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A B S T R A C T   

Distribution and administration strategy are critical to successful population immunization efforts. Agent-based 
modeling (ABM) can reflect the complexity of real-world populations and can experimentally evaluate vaccine 
strategy and policy. However, ABMs historically have been limited in their time-to-development, long runtime, 
and difficulty calibrating. Our team had several technical advances in the development of our GradABMs: a novel 
class of scalable, fast and differentiable simulations. GradABMs can simulate million-size populations in a few 
seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous sources. This 
allows for rapid and real-world sensitivity analyses. Our first epidemiological GradABM (EpiABMv1) enabled 
simulation interventions over real million-scale populations and was used in vaccine strategy and policy during 
the COVID-19 pandemic. Literature suggests decisions aided by evidence from these models saved thousands of 
lives. Our most recent model (EpiABMv2) extends EpiABMv1 to allow improved regional calibration using deep 
neural networks to incorporate local population data, and in some cases different policy recommendations versus 
our prior models. This is an important advance for our model to be more effective at vaccine strategy and policy 
decisions at the local public health level.   

1. Introduction 

Decision making in complex environments, such as amid a public 
health crisis, is challenging. During the COVID-19 pandemic, public 
health leaders were frequently required to make population decisions 
such as lockdowns, mask wearing, testing, and vaccine deployment and 
administration strategies. Since human clinical trials and epidemiolog-
ical studies are often not feasible, decisions had to be made with a 
paucity of existing evidence to guide them. During the pandemic public 
health leaders increasingly turned to data-driven modeling and simu-
lation which provided evidence to support decision making. 

Agent-based models (ABM) are often the best choice for in-silico 
epidemiologic studies by bridging understanding of populations, in-
fections and intervention. This is because ABMs allow connecting mul-
tiple, seemingly disconnected, aspects of individual demographic, socio- 

economic, and behavior preferences along with scientific evidence on 
infection dynamics and intervention to better capture complexities of 
the real world. 

However, ABMs are conventionally slow to execute [1], difficult to 
scale to large populations, and tough to calibrate with real-world data 
[2]. This limits their application, especially during a pandemic where 
the duration of time-to-decision is short. 

To address this, during the COVID-19 pandemic our research team 
set out to innovate ABM technology. The result was our ability to pro-
vide experimental evidence to aid in vaccine policy and strategy. Our 
goal was to design ABMs that can recreate million-size populations with 
detail and integrate real-world data streams to effectively analyze 
sensitivity of interventions. We leveraged modern advances in machine 
learning to first proposed EpiABMv1: a scalable and fast ABM to enable 
testing vaccination interventions over real-world populations and 
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provided evidence for COVID-19 mRNA vaccine strategy. Second, we 
proposed EpiABMv2 which enables improved calibration of ABMs, like 
EpiABMv1, to the infection dynamics in a local population using a 
gradient-based optimization method. In this paper, we merge our ad-
vances in EpiABMv1 and EpiABMv2 to enable design and analysis of 
granular vaccination policies by accounting for regional population 
variations. 

1.1. The importance of vaccine strategy and policy in emerging disease 
and the need for in-silico epidemiological modeling 

The development of an effective vaccine, as we observed during 
COVID-19, is only part of the challenge. There were more COVID-19 
deaths after the FDA’s emergency authorization of the Moderna and 
Pfizer vaccines in the same duration than before (See Fig. 1) [3]. After 
one year of vaccine availability, less than half of the global population 
was vaccinated to COVID-19 [4]. The logistics of rapidly producing and 
equitably delivering a vaccine on a global scale of nearly 8 billion 
humans is a significant challenge. This can be partly attributed to 
challenges with global vaccine production capacity, its transportation 
and storage, administration strategy, and addition of more virulent 
COVID variants. Additionally, in countries like the United States lack of 
evidence for public health or vaccine policy made it easier for specula-
tion on social media and this has been partly attributed to the spread of 
misinformation leading to vaccine hesitancy [1]. 

