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Abstract—Given a network with groups, such as a contact-network grouped by ages, which are the best groups to immunize to control

the epidemic? Equivalently, how to choose best communities in social media like Facebook to stop rumors from spreading?

Immunization is an important problem in multiple different domains like epidemiology, public health, cyber security, and social media.

Additionally, clearly immunization at group scale (like schools and communities) is more realistic due to constraints in implementations

and compliance (e.g., it is hard to ensure specific individuals take the adequate vaccine). Hence, efficient algorithms for such a “group-

based” problem can help public-health experts take more practical decisions. However, most prior work has looked into individual-scale

immunization. In this paper, we study the problem of controlling propagation at group scale. We formulate a set of novel Group

Immunization problems for multiple natural settings (for both threshold and cascade-based contagion models under both node-level

and edge-level interventions) and develop multiple efficient algorithms, including provably approximate solutions. Finally, we show the

effectiveness of our methods via extensive experiments on real and synthetic datasets.

Index Terms—Graph mining, social networks, immunization, diffusion, groups
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1 INTRODUCTION

INFECTIOUS diseases account for a large fraction of deaths
worldwide. The main public health response to containing

epidemic outbreaks is by vaccination and social distancing,
e.g., [1], [2]. These interventions have resource constraints
(e.g., limited supply of vaccines and the high cost of social dis-
tancing), and therefore, designing optimal control strategies is
an active area of research in public health policy planning,
e.g., [1], [3], [4], [5], [6], [7]. However, optimal strategies based
on node level characteristics, such as the degree or spectral
properties [6], [7] cannot be easily turned into implementable
policies, because such targeted immunization of specific indi-
viduals raises significant social and moral issues. As a result,
vaccination policies, such as those specified by CDC are at the
level of groups (e.g., based on demographics), and almost all
the efforts in epidemiology are focused on developing group
level strategies, even though this may lead to sub-optimal sol-
utions compared to the individual level policies. For instance,
Medlock et al. [1] develop an optimal vaccine allocation for
different age groups. Even so, all priorwork on optimal group
level immunization has focused on differential equation
based models, and has not been studied on network models
of epidemic spread. Implementing such interventions is chal-
lenging because people “comply” with them based on their

individual utility. We model such limited compliance by ran-
dom vaccine allocation within each group, which motivates
our paper. Our focus in this paper is on developing interven-
tions that can be implemented before the start of the epidemic.
Further, interventions can be of two kinds: vaccination (which
can bemodeled in terms of node removals) and social distanc-
ing (which can be modeled in terms of edge removal, e.g.,
reducing contacts between certain sub-populations). We con-
sider two kinds of metrics: (1) maximizing the expected num-
ber of people who do not get infected, and (2) minimizing the
time for the epidemic to die out. These are both commonly
studied metrics in public health (see, e.g., [8], [9]). Most of the
work in mathematical epidemiology has been formalized in
terms of reducing the reproductive number. However, these
methods do not extend to network based models. In this
paper, we develop algorithms for optimizing these metrics in
two differentmodels of diffusion.

Similar diffusion processes arise in other domains such as
social media, e.g., the spread of spam/rumors on Facebook,
Twitter, LiveJournal or Friendster. These are also commonly
modeled by models such as the Linear Threshold (LT)
model [10]. Analogous to the public-health case, we can con-
trol such processes by ‘immunization’ via blocking users or
preventing some interactions, such that the expected number
of users who adopt spam/rumors is minimal. Past work has
studied individual-level based immunization algorithms for
the LT model [11]. However, it is more realistic to issue a
warning bulletin on group pages, and some members within
those groups comply with the warning to stop disseminating
rumors. Similarly, Twitter can warn a group of accounts to
control the spread of the malicious tweets. The same holds
true for user groups in Friendster and LiveJournal.

In this paper, we present a unified approach to study
strategies for controlling the spread of diffusion processes
through group level interventions, capturing both uncer-
tainty and lack of control at high resolution within groups.
The main contributions of our paper are:

� Y. Zhang and B.A. Prakash are with the Department of Computer Science,
Virginia Tech, Blacksburg, VA 24061.
E-mail: {yaozhang, badityap}@cs.vt.edu.

� A. Adiga is with NDSSL, Biocomplexity Institute of Virginia Tech,
Blacksburg, VA 24061. E-mail: abhijin@vbi.vt.edu.

� S. Saha and A. Vullikanti are with the Department of Computer Science,
Virginia Tech, Blacksburg, VA 24061, and NDSSL, Biocomplexity Insti-
tute of Virginia Tech, Blacksburg, VA 24061.
E-mail: {ssaha, akumar}@vbi.vt.edu.

Manuscript received 29 Dec. 2015; revised 9 July 2016; accepted 24 Aug.
2016. Date of publication 1 Sept. 2016; date of current version 2 Nov. 2016.
Recommended for acceptance by A. Gionis.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2605088

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 12, DECEMBER 2016 3339

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1) Problem Formulation: We develop group level interven-
tion problems in both the LT model, and the SIS/SIR
models, for which we consider a spectral radius based
formulation. We consider arbitrarily specified groups,
and interventions that involve both edge and node
removal, modeling quarantining and vaccination,
respectively. The interventions specify the number xi

of nodes/edges that can be removed within each
group Ci; however, these are chosen randomly within
the group. These problems generalize the node level
problems and have not been studied before.

2) Effective Algorithms: We develop efficient theoretical
and practical algorithms for the four problem classes
we consider, including provable approximation algo-
rithms (SDP and GROUPGREEDYWALK). We find that
diverse kinds of techniques are needed for these
problems—submodular functionmaximization on an
integer lattice, semidefinite programming, quadratic
programming, and the link between closed walks
and spectral radius. Our algorithms also leverage
prior techniques for analyzing contagion processes,
e.g., [6], [12], [13], but require non-trivial extensions.

3) Experimental Evaluation: We present extensive experi-
ments on multiple real datasets including epidemio-
logical and social networks, and demonstrate that
our algorithms outperform other competitors on
node and edge deletion at group scale for controlling
infection as well as spectral radius minimization.

Outline of the Paper. The rest of the paper is organized as
follows. We first discuss the related work in Section 2, and
then formulate the Group Immunization Problem in
Section 3. Section 4 presents our algorithms for different set-
tings of the problem for both edge and node removal. Experi-
mental results on several datasets are in Section 5. We finally
discuss futurework, and conclude in Section 6.

2 RELATED WORK

In general, there has been a lot of interest in studying
dynamical processes on large graphs like (a) blogs and
propagations [14], [15], (b) information cascades [16], [17];
(c) marketing and product penetration [18], [19] and (d)
malware prediction [20]. These dynamic processes are all
closely related to virus propagation in epidemiology, rumor
spread in social media, malware outbreaks in computer net-
works, etc. In this section, we review related work mainly
from four areas: epidemiology, propagation models, immu-
nization and other diffusion based optimization problems.
In short, past work concentrates on individual-based immuni-
zation—in contrast, in this paper we study group-based
immunization problems under various models.

Epidemiology. The classical texts on epidemic models and
analysis are May and Anderson [8] and Hethcote [21].
Widely studied epidemiological models include homoge-
neous models [8], [9], [22], which assume that every individ-
ual has equal contact with others in the population.

Propagation Models. There are broadly two types of propa-
gation models which have been used to describe dynamical
processes on graphs: threshold based and cascade style.

Threshold based models are well-motivated in the social
science literature [23], [24], [25] to represent ‘threshold’

behaviors, e.g., ideas/spam/rumors on Twitter and Face-
book. A classic example is the linear threshold model, which
has been extensively studied [10]. In this paper, we study the
problem ofminimizing propagation for the LTmodel.

Cascade style models, such as the ‘flu-like’ Susceptible-
Infectious-Susceptible (SIS), ‘mumps-like’ Susceptible-Infec-
tious-Recovered (SIR) and its special-case the Independent
Cascade (IC) [8], [9], [10], [22], are popular in epidemiology
literature tomodel different epidemiological states of people,
and their state-transitions. Much work has gone into in find-
ing the ‘epidemic threshold’ for such models (the minimum
virulence of a virus which results in an epidemic over the
network). For example, recent studies [12], [26] show that the
spectral radius of the underlying network (the largest eigen-
value of the adjacency matrix of the graph) is related to the
epidemic threshold for a wide-range of cascade models.
Hence, here we investigate how to control an epidemic by
minimizing the spectral radius for cascade stylemodels.

