explicitly characterize this relationship, thus aiding
the miner decide the minimum amount of data to be collected in order to achieve,
with high probability, a desired level of accuracy in the mining results. Further, for
those environments where data collection possibilities are limited, we propose a novel
“multi-distortion” method that makes up for the lack of data by collecting multiple
distorted versions from each individual user without materially compromising on
privacy.

We then investigate, for the first time, the possibility of randomizing the perturba-
tion parameters themselves. The motivation is that it could result in increased privacy
levels since the actual parameter values used by a specific client will not be known to
the data miner. This approach has the obvious downside of perhaps reducing the model
reconstruction accuracy. However, our investigation shows that the trade-off is very
attractive in that the privacy increase is significant whereas the accuracy reduction is
only marginal. This opens up the possibility of using FRAPP in a two-step process:
First, given a user-desired level of privacy, identifying the deterministic values of the
FRAPP parameters that both guarantee this privacy and also maximize the accuracy;
and then, (optionally) randomizing these parameters to obtain even better privacy
guarantees at a minimal cost in accuracy.

1.2 Evaluation of FRAPP

The FRAPP model is valid for random-perturbation-based privacy-preserving mining
in general. Here, we focus on its applications to categorical databases, where attribute
domains are finite. Note that boolean data is a special case of this class, and further, that
continuous-valued attributes can be converted into categorical attributes by partitioning
the domain of the attribute into fixed length intervals. To quantitatively assess FRAPP’s
utility, we specifically evaluate the performance of our new perturbation mechanisms
on popular mining tasks such as association rule mining and classification rule mining.

2 In the class of symmetric positive-definite matrices (refer Sect. 4).
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With regard to association rule mining, our experiments on a variety of real datasets
indicate that FRAPP is substantially more accurate than the prior privacy-preserving
techniques. Further, while their accuracy degrades with increasing itemset length,
FRAPP is almost impervious to this parameter, making it particularly well-suited
to datasets where the lengths of the maximal frequent itemsets are comparable to
the cardinality of the set of attributes requiring privacy. Similarly, with regard to
classification rule mining, our experiments show that FRAPP provides an accuracy
that is, in fact, comparable to direct classification on the true database.

Apart from mining accuracy, the running time and memory costs for perturbed
data mining, as compared to classical mining on the original data, are also important
considerations. In contrast to much of the earlier literature, FRAPP uses a generali-
zed dependent perturbation scheme, where the perturbation of an attribute value may
be affected by the perturbations of the other attributes in the same record. However,
we show that it is fully decomposable into the perturbation of individual attributes,
and hence has the same run-time complexity as any independent perturbation method.
Further, we present experimental evidence that FRAPP takes only a few minutes to per-
turb datasets running to millions of records. Subsequently, due to its well-conditioned
and trivially invertible perturbation matrix, FRAPP incurs only negligible additional
overheads with respect to memory usage and mining execution time, as compared to
traditional mining. Overall, therefore, FRAPP does not pose any significant additional
computational burdens on the data mining process.

1.3 Contributions

In a nutshell, the work presented here provides mathematical and algorithmic founda-
tions for efficiently providing both strict privacy and enhanced accuracy in privacy-
conscious data mining applications. Specifically, our main contributions are as follows:

– FRAPP, a generalized matrix-theoretic framework for random perturbation and
mining model reconstruction;

– Using FRAPP to derive new perturbation mechanisms for minimizing the model
reconstruction error while ensuring strict privacy guarantees;

– Introducing the concept of randomization of perturbation parameters, and thereby
deriving enhanced privacy;

– Efficient implementations of the proposed perturbation mechanisms;
– Quantitatively demonstrating the utility of FRAPP in the context of association and

classification rule mining.

1.4 Organization

The remainder of this paper is organized as follows: Related work on privacy-
preserving mining is reviewed in Sect. 2. The FRAPP framework for data perturbation
and model reconstruction is presented in Sect. 3. Appropriate choices of the frame-
work parameters for simultaneously guaranteeing strict data privacy and improving
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model accuracy are discussed in Sects. 4 and 5. The impact of randomizing the FRAPP
parameters is investigated in Sect. 6.

Efficient schemes for implementing the FRAPP approach are described in Sect. 7.
The application of these mechanisms to specific patterns is discussed in Sect. 8, and
their utility is quantitatively evaluated in Sect. 9. Finally, in Sect. 10, we summarize
the conclusions of our study and outline future research avenues.

2 Related work

The issue of maintaining privacy in data mining has attracted considerable attention
over the last few years. The literature closest to our approach includes that of Agrawal
and Aggarwal (2001), Agrawal and Srikant (2000), de Wolf et al. (1998), Evfimievski
et al. (2002, 2003), Kargupta et al. (2003), Rizvi and Haritsa (2002). In the pioneering
work of Agrawal and Srikant (2000), privacy-preserving data classifiers based on
adding noise to the record values were proposed. This approach was extended by
Agrawal and Aggarwal (2001) and Kargupta et al. (2003) to address a variety of
subtle privacy loopholes.

New randomization operators for maintaining data privacy for boolean data were
presented and analyzed by Evfimievski et al. (2002), Rizvi and Haritsa (2002). These
methods are applicable to categorical/boolean data and are based on probabilistic
mapping from the domain space to the range space, rather than by incorporating
additive noise to continuous-valued data. A theoretical formulation of privacy breaches
for such methods, and a methodology for limiting them, were given in the foundational
work of Evfimievski et al. (2003).

Techniques for data hiding using perturbation matrices have also been investigated
in the statistics literature. For example, in the early 90s work of Duncan and Pearson
(1991), various disclosure-limitation methods for microdata are formulated as “matrix
masking” methods. Here, the data consumer is provided the masked data file M =
AX B + C instead of the true data X , with A, B and C being masking matrices. But,
no quantification of privacy guarantees or reconstruction errors was discussed in their
analysis.

The PRAM method (de Wolf et al. 1998; Gouweleeuw et al. 1998), also intended
for disclosure limitation in microdata files, considers the use of Markovian perturba-
tion matrices. However, the ideal choice of matrix is left as an open research issue,
and an iterative refinement process to produce acceptable matrices is proposed as
an alternative. They also discuss the possibility of developing perturbation matrices
such that data mining can be carried out directly on the perturbed database (that is,
as if it were the original database and therefore not requiring any matrix inversion),
and still produce accurate results. While this “invariant PRAM”, as they call it, is
certainly an attractive notion, the systematic identification of such matrices and the
conditions on their applicability is still an open research issue—moreover, it appears
to be feasible only in a “B2B (business-to-business)” environment, as opposed to the
B2C environment considered here.

The work recently presented by Agrawal et al. (2005) for ensuring privacy in the
OLAP environment, also models data perturbation and reconstruction as
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matrix-theoretic operations. A transition matrix is used for perturbation, and recons-
truction is executed using matrix inversion. They also suggest that the condition num-
ber of the perturbation matrix is a good indicator of the error in reconstruction. However
the issue of choosing a perturbation matrix to minimize this error is not addressed.

Our work extends the above-mentioned methodologies for privacy-preserving
mining in a variety of ways. First, we combine the various approaches for random
perturbation on categorical data into a common theoretical framework, and explore
how well random perturbation methods can perform in the face of strict privacy
requirements. Second, through quantification of privacy and accuracy measures, we
present an ideal choice of perturbation matrix, thereby taking the PRAM approach to,
in a sense, its logical conclusion. Third, we propose the idea of randomizing the pertur-
bation matrix elements themselves, which has not been, to the best of our knowledge,
previously discussed in the literature.

Very recently, Rastogi et al. (2007) utilize and extend the FRAPP framework to
a B2B environment like publishing. That is, they assume that users provide correct
data to a central server and then this data is collectively anonymized. In contrast,
our schemes assume that the users trust no one but themselves, and therefore the
perturbation has to happen locally for each user. Formally, the transformation in their
algorithm is described as y = Ax+b, thereby effectively adding a noise vector b to Ax .
They also analyze the privacy and accuracy tradeoff under bounded prior knowledge
assumptions.

The “sketching” methods that were very recently presented by Mishra and Sandler
(2006) are complementary to our approach. Their basic idea is that a k-bit attribute
with 2k possible values can be represented using 2k binary-valued attributes which
can then each be perturbed independently. However, a direct application of this idea
requires extra (2k − k) bits, and therefore, Mishra and Sandler (2006) proposes a
summary sketching technique that requires an extra number of bits logarithmic in
the number of instances in the dataset. Due to the extra bits, the method provides
good estimation accuracy for single item counts. However, the multiple-attribute count
estimation accuracy is shown to depend on the condition number of the perturbation
matrix. Our results on optimally conditioned perturbation matrices can be combined
with the sketching methods to provide better estimation of joint distributions. Another
difference between the two works is that we provide experimental results in addition
to the theoretical formulations.