Tools to evaluate vaccine strategy and policy can provide a needed 
source of evidence to support public health action. During the COVID-19 
pandemic many public health leaders turned to in-silico modeling 
methods given the infeasibility of human trials [5]. However, most 
mechanistic and statistical simulation models cannot reflect the 
complexity required for this type of experiment. To do so accurately 
requires reflecting a real-world population of thousands to millions of 
individuals with different characteristics and risk factors. It requires 
understanding their interaction networks, the particulars of their indi-
vidual and group behaviors, and various attributes from the individual, 
to neighborhood, to community that impact these interactions. It re-
quires accurately simulating the dynamics of these interactions in rela-
tion to disease spread and the intervention being studied. And this list of 
considerations is still far from exhaustive. 

1.2. Breakthrough in ABM technology and application in vaccine strategy 
and policy during COVID-19 

ABMs are discrete simulators which comprise a collection of agents 
that can act and interact within a computational world. In fields such as 
epidemiology, these simulations are at the scale of millions of agents 
with large networks of interactions [2,6,10] and performing a single 
simulation may conventionally take several days run on a supercom-
puter [8]. Further, this makes calibration subpar since tuning parame-
ters requires iteratively running the model numerous times; and 
sensitivity analyses unreliable due to sub-optimal calibrated parameters 
and high cost of re-running simulations under different scenarios [7]. 

Our design, GradABM, has been shown to alleviate several of these 
concerns regarding scalability and data-driven calibration [1]. Gra-
dABM introduces a novel tensorized and differentiable design for ABMs, 
which allows simulating million-size populations in a few seconds on 
commodity hardware [2] and integrating with deep neural networks for 
faster and efficient collaboration [1]. Specifically, on the JUNE [6] 
epidemiology model used by the NHS and UN Global Pulse during 
COVID, GradABM helped reduce simulation time from 50 h to 5 min, 
calibration time from 10,000 CPU hours to 20 min (whilst also achieving 
better generalization) and sensitivity analysis time from 5,000 CPU 
hours to 10 s [1,10]. This computational advance directly translates to 
practical utility for decision making. 

These novel ABM simulations by our team provide experimental 
evidence for optimal COVID-19 mRNA dosing and administration 
strategy. During the early phase of the mRNA vaccine roll, public health 
experts debated whether the three-week vaccine dosing strategy was the 
best strategy for preventing deaths. Some hypothesized delaying the 
second dose to administer more individuals with the first dose would 
save lives. Others argued strongly against this strategy, often stating lack 
of evidence. The clinical trials only used a three-week dosing strategy. 
Our GradABM work translated to an EpiABMv1 [2] model that showed 
delaying a second dose to 12 weeks had significant reduction in deaths if 
the daily vaccination rate was low [8]. These results impacted several 
countries’ vaccine policy. For example, the UK moved to a 12-week 
dosing strategy and a recent publication in Lancet Public Health esti-
mates that switching to this strategy saved 10,000 lives in the UK alone 
[9]. Thus, providing real-world evidence to support our model’s 

Fig. 1. Cumulative deaths due to COVID-19 infection at the time of US Food and Drug Administration’s Emergency Use Authorization. Updated from CDC COVID 
Tracker [2]. 
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effectiveness. 
While delaying the second COVID-19 prompted support for its po-

tential to expedite initial protection and created tangible public health 
impact, it also received some skepticism given geographical disparities 
in disease burden, vaccine hesitancy, individual risk and resource 
availability. Further, quantitative variations in these dynamics can in-
fluence the qualitative design and subsequent impact of interventions. 
Targeted interventions are the logical progression to address specific 
challenges posed by demographic and geographic variations and control 
localized outbreaks with better management of resource constraints. 
Our current work facilitates this by enabling localized calibration of 
ABM to infection dynamics in the specific geography. 