Immunization. There has been much work on finding opti-
mal strategies for vaccination and social distancing [1], [3],
[4], [5], [6], [7]. Much of the work in the epidemiology litera-
ture has been based on differential equation methods [1], [3],
[4]. Cohen et al. [5] studied the popular acquaintance immuni-
zation policy (pick a random person, and immunize one of its
neighbors at random). Using game theory, Aspnes et al. [27]
developed inoculation strategies for victims of viruses under
random starting points. Kuhlman et al. [28] studied two for-
mulations of the problem of blocking a contagion through
edge removals under the model of discrete dynamical sys-
tems. Tong et al. [7], 29], Van Miegham et al. [30], Prakash
et al. [6] proposed various node-based and edge-based immu-
nization algorithms based on minimizing the largest eigen-
value of the graph. Other non-spectral approaches for
immunization have been studied by Budak et al. [31], He
et al. [32], Khalil et al. [11], Saha et al. [13], and Zhang
et al. [33]. All of these papers studied individual-based immu-
nization (where either one targets specific individuals or
whole demographics). Here we study group-based problems,
where vaccines are distributed randomly inside groups.

Other Diffusion Problems. Other diffusion based optimiza-
tion problems include the influence maximization problem,
which was introduced by Domingos and Richardson [34],
and formulated by Kempe et al. [10] as a combinatorial opti-
mization problem. They proved it is NP-Hard and also gave
a simple ð1� 1=eÞ-approximation based on the submodular-
ity of expected spread of a set of starting seeds. Recently the
paper by Eftekhar et al. [35] studied this problem at group
scale. Other such problems where we wish to select a subset
of ‘important’ vertices on graphs, include ‘outbreak
detection’ [36] and ‘finding most-likely culprits of epi-
demics’ [37]. Purohit et al. [38] looked into ‘zooming-out’ of
a graph by forming groups based on similar influence.

3 OUR PROBLEM FORMULATIONS

Table 1 lists the main symbols we use throughout the paper.
Here we assume our graph GðV;EÞ is directed and
weighted. We refer to both node and edge level interven-
tions as immunization.

Groups in a Graph. For a graphGðV;EÞ, we assume that the
edge (node) set is partitioned into groups C ¼ fC1; . . . ; Cng
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for the edge (node) immunization problems. For a node parti-
tion, C may correspond to groups of communities, locations,
demographics, etc. And edge groups can be induced from
node groups. For example, for an edge e ¼ ðu; vÞ, if u and v
belong to a group Ct, then e 2 Ct, otherwise it belongs to
groupCij ¼ feuvju 2Ci; v 2 Cjg. The edge groupswe defined
ensure that every edge e has a group even if the endpoints of e
belong to different node groups.Note that we assume there
are no overlaps among groups.

Allocating Vaccines to Groups. We define x ¼ ðx1; . . . ; xnÞ
as the vaccine allocation vector, i.e., if we give xi vaccines to
group Ci, xi edges (nodes) will be uniformly randomly
removed from Ci, which means those edges/nodes will not
be involved in the diffusion process. The objective of our
immunization problem is to find an allocation that controls
the diffusion process most effectively.

For edge deletion, a good solution tends to give more
vaccines to the edge groups where edges inside have high
chance to be a part of cuts/walks. Similarly, for node dele-
tion, we prefer the node groups where nodes insides have
high impact on the influence/eigenvalue.

Main Idea of Our Problem Definitions. We give two differ-
ent sets of problems which cover a wide range of contagion-
like processes both threshold-based and cascade-style in the
next two sections. In addition, all our problems have been
carefully formulated to be seamless generalizations of the
corresponding individual-level problems.

3.1 Problem Definition under LT Model

Our first set of problems are based on the LT model which
is a well-known model for social media and complex propa-
gations [10] suited for representing ‘threshold’ behaviors for
activation. Asmentioned in the introduction, the vaccination
problem here can help to control such processes like spam
and rumors on Twitter and Facebook. Under the LT model,
our goal is to minimize the expected number of infected
nodes at the end of diffusion, in other words, maximize the

expected number of nodes we can save from being infected,
by selecting groups for removing edges/nodes.

In the LTmodel, a node v can be influenced by each neigh-
bor u according to a weight puv where

P
eðu;vÞ2E puv � 1. The

diffusion process proceeds as follows: at the start, every node
u uniformly randomly chooses a threshold uu from the range
[0,1], which represents the weighted fraction of u’s neighbors
that must be active to activate u; an inactive node u becomes
active at time tþ 1 if

P
w2Nt

i
pwu � uu where Nt

u is the set of

active neighbors of u at time t; all active nodeswill stay active.
The process stops when no additional node becomes active.
Each groupmay have some seeds (initial infected nodes). The
seedswill spread information/virus by the LTmodel.

For the edge deletion under the LT model, let sC;AðxÞ
(Zn ! R) denote the expected number of infected nodes in
G (the footprint of G), given seed set A and vaccine alloca-
tion vector x for the group set C. Now we are ready to
define the edge version of the problem under the LT model.

PROBLEM 1: GROUP IMMUNIZATION under LT model
(edge version):

GIVEN: Graph GðV;EÞ, a partition of the edge set
C ¼ fC1; . . . ; Cng, seed set A and m vaccines (budget). Let x be
the edge vaccine allocation vector.

FIND: The optimum allocation xopt which maximizes
fðxÞ ¼ sC;Að0Þ � sC;AðxÞ s.t. jxj � m.

Next, we define the node version of this problem. Let
s0
C;AðxÞ denote the footprint of G. It is same as sC;AðxÞ except

that the allocation vector x corresponds to node vaccination.
PROBLEM 2: GROUP IMMUNIZATION under LT model

(node version):
GIVEN: Graph GðV;EÞ, a partition of the vertex set C ¼

fC1; . . . ; Cng, seed setA andm vaccines (budget). Let x be the node
vaccine allocation vector.

FIND: The optimum allocation xopt which maximizes f 0ðxÞ ¼
s0
C;Að0Þ � s0

C;AðxÞ s.t. jxj � m.

Hardness of Our Problems. Problems 1 and 2 are
NP-hard as their special case, individual-level based immu-
nizations (when each edge/node is a group), are NP-hard
themselves [11], [33].

3.2 Problem Definition for Spectral Radius

Our second set of problems are based on the spectral radius
formulation [7], [29] for a variety of cascade models includ-
ing the fundamental SIR (‘mumps-like’ which generalizes
the well-known IC model [10]), SIS (‘flu-like’), and SEIS
(with incubation period) models. In the SIS/SIR models,
every node can be either susceptible (S), infectious (I) or
recovered (R). Each infected node u (in state I) can infect
each susceptible neighbor v (in state S) with the probability
puv. In the SIS model, each infected node u can switch to the
susceptible state with the recovery rate d. In the SIR model,
each infected node u can switch to the recovered state with
the recovery rate d, meaning u cannot be infected again.

Spectral radius, denoted by �, refers to the largest eigen-
value of the adjacencymatrix of a graphG. Recent results [12],
[26] have shown that � is connected to the reproduction num-
ber in epidemiology, and determines the phase-transition
(‘epidemic threshold’ t) between epidemic/non-epidemic
regimes in a very large range of cascade-style models [12],
including SIR, SIS , SEIS and so on. As shown in [12], t / �,

TABLE 1
Terms and Symbols

Symbol Definition and Description

GðV;EÞ graph Gwith the node set V and the edge set E
C set containing groups
A set of initial infected nodes
n the number of groups in the graph
m budget (the number of vaccines)
puv weight on edge eðu; vÞ
gðvÞ group index of node v, i.e., gðvÞ ¼ i if v 2 Ci

gðu; vÞ group index of edge ðu; vÞ, i.e., gðu; vÞ ¼ i if ðu; vÞ 2 Ci

x vaccine allocation vector ðx1; . . . ; xnÞ for edges/nodes
sC;AðxÞ the expected number of infected nodes at the

end when x is allocated to edges
s0
C;AðxÞ the expected number of infected nodes at the end

when x is allocated to nodes
ek vector with ek ¼ 1 and ei ¼ 0 for i 6¼ k
MEðxÞ E½MðxÞ�
DEðxÞ maximum expected degree of GðxÞ
�EðxÞ expected spectral radius ofMðxÞ
�ðMEðxÞÞ spectral radius of the expected matrixMEðxÞ
�min
E

minimum expected spectral radius over all
MðxÞ, i.e.,minx�EðxÞ

xmin the allocation vector which minimizes �ðMEðxÞÞ
over all x, i.e., argminx�ðMEðxÞÞ

s number of samples in GROUPGREEDYWALK
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and if t < 1 the diseasewill die out quickly irrespective of ini-
tial conditions. This gives us the motivation to control the dis-
ease spread byminimizing � in the underlying network.