Recently, a new privacy-preserving scheme based on the interesting idea of alge-
braic distortion, rather than statistical methods, has been proposed by Zhang et al.
(2004). Their work is based on the assumption that statistical methods cannot handle
long frequent itemsets. But, as shown in this paper, FRAPP successfully finds even
length-7 frequent itemsets. A second assumption is that each attribute is randomi-
zed independently, thereby losing correlations—however, FRAPP supports dependent
attribute perturbation and can therefore preserve correlations quite effectively. Finally,
their work is restricted to handling only “upward privacy breaches” (Evfimievski et al.
2003), whereas FRAPP handles downward privacy breaches as well.

Another model of privacy-preserving data mining is the k-anonymity model
(Samarati and Sweeney 1998; Aggarwal and Yu 2004), where each record value is
replaced with a corresponding generalized value. Specifically, each perturbed record
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cannot be distinguished from at least k other records in the data. However, the
constraints of this model are less strict than ours since the intermediate database-
forming-server can learn or recover precise records.

A different perspective is taken in Hippocratic databases, which are database systems
that take responsibility for the privacy of the data they manage, and are discussed by
Agrawal et al. (2002, 2004a,b), LeFevre et al. (2004). They involve specification of
how the data is to be used in a privacy policy, and enforcing limited disclosure rules
for regulatory concerns prompted by legislation.

Finally, the problem addressed by Atallah et al. (1999), Dasseni et al. (2001), Saygin
et al. (2001, 2002) is preventing sensitive models from being inferred by the data
miner—this work is complementary to ours since it addresses concerns about output
privacy, whereas our focus is on the privacy of the input data. Maintaining input data
privacy is considered by Kantarcioglu and Clifton (2002), Vaidya and Clifton (2002,
2003, 2004) in the context of databases that are distributed across a number of sites
with each site only willing to share data mining results, but not the source data.

3 The FRAPP framework

In this section, we describe the construction of the FRAPP framework, and its quan-
tification of privacy and accuracy measures.

Data model We assume that the original (true) database U consists of N records,
with each record having M categorical attributes. The domain of attribute j is denoted
by S j

U , resulting in the domain SU of a record in U being given by SU = ∏M
j=1S j

U .
We map the domain SU to the index set IU = {1, . . . , |SU |}, thereby modeling the
database as a set of N values from IU . If we denote the i th record of U as Ui , then
U = {Ui }N

i=1, Ui ∈ IU .

To make this concrete, consider a database U with 3 categorical attributes Age, Sex
and Education having the following category values:

Age Child, Adult, Senior

Sex Male, Female

Education Elementary, Graduate

For this schema, M = 3, S1
U = {Child, Adult, Senior}, S2

U ={Male, Female}, S3
U =

{Elementary, Graduate}, SU = S1
U × S2

U × S3
U , |SU | = 12. The domain SU is indexed

by the index set IU = {1, . . . , 12}, and hence the set of records

U U

Child Male Elementary

Child Male Graduate

Child Female Graduate

Senior Male Elementary

maps
to

1

2

4

9

Each record Ui represents the private information of customer i . Further, we assume
that the Ui ’s are independent and identically distributed according to a fixed distribu-
tion pU . This distribution pU is not private and the customers are aware that the miner
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is expected to learn it—in fact, that is usually the goal of the data mining exercise.
However, the assumption of independence implies that once pU is known, possession
of the private information U j of any other customer j provides no additional inferences
about customer i’s private information Ui (Evfimievski et al. 2002).

Perturbation model As mentioned in Sect. 1, we consider the B2C privacy situation
wherein the customers trust no one except themselves, that is, they wish to perturb
their records at their client sites before the information is sent to the miner, or any
intermediate party. This means that perturbation is carried out at the granularity of
individual customer records Ui , without being influenced by the contents of the other
records in the database.

For this situation, there are two possibilities: (a) A simple independent attribute
perturbation, wherein the value of each attribute in the user record is perturbed inde-
pendently of the rest; or (b) A more generalized dependent attribute perturbation,
where the perturbation of each attribute may be affected by the perturbations of the
other attributes in the record. Most of the prior perturbation techniques, including
Evfimievski et al. (2002, 2003), Rizvi and Haritsa (2002), fall into the independent
attribute perturbation category. The FRAPP framework, however, includes both kinds
of perturbation in its analysis.

Let the perturbed database be V = {V1, . . . , VN }, with domain SV , and correspon-
ding index set IV . For example, given the sample database U discussed above, and
assuming that each attribute is distorted to produce a value within its original domain,
the distortion may result in

V V

5

7

2

12

which
maps

to

Adult Male Elementary

Adult Female Elementary

Child Male Graduate

Senior Female Graduate

Let the probability of an original customer record Ui = u, u ∈ IU being perturbed
to a record Vi = v, v ∈ IV using randomization opertor R(u) be p(u → v), and let
A denote the matrix of these transition probabilities, with Avu = p(u → v). This
random process maps to a Markov process, and the perturbation matrix A should
therefore satisfy the following properties (Strang 1988):

Avu ≥ 0 and
∑

v∈IV

Avu = 1 ∀u ∈ IU , v ∈ IV (1)

Due to the constraints imposed by Eq. 1, the domain of A is a subset of R|SV |×|SU |.
This domain is further restricted by the choice of the randomization operator. For
example, for the MASK technique (Rizvi and Haritsa 2002) mentioned in Sect. 1, all
the entries of matrix A are decided by the choice of a single parameter, namely, the
flipping probability.

In this paper, we explore the preferred choices of A to simultaneously achieve data
privacy guarantees and high model accuracy, without restricting ourselves ab initio to
a particular perturbation method.
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3.1 Privacy guarantees

The miner is provided the perturbed database V , and the perturbation matrix A.
Obviously, by receiving Vi corresponding to customer i , the miner gains partial infor-
mation about Ui . However, as mentioned earlier in this section, due to the independence
assumption, all Vi for j �= i disclose nothing about Ui —they certainly help the miner
to learn the distribution pU , but this is already factored in our privacy analysis since we
assume the most conservative scenario wherein the miner has complete and precise
knowledge of pU . In fact, extracting information about pU is typically the goal of
the data mining exercise and, therefore, our privacy technique must encourage, rather
than preclude, achieving this objective. The problem therefore reduces to analyzing
specifically how much can be disclosed by Vi about the particular source record Ui .

We utilize the definition, given by Evfimievski et al. (2003), that a property Q(u)

of a data record U (i) = u is a function Q: u → {true, false}. Further, a property holds
for a record Ui = u if Q(u) = true. For example, consider the following record from
our example dataset U

Age Sex Education
Child Male Elementary

Sample properties of this data record are

Q1(Ui ) ≡ “Age = Child and Sex = Male”,
and Q2(Ui ) ≡ “Age = Child or Adult”.

For this context, the prior probability of a property of a customer’s private information
is the likelihood of the property in the absence of any knowledge about the customer’s
private information. On the other hand, the posterior probability is the likelihood of the
property given the perturbed information from the customer and the knowledge of the
prior probabilities through reconstruction from the perturbed database. Specifically,
the prior probability of any property Q(Ui ) is given by

P[Q(Ui )] =
∑

u:Q(u)

P[Ui = u]

=
∑

u:Q(u)

pU (u)

The posterior probability of any such property can be computed using Bayes formula

P[Q(Ui )|Vi = v] =
∑

u:Q(u)

P[Ui = u|Vi = v]

=
∑

u:Q(u)

P[Ui = u] · p[u → v]
P[Vi = v]

As discussed by Evfimievski et al. (2003), in order to preserve the privacy of some
property of a customer’s private information, the posterior probability of that pro-
perty should not be unduly different from the prior probability of the property for the
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customer. This notion of privacy is quantified by Evfimievski et al. (2003) through
the following results, where ρ1 and ρ2 denote the prior and posterior probabilities,
respectively:

Privacy breach An upward ρ1-to-ρ2 privacy breach exists with respect to property
Q if ∃v ∈ SV such that

P[Q(Ui )] ≤ ρ1 and P[Q(Ui )|R(Ui ) = v] ≥ ρ2.

Conversely, a downward ρ2-to-ρ1 privacy breach exists with respect to property Q if
∃v ∈ SV such that

P[Q(Ui )] ≥ ρ2 and P[Q(Ui )|R(Ui ) = v] ≤ ρ1.

Amplification A randomization operator R(u) is at most γ -amplifying for v ∈ SV

if

∀u1, u2 ∈ SU : p[u1 → v]
p[u2 → v] ≤ γ

where γ ≥ 1 and ∃u: p[u → v] > 0. Operator R(u) is at most γ -amplifying if it is
at most γ -amplifying for all qualifying v ∈ SV .

Breach prevention Let R be a randomization operator, v ∈ SV be a randomized
value such that ∃u: p[u → v] > 0, and ρ1, ρ2(0 < ρ1 < ρ2 < 1) be two probabilities
as per the above privacy breach definition. Then, if R is at most γ -amplifying for v,
revealing “R(u) = v” will cause neither upward (ρ1-to-ρ2) nor downward (ρ2-to-ρ1)
privacy breaches with respect to any property if the following condition is satisfied:

ρ2(1 − ρ1)

ρ1(1 − ρ2)
> γ

If this situation holds, R is said to support (ρ1, ρ2) privacy guarantees.
From the above results of Evfimievski et al. (2003), we can derive for our formula-

tion, the following condition on the perturbation matrix A in order to support (ρ1, ρ2)

privacy:

Avu1

Avu2

≤ γ <
ρ2(1 − ρ1)

ρ1(1 − ρ2)
∀u1, u2 ∈ IU ,∀v ∈ IV (2)

That is, the choice of perturbation matrix A should follow the restriction that the ratio
of any two matrix entries (in a row) should not be more than γ .