1.3. Most recent advances in GradABM model 

Our most recent GradABM model, EpiABMv2 [1], allows the model 
to make more specific recommendations on a county level. Previously, 
we had shown that GradABM’s EpiABMv2 outperformed other ABM 
models in terms of aggregate spread forecasting based on CDC guide-
lines, including our team’s previous versions (EpiABMv1) [1,2]. In this 
paper we experimentally compare its performance difference compared 
to other models when our calibration methods are used for qualitative 
decisions with local geographic variables. This update allows for more 
regional precision in public health decision support. 

2. Methods 

2.1. Developing tensorization and differentiability into ABM 

Our method GradABMs is a novel class of agent-based models 
(ABMs) that are designed to be compatible with gradient-based learning 
using automatic differentiation. This is the central technique which 
enables deep learning algorithms to optimize model parameters by 
learning from diverse data sources. GradABMs have two key features: 
tensorization and differentiability. First, GradABMs follow a tensorized 
design where agents are represented as vectors and interactions as 
(sparse) adjacency matrices. This allows scalable and fast simulations 
that can run rapidly, in a highly parallelized manner and using GPU 
hardware - simulating million-size agent populations in a few seconds 
[1,2]. Second, GradABM reparametrizes the gradients of discrete dis-
tributions used in the simulation with continuous approximations, 
allowing for end-to-end differentiability [1]. This differentiability al-
lows GradABM to merge with deep neural networks for robust optimi-
zation and seamlessly incorporate novel data streams. Together, these 
allow us to build realistic simulators and efficiently calibrate them using 
gradient-based learning over multiple runs of the simulator. 

2.2. Specification of agent states and disease spread dynamics 

The state of each agent (represented as a vector of categorical vari-
ables) contains age, disease stage (S, E, I, R, D) and time since last 
exposure. Over timesteps, the state evolves as the agent interacts with 
other agents based on the clinical model in which is governed by time- 
dependent parameters that control the transmission of disease to create 
new infections (R0, initial infection rate) and the progression of disease 
stages of already infected agents (generation time, mortality rate). The 
transmission of disease is based on interactions within a day and uses a 
transmission function that computes the probability of infection trans-
mission between susceptible and infected (or exposed) agents. The dis-
ease stage may update due to a new infectious interaction with an 
exposed or infected agent (captured by the transmission function) or the 
natural progression of a previously incubated infection (captured by the 
progression function). Specifically, the transmission function is param-
eterized with Reff. The initial infection rate and progression function is 
parameterized with the variant generation time and mortality rate. The 
calibration of these parameters is done by matching estimates of the 

simulator with real-world observed cumulative death statistics. 

2.3. Regional variables for model calibration using deep neural networks 

First, the calibration neural network (CalibNN) takes input from 
varied data sources and predicts simulation parameters for disease 
transmission and progression. The parameters are passed to the Gra-
dABM and used to run a simulation. The aggregate output generated by 
the simulator is compared with real-world mortality numbers for each 
day. We utilize the mean-squared error function to quantify the good-
ness of the solution. After that, we learn the parameters of the neural 
network using the backpropagation algorithm. We note that the Cal-
ibNN based approach presented in this paper is fundamentally distinct 
from emulation or surrogate models. Emulation models take the same 
input as the ABM’s input and predict the output of the ABM, without 
simulating any agent behavior. In contrast, the output of CalibNN serves 
as the input to GradABM, which then simulates the behavior of the 
agents. Thus, CalibNN extends the simulation pipeline, by enabling us to 
learn the correct inputs for GradABM. 