Tong et al. [7], [29] proposed effective node-based and
edge-based individual immunizationmethods tominimize �.
Following their methodology, in this paper we aim to maxi-
mize the drop of the spectral radius of G, D�, when vaccines
are allocated to groups. Similar to Problems 1 and 2, when xi

vaccines are given to group Ci, we uniformly remove xi

nodes/edge at random. Hence, we want to find the optimal
allocation x such that the expectation of D�, E½D��ðxÞ is maxi-
mum. Note that we do not define the problems here based on
the ‘footprint’ (as in the previous section for LT) for primarily
two reasons: (a) these versions naturally generalize the corre-
sponding individual-level immunization problems studied in
past literature [7], [29]; and (b) due to the epidemic threshold
results, using the spectral radius allows us to immediately for-
mulate a general problem for multiple cascade-style models
(like SIR/SIS/IC) each with differences in their exact spread-
ing processwhichwe can ignore. Formally our problems are:

PROBLEM 3: GROUP IMMUNIZATION for spectral radius (edge
version)

GIVEN: Graph GðV;EÞ, a partition of the edge set C ¼
fC1; . . . ; Cng, and m vaccines (budget). Let x be the edge vaccine
allocation vector, and let E½D��ðxÞ denote the expected drop in the
spectral radius after the immunization.

FIND: The optimum allocation xopt which maximizes E½D��,
i.e., xopt ¼ arg maxxE½D��ðxÞ s.t. jxj � m.

PROBLEM 4: GROUP IMMUNIZATION for spectral radius (node
version)

GIVEN: Graph GðV;EÞ, a partition of the node set C ¼
fC1; . . . ; Cng, and m vaccines (budget). Let x be the edge vaccine
allocation vector, and let E½D��ðxÞ denote the expected drop in the
spectral radius after the immunization.

FIND: The optimum allocation xopt which maximizes E½D��,
i.e., xopt ¼ arg maxxE½D��ðxÞ s.t. jxj � m.

Hardness of Our Problems. Problems 3 and 4 are NP-hard
too—their special cases, individual-level immunizations are
NP-hard [7], [29].

4 PROPOSED METHODS

We first discuss our algorithms for the GROUP IMMUNIZATION

problem under the LT model (Sections 4.1 and 4.2 for
Problems 1 and 2), and then the spectral radius versions
(Sections 4.3 and 4.4 for Problems 3 and 4).

4.1 Edge Deletion under LT Model

Recall that the function fðxÞ in Problem 1 is not a simple set
function; it is over an integer lattice. Hence the submodularity
property used in [11] is not applicable to our problem, andwe
can not simply apply their greedy algorithm. Instead, our
approach is to carefully identify a ‘submodularity like’ condi-
tion that is satisfied by our function fðxÞ, for which a greedy
algorithm gives good performance. Let ek be the vector with 1
at the kth index and 0 be the all zeros vector. We consider the
following three properties.

ðP1Þ fðxÞ � 0 and fð0Þ ¼ 0.
ðP2Þ (Non-decreasing) fðxÞ � fðxþ ekÞ for any k.
ðP3Þ (Diminishing returns) For any x0 � x and k, we have

fðxþ ekÞ � fðxÞ � fðx0 þ ekÞ � fðx0Þ.

The notion of submodularity of set functions has been
extended to functions over integer lattices—see, e.g., [39],
which shows that a greedy algorithm gives a constant factor
approximation to submodular lattice functions with budget
constraints. We note that in the context of functions defined
on an integer lattice, unlike in the case of set functions, submo-
dularity need not be equivalent to the diminishing return
property. Besides, there are multiple non-equivalent defini-
tions of the diminishing return property, as observed in [39].
Next, we show that in Theorem 1 that a greedy algorithm
gives an ð1� 1=eÞ-factor approximation to an integer lattice
function satisfying the properties ðP1Þ, ðP2Þ and ðP3Þ above,
and our objective function follows all above properties
(Lemma 2). Note that it is not clear whether the analysis of
[39] implies a similar bound for the kind of functions fðxÞwe
need to consider here.

Lemma 1. Suppose y ¼ ðyi; . . . ; ynÞT where yi 2 Z� andP
j yj ¼ m, then fðxþ yÞ � fðxÞ � P

j yjðfðxþ ejÞ � fðxÞÞ.
Proof. The proof is in the appendix.1 tu
Theorem 1. Suppose fðxÞ, x 2 Zn satisfies the properties ðP1Þ,

ðP2Þ and ðP3Þ above. Then, Algorithm 1 gives a
ð1� 1=eÞ-approximate solution to the problem of maximizing
fðxÞ subject toPi xi � m.

Proof. Suppose x is the solution from the greedy algorithm,
and x� is the optimal solution. Hence, we have

P
j xj ¼P

j x
�
j ¼ m. Since sCð0Þ is constant, the greedy algorithm is

equivalent to

C� ¼ argmaxCi
fðxþ eiÞ � fðxÞ:

Let us define xðiÞ as the solution got from the ith itera-

tion of the greedy algorithm, hence x ¼ xðmÞ. And x� can
be represent as

P
j x

�
jej. We have

fðx�Þ � fðx� þ xðiÞÞ
¼ fðxðiÞÞ þ ðfðx� þ xðiÞÞ � fðxðiÞÞÞ
� fðxðiÞÞ þ

X
j

x�
j ðfðxðiÞ þ ejÞ � fðxðiÞÞÞ ðLemma 1Þ

� fðxðiÞÞ þ
X
j

x�
j ðfðxðiþ1ÞÞ � fðxðiÞÞÞ ðGreedy Alg:Þ

¼ fðxðiÞÞ þmðfðxðiþ1ÞÞ � fðxðiÞÞÞ:
Hence, fðxðiþ1ÞÞ � ð1� 1

mÞfðxðiÞÞ þ 1
m fðx�Þ. Recursively,

we can get fðxðiÞÞ � ð1� ð1� 1
mÞiÞfðx�Þ. Therefore, fðxÞ ¼

fðxðmÞÞ � ð1� ð1� 1
mÞmÞfðx�Þ � ð1� 1=eÞfðx�Þ. tu

Algorithm 1. Greedy Algorithm

Require: f , budgetm
1: x ¼ 0
2: for j ¼ 1 tom do
3: i ¼ arg maxk¼1;...;nfðxþ ekÞ � fðxÞ
4: x ¼ xþ ei
5: end for
6: return x

Now, we will show that the objective function
fðxÞ ¼ sC;Að0Þ � sC;AðxÞ for the edge deletion problem under

1. The proof is in the appendix, which can be found at: http://peo-
ple.cs.vt.edu/yaozhang/group-immu/
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the LT model satisfies the properties stated in Theorem 1. In
the ensuing discussion, we will assumewithout loss of gener-
ality that there is only one seed node. This is because, if there
are multiple seed nodes, then, we can merge all of them to a
single ‘super’ node (say s) in the following manner: for every
vertex v 2 V nA, set psv ¼

P
u2NðvÞ\A puv, where NðvÞ is the

set of neighbors of v. We note that after this modification the
edges between v and its susceptible neighbors are unchanged,
and at time 0,

P
w2Nv

pwv ¼
P

w2NðvÞ\A pwv ¼ psv. Hence,

sC;AðxÞ ¼ sC;sðxÞ. Henceforth, we will assume that there is
only one seed node, and drop the subscript A from sC;AðxÞ,
denoting it by sCðxÞ.
Lemma 2. The function fðxÞ ¼ sCð0Þ � sCðxÞ satisfies the

properties ðP1Þ, ðP2Þ and ðP3Þ above.
Proof. Property 1 is trivially true because, when x ¼ 0, by

definition, fð0Þ ¼ 0, and since vaccination does not
increase the number of infections, sCðxÞ � sCð0Þ. For the
rest of the proof, since sCð0Þ is a constant, we only need
to analyze sCðxÞ. Note that for any x0 � x, we can find a
sequence of vectors ðz1; z2; . . . ; zlÞ for some l such that
x ¼ z1, x

0 ¼ zl and zi ¼ zi�1 þ eki�1
for some index ki�1.

Therefore, it is enough to prove that Properties 1 and 2
hold for x0 ¼ xþ ej for some index j. Also, we can assume
that xj < jCjj, for j ¼ 1; . . . ; n, for if this is not true for
some j, then, it implies that all the edges in Cj will be vac-
cinated, and therefore, we can simply remove all Cj from
the analysis and reduce the budget by xj.