Application environment At this juncture, we wish to clearly specify the environ-
ments under which the above guarantees are applicable. Firstly, our quantification of
privacy breaches analyzes only the information leaked to the miner through observing
the perturbed data; it does not take into account any prior knowledge that the miner
may have about the original database. Secondly, we assume that the contents of each
client’s record are completely independent from those of other customers—that is,
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there are no inter-transaction dependencies. Due to this independence assumption, all
the R(U j ) for j �= i do not disclose anything about Ui and can therefore be ignored in
privacy analysis; they certainly help the miner to learn the distribution of the original
data, but in our analysis we have already assumed that this distribution is fully known
by the miner. So the problem reduces to evaluating how much can be disclosed by
R(Ui ) about Ui Evfimievski et al. (2003). We also hasten to add that we do not make
any such restrictive assumptions about intra-transaction dependencies—in fact, the
objective of association-rule mining is precisely to establish such dependencies.

3.2 Reconstruction model

We now move on to analyzing how the distribution of the original database is recons-
tructed from the perturbed database. As per the perturbation model, a client Ci with
data record Ui = u, u ∈ IU generates record Vi = v, v ∈ IV with probability
p[u → v]. The generation event can be viewed as a Bernoulli trial with success pro-
bability p[u → v]. If we denote the outcome of the i th Bernoulli trial by the random
variable Y i

v , the total number of successes Yv in N trials is given by the sum of the N
Bernoulli random variables:

Yv =
N∑

i=1

Y i
v (3)

That is, the total number of records with value v in the perturbed database is given by
Yv .

Note that Yv is the sum of N independent but non-identical Bernoulli trials. The
trials are non-identical because the probability of success varies from trial i to trial j ,
depending on the values of Ui and U j , respectively. The distribution of such a random
variable Yv is known as the Poisson-Binomial distribution (Wang 1993).

From Eq. 3, the expectation of Yv is given by

E(Yv) =
N∑

i=1

E(Y i
v) =

N∑

i=1

P(Y i
v = 1) (4)

Using Xu to denote the number of records with value u in the original database, and
noting that P(Y i

v = 1) = p[u → v] = Avu for Ui = u, we get

E(Yv) =
∑

u∈IU

Avu Xu (5)

Let X = [X1 X2 . . . X |SU |]T , Y = [Y1Y2 . . . Y|SV |]T . Then, the following expression
is obtained from Eq. 5:

E(Y ) = AX (6)
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At first glance, it may appear that X , the distribution of records in the original
database (and the objective of the reconstruction exercise), can be directly obtained
from the above equation. However, we run into the difficulty that the data miner does
not possess E(Y ), but only a specific instance of Y , with which he has to approximate
E(Y ).3 Therefore, we resort to the following approximation to Eq. 6:

Y = AX̂ (7)

where X is estimated as X̂ . This is a system of |SV | equations in |SU | unknowns, and
for the system to be uniquely solvable, a necessary condition is that the space of the
perturbed database is a superset of the original database (i.e. |SV | ≥ |SU |). Further, if
the inverse of matrix A exists, the solution of this system of equations is given by

X̂ = A−1Y (8)

providing the desired estimate of the distribution of records in the original database.
Note that this estimation is unbiased because E(X̂) = A−1 E(Y ) = X .

3.3 Estimation error

To analyze the error in the above estimation process, we employ the following well-
known theorem from linear algebra Strang (1988):

Theorem 1 Given an equation of the form Ax = b and that the measurement b̂ of b
is inexact, the relative error in the solution x̂ = A−1b̂ satisfies

‖ x̂ − x ‖
‖ x ‖ ≤ c

‖ b̂ − b ‖
‖ b ‖

where c is the condition number of matrix A.

For a positive-definite matrix, c = λmax/λmin , where λmax and λmin are the maxi-
mum and minimum eigen-values of matrix A, respectively. Informally, the condition
number is a measure of the sensitivity of a matrix to numerical operations. Matrices
with condition numbers near one are said to be well-conditioned, i.e. stable, whereas
those with condition numbers much greater than one (e.g. 105 for a 5∗5 Hilbert matrix
Strang 1988) are said to be ill-conditioned, i.e. highly sensitive.

From Eqs. 6 and 8, coupled with Theorem 1, we have

‖ X̂ − X ‖
‖ X ‖ ≤ c

‖ Y − E(Y ) ‖
‖ E(Y ) ‖ (9)

which means that the error in estimation arises from two sources: First, the sensitivity of
the problem, indicated by the condition number of matrix A; and second, the deviation

3 If multiple distorted versions of the database are provided, then E(Y ) is approximated by the observed
average of these versions.
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of Y from its mean, i.e. the deviation of perturbed database counts from their expected
values, indicated by the variance of Y . In the following two sections, we mathematically
determine how to reduce this error by: (a) appropriately choosing the perturbation
matrix to minimize the condition number, and (b) identifying the minimum size of the
database required to (probabilistically) bound the deviation within a desired threshold.

4 Perturbation matrix with minimum condition number

The perturbation techniques proposed in the literature primarily differ in their choices
for perturbation matrix A. For example:

(1) MASK: The MASK (Rizvi and Haritsa 2002) randomization scheme uses a matrix
A with

Avu = pk(1 − p)Mb−k (10)

where Mb is the number of boolean attributes when each categorical attribute j
is converted into | S j

U | boolean attributes, (1 − p) is the bit flipping probability
for each boolean attribute, and k is the number of attributes with matching bits
between the perturbed value v and the original value u.

(2) Cut-and-paste: The cut-and-paste (C&P) randomization operator (Evfimievski
et al. 2002) employs a matrix A with

Avu =
M∑

z=0

pM [z] ·
min{z,lu ,lv}∑

q=max{0,z+lu−M,lu+lv−Mb}

(lu
q

)(M−lu
z−q

)

(M
z

)

·
(

Mb − lu
lv − q

)

ρ(lv−q)(1 − ρ)(Mb−lu−lv+q)

(11)

where

pM [z] =
min{K ,z}∑

w=0

(
M − w

z − w

)

ρ(z−w)(1 − ρ)(M−z)

·
{

1 − M/(K + 1) if w = M & w < K
1/(K + 1) o.w.

here lu and lv are the number of 1 bits in the original record u and its corresponding
perturbed record v, respectively, while K and ρ are operator parameters.

To enforce strict privacy guarantees, the parameter settings for the above methods are
bounded by the constraints, given in Eqs. 1 and 2, on the values of the elements of the
perturbation matrix A. It turns out that for practical values of privacy requirements,
the resulting matrix A for these previous schemes is extremely ill-conditioned—in
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fact, the condition numbers in our experiments were of the order of 105 and 107 for
MASK and C&P, respectively.

Such ill-conditioned matrices make the reconstruction very sensitive to the variance
in the distribution of the perturbed database. Thus, it is important to carefully choose
the matrix A such that it is well-conditioned (i.e. has a low condition number). If we
decide on a distortion method ab initio, as in the earlier techniques, then there is little
room for making specific choices of perturbation matrix A. Therefore, we take the
opposite approach of first designing matrices of the required type, and then devising
perturbation methods that are compatible with these matrices.

To choose a suitable matrix, we start from the intuition that for γ = ∞, the obvious
matrix choice is the unity matrix, which both satisfies the constraints on matrix A
(Eqs. 1 and 2), and has the lowest possible condition number, namely, 1. Hence, for a
given γ , we can choose the following matrix:

Ai j =
{

γ x if i = j
x o.w.

where x = 1

γ + (|SU | − 1)
(12)

which is of the form

x

⎡

⎢
⎢
⎢
⎣

γ 1 1 . . .

1 γ 1 . . .

1 1 γ . . .
...

...
...

. . .

⎤

⎥
⎥
⎥
⎦

It is easy to see that the above matrix, which incidentally is symmetric positive-
definite and Toeplitz (Strang 1988), also satisfies the conditions given by Eqs. 1 and 2.
Further, its condition number can be algebraically computed (as shown in the Appen-
dix) to be 1 + |SU |

γ−1 . At an intuitive level, this matrix implies that the probability of
a record u remaining as u after perturbation is γ times the probability of its being
distorted to some v �= u. For ease of exposition, we will hereafter informally refer to
this matrix as the “Gamma-Diagonal matrix”.

At this point, an obvious question is whether it is possible to design matrices with
even lower condition number than the gamma-diagonal matrix. We prove next that
the gamma-diagonal matrix has the lowest possible condition number among the class
of symmetric positive-definite perturbation matrices satisfying the constraints of the
problem, that is, it is an optimal choice (albeit non-unique).

4.1 Proof of optimality

Theorem 2 Under the given privacy constraints, the Gamma-Diagonal matrix has
the lowest condition number in the class of symmetric positive-definite perturbation
matrices.