2.4. Validation to real-world scenarios by transmission forecasting 

Since there is no ground truth on simulation parameters, we evaluate 
calibration based on the quality of infection forecasts produced by the 
simulator. Following CDC forecasting guidelines [1], we make weekly 
forecasts of cases and deaths for 1–4 weeks ahead in the future. In our 
evaluation, we work with the following counties in Massachusetts: 
25001, 25003, 25005, 25009, 25011, 25013, 25015, 25021, 25023, 
25027. The specific evaluation period is determined with epidemic 
weeks which is the standard in CDC’s epidemic prediction initiatives. 
For COVID-19 these are 202014, 202016, 202018, 202020, 202022, 
202024, 202026, 202028, 202030. To evaluate performance, we use 
several standard metrics for evaluating epidemic predictions. Specif-
ically, normal deviation (ND), root mean squared error (RMSE) and 
mean absolute error (MAE). A better calibration technique will produce 
parameters with lower measurement errors in the simulated forecasts. 

2.5. Comparison with baseline techniques 

We compare our proposed pipeline with several methods for region- 
agnostic and region-specific calibration. Results are summarized in 
Table 1. Conventionally, region-agnostic calibration (row 1) techniques 
have been used which estimate the infection dynamics parameters using 
in-situ control trials and reuse the same parameters across different 
geographical and demographic regions. The parameters are a good 
representation of the population but may not generalize to other geog-
raphies. More recently, advances in data availability and modeling 
techniques have enabled region-specific calibration which utilize aggre-
gate infection data (cases, deaths, hospitalizations) to generate localized 
estimates for the dynamics parameters. Prior region-specific methods 
estimate (row-2) parameters by building simplified surrogate models 
which do not capture the heterogeneity and complexity of real-world 
interactions (usually assume perfect mixing of people) but are easy to 
model. Our proposed method (row-3) alleviates computational 

Table 1 
Forecasting results for COVID-19 over 5 runs comparing GradABM with baseline 
region-agnostic and region-dependent calibration techniques.  

Calibration Method Validation Error (lower is better) 

ND RMSE MAE 

Region-agnostic 8.75 689.92 270.13 
Region-specific (surrogate- 

based) 
2.21 ±
1.36 

121.87 ±
63.97 

68.20 ±
41.84 

Region-specific 
(proposed GradABM) 

0.97 ±
0.18 

50.99 ± 12.12 30.02 ± 5.60  
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challenges by allowing region-specific calibration using an agent-based 
model which can capture heterogeneous interactions in the population 
through calibration of parameters using both local data and neural 
networks. This improved calibration is shown by better validation per-
formance in the Table 1 below. 

Beyond capturing population heterogeneity, real-world utility also 
requires robustness to measurement error in region data used for cali-
bration. Centers for Disease Control and Prevention (CDC) estimates on 
deaths, cases, hospitalizations are likely to be noisy due to data reporting 
and collection issues [11]. To investigate the robustness of our proposed 
calibration procedure, we run experiments using ground truth data 
distorted by gaussian noise. More specifically, we add gaussian noise to 
each ground truth target with mean μ = 0 and varying scales of standard 
deviation s. To set the standard deviation of noise for each county, we 
first compute the standard deviation of the ground truth data and 
multiply it by a λ factor. Even for a large degree of noise (λ = 4), we 
observe that our method outperforms both region-specific with surro-
gate and region-agnostic calibration techniques. Results are summarized 
in Fig. 2 below. 

2.6. Experimentally evaluating sensitivity to clinical & geographical 
variations with GradABM versus prior ABM models 

The experimental pipeline is summarized in Fig. 3. In this experiment 
we incorporate regional variables (census information, mobility pat-
terns, facebook symptom surveys, CDC case statistics) into an ABM we 
term EpiABMv1 and our latest GradABM model, EpiABMv2. The Epi-
ABMv2 uses the CalibNN on these regional variables while EpiABMv1 
does not. We randomly selected Franklin County in Massachusetts to 
parameterize regional variables into both models. We then compare 
vaccine strategy recommendations between the two models across 
variable 1st dose vaccine efficacies. 