Let RðxÞ � 2V be the collection of sets R satisfying
jR \ Cij ¼ xi. Following the equivalence between influence
in the LT model and the directed percolation process [10],

we have sCðxÞ ¼
P

Ĝ Pr½Ĝ�PR2RðxÞ Pr½R�gCðĜ;RÞ, where

the first sum is over all possible live-edge subgraphs Ĝ ofG
in the percolation process,Pr½R� is the probabilitywhen the

set R is removed , and gCðĜ;RÞ is the expected number of

infected nodes in Ĝ at the end of the LT process after the set
R is removed. This can be rewritten as sCðxÞ ¼P

Ĝ Pr½Ĝ�sCðĜ; xÞ, where Pr½Ĝ� is the probability of sam-

pling Ĝ, and sCðĜ; xÞ ¼ P
R2RðxÞ Pr½R�gCðĜ;RÞ. Hence-

forth, wewill abbreviate gCðĜ;RÞ as ĝðRÞ.
We will show that sCðĜ; xÞ is non-increasing, i.e.,

sCðĜ; xÞ � sCðĜ; x0Þ where x0 ¼ xþ ej, thereby showing
that fðxÞ satisfies Property 2. Since the number of nodes
reachable from the seed node with R removed is at least
as many as those with R [ feg removed, for any
e 2 Cj nR, we have ĝðRÞ � ĝðR [ fegÞ. Therefore,

sCðĜ; x0Þ ¼
X

R02Rðx0Þ
Pr½R0�ĝðR0Þ

¼
X

R2RðxÞ

X
e2CjnR

1

jCjj � xj
Pr½R�ĝðR [ fegÞ

�
X

R2RðxÞ

X
e2CjnR

1

jCjj � xj
Pr½R�ĝðRÞ

¼
X

R2RðxÞ
Pr½R�ĝðRÞ ¼ sCðĜ; xÞ:

Finally, we will show that sCðĜ; xþ ekÞ � sCðĜ; xÞ �
sCðĜ; x0 þ ekÞ � sCðĜ; x0Þ. From the above discussion,

this will imply that fðxÞ satisfies Property 3. Suppose
x0 ¼ xþ ej, we have two cases to consider: (1). ek ¼ ej;
(2). ek 6¼ ej.

For 1 � i � n, let ci ¼ jCij and xi denote the ith ele-
ment in x.

First, we consider case (1) (ek ¼ ej). For R 2 RðxÞ,
Pr½R� ¼ Q

i
1
ci
xi

� � ¼ r 1

ck
xk

� �, where, r ¼ Q
i6¼k

1
ci
xi

� �
sCðĜ; xÞ � sCðĜ; xþ ekÞ

¼
X

R2RðxÞ
r

1

ck
xk

� � ĝðRÞ �
X

R02Rðx0Þ
r

1

ck
ðxkþ1Þ

� � ĝðR0Þ

¼ r
X

R2RðxÞ

1

ck
xk

� � ĝðRÞ � 1

xk þ 1

X
e2CknR

1

ck
xkþ1

� � ĝðR [ fegÞ
24 35:

The factor 1
xkþ1 is due to the fact that R [ feg comes up

in ðxk þ 1Þ combinations involving R and e. This sim-
plifies to

sCðĜ; xÞ � sCðĜ; xþ ekÞ

¼ rxk!ðck � xk � 1Þ!
ck!

X
R2RðxÞ

X
e2CknR

ĝðRÞ � ĝðR [ fegÞ : (1)

Similarly, we have

sCðĜ; x0Þ � sCðĜ; x0 þ ekÞ

¼ rðxk þ 1Þ!ðck � xk � 2Þ!
ck!

X
R02Rðx0Þ

X
e2CknR0

ĝðR0Þ � ĝðR0 [ fegÞ

¼ rðxk þ 1Þ!ðck � xk � 2Þ!
ck!

X
R2RðxÞ

1

ðxk þ 1Þ
X

e02CknRX
e2CknðR[fe0gÞ

ĝðR [ fe0gÞ � ĝðR [ fe; e0gÞ :

From [11, proof of Theorem 6], ĝðRÞ � ĝðR [ fegÞ �
ĝðR [ fe0gÞ � ĝðR [ fe; e0gÞ (supermodularity). There-
fore, ðck � xk � 1ÞPe½ĝðRÞ� ĝðR [ fegÞ� � P

e0
P

e ĝðR[
fe0gÞ � ĝðR [ fe; e0gÞ. Hence proved.

Now, we consider case (2). Let

Pr½R� ¼ r0
1

ck
xk

� � 1

cj
xj

� � ;

where r0 ¼ Q
i6¼j;k

1
ci
xi

� �. We can get sCðĜ; xÞ � sCðĜ; xþ ekÞ
from Eqn. (1). And

sCðĜ; x0Þ � sCðĜ; x0 þ ekÞ

¼ r0xk!ðck � xk � 1Þ!
cj

ðxjþ1Þ

� �
ck!

X
R02Rðx0Þ

X
e2CknR0

½ĝðR0Þ � ĝðR0 [ fegÞ�

¼ r0ðxj þ 1Þ!ðcj � xj � 1Þ!
cj!

xk!ðck � xk � 1Þ!
ck!

X
R

1

xj þ 1X
ej2CjnR

X
e2CknðR[fejgÞ

½ĝðR [ ejÞ � ĝðR0 [ fe; ejgÞ� :

Again from [11], ðcj � xj � 1ÞPe ĝðRÞ � ĝðR [ fegÞ �P
ej

P
e ĝðR [ fejgÞ � ĝðR [ fej; egÞ. Hence proved. tu
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Algorithm 1 provides a simple greedy algorithm. Here,
to estimate sCðxÞ when vaccines are uniformly at random
allocated within groups, we apply the Sample Average
Approximation (SAA) framework. Let L 	 RðxÞ, denote a
sample set from the set of all possible allocations.

sCðxÞ 
 ŝCðxÞ ¼ 1
jLj

P
R2L gCðRÞ, Kempe et al. [10] show that

gCðRÞ can be estimated by sampling from the set of live-
edge graphs. A live-edge graphs T is generated as follows:
for each node v 2 V , independently select at most one of its
incoming edges with probability puv, and with probability
1�P

u:ðu;vÞ2E puv no edge is selected. Let this sample set be

denoted by M. This approach takes OðjMjjLjðjEj þ jV jÞÞ
time to estimate sCðxÞ, and OðmnjMjjLjðjEj þ jV jÞÞ for the
full greedy algorithm, which is not practical for large net-
works. However, we can speed up this naive greedy
algorithm.

Algorithm 2. GREEDY-LT

Require: Graph G, group set C, seed set A, and budgetm
1: Merge seed set A to I
2: Sample live-edge graphsM ¼ fTI

X1
; . . . ; T I

XjMjg
3: For each TI

X , calculate rðu; T I
XÞ for all nodes (in parallel)

4: Set x ¼ 0
5: for j ¼ 1 tom do
6: for each TI

X and Ci do
7: pick an edge e

Ci
X at random for Ci and TI

X

8: end for
9: C� ¼ arg maxCi

P
e
Ci
X

2TI
X

ðrðI; T I
XÞ � rðI; T I

X n eCi
X ÞÞ

10: xC� ¼ xC� þ 1
11: for each TI

X do
12: If eC

�
X ðu; vÞ 2 TI

X , remove edge e
Ci
X and update rðn; T I

XÞ
for node n (in parallel)

13: end for
14: end for
15: return x

Speed-Up of the Greedy Algorithm: GREEDY-LT. Since a live-
graph sampled from M is a tree, we can denote it as Ts

X

where s is the root, and rðu; T s
XÞ ¼ jfvjv 2 subtreeðuÞgj, i.e.,

the number of nodes that are under the subtree of u in Ts
X .

GREEDY-LT is summarized in Algorithm 2. It first merges all
seeds into a ‘supernode’ s and samples jMj live-edge
graphs, and then compute rðu; T s

XÞ in parallel for all nodes
in all the live graphs (Lines 1-3). After that we greedily
select m vaccines (Lines 4-10): we initially set the allocation
vector x ¼ 0, and in each iteration, for each group Ci, we cal-
culate the marginal loss DCi;sðxþ eiÞ ¼

P
eðu;vÞ2Ts

X
rðs; T s

XÞ�
rðs; T s

X n eÞ, i.e., we randomly pick one edge from each group
for each live-edge graph, then sum their marginal losses up
over Ts

X as Ci’s marginal loss. Note that
rðs; Ts

XÞ � rðs; T s
X n eÞ ¼ rðv; T s

XÞ þ 1, where node v is the
endpoint of e [11]. We pick the group C� with the maximum
marginal loss. Finally we removed the edge that has been
picked, and update rðu; T s

XÞ in parallel (Lines 11-13). There
are two cases to update Ts

X if eðu; vÞ 2 Ts
X: (1) for v’s children,

we can remove them because it is not reachable from s; (2)
for any ancestor a of v, rða; T s

X n eÞ ¼ rða; T s
XÞ � rðv; T s

XÞ � 1,
which can be done in constant time. Following Theorem 1,
GREEDY-LT is a ð1� 1=e� �Þ-approximation algorithmwhere
� is the approximation factor for estimating sCðxÞ.