Proof To prove this proposition, we will first derive the expression for minimum
condition number of symmetric positive-definite matrices. For such matrices, the
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condition number is given by c = λmax/λmin , where λmax and λmin are the maximum
and minimum eigen-values of the matrix, respectively. Further, since A is a Markov
matrix (refer Eq. 1), the following results for eigen-values of a Markov matrix (Strang
1988) are applicable. �

Theorem 3 For an n × n Markov matrix, one of the eigen-values is 1, and the remai-
ning n − 1 eigen-values all satisfy | λi |≤ 1.

Theorem 4 The sum of the n eigen-values equals the sum of the n diagonal entries,
that is,

λ1 + · · · + λn = A11 + · · · + Ann

From Theorem 3, we obtain λmax = 1, and from Theorem 4, that the sum of the rest of
the eigen-values is fixed. If we denote λ1 = λmax , it is straightforward to see that λmin

is maximized when λ2 = λ3 · · · = λn , leading to λmin = 1
n−1

∑n
i=2 λi . Therefore,

λmin ≤ 1

n − 1

n∑

i=2

λi

Using Theorem 4, we directly get

λmin ≤ 1

n − 1

( n∑

i=1

Aii − 1

)

resulting in the matrix condition number being lower-bounded by

c = 1

λmin
≥ n − 1

∑n
i=1 Aii − 1

(13)

Due to the privacy constraints on A given by Eq. 2,

Aii ≤ γ Ai j ∀ j �= i

Summing the above equation over all values of j except j = i , we get

(n − 1)Aii ≤ γ
∑

j �=i

Ai j

= γ (1 − Aii )

where the second step is due to the condition on A given by Eq. 1 and the restriction
to symmetric positive-definite matrices. Solving for Aii results in

Aii ≤ γ

γ + n − 1
(14)
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and using this inequality in Eq. 13, we finally obtain

c ≥ n − 1
nγ

γ+n−1 − 1
= γ + n − 1

γ − 1
= 1 + n

γ − 1
(15)

Therefore, the minimum condition number for the symmetric positive-definite pertur-
bation matrices under privacy constraints represented by γ is (1+ n

γ−1 ). The condition
number of our “gamma-diagonal” matrix of size |SU | can be computed as shown in
the Appendix, and its value turns out to be (1 + |SU |

γ−1 ). Thus, it is a minimum condition
number perturbation matrix.

5 Database size and mining accuracy

In this section, we analyze the dependence of deviations of itemset counts in the
perturbed database from their expected values, with respect to the size of the database.
Then, we give bounds on the database sizes required for obtaining a desired accuracy.

As discussed earlier, Yv denotes the total number of records with value v in the
perturbed database, given by

Yv =
N∑

1

Y i
v

where Y i
v is the Bernoulli random variable for record i , and N is the size of the database.

To bound the deviation of Yv from its expected value E(Yv), we use Hoeffding’s
General Bound (Motwani and Raghavan 1995), which bounds the deviation of the
sum of Bernoulli random variables from its mean. Using these bounds for Yv , we get

P

( | Yv − E(Yv) |
N

< �

)

≥ 1 − 2e−2�2 N

where � (0 < � < 1) represents the desired upper bound on the normalized deviation.
For the above probability to be greater than a user-specified value ε , the value of

N should satisfy the following:

1 − 2e−2�2 N ≥ ε

⇒ N ≥ ln(2/(1 − ε))/(2�2) (16)

That is, to achieve the desired accuracy (given by �), with the desired probability
(given by ε), the miner must collect data from at least the number of customers given
by the above bound. For example, with � = 0.001 and ε = 0.95, this turns out to be
N ≥ 2 × 106, which is well within the norm for typical e-commerce environments.
Moreover, note that these acceptable values were obtained with the Hoeffding Bound,
a comparatively loose bound, and that in practice, it is possible that even datasets that
do not fully meet this requirement may be capable of providing the desired accuracy.
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For completeness, we now consider the hopefully rare situation wherein the custo-
mers are so few that accuracy cannot be guaranteed as per Eq. 16. Here, one approach
that could be taken is to collect multiple independent perturbations of each customer’s
record, thereby achieving the desired target size. But, this has to be done carefully since
the multiple distorted copies can potentially lead to a privacy breach, as described next.

5.1 Multiple versions of perturbed database

Assume that each user perturbs his/her record m times independently, so that overall
the miner obtains m versions of the perturbed database. We hereafter refer to the set
of perturbed records that share a common source record as “siblings”.

Recall that a basic assumption made when defining privacy breaches in Sect. 3.1
was that the perturbed value R(Ui ) for the record i does not reveal any informa-
tion about a record j �= i . This assumption continues to be true in the multiple-
versions variant if the miner is not aware of which records in the perturbed data set are
siblings. Consequently, the privacy analysis of Sect. 3 can be applied verbatim to prove
γ -amplification privacy guarantees in this environment as well. Therefore, all that
needs to be done is to choose m such that the overall size of the database satisfies
Eq. 16.

5.1.1 Multiple known siblings

The preceding analysis still leaves open the question as to what happens in situations
wherein the data miner is aware of the siblings in the perturbed data set? It appears
to us that maintaining accuracy requirements under such extreme circumstances may
require relaxing the privacy constraints, as per the following discussion: With the
gamma-diagonal matrix, the probability of a data value remaining unchanged is more
than the probability of its being altered to any other value. Therefore, to guess the
original value, the miner will obviously look for the value that appears the most
number of times in the sibling records. For example, if 9 out of 10 versions of a
given record have the identical perturbed value for an attribute, the miner knows
with high probability the original value of that attribute. Clearly, in this case, one
sibling reveals information about another sibling, violating the assumption required for
γ -amplification privacy. At first glance, it might appear that this problem can be easily
tackled by treating each group of siblings as a single multi-dimensional vector; but
this strategy completely nullifies the original objective of having multiple versions
to enhance accuracy. Therefore, in the remainder of this section, we quantitatively
investigate the impact on privacy of having multiple known siblings in the database,
with privacy now defined as the probability of correctly guessing the original value.

The first analysis technique that comes to mind is to carry out a hypothesis
test—“the value seen the maximum number of times is indeed the true value”—
using the χ2 statistic. However, this test is not practical in our environment because
of the extreme skewness of the distribution and the large cardinalities of the value
domain. Therefore, we pursue the following alternate line of analysis: Consider a par-
ticular record with original (true) value u, which is independently perturbed m times,
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producing m perturbed record values. Let nv be the number of times a perturbed value
v appears in these m values, and let R be the random variable representing the value
which is present the maximum number of times, i.e., R = i if ∀i, ni > n j . Then, the
probability of correctly guessing R = u is

P(R = u) = P(∧v �=u(nu > nv)) with
∑

ni = m

Clearly, if u appears less than or equal to L = � m
|SV | � times, it cannot be the most

frequent occurrence, since there must be another value v appearing at least � m
|SV | �

times in the perturbed records. Hence, the probability of a correct guess satisfies the
following inequality:

P(R = u) = 1 − P(M �= u)

≤ 1 − P(nu ≤ L)

= 1 −
L∑

k=1

P(nu = k)

= 1 −
L∑

k=1

mCk · pk · (1 − p)m−k (17)

where p is the probability p[u → u]. The last step follows from the fact that nu is a
binomially distributed random variable.

Observe that L = � m
|SV | � ≥ 0, and hence the above inequality can be reduced to

P(R = u) ≤ 1 − P(nu = 0)

= 1 − (1 − p)m

For the gamma-diagonal matrix, p = p[u → u] = γ x , resulting in the probability of
a correct guess being

P(R = u) ≤ 1 − (1 − γ x)m (18)

The record domain size |SV | can be reasonably expected to be (much) greater than m
in most database environments. This implies that the value of p = γ x will usually be
very small, leading to an acceptably low guessing probability.

A legitimate concern here is that the miner may try to guess the values of individual
sensitive attributes (or a subset of such attributes) in a record, rather than its entire
contents. To assess this possibility, let us assume that u and v, which were used earlier
to denote values of complete records, now refer to a single attribute. As derived later
in Sect. 8, for an attribute of domain size |S1

V |, the probability p[u → u] is given by:
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Fig. 1 P(R = u) vs. m

p[u → u] = γ x +
( |SV |

|S1
V | − 1

)

x

An upper bound for the single-attribute guessing probability is directly obtained by
substituting the above value of p, and L = � m

|S1
V | �, in the inequality of Eq. 17.

A quantitative assessment of the number of versions that can be provided without
jeopardizing user privacy is achieved by plotting the guessing probability upper bound
against m, the number of versions. Sample plots are shown in Fig. 1 for a representative
setup: γ = 19 with a record domain size |SV | = 2000 and various single-attribute
domain sizes (S1

V = 2, 4, 8). The solid line corresponds to the full-record whereas the
dashed lines reflect the single-attribute cases.

Observe in Fig. 1 that the full-record guessing probability remains less than 0.1
even when the number of versions is as many as 50, and is limited to 0.25 for the
extreme of 100 versions. Turning our attention to the single-attribute case, we see that
for the lowest possible domain size, namely 2, the guessing probability levels off at
around 0.5—note that this is no worse than the miner’s ability to correctly guess the
attribute value without having access to the data. Of course, for larger domain sizes
such as 4 and 8, there is added information from the data—however, the key point
again is that the guessing probabilities for these cases also level off around 0.5 in the
practical range of m. In short, the miner’s guess is at least as likely to be wrong as it
is to be correct, which appears to be an acceptable privacy level in practice.

Moreover, for less stringent γ values, the guessing probabilities will decrease even
further. Overall, these results imply that a substantial number of perturbed versions
can be provided by users to the miner before their (guessing-probability) privacy can
be successfully breached.

The observations in this section also indicate that FRAPP is robust against a potential
privacy breach scenario where the information obtained from the users is (a) gathered
periodically, (b) the set of users is largely the same, and (c) the data inputs of the users
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are often the same or very similar to their previous values. Such a scenario can occur, for
example, when there is a core user community that regularly updates its subscription to
an Internet service, like those found in the health or insurance industries. We therefore
opine that FRAPP can be successfully used even in these challenging situations.

6 Randomizing the perturbation matrix

The estimation models discussed thus far implicitly assumed the perturbation matrix
A to be deterministic. However, it appears intuitive that if the perturbation matrix
parameters were themselves randomized, so that each client uses a perturbation
matrix not specifically known to the miner, the privacy of the client will be further
increased. Of course, it may also happen that the reconstruction accuracy suffers in
this process. We explore this tradeoff, in this section, by replacing the deterministic
matrix A with a randomized matrix Ã, where each entry Ãvu is a random variable with
E( Ãvu) = Avu . The values taken by the random variables for a client Ci provide the
specific parameter settings for her perturbation matrix.

6.1 Privacy guarantees

Let Q(Ui ) be a “property” (as explained in Sect. 3.1) of client Ci ’s private information,
and let record Ui = u be perturbed to Vi = v. Denote the prior probability of Q(Ui )

by P(Q(Ui )). Then, on seeing the perturbed data, the posterior probability of the
property is calculated to be:

P(Q(Ui )|Vi = v) =
∑

u: Q(u)

PUi |Vi (u|v)

=
∑

u: Q(u)

PUi (u)PVi |Ui (v|u)

PVi (v)

When a deterministic perturbation matrix A is used for all clients, then ∀i PVi |Ui

(v|u) = Avu , and hence

P(Q(Ui )|Vi = v) =
∑

Q(u) PUi (u)Avu
∑

Q(u) PUi (u)Avu + ∑
¬Q(u) PUi (u)Avu

As discussed by Evfimievski et al. (2003), the data distribution PUi can, in the worst-
case, be such that P(Ui = u)> 0 only if {u ∈ IU |Q(u); Avu = maxQ(u′) Avu′ }
or {u ∈ IU |¬Q(u); Avu = min¬Q(u′) Avu′ }. For the deterministic gamma-diagonal
matrix, maxQ(u′) Avu′ = γ x and min¬Q(u′) Avu′ = x , resulting in

P(Q(Ui )|Vi = v) = P(Q(u)) · γ x

P(Q(u)) · γ x + P(¬Q(u))x
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Since the distribution PU is known through reconstruction, the above posterior
probability can be determined by the miner. For example, if P(Q(u)) = 5%, and
γ = 19, the posterior probability works out to 50% for perturbation with the gamma-
diagonal matrix.

But, in the randomized matrix case, where PVi |Ui (v|u) is a realization of random
variable Ã, only its distribution (and not the exact value for a given i) is known to the
miner. This means that posterior probability computations like the one shown above
cannot be made by the miner for a given record Ui . To make this concrete, consider a
randomized matrix Ã such that

Ãuv =
{

γ x + r if u = v

x − r
|SU |−1 o.w. (19)

where x = 1
γ+|SU |−1 and r is a random variable uniformly distributed between [−α, α].

Here, the worst-case posterior probability (and, hence, the privacy guarantee) for a
record Ui is a function of the value of r , and is given by

ρ2(r) = P(Q(u)|v)

= P(Q(u)) · (γ x + r)

P(Q(u)) · (γ x + r) + P(¬Q(u))(x − r
|SU |−1 )

Therefore, only the posterior probability range, that is, [ρ−
2 , ρ+

2 ] = [ρ2(−α), ρ2(+α)],
and the distribution over this range, can be determined by the miner. For example, for
the scenario where P(Q(u)) = 5%, γ = 19, and α = γ x/2, the posterior probability
lies in the range [33%, 60%], with its probability of being greater than 50% (ρ2 at
r = 0) equal to its probability of being less than 50%.

6.2 Reconstruction model

With minor modifications, the reconstruction model analysis for the randomized per-
turbation matrix Ã can be carried out similar to that carried out earlier in Sect. 3.2
for the deterministic matrix A. Specifically, the probability of success for Bernoulli
variable Y i

v is now modified to

P(Y i
v = 1| Ãvu) = Ãvu, for Ui = u

and, from Eq. 4,

E(Yv| Ãvu) =
N∑

i=1

P(Y i
v = 1/ Ãvu)

=
∑

u∈IU

∑

{i |Ui =u}
Ãvu
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=
∑

u∈IU

Ãvu Xu

⇒ E(Y | Ã) = ÃX (20)

leading to

E(E(Y | Ã)) = AX (21)

We estimate X as X̂ given by the solution of the following equation

Y = AX̂ (22)

which is an approximation to Eq. 21. From Theorem 1, the error in estimation is
bounded by:

‖ X̂ − X ‖
‖ X ‖ ≤ c

‖ Y − E(E(Y | Ã)) ‖
‖ E(E(Y | Ã)) ‖ (23)

where c is the condition number of perturbation matrix A = E( Ã).
We now compare these bounds with the corresponding bounds of the deterministic

case. Firstly, note that, due to the use of the randomized matrix, there is a double
expectation for Y on the RHS of the inequality, as opposed to the single expectation in
the deterministic case. Secondly, only the numerator is different between the two cases
since we can easily show that E(E(Y | Ã)) = AX . The numerator can be bounded by

‖ Y − E(E(Y | Ã)) ‖
=‖ (Y − E(Y | Ã)) + (E(Y | Ã) − E(E(Y | Ã))) ‖
≤‖ Y − E(Y | Ã) ‖ + ‖ E(Y | Ã) − E(E(Y | Ã)) ‖

Here, ‖ Y − E(Y | Ã) ‖ is taken to represent the empirical variance of random variable
Yv . Since Yv is, as discussed before, Poisson-Binomial distributed, its variance is given
by (Wang 1993)

V ar(Yv| Ã) = N pv −
∑

i

(pi
v)

2 (24)

where pv = 1
N

∑
i pi

v and pi
v = P(Y i

v = 1| Ã).
It is easily seen (by elementary calculus or induction) that among all combina-

tions {pi
v} such that

∑
i pi

v = n pv , the sum
∑

i (pi
v)

2 assumes its minimum value
when all pi

v are equal. It follows that, if the average probability of success pv is kept
constant, V ar(Yv) assumes its maximum value when p1

v = · · · = pN
v . In other words,

the variability of pi
v , or its lack of uniformity, decreases the magnitude of chance

fluctuations (Feller 1988). By using random matrix Ã instead of deterministic A, we
increase the variability of pi

v (now pi
v assumes variable values for all i), hence decrea-

sing the fluctuation of Yv from its expectation, as measured by its variance. In short,
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‖ Y − E(Y | Ã) ‖ is likely to be decreased as compared to the deterministic case,
thereby reducing the error bound.

On the other hand, the value of the second term: ‖ E(Y | Ã) − E(E(Y | Ã)) ‖, which
depends upon the variance of the random variables in Ã, is now positive whereas it
was 0 in the deterministic case. Thus, the error bound is increased by this term.

Overall, we have a trade-off situation here, and as shown later in our experiments
of Sect. 9, the trade-off turns out such that the two opposing terms almost cancel each
other out, making the error only marginally worse than the deterministic case.

7 Implementation of perturbation algorithm

Having discussed the privacy and accuracy issues of the FRAPP approach, we now turn
our attention to the implementation of the perturbation algorithm described in Sect. 3.
For this, we effectively need to generate for each Ui = u, a discrete distribution with
PMF P(v) = Avu and CDF F(v) = ∑

i≤v Aiu , defined over v = 1, . . . , | SV |.
A straightforward algorithm for generating the perturbed record v from the original

record u is the following

(1) Generate r ∼ U(0, 1)

(2) Repeat for v = 1, . . . , | SV |
if F(v − 1) < r ≤ F(v)

return Vi = v

where U(0, 1) denotes uniform continuous distribution over [0, 1].
This algorithm, whose complexity is proportional to the product of the cardinalities

of the attribute domains, will require | SV | /2 iterations on average which can turn
out to be very large. For example, with 31 attributes, each with two categories, this
amounts to 230 iterations per customer! We therefore present below an alternative
algorithm whose complexity is proportional to the sum of the cardinalities of the
attribute domains.