Running Time of GREEDY-LT. Calculating all rðu; T I
XÞ costs

OðjMjjV jÞ time since we can traverse TI
X once to get all val-

ues of rðu; T I
XÞ. And greedily choosing m vaccine allocation

needs OðmnjMjjV jÞ. Hence, the serial version of GREEDY-LT
costs OðmnjMjjV jÞ. Note that in practice, we can speed it

up by computing and updating riðu; T I
XÞ in parallel. In addi-

tion, since TI
X is tree, the increasing difference property still

holds, hence we can accelerate GREEDY-LT by “lazy eval-
uation” [36], [40] as well.

4.2 Node Deletion under LT Model

Our algorithm for the node version of the GROUP IMMUNIZA-

TION problem is also the greedy Algorithm 1, as in the edge
version in Section 4.1. Without loss of generality, we also
assume that all seed nodes in A are merged, and drop the
subscript A from s0

C;AðxÞ, denoting it by s0
CðxÞ. Our analysis

relies on proving that the function f 0ðxÞ ¼ s0
Cð0Þ � s0

CðxÞ in
Problem 2 satisfies the properties ðP1Þ, ðP2Þ and ðP3Þ from
Section 4.1, as discussed below.

Lemma 3. The function f 0ðxÞ ¼ s0
Cð0Þ � s0

CðxÞ satisfies the
properties ðP1Þ, ðP2Þ and ðP3Þ.

Proof. The proof is in the appendix. tu
Lemma 3 suggests that Theorem 1 holds for node ver-

sion as well: GREEDY algorithm will provide a ð1�
1=eÞ-approximate solution. We extend GREEDY-LT (Algo-
rithm 2) to the node version: instead of randomly pick
edges (Line 7), we randomly pick nodes to calculate the
marginal loss (Line 9), and remove the corresponding
nodes (Line 12). The observation is that calculating the
marginal loss of removing node v in C in constant

time holds here as well, i.e., rðI; T I
XÞ � rðI; T I

X n vÞ ¼
rðv; T I

XÞ þ 1. Hence, the updating process is the same as
the edge version of GREEDY-LT.

4.3 Edge Deletion for Spectral Radius

We propose three algorithms for Problem 3 (edge immu-
nization based on spectral radius) with different trade-
offs of quality and running time: the first one, SDP, is a
constant factor approximation algorithm that minimizes
the actual eigendrop; the second algorithm, GROUPGREE-

DYWALK, is a bicriteria approximation algorithm based on
hitting-walks; the third algorithm, LP, is an Linear Pro-
gramming (LP) based method which uses an estimation
of the eigendrop.

SDP is a constant-factor approximation algorithm, which
gives us good results, but it is very slow with a

OðjV j4polylogðjV jÞÞ time complexity. Hence, we develop
GROUPGREEDYWALK, a bicriteria approximation algorithm
based on hitting closed walks [13]. Though GROUPGREEDY-

WALK loses a little quality compared to SDP, it is faster with a

Oðsm2jV j3Þ time complexity (where s corresponds to the
number of samples, described later). However, it may still not
be scalable to very large networks with millions of nodes.
Therefore, we come up with LP, a linear programming based
heuristic whose time complexity depends only on the number
of groups, not graph size. In reality, the number of groups in a
group is typically much smaller than the number of nodes.
Hence, LP is much faster than SDP and GROUPGREEDYWALK.
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And experimental results demonstrate that it is scalable to
networks with millions of nodes, and provides competitive
empirical performance (see Section 5).

Note that even though SDP and GROUPGREEDYWALK may
not be scalable to very large networks, both have proven per-
formance guarantee. In addition, they are not merely of theo-
retical interest: they can be used as a baseline to assess the
performance of faster heuristics on smaller networks.

Next, we will introduce the SDP algorithm (Section 4.3.1),
the GROUPGREEDYWALK algorithm (Section 4.3.2), and the LP
heuristic (Section 4.3.3) respectively.

4.3.1 SDP: A Constant Factor Approximation Algorithm

Let GðV;EÞ be a graph whose edge set is partitioned into n
groups C1; . . . ; Cn. Let x be the edge allocation vector. For
an edge ðu; vÞ, let gðu; vÞ denote the index of the group to
which ðu; vÞ belongs. Let GðxÞ be the random graph
obtained by removing each edge in Ci with probability
pi ¼ xi=ci, where ci ¼ jCij. Let MðxÞ be its adjacency matrix
and �EðxÞ ¼ E½�ðMðxÞÞ� be the expected spectral radius

ðMðxÞÞuv ¼
1; with prob. ð1� pgðu;vÞÞ if ðu; vÞ 2 EðGÞ;
0; otherwise:

�
(2)

Let MEðxÞ ¼ E½MðxÞ� be the expectation of the adjacency
matrix of GðxÞ

ðMEðxÞÞuv ¼
1� pgðu;vÞ; if ðu; vÞ 2 EðGÞ;
0; otherwise:

�
(3)

The problem is to find the optimal allocation, i.e., the x for
which �EðxÞ is minimized. We will denote this value by

�min
E :¼ minx�EðxÞ.

Remark 4.1. In the SDP formulation, for ease of analysis, we
replace the hard budget constraint by an expected budget
constraint, i.e., the expected size of the vaccine allocation
vector x ism. This is not a problem since, in reality, the bud-
get is sufficiently high (� logn). Hence, with high probabil-
ity, the number of vaccines in the solutionwill be very close
to the expected budget. Given this small difference, we can
force the number of vaccines to be within the budget con-
straints, with very little effect on the performance.

The SDP Formulation: Finding the Allocation x with Minimum
�ðMEðxÞÞ. Note that, MEðxÞuv ¼ ð1� pgðu;vÞÞ, if ðu; vÞ 2 EðGÞ.
We use a simple SDP to find the allocation which minimizes
�ðMEðxÞÞ andmeets the budget constraintm

minimize t
subject to 0 � pi � 1; for i ¼ 1; . . . ; nP

ipijCij � m;
tI �MEðxÞ � 0:

(4)

Let xmin denote the allocation vector corresponding to the
solution of the SDP.

Analysis: Relating �min
E to �ðMEðxminÞÞ.One can use the fol-

lowing result by Lu and Peng [41] to bound �EðxÞ with
respect to �ðMEðxÞÞ.
Theorem 2 ([41]). Consider an edge-independent random graph

H. Let MðHÞ denote its adjacency matrix and
MEðHÞ ¼ E½MðHÞ�. DEðHÞ denotes the maximum expected

degree. If DEðHÞ � log 4jV j, then, almost surely �iðMðHÞÞ�
�iðMEðHÞÞj � ð2þ oð1ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEðHÞp
, for i ¼ 1; . . . ; jV j.

Recall that xmin is the output of SDP (4), and it corre-
sponds to the allocation vector which minimizes �ðMEðxÞÞ
over all x. Let DEðxminÞ denote the maximum expected
degree of GðxminÞ. The following lemma proves that the
SDP formulation gives us an approximation algorithm with

constant factor Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEðxminÞ

p Þ.
Lemma 4. If xmin is such that DEðxminÞ � log 4jV j, then,

�min
E � �ðMEðxminÞÞ þ ð2þ oð1ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DEðxminÞ
p þ 1.

Proof. Let z ¼ �ðMEðxminÞÞ þ ð2þ oð1ÞÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEðxminÞ

p
. Apply-

ing Theorem 2 to GðxminÞ, �ðMðxminÞÞ � z almost surely.

In fact, for DEðxminÞ � log 4jV j, it can be shown that

Pr
�
�ðMðxminÞÞ � z

� � 1=jV j (see [41, proof of Theorem

6]). Noting that �ðMðxminÞÞ � �ðMÞ,

�EðxminÞ ¼ E½�ðMðxminÞÞ�
� Pr

�
�ðMðxminÞÞ � z

� 
 z
þ Pr

�
�ðMðxminÞÞ � z

� 
 �ðMÞ
� 1 
 zþ

� 1

jV j
�

 �ðMÞ < zþ 1 :

By definition, �min
E � �EðxminÞ. Therefore, �min

E � �E

ðxminÞ � zþ 1. Hence, proved. tu
Running Time. The SDP step (Eq. (4)) dominates the run-

ning time of this algorithm, which is OðjV j4polylogðjV jÞÞ.

4.3.2 GROUPGREEDYWALK: A Bicriteria Approximation

Algorithm

As shown above, SDP with a ðjV j4polylogðjV jÞÞ time com-
plexity, is too slow for large networks. In this section, we
leverage the technique of hitting closed walks [13] for the
GROUP IMMUNIZATION problem, and propose a bicriteria
approximation algorithm called GROUPGREEDYWALK.

Saha et al. [13] studied the problemofminimizing the spec-
tral radius under a given threshold by removing the smallest
number of edges, and developed a greedy based approxima-
tion algorithm for it. Different from their work, our goal is to
distribute a given budget of vaccines to groups to minimize
the spectral radius as small as possible. We can adapt their
greedy algorithm to the group immunization, by choosing
groups with maximummarginal gain of hitting closed walks.
However, it is not clearwhether thisworks, aswe need to con-
sider all “possibleworlds” for group immunization.

In graph G, a closed walk is a sequence of nodes starting
and ending at the same node, with two consecutive nodes
adjacent to each other. Closed k-walk is a walk with
length k. Let walks ðe;G; kÞ denote the number of closed
k-walks in G containing e ¼ ði; jÞ. We say that an edge set E
hits a walk w if w contains an edge from E. Recall that GðxÞ
is a random graph obtained by removing a random subset
of xi edges in Ci, where C1; . . . ; Cn is a partition of the edge
set E. Let WðG; kÞ be the set of all walks of length k in the
graph G. Let nkðG; eÞ denote the number of walks of
length k in G that pass through edge e. Similarly, let
nkðG; SÞ denote the walks of length k in G that pass though
edges in the set S. Let nkðGÞ ¼ nkðG;EÞ ¼ jWðG; kÞj denote
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the number of walks with length k in G. Here we focus on
walks of a fixed length k ¼ uðlog jV jÞ. Note that for GðxÞ,
nkðGðxÞÞ is a random variable.

Algorithm 3. GROUPGREEDYWALK (G,m)

Require: Graph G, group set C, and budgetm
1: x ¼ 0
2: for j ¼ 1 tom do
3: i ¼ arg maxk¼1;...;n ExpCountWalksðxþ ekÞ�

ExpCountWalksðxÞ
4: x ¼ xþ ei
5: end for
6: return x

Algorithm 3 gives the pseudocode of our GROUPGREE-

DYWALK algorithm. EXPCOUNTWALKSðG; xÞ returns the
expected number of walks surviving in GðxÞ. Note that
EXPCOUNTWALKS is different from COUNTWALKS in [13], as
it returns the expected number of hitting walks when a
vaccine allocation vector x is assigned to groups, while
COUNTWALKS in [13] is based on removing a set of edges
given a budget constraint. The idea of GROUPGREEDYWALK

is that, each time we select a group Ci with the maxi-
mum marginal gain in EXPCOUNTWALKSðG; xÞ, when allo-
cating one vaccine to Ci.

Algorithm 3 follows the framework of the individual based
GREEDYWALK algorithm [13]. Instead of picking edges, it choo-
ses groups to maximize marginal gain of eigendrop. The main
challenge here is to show GROUPGREEDYWALK is a provable
approximation algorithm. Let xoptðmÞ be the optimum solu-

tion corresponding to budgetm , and T ¼ �1ðGðxoptðmÞÞÞ (the
spectral radius after vaccine allocation for the optimum solu-
tion).We can prove the following theorem:

Theorem 3. Let xoptðmÞ be the optimum solution corresponding to
budget m of edges removed. Let xg be the allocation returned by
GROUPGREEDYWALK (G; c1m log2jV j), for a constant c1. Then we
have �1ðGðxgÞÞ � c0T for a constant c0, where �1ðGðxgÞÞ is the
spectral radius after allocating vaccines based on xg.

Remark 4.2. Theorem 3 shows that GROUPGREEDYWALK is a

ðc1 log2jV j; c0Þ-bicriteria approximation algorithm. Differ-
ent from the analysis of traditional approximation algo-
rithms, in order to bound the result of GROUPGREEDYWALK

w.r.t to the optimal solution, we need a larger budget

c1 log
2jV jm. Typically, log2jV j is much smaller than the

budget m. And when the budget m is very large, the mar-

ginal gain of eigendrop for a larger budget c1 log
2jV jmwill

tend to be very close to the marginal gain of eigendrop for
the budgetm. Hence, adding such small factor into the bud-
getmwill have little effect on the performance.

We will use Lemmas 5 and 6 to prove this theorem. Intui-
tively, Lemma 5 shows the expected spectral radius is
upperbounded by T if the number of walk k ¼ Oðlog jV jÞ;
while Lemma 6 shows that the expected number of walks
with length k can be upperbounded by T as well.

Lemma 5. If E½nkðGðxÞ� ¼ OðjV j2kTkÞ for k ¼ Oðlog jV jÞ,
then E½�1ðGðxÞÞ� � c3T for a constant c3.

Proof. The proof is in the appendix. tu

Lemma 6. Let xoptðmÞ be the optimum allocation such that
T ¼ E½�1ðGðxoptðmÞÞÞ�. Let y be defined as

yi ¼ xopt
i ; if xopt

i � mi=2;
mi otherwise,

�
where mi is the number of edges in group Ci. Then, we have

E½nkðGðyÞÞ� � jV j2kTk.

Proof. The proof is in the appendix. tu
Now, we prove Theorem 3.

Proof of Theorem 3. Let gðxÞ denote the expected number
of walks in WðG; kÞ hit by the edges that are removed in
GðxÞ. Then gðxÞ has the diminishing returns property, i.e.,
for x � x0, we have gðxþ eiÞ � gðxÞ � gðx0 þ eiÞ � gðx0Þ.
The proof of the diminishing returns follows the proof of
Lemma 2.

We will compare gðxgÞ to gðyÞwhere y is defined as

yi ¼ xopt
i ; if xopt

i � mi=2;
mi otherwise,

�
where mi is the number of edges in group Ci. Note thatP

i yi � 2
P

i x
opt
i � 2m.

Let xðiÞ denote the vector after ith iteration of GROUP-

GREEDYWALK. Since gðxÞ has the diminishing returns
property, it follows the proof of Theorem 1 that

fðxðiÞÞ � ð1� ð1� 1
2mÞiÞfðyÞ. Therefore, for i ¼ Oðm log2jV jÞ,

we have 1� ð1� 1
2mÞOðm log 2jV jÞ � 1� ð1=eÞlog 2jV j � 1 �

1

jV jlog jV j � 1� 1
N , where N is the number of total walks in

the original graph G.
From Lemma 6, we have E½nkðGðyÞÞ� � jV jcT k for a

constant c. This implies fðyÞ � N � jV jcT k. Therefore,

fðxgÞ � ð1� 1
jV jÞðN � jV jcT kÞ � N � 1� jV jcT k. This implies

that nkðGðxgÞÞ � OðjV jcT kÞ. From Lemma 5, it follows
that �1ðGðxgÞÞ � c0T . tu
Implementation Notes. Given the adjacency matrix A of G,

the number of k-length walks from u to v is given by Ak�1
uv . It

also corresponds to the number of walks hit by the
edge ðu; vÞ. We implement the algorithm as follows. In each
iteration, we randomly sample a set of edges of the G
according to x. For each sample, we compute the expected
decrease in the number of walks for the removal of one
edge in group i (for computing the effect of allocation
vector xþ ei) as follows: We construct GðxÞ, compute

A0 ¼ AðGðxÞÞk�1 and take the average over all A0ðu; vÞ ele-
ments where ðu; vÞ belongs to group i. We perform this for
each sample (number of samples is s) and take the average
over all the samples. Finally, we choose that i which gives
the maximum average and update x by adding ei to it.

Running Time. For budget m, Am�1 can be computed

in time Oðm2jV j3Þ. For each sample of x, we compute

AðGðxÞÞm�1. Note that, computing the effect of removing

ei for each sample takes only OðjV j2Þ time. Therefore, for
a sample size of s, the algorithm overall takes

Oðsm2jV j3Þ time. If m ¼ Oðlog jV jÞ, the time complexity is

OðsjV j3log 2jV jÞ.
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4.3.3 LP: A Fast Heuristic

GROUPGREEDYWALK is a good approximation algorithm like
SDP, however, it may not be scalable to very large networks
with millions of nodes. In this section, the propose a much
faster heuristic based on estimating eigendrop.

The eigendrop when removing edges in the set ET can be
approximated by fðT Þ ¼ P

ði;jÞ2ET
Mijuiuj where Mu ¼ �u

and u ¼ ðu1; . . . ; ui; . . .Þ [29]. Given the allocation vector x,
the expected drop in spectral radius is then given by

E½D�� 
 fðxÞ
¼

X
i;j2E

Mijuiuj Pr
�ði; jÞ is removed

�
¼

X
a2C

X
ði;jÞ2Ck

Mijuiujxa :

(5)

If we define aa ¼
P

ði;jÞ2Ca
Mijuiuj, then, fðxÞ ¼ P

a aaxa.

We want to maximize fðxÞ subject to the budget constraints.
This can be formulated as a linear program as given below

maximize
P

a aaxa

subject to
P

a xajCaj � m
0 � xa � 1:

(6)

Running Time. The LP takes Oðn4Þ time where n is the num-
ber of groups. Note that it is not a function of the graph size.
Typically, the number of groups is small, hence this algo-
rithm is very fast.