Specifically, to perturb record Ui = u, we can write

P(Vi ; Ui = u) = P(Vi1, . . . , Vi M ; u)

= P(Vi1; u) · P(Vi2|Vi1; u) . . . P(Vi M |Vi1, . . . , Vi(M−1); u)

where Vi j denotes the j th attribute of record Vi . For the perturbation matrix A, this
works out to

P(Vi1 = a; u) =
∑

{v|v(1)=a}
Avu

P(Vi2 = b|Vi1 = a; u) = P(Vi2 = b, Vi1 = a; u)

P(Vi1 = a; u)

=
∑

{v|v(1)=a and v(2)=b} Avu

P(Vi1 = a; u)

. . . and so on
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where v(i) denotes the value of the i th attribute for the record with value v.
When A is chosen to be the gamma-diagonal matrix, and n j is used to represent

∏ j
k=1 | Sk

U |, we get the following expressions for the above probabilities after some
simple algebraic manipulations:

P(Vi1 = b; Ui1 = b) =
(

γ + nM

n1
− 1

)

x

P(Vi1 = b; Ui1 �= b) = nM

n1
x

(25)

and for the j th attribute

P(Vi j = b|Vi1, . . . , Vi( j−1); Ui j = b)

=

⎧
⎪⎪⎨

⎪⎪⎩

(γ+ nM
n j

−1)x
∏ j−1

k=1 pk
if ∀k < j, Vik = Uik

(
nM
n j

)x
∏ j−1

k=1 pk
o.w.

(26)

P(Vi j = b|Vi1, . . . , Vi( j−1); Ui j �= b) =
( nM

n j
)x

∏ j−1
k=1 pk

where pk is the probability that Vik takes value a, given that a is the outcome of the
random process performed for the kth attribute, i.e. pk = P(Vik = a|Vi1, . . . , Vi(k−1);
Ui ).

The above perturbation algorithm takes M steps, one for each attribute. For the
first attribute, the probability distribution of the perturbed value depends only on the
original value for the attribute and is given by Eq. 25. For any subsequent column j , to
achieve the desired random perturbation, we use as input both its original value and the
perturbed values of the previous j −1 columns, and then generate the perturbed value
for j as per the discrete distribution given in Eq. 26. This is an example of dependent
column perturbation, in contrast to the independent column perturbations used in most
of the prior techniques.

Note that even though the perturbation of a column depends on the perturbed values
of previous columns, the columns can be perturbed in any order. Specifically, the
probability distribution for each column perturbation, as given by Eqs. 25 and 26, gets
modified accordingly so that the overall distribution for record perturbation remains
the same.

Finally, to assess the complexity of the algorithm, it is easy to see that the maximum
number of iterations for generating the jth discrete distribution is |S j

U |, and hence the

maximum number of iterations for generating a perturbed record is
∑

j |S j
U |.

Remark The scheme presented above gives a general approach to ensure that the
complexity is proportional to the sum of attribute cardinalities, for any choice of
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perturbation matrix. However, specifically for the gamma-diagonal matrix, a simpler
algorithm could be used. Namely, with probability x(γ − 1) return the original tuple,
otherwise choose the value of each attribute in the perturbed tuple uniformly and
independently.4 In this special case, the algorithm is a generalization of Warner’s
classical randomized response technique (Warner 1965).

8 Application to mining tasks

To illustrate the utility of the FRAPP framework, we demonstrate in this section
how it can be integrated in two representative mining tasks, namely association rule
mining, which identifies interesting correlations between database attributes Agrawal
and Srikant (1994), and classification rule mining, which produces class labeling rules
for data records based on an initial training set (Mitchell 1997).

8.1 Association rule mining

The core computation in association rule mining is to identify “frequent itemsets”,
that is, itemsets whose support (i.e. frequency) in the database is in excess of a user-
specified threshold supmin . Eq. 8 can be directly used to estimate the support of
itemsets containing all M categorical attributes. However, in order to incorporate the
reconstruction procedure into bottom-up association rule mining algorithms such as
Apriori (Agrawal and Srikant 1994), we need to also be able to estimate the supports
of itemsets consisting of only a subset of attributes—this procedure is described next.

Let C denote the set of all attributes in the database, and Cs be a subset of these
attributes. Each of the attributes j ∈ Cs can assume one of the |S j

U | values. Thus,

the number of itemsets over attributes in Cs is given by ICs = ∏
j∈Cs

|S j
U |. Let L,H

denote generic itemsets over this subset of attributes.
A user record supports the itemsetL if the attributes in Cs take the values represented

by L. Let the support of L in the original and distorted databases be denoted by supU
L

and supV
L , respectively. Then,

supV
L = 1

N

∑

v supports L
Yv

where Yv denotes the number of records in V with value v (refer Sect. 3.2). From
Eq. 7, we know

Yv =
∑

u∈IU

Avu X̂u

and therefore, using the fact that A is symmetric,

4 Note that the notion of independence is with regard to the perturbation process, not the data distributions
of the attributes.
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supV
L = 1

N

∑

v supports L

∑

u

Avu X̂u

= 1

N

∑

u

X̂u

∑

v supports L
Avu

Grouping the records u by the itemsets H that they support:

supV
L = 1

N

∑

H

∑

u supports H
X̂u

∑

v supports L
Avu (27)

Analyzing the term
∑

v supports L Avu in the above equation, we see that it represents the
sum of the entries of column u in A over rows v that support itemset L. Now, consider
the columns u that support a given itemset H. Note that due to the structure of the
gamma diagonal matrix A, if H = L, then one diagonal entry is part of this sum,
otherwise the summation involves only non-diagonal terms. Therefore, for all u that
support a given itemset H:

∑

v supports L
Avu =

{
γ x + (

IC
ICs

− 1)x if H = L
IC
ICs

x o.w.

}

:= AHL (28)

i.e. the probability of an itemset remaining the same after perturbation is γ+IC /ICs −1
IC /ICs

times the probability of it being distorted to any other itemset.
Substituting in Eq. 27:

supV
L = 1

N

∑

H
AHL

∑

u supports H
X̂u

=
∑

H
AHL ̂supU H

Thus, we can estimate the supports of itemsets over any subset Cs of attributes using
the matrix A which is of much smaller dimension (ICs × ICs ) for small itemsets as
compared to the original full matrix A.

A legitimate concern here might be that the matrix inversion could become time-
consuming as we proceed to larger itemsets making ICs large. Fortunately, the inverse
for this matrix has a simple closed-form expression:

Theorem 5 The inverse of A is a matrix of order n = ICs of the form B = {Bi j : 1 ≤ i
≤ n, 1 ≤ j ≤ n}, where

Bi j =
{

δy if i = j
y o.w.

with δ = −(γ + n − 2) and y = − ICs
IC

· 1
(γ−1)
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Proof As both A and B are square matrices of the same order, AB and BA are valid
products. Also it can be trivially seen (by actual multiplication) that AB = BA = I,
where I is the identity matrix of order ICs . �

The above closed-form inverse can be directly used in the reconstruction process,
greatly reducing both space and time resources. Specifically, the reconstruction algo-
rithm can now be very simply written as:
for each L from 1 to n do

supU
L = supV

Lδy + (N − supV
L)y (29)

where N is the database cardinality, supV
L and supU

L are the perturbed and recons-
tructed frequencies, respectively, and n is the size of the index set, which is ICs for a
subset of attributes and IC for full-length itemsets.

Thus we can efficiently reconstruct the counts of itemsets over any subset of attri-
butes without needing to construct the counts of complete records, and our scheme can
be implemented efficiently on bottom-up association rule mining algorithms such as
Apriori (Agrawal and Srikant 1994). Further, it is trivially easy to incorporate FRAPP
even in incremental association rule mining algorithms such as DELTA (Pudi and
Haritsa 2000) which operate periodically on changing historical databases, and use
the results of previous mining operations to minimize the amount of work carried out
during each new mining operation.

8.2 Classification rule mining

We now turn our attention to the task of classification rule mining. The primary input
required for this process is the distribution of attribute values for each class in the
training data. This input can be produced through the “ByClass” privacy-preserving
algorithm enunciated by Agrawal and Srikant (2000), which partitions the training
data by class label, and then separately distorts and reconstructs the distributions
for the records corresponding to each class. After this reconstruction, an off-the-
shelf classifier can be used to produce the actual classification rules. However, a
complication that may arise in the privacy-preserving environment is that of negative
reconstructed frequencies, described next.

8.2.1 Negative reconstructed frequencies

During the reconstruction process, it is sometimes possible that using the expressions
given in Eq. 29, negative reconstructed frequencies may arise—this is because, given
a large index set, it is possible that several indices may have little or no representa-
tion at all (i.e. low supV

L), even after perturbation of the dataset. While this occurs
for association rule mining too, it is not a problem there because such itemsets are
automatically pruned due to the minimum support criterion. In the case of classifica-
tion, however, negative frequencies pose difficulties because (a) they lack meaningful
interpretation, and (b) classification techniques based on calculating logarithms of
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the itemset frequencies, such as decision tree classifiers (Quinlan 1993), now become
infeasible.