4.4 Node Deletion for Spectral Radius

Here, we propose an algorithm for solving Problem 4: the
group node immunization problem with respect to eigen-
drop. It is based on the approximate eigendrop method
which was discussed in Section 4.3. The eigendrop when
removing nodes in S can be approximated as follows [7]:

D� 
 fðSÞ ¼
X
j2S

2�u2j �
X
i;j2S

Mijuiuj; (7)

where Mu ¼ �u and u ¼ ðu1; . . . ; ui; . . .Þ. Recall that C is the
set of groups and x ¼ ðx1; . . . ; xi; . . .Þ is the allocation vector
where, xi is the fraction of nodes vaccinated in group Ci.
For the group vaccination problem, the expected eigendrop
can be approximated by applying (7) as follows:

E½D�� 
 fðxÞ ¼
X
j2V

2�u2j Prðj is vaccinatedÞ

�
X
i;j2V

Mijuiuj Prði & j are vaccinatedÞ :
(8)

Let gðvÞ denote the index of the group to which v belongs to,
i.e., if v 2 Ci, then, gðvÞ ¼ i. The probability that j is vacci-
nated is xgðjÞ and the probability that both i and j are vacci-

nated is

Prði & j are vaccinatedÞ ¼
xgðiÞxgðjÞ; if gðiÞ 6¼ gðjÞ;
x2
gðiÞ

jCgðiÞj
jCgðiÞj�1 ; otherwise.

(
(9)

Applying the above to (8),

fðxÞ ¼
X
a

X
j2Ca

2�u2jxa �
X
a

X
i;j2Ca

Mijuiujx
2
a

jCaj
jCaj � 1

�
X
a6¼b

X
i2Ca;b2Cb

Mijuiujxaxb :

Observing that Mij, ui and xa are constants, defining

aa ¼
P

j2Ca
2�u2

j
jCaj

jCaj�1, ba ¼
P

i;j2Ca
Mijuiuj, and

Gab ¼
P

i2Ca;j2Cb
Mijuiuj, we get,

fðxÞ ¼
X
a

aaxa �
X
a

bax
2
a �

X
a 6¼b

Gabxaxb :

Our aim is to find that x which maximizes fðxÞ. This can be
formulated as a quadratic program

minimize
P

a bax
2
a þ

P
a6¼b Gabxaxb �

P
a aaxa

¼ 1
2 x

TQxþ cTx

subject to
P

a xajCaj � B

0 � xa � 1;

(10)

where,Qaa ¼ 2ba and for a 6¼ b,Qab ¼ 2Gab and ca ¼ �aa. IfQ
is not semi-definite, the problem is NP-Hard [42]. In that case,

we use a low-rankmatrix bQ formed by all its eigenvectors cor-

responding to non-negative eigenvalues. The QP on Q̂ can be
solved in polynomial time using the ellipsoid method [42].

Let bfðxÞ ¼ 1
2 x

T bQxþ cTx, and xQ, xbQ correspond to the best

allocation vectors corresponding to Q and bQ respectively.
The next lemma shows that xbQ is a good approximation to xQ.

Lemma 7. jbfðxbQÞ � fðxQÞj � n
2 
 kQ� bQkF , where n is the

number of groups in the graph.

Proof. The proof is in the appendix. tu
Running Time. The QP takes Oðn4Þ time. Again, note that

n is the number of groups. Hence, it is fast when the number
of groups is small.

5 EMPIRICAL STUDY

We present a detailed experimental evaluation now.

5.1 Experimental Setup

We implemented the algorithms in Python,2 and conducted
the experiments using a 4 Xeon E7-4850 CPU with 512 GB
of 1,066 Mhz main memory.

Datasets. Table 2 briefly summarizes the dataset. We run
our experiments on multiple datasets, which were cho-
sen for their size as well as different domains where the
GROUP IMMUNIZATION problem is especially applicable.
Note that all our datasets are networks, not diffusion
traces. If diffusion traces are provided as inputs instead
of a network, there are state-of-the-art algorithms (such
as [43]) which can be applied to learn edge weights first,
and then apply our algorithm.

2. Code: http://people.cs.vt.edu/yaozhang/group-immu/
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1) SBM (Stochastic Block Model) [44] is a well-known
model to generate synthetic graphs with groups. We
generate small networks from the Stochastic Block
Model to test the effectiveness of all our methods.

2) Protein
3 is a protein-protein interaction network in

budding yeast. There are 13 classes of proteins, which
are naturally treated as groups. It is a biological net-
work, where our immunization algorithms can be
potentially applied to block protein interactions.

3) OregonAS
4 is the Oregon AS router graph collected

from the Oregon router views, and groups here are
based on router conductivities. We use Lou-

vain [45], a fast community detection algorithm to
specify groups. It is a computer network where our
algorithms can be used to stop malware outbreaks.

4) YouTube
5 is a friendship network in which users

can form groups. We create an induced graph by
selecting nodes that are in the top 5,000 communi-
ties. It is a social media network where we can apply
our algorithms to control rumor spread.

5) Portland and Miami are social-contact graphs based
on detailed microscopic simulations of large US cities,
which has been used in national smallpox and influ-
enza modeling studies using the SIR model [2]. We
divided people into groups by ages ranging from 0-90
(hence 91 groups in both networks). They are both con-
tact networks where our algorithms can be adopted to
minimize virus propagation.

Settings. For LT model, we uniformly randomly choose 1
percent nodes as the infected nodes (seeds) at the start. And
we use the same method in [11] to generate the probabilities
on the edges: for a node v, we assign each its incoming edge
ðu; vÞ with a probability p̂uv uniformly at random, then we
uniformly randomly give a probability wv to v representing
v’s incoming edges fail to activate it. Then we get the nor-
malized weight puv ¼ p̂uv=ð

P
u2V p̂uv þ wvÞ. We construct

1,000 live-edge graphs in our algorithm for LT model. For
robustness, each data point we show is the mean of 1,000
runs of randomly sampling removed edges/nodes from
groups. In the edge deletion version, edge communities are
induced from node communities, i.e., for an edge e ¼ ðu; vÞ,
if both u and v belong to a group Ct, then e 2 Ct, otherwise
it belongs to group Cij ¼ feuvju 2 Ci; v 2 Cjg.

Baselines. As we are not aware of any direct competitor
tackling our group immunization problems, we construct

three baselines for both node and edge deletion to better
judge their performance. Analogous versions of these base-
lines have been regularly used in state-of-the-art individual
immunization studies [7], [13], [29].

(1) RANDOM: uniformly randomly assign vaccines to
groups for both node deletion and edge deletion.

(2) DEGREE: for node deletion, we calculate the average
degree dCi

of each group Ci, and independently
assign vaccines to Ci with probability dCi

=
P

Ck2C dCk
;

for edge deletion, we first calculate the product
degree de [30] of each edge e ¼ ðu; vÞ, i.e., de ¼ du � dv,
then similar to node deletion, we calculate the aver-
age product degree dCi

of Ci, and assign vaccines to

Ci with probability dCi
=
P

Ck2C dCk
.

(3) EIGEN: Eigenvalue centrality has been widely used in
the immunization literature [7], [29], even as a base-
line for LT model [11]. Let u be the eigenvector corre-
sponding to the first eigenvalue of the graph. The
eigenscore of node a is ua, while the eigenscore of
edge eða; bÞ is juaubj [29]. For both node and edge
deletion, we calculate the average eigenscore uCi

of

each group Ci, and independently assign vaccines to
Ci with probability uCi

=
P

Ck2C uCk
.

Remark 5.1. Note that we do not compare and run the indi-
vidual based immunization methods [7], [11] “as-is” on
the original graph because these methods directly pick
nodes which we do not allow in our problems. Instead,
we aim to pick the best groups, and then uniformly at
random allocate vaccines within the group. In addition,
we did study the effect of our algorithm w.r.t. the size of
groups (see Fig. 6). If each node is a group, GROUP IMMUNI-

ZATION reduces to the individual based immunization.
Indeed the reason we formulate the group immunization
problems in this paper is that it is typically not feasible to
force targeted individuals to be vaccinated in practice (as
discussed before in the introduction).

5.2 Results

In short, we demonstrate that our methods outperform other
baselines on all datasets. We also show how the behaviors of
our methods change as groups vary. Finally, we conduct a
case study to analyze the vaccine allocations at group scale.

5.2.1 Performance

Fig. 1 shows experimental results under LT model for group
edge deletion, while Fig. 2 demonstrates the results for node
deletion. In all networks, GREEDY-LT consistently outperform
other competitors. Since we have same budgets for both edge
and node deletion, clearly node removal should perform bet-
ter than edge deletion as node deletion removes more edges.
Our results demonstrate this fact. As shown in Fig. 1, GREEDY-
LT performs pretty well for edge deletion compared with
other competitors, e.g., in YouTube, GREEDY-LT can reduce
about 25 percent of the infection if 500 edges are removed,
while for RANDOM, DEGREE and EIGEN, the infection almost
remains the same even removing 500 edges. For node deletion
(Fig. 2), GREEDY-LT performs even better: it reduces more than
30 percent of the infection given themaximumbudgets.

TABLE 2
Datasets

Dataset Num. of nodes Num. of edges Num. of groups

SBM 1,500 5,000 20
Protein 2,361 7,182 13
OregonAS 10,670 22,002 100
YouTube 50 K 450 K 5,000
Portland 0.5 million 1.6 million 91
Miami 0.6 million 2.1 million 91

3. http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.
htm

4. http://snap.stanford.edu/data/oregon1.html
5. http://snap.stanford.edu/data/com-Youtube.html
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Fig. 3 shows experimental results of edge version of group
immunization for spectral radius, while Fig. 4 demonstrates
the results for node deletion. In all networks, SDP, GROUPGREE-

DYWALK, LP and QP consistently outperform other competi-
tors. SDP gives the best results for Protein, however, it is not
scalable to large networkswithmore than thousands of nodes.
GROUPGREEDYWALK gives the second best performance, and it
works for graphs with about 10 K nodes. For very large net-
works like YouTube and Portland with millions of nodes,
approximate algorithms like SDP and GROUPGREEDYWALK can
not finish within an allocated time. LP for edge deletion and
QP for node deletion, perform very well for large networks.

For edge deletion (Fig. 3), RANDOM, DEGREE and EIGEN cannot
decrease more than 10 percent of the first eigenvalue in You-

Tube when 5 k vaccines are given to groups, while LP can
reduce more than 20 percent of the eigenvalue. For node dele-
tion (Fig. 4), QP can get more than twice reduction of eigen-
value compared to other competitors. When comparing
between node and edge deletion, we get the same result as
Figs. 1 and 2: given same vaccines to both edge and node,
node removal can get a larger decrease of the spectral radius.

As mentioned above, the problems of minimizing the
spectral radius are motivated by the epidemic threshold [12];
an epidemic will quickly die out if the spectral radius is very

Fig. 1. Effectiveness for LTmodel various Real Datasets (edge deletion). Footprint ratio (footprint when vaccines are given
footprint without giving vaccines ) versus number of vaccines. Lower

is better. GREEDY-LTconsistently outperforms other baseline algorithms.

Fig. 2. Effectiveness for LTmodel various Real Datasets (node deletion). Footprint ratio (footprint when vaccines are given
footprint without giving vaccines ) versus number of vaccines. Lower

is better. GREEDY-LTconsistently outperforms other baseline algorithms.

Fig. 3. Effectiveness for the change of the first eigenvalue various Real Datasets (edge deletion). Eigendrop ratio (
�0
G

�G
) versus number of vaccines

(�0
G is the expected eigenvalue after allocating vaccines). Lower is better. SDP, GROUPGREEDYWALK, and LP consistently outperform other baseline

algorithms.

Fig. 4. Effectiveness for the change of the first eigenvalue various Real Datasets (node deletion). Eigendrop ratio (
�0
G

�G
) versus number of vaccines

(�0
G is the expected eigenvalue after allocating vaccines). Lower is better. QP consistently outperforms other baseline algorithms.
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small. Hence as an example, we also run the SIS model to
show how effective our algorithms are to prevent an epi-
demic from breaking out. We assume all nodes are in the
infectious states at the beginning, and the recovery rate is 0.6.
Fig. 5 shows the results on Portland and YouTube for node
deletion and edge deletion respectively, which is averaged
over 1,000 runs (note that we got the similar results on other
networks). We observe that LP and QP consistently outper-
form other competitors: they both have the least number of
infected nodes in the networkwhen vaccines are allocated.

5.2.2 Varying Groups

We would like to see the effect of the change of granularity
of vaccine allocation. We changed the number of groups on
Portland, YouTube and OregonAS. For Portland, age
ranges from 0 to 90, hence there are initially 91 groups. We
decrease the number of groups by randomly merging two
adjacency age groups. For OregonAS, we use community
detection algorithm Louvain [45] to find different number
of groups. For YouTube, we randomly merge ground true
communities to form smaller size of groups.

Figs. 6a and 6b show the performance of QP and LP as
the number of groups changes. First, both of them outper-
form other baselines for Portland and YouTube. Second,
as the number of groups increases, the spectral radius
decreases more for all algorithms (except for RANDOM) due
to the fact that the randomization of allocating vaccines
deceases. The extreme case is that when there is only one
group, QP, DEGREE and EIGEN are uniformly randomly allo-
cate vaccine to the whole graph, which is exactly the same
as RANDOM. On the contrary, when the number of groups is
equal to the number of nodes, group immunization

becomes individual immunization which is effective but
much more expensive. Figs. 6c and 6d show the perfor-
mance of GREEDY-LT as the number of groups varies. Similar
to QP and LP, it consistently outperforms other baselines.
And the performance improvement is even more obvious:
when the graph size increases from 1 to 200, GREEDY-LT
almost reduces 90 percent of the infection.

5.2.3 Scalability

Although our algorithms are polynomial-time, we show
some running time results to demonstrate the scalability of
our algorithms. Fig. 7 shows the running time of our algo-
rithms w.r.t. the number of vaccines. We did not show the
running time of RANDOM, DEGREE and EIGEN, because they are
faster heuristics. First, as expected from the time complexity
of GREEDY-LT, when the number of vaccines m increases, the
running time of GREEDY-LT increases linearly (Fig. 7a). Sec-
ond, since the time complexities of SDP and LP are irrelevant
to m, as shown in Fig. 7b, the running time of them remains
almost constant. Furthermore, we observe that when m is
small, GROUPGREEDYWALK ran faster than SDP. As the per-
formances of GROUPGREEDYWALK and SDP are very close, in
large graphs with a relatively small budget, we could get
very good solution fromGROUPGREEDYWALK.

5.2.4 Case Study

We now study the group vaccination problem on realistic
social contact networks, Portland and Miami, using age
based groups; as discussed earlier, age based directives are
commonly used by public health agencies. Fig. 8 shows the
number of vaccines assigned to different age groups, for a
total of 10,000 vaccines, using the QP algorithm. We find the
groups with age 70-79 and 60-66 get the maximum allocation,

Fig. 5. SIS simulations after vaccine allocation. The fraction of infected
nodes (in log-scale) versus the time step. Lower is better. SDP, GROUP-

GREEDYWALK, and LP consistently outperform other baseline algorithms.

Fig. 6. (a) and (b): Eigendrop ratio versus number of groups. (c) and (d): Footprint ratio versus number of groups. Lower is better. Our algorithms
consistently outperform other baseline algorithms as the number of groups changes as well as the size of groups changes.

Fig. 7. Running Time (seconds). Running time versus number of
vaccines.
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for the Portland and Miami networks, respectively. This
contrasts with CDC recommendations, and the strategy pro-
posed byMedlock et al. [1], as CDC recommendations include
children through age 18, andMedlock et al. suggests to priori-
tization of schoolchildren and adults aged 30 to 39 years. This
might be because these results do not use the detailed net-
work structure. We believe this is an interesting result which
merits further study.

6 DISCUSSION AND CONCLUSION

This paper addresses the problems of controlling epidemics by
means of interventions that can be implemented at a group
level. We formulate the GROUP IMMUNIZATION problem in the LT
model as well as SIS/SIR models (considering the spectral
radius minimization) for both edge-level and node-level inter-
ventions. We develop algorithms with rigorous performance
guarantees and good empirical performance for all these prob-
lem classes. Our algorithms require a diverse class of techni-
ques, including submodular function maximization, linear
programming, quadratic programming, semidefinite pro-
gramming, and hitting closed walks. Finally, we evaluate
them on real networks of diverse scales. We demonstrate that
our algorithms significantly outperform other heuristics, and
adapt to the group structure. Some of our algorithms, e.g., SDP
is fairly time intensive, though it runs in polynomial time.
However, it is important to keep inmind that these algorithms
are expected to be run before an epidemic outbreak, where the
solution quality ismuchmore critical than the run time.

Currently our SDP andGROUPGREEDYWALK algorithmwork
for edge deletion. Developing provable approximation algo-
rithms for node deletion by leveraging SDP andGROUPGREEDY-

WALK, can be another future direction. In addition, our
formulations capture the uncertainty, lack of control and com-
pliance at a fine granularity in immunization interventions in
public health and social media. Another important practical
consideration is the economies of scale that arise in such
group level formulations—these could be the result of
decreasing per unit cost of production or distributionwithin a
group. Such constraints can be modeled as

Pn
i¼1 fiðxiÞ � B,

where fiðxiÞ is a concave function and xi is the allocation to
group Ci, and B is a budget constraint. Extending our algo-
rithms to handle such constraints with our formulation is an
interesting futurework.
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