To address this problem, we first set all negative reconstructed frequencies to zero
and then uniformly scale down the positive frequencies such that their sum remains
equal to the original dataset size. The rationale is that records corresponding to negative
frequencies are scarce in the original dataset (i.e. “outliers”) and can therefore be
ignored without significant loss of accuracy. Further the scaling down of the positive
frequencies is consistent with rule generation since classification techniques are based
on relative frequencies or distributions, rather than absolute frequencies.

9 Performance evaluation

We move on, in this section, to quantitatively assessing the utility of the FRAPP
approach with respect to the privacy and accuracy levels that it can provide for asso-
ciation rule mining and classification rule mining.

9.1 Association rule mining

9.1.1 Datasets

Two datasets, CENSUS and HEALTH, are used in our experiments, which are both
derived from real-world repositories. Since it has been established in several sociologi-
cal studies (e.g. Cranor et al. 1999; Westin 1999) that users typically expect privacy on
only a few of the database fields—usually sensitive attributes such as health, income,
etc.—our datasets also project out a representative subset of the columns in the original
databases. The complete details of the datasets are given below:

CENSUS This dataset contains census information for about 50,000 adult Ameri-
can citizens, and is available from the UCI repository http://www.ics.uci.edu/~mlearn/
mlsummary.html. We used three categorical (native-country, sex, race)
attributes and three continuous (age, fnlwgt, hours-per-week) attributes
from the census database in our experiments, with the continuous attributes parti-
tioned into discrete intervals to convert them into categorical attributes. The specific
categories used for these six attributes are listed in Table 1.

Table 1 CENSUS dataset

Attribute Categories

Race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

Sex Female, Male

Native-country United-States, Other

Age [15−35), [35−55), [55−75),≥75

Fnlwgt [0−1e5], [1e5−2e5), [1e5−3e5), [3e5−4e5),≥4e5

Hours-per-week [0−20), [20−40), [40−60), [60−80),≥80

123

http://www.ics.uci.edu/~mlearn/mlsummary.html
http://www.ics.uci.edu/~mlearn/mlsummary.html


A framework for high-accuracy privacy-preserving mining

Table 2 HEALTH dataset

Attribute Categories

INCFAM20 (family income) Less than $20, 000; $20,000 or more

HEALTH (health status) Excellent; Very good; Good; Fair; Poor

SEX (sex) Male; Female

PHONE (has telephone) Yes, phone number given; Yes, no phone number given; No

AGE (age) [0−20), [20−40), [40−60), [60−80),≥80)

BDDAY12 (bed days in past 12 months) [0−7), [7−15), [15−30), [30−60),≥60

DV12 (Doctor visits in past 12 months) [0−7), [7−15), [15−30), [30−60),≥60

Table 3 Frequent itemsets for supmin = 0.02

Itemset length

1 2 3 4 5 6 7

CENSUS 19 102 203 165 64 10 –

HEALTH 23 123 292 361 250 86 12

HEALTH This dataset captures health information for over 100,000 patients col-
lected by the US government http://dataferrett.census.gov. We selected 4 categorical
and 3 continuous attributes from the dataset for our experiments. These attributes and
their categories are listed in Table 2.

The association rule mining accuracy of our schemes on these datasets was evaluated
for a user-specified minimum support of supmin = 2%. Table 3 gives the number of
frequent itemsets in the datasets for this support threshold, as a function of the itemset
length.

9.1.2 Multiple versions

In Sect. 5, Eq. 16 gave the number of data records required to obtain relative inaccuracy
of less than � with a probability greater than ε. For � = 0.001, and ε = 0.95, this
turned out to be N ≥ 2 × 106. Note that we need to consider small values of �, since
the error given by � will be further amplified by the condition number, as indicated
by Eq. 9 for relative error in reconstructed counts.

Since the datasets available to us were much smaller than the desired N , we resorted
to scaling each dataset by a factor of 50 to cross the size threshold, by providing multiple
distortions of each user record. As per the discussion in Sect. 5.1, such scaling does
not result in any additional privacy breach if the miner has no knowledge of the sibling
identities. Further, even when the miner does possess this knowledge, 50 versions was
shown to retain an acceptable privacy level under the modified (guessing-probability)
privacy definition. A useful side-effect of the dataset scaling is that it also ensures that
our results are applicable to large disk-resident databases.
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9.1.3 Performance metrics

We measure the performance of the system with regard to the accuracy that can be
provided for a given privacy requirement specified by the user.

Privacy The (ρ1, ρ2) strict privacy measure from Evfimievski et al. (2003) is used as
the privacy metric. We experimented with a variety of privacy settings—for example,
varying ρ2 from 30% to 50% while keeping ρ1 fixed at 5%, resulting in γ values
ranging from 9 to 19. The value of ρ1 is representative of the fact that users typically
want to hide uncommon values which set them apart from the rest, while a ρ2 value
of 50% indicates that the user can still plausibly deny any value attributed to him or
her since it is equivalent to a random coin-toss attribution.

Accuracy We evaluate two kinds of mining errors, Support Error and Identity Error,
in our experiments. The Support Error (µ) metric reflects the average relative error
(in percent) of the reconstructed support values for those itemsets that are correctly
identified to be frequent. Denoting the number of frequent itemsets by |F |, the recons-
tructed support by ŝup and the actual support by sup, the support error is computed
over all frequent itemsets as

µ = 1

| F |	 f ∈F
| ŝup f − sup f |

sup f
∗ 100

The Identity Error (σ ) metric, on the other hand, reflects the percentage error in
identifying frequent itemsets and has two components: σ+, indicating the percentage
of false positives, and σ− indicating the percentage of false negatives. Denoting the
reconstructed set of frequent itemsets with R and the correct set of frequent itemsets
with F , these metrics are computed as

σ+ = | R − F |
| F | ∗ 100 σ− = | F − R |

| F | ∗ 100

9.1.4 Perturbation mechanisms

We present the results for FRAPP and representative prior techniques. For all the
perturbation mechanisms, the mining of the distorted database was done using the
Apriori (Agrawal and Srikant 1994) algorithm, with an additional support reconstruc-
tion phase at the end of each pass to recover the original supports from the perturbed
database supports computed during the pass (Agrawal et al. 2004; Rizvi and Haritsa
2002).

Specifically, the perturbation mechanisms evaluated in our study are the following:
DET-GD This scheme uses the deterministic gamma-diagonal perturbation matrix

A (Sect. 4) for perturbation and reconstruction. The perturbation was implemented
using the techniques described in Sect. 7, and the equations of Sect. 8.1 were employed
to construct the perturbation matrix used in each pass of Apriori.

RAN-GD This scheme uses the randomized gamma-diagonal perturbation matrix
Ã (Sect. 6) for perturbation and reconstruction. Though, in principle, any distribution
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can be used for Ã, here we evaluate the performance of uniformly distributed Ã
(as given by Eq. 19) over the entire range of the α randomization parameter (0 to γ x).

MASK This is the perturbation scheme proposed in Rizvi and Haritsa (2002), inten-
ded for boolean databases and characterized by a single parameter 1 − p, which
determines the probability of an attribute value being flipped. In our scenario, the
categorical attributes are mapped to boolean attributes by making each value of the
category an attribute. Thus, the M categorical attributes map to Mb = ∑

j | S j
U |

boolean attributes.
The flipping probability 1− p was chosen as the lowest value which could satisfy the

privacy constraints given by Eq. 2. The constraint ∀v: ∀u1, u2 : Avu1
Avu2

≤ γ is satisfied

for MASK (Rizvi and Haritsa 2002), if pMb

(1−p)Mb
≤ γ . But, for each categorical attribute,

one and only one of its associated boolean attributes takes value 1 in a particular
record. Therefore, all the records contain exactly M number of 1s . Hence the ratio of

two entries in the matrix cannot be greater than p2M

(1−p)2M and the following condition
is sufficient for the privacy constraints to be satisfied:

p2M

(1 − p)2M
≤ γ

The above equation was used to determine the appropriate value of p. For γ = 19
(corresponding to (ρ1, ρ2) = (5%, 50%)), this value turned out to be 0.439 and 0.448
for the CENSUS and HEALTH datasets, respectively.

C&P This is the Cut-and-Paste perturbation scheme proposed by Evfimievski et al.
(2002), with algorithmic parameters K and ξ . To choose K , we varied K from 0
to M , and for each K , ξ was chosen such that the matrix (Eq. 11) satisfies the pri-
vacy constraints (Eq. 2). The results reported here are for the (K , ξ) combination
giving the best mining accuracy, which for γ = 19, turned out to be K = 3 and
ξ = 0.494.

9.1.5 Experimental results

For the CENSUS dataset, the support (µ) and identity (σ−, σ+) errors of the four
perturbation mechanisms (DET-GD, RAN-GD, MASK, C&P) for γ = 19 are shown
in Fig. 2, as a function of the length of the frequent itemsets (the performance of RAN-
GD is shown for randomization parameter α = γ x/2). The corresponding graphs for
the HEALTH dataset are shown in Fig. 3. Note that the support error (µ) graphs are
plotted on a log-scale. The detailed results are presented here for a representative
privacy requirement of (ρ1, ρ2) = (5%, 50%), which was also used by Evfimievski
et al. (2003), and results in γ = 19. Similar performance trends were observed for the
other practical values of γ , with the results for γ = 13.28 and γ = 9 on CENSUS
dataset shown in Figs. 4 and 5, respectively.

In these figures, we first note that DET-GD performs, on an absolute scale, extre-
mely well, the error being of the order of 10% for the longer itemsets. Further, its
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(a) (b) (c)

Fig. 2 CENSUS γ = 19. a Support error µ, b false negatives σ−, c false positives σ+

Fig. 3 HEALTH γ = 19. a Support error µ, b false negatives σ−, c false positives σ+

Fig. 4 Results for γ = 13.28 (ρ1, ρ2) = (5%, 41%) on CENSUS. a Support error µ, b False negatives
σ−, c false positives σ+

Fig. 5 Results for γ = 9 (ρ1, ρ2) = (5%, 32%) on CENSUS. a Support error µ, b false negatives σ−,
c false positives σ+
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(a) (b) (c)

Fig. 6 Varying randomization of perturbation matrix (γ = 19). a Posterior probability, b support error µ

(HEALTH), c support error µ (CENSUS)

performance is visibly better than that of MASK and C&P. In fact, as the length of
the frequent itemset increases, the performance of both MASK and C&P degrade
drastically. Specifically, MASK is not able to find any itemsets of length above 4 for
the CENSUS dataset, and above 5 for the HEALTH dataset, while C&P could not
identify itemsets beyond length 3 in both datasets.

The second point to note is that the accuracy of RAN-GD, although employing
a randomized matrix, is only marginally worse than that of DET-GD. In return, it
provides a substantial increase in the privacy—its worst-case (determinable) privacy
breach is only 33% as compared to 50% with DET-GD. Figure 6a shows the perfor-
mance of RAN-GD over the entire range of α with respect to the posterior probabi-
lity range [ρ−

2 , ρ+
2 ]. The mining support reconstruction errors for itemsets of length

4 are shown in Fig. 6b and c for the CENSUS and HEALTH datasets, respectively.
We observe that the performance of RAN-GD does not deviate much from the determi-
nistic case over the entire range, whereas very low determinable posterior probability
is obtained for higher values of α.

Role of condition numbers The primary reason for DET-GD and RAN-GD’s good
performance is the low condition numbers of their perturbation matrices. This is quan-
titatively shown in Fig. 7, which plots these condition numbers on a log-scale (the
condition numbers of DET-GD and RAN-GD are identical in this graph because
E( Ã) = A). Note that the condition numbers are not only low but also independent
of the frequent itemset length (algebraic computation of condition numbers is shown
in the Appendix).

In marked contrast, the condition numbers for MASK and C&P increase expo-
nentially with increasing itemset length, resulting in drastic degradation in accuracy.
Thus, our choice of a gamma-diagonal matrix indicates highly promising results for
discovery of long patterns.

Computational overheads Finally, with regard to actual mining response times also,
FRAPP takes about the same time as Apriori for the complete mining process on the
original and perturbed databases, respectively. This is because, as mentioned before,
the reconstruction component shows up only in between mining passes and involves
very simple computations (see Eq. 29). Further, the initial perturbation step took only
a very modest amount of time even on vanilla PC hardware. Specifically, on a P-IV
2.0 GHz PC with 1 GB RAM and 40 GB hard disk, perturbing 2.5 million records of
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Fig. 7 Perturbation matrix condition numbers (γ = 19). a CENSUS, b HEALTH

CENSUS took about a minute, while 5 million records of HEALTH were distorted in
a little over 2 min.

9.2 Classification rule mining

We now turn our attention to assessing the performance of FRAPP in the context of
classification rule mining.

9.2.1 Experimental setup

The US Census dataset mentioned earlier was used in our experiments, out of which
about 75% of the records were used for training and the remaining as test data. The
attributes used in the experiment are given in Table 4, among which salary was chosen
as the Class Label attribute. The classifier used is the highly popular public-domain
C4.5 decision tree classifier Quinlan (1993), specifically the one available at http://
www.cs.waikato.ac.nz/ml/weka.

Table 4 US CENSUS dataset for classification

Attribute Categories

Native-country United-States, Other

Salary Less or equal to $50, 000, Greater than $50,000

Age [15−35), [35−55), [55−75), ≥75

Type-of-employment Private, Self Employment not Inc, Self Employment Inc, Federal Government,

Local Government, State Government, Without pay, Never worked

Hours-per-week [0−20), [20−40), [40−60), [60−80),≥80
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Table 5 Classification accuracy

Mining technique Correct labeling (%) Incorrect labeling (%)

FRAPP 72.88 27.12

DIRECT 75.34 24.66

BOTH 71.34 23.12

9.2.2 Experimental results

We choose a privacy level of γ = 19, corresponding to a maximum privacy breach
of 50%. With this privacy setting, the accuracy results for FRAPP-based privacy-
preserving classification are shown in Table 5, which also provides the corresponding
accuracies for direct classification on the original database, representing in a sense, the
“best case”. We see here that the FRAPP accuracies are quite comparable to DIRECT,
indicating that there is little cost associated with supporting the privacy functionality.
Finally, the last line (BOTH) in Table 5 shows the proportion of cases where FRAPP
and DIRECT concurred in their labeling—i.e. either both got it correct or both got it
wrong, and as can be seen, the overlap between the two classifiers is very high, close
to 95%.

10 Conclusions and future work

In this paper, we developed FRAPP, a generalized model for random-perturbation-
based methods operating on categorical data under strict privacy constraints. The
framework provides us with the ability to first make careful choices of the model
parameters and then build perturbation methods for these choices. This results in
order-of-magnitude improvements in model accuracy as compared to the conventional
approach of deciding on a perturbation method upfront, which implicitly freezes the
associated model parameters.

Using the framework, a “gamma-diagonal” perturbation matrix was identified as
the best conditioned among the class of symmetric positive-definite matrices, and the-
refore expected to deliver the highest accuracy within this class. We also presented an
implementation method for gamma-diagonal-based perturbation whose complexity is
proportional to the sum of the domain cardinalities of the attributes in the database.
Empirical evaluation of our approach on the CENSUS and HEALTH datasets demons-
trated significant reductions in mining errors for association rule mining relative to
prior privacy-preserving techniques, and comparable accuracy to direct mining for
classification models.

The relationship between data size and model accuracy was also evaluated and it
was shown that it is often possible to construct a sufficiently large dataset to achieve
the desired accuracy by the simple expedient of generating multiple distorted versions
of each customer’s true data record, without materially compromising the data privacy.

Finally, we investigated the novel strategy of having the perturbation matrix compo-
sed of not values, but random variables instead. Our analysis of this approach indicated
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that at a marginal cost in accuracy, significant improvements in privacy levels could
be achieved.

In our future work, we plan to investigate whether it is possible, as discussed in
Sect. 2, to design distortion matrices such that the mining can be carried out directly
on the distorted database without any explicit reconstruction—that is, to develop an
“invariant FRAPP matrix”.

Appendix

Condition number of gamma-diagonal matrix

We provide here the formula for computing the condition number of the gamma-
diagonal distortion matrix. Specifically, consider the n × n matrix A of form

Ai j =
{

ξ x if i = j
x o.w.

where ξ x + (n − 1)x = 1 (30)

Since matrix A is symmetric, we can use the following well-known result (Strang
1988):

Theorem 6 A symmetric matrix has real eigen-values.

Let X be an eigenvector of the matrix A corresponding to eigenvalue λ. Then, it must
satisfy:

AX = λX

Using the structure of matrix A from Eq. 30, for any i = 1, . . . , n,

ξ x Xi +
∑

j �=i

x X j = λXi

⇔ (ξ x − x)Xi +
∑

j

x X j = λXi

⇒ either Xi = x
∑

j X j

λ + x − ξ x
(31)

or λ + x − ξ x = 0 (32)

Eq. 31 implies that all Xi are equal. Let this common value be g, leading to
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g(λ + x − ξ x) = ngx

⇒ λ = ξ x + nx − x = 1 (33)

From Eq. 32,

λ = (ξ − 1)x = (ξ − 1)

(ξ + n − 1)
< 1

Thus, only two distinct values are taken by the eigen-values of matrix A: λ1 = 1 and
λ2 = λ3 = · · · = λn = (ξ−1)

(ξ+n−1)
. For ξ ≥ 1, the eigen-values of the matrix A are

positive, hence A is a positive-definite matrix, and its condition number is:

cond(A) = λmax

λmin
= (ξ + n − 1)

(ξ − 1)

– For the matrix A given by Eq. 12, ξ = γ, n =| SU |, γ ≥ 1, so

cond(A) = (γ+ | SU | −1)

(γ − 1)
= 1 + | SU |)

(γ − 1)

– For matrix A for mining itemsets over subset of attributes Cs , given by Eq. 28,

ξ = γ+ IC
ICs

−1

IC
ICs

, n = ICs .

Hence,

ξ + n − 1 = γ + IC − 1
IC
ICs

ξ − 1 = γ − 1
IC
ICs

cond(A) = (ξ + n − 1)

(ξ − 1)
= (γ + IC − 1)

(γ − 1)
= 1 + | SU |)

(γ − 1)
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