The delay vs not delay strategy can be evaluated from the model 
output by computing the ratio of cumulative deaths of P2 by P1, which 
we denote as relative mortality. Basically, if the relative mortality is less 
than 1, then policy P2 is better (can delay the second COVID-19 dose); 
while relative mortality greater than 1 implies that policy P1 is better 
(do not delay the second COVID-19 dose). The goal of our experiment is 
to evaluate whether calibrating on regional variables impacts strategy at 
a local level. Although delaying the second dose of mRNA vaccine is not 
a current consideration, we use this example in our experiment because 
our prior work impacting this decision and having been validated in 
real-world outcomes. 

3. Results 

Fig. 2 reports the sensitivity of the relative mortality for Franklin 
County in MA to the protection offered by the first vaccine dose. We do 
this using our prior and most recent ABM (different calibration ABMs): 
EpiABMv1 and EpiABMv2. For vaccine efficacy of 80 %, both models 
recommend delaying the 2nd dose of the COVID-19 vaccine, which is 
consistent with real policy recommendations deployed in the UK and as 
validated by prior clinical work. However, at vaccine protection of 60 %, 
EpiABMv1 and EpiABMv2 provide qualitatively different recommen-
dations for Franklin County. EpiABMv2, the model, which was cali-
brated using CalibNN and granular county data to achieve a superior 
calibration fit, recommends not delaying the 2nd dose while EpiABMv1 
recommends delaying the second dose. This difference reflects cali-
brating regional variables using our CalibNN method that can change 
outcomes. 

Fig. 2. Our proposed calibration method is more robust to observation error. 
GradABM achieves lower forecasting error than all baselines even when it is 
trained with noisy data (λ > 0) while the baselines receive original data. This is 
achieved due to the joint scalable (EpiABMv1) and differentiable (EpiABMv2) 
design which allow modeling real-world populations and incorporating local-
ized data-sources for calibration. 

Fig. 3. Overview of simulation model parameterization and calibration pipeline with neural networks.  
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4. Discussion and future Work 

GradABM allows learning regional calibration parameters for 
different counties. Because of inter-county variation, the same policy 
may not be optimal in both locations. With this advance in our ABM, we 
can provide more effective evidence for vaccine strategy and policy 
decisions at the local public health level. 
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Development and dissemination of infectious disease dynamic transmission models 
during the COVID-19 pandemic: what can we learn from other pathogens and how 
can we move forward? Lancet Digit Health 2021;3(1):e41–50. https://doi.org/ 
10.1016/S2589-7500(20)30268-5. 

[6] Aylett-Bullock J, Cuesta-Lazaro C, Quera-Bofarull A, Icaza-Lizaola M, Sedgewick A, 
Truong H, et al. June: open-source individual-based epidemiology simulation. 
Royal Soc Open Sci 2021;8, 7(July2021):21050. https://doi.org/10.1098/ 
rsos.210506. Publisher: Royal Society. 

[7] Squazzoni F, Polhill JG, Edmonds B, et al. Computational models that matter 
during a global pandemic outbreak: a call to action. J Artif Soc Soc Simul 2020;23 
(2):10. 

[8] Romero-Brufau S, Chopra A, Ryu AJ, et al. Public health impact of delaying second 
dose of BNT162b2 or mRNA-1273 covid-19 vaccine: simulation agent based 
modeling study. BMJ 2021;373:n1087. https://doi.org/10.1136/bmj.n1087. 

[9] Imai N, Rawson T, Knock ES, et al. Quantifying the effect of delaying the second 
COVID-19 vaccine dose in England: a mathematical modelling study. Lancet Public 
Health 2023;8(3):e174–83. https://doi.org/10.1016/S2468-2667(22)00337-1. 

[10] Quera-Bofarull A, Chopra A, Aylett-Bullock J, Cuesta-Lazaro C, Calinescu A, 
Raskar R, et al. Don’t simulate twice: one-shot sensitivity analyses via automatic 
differentiation. Adaptive Agents Multi-agent Systems (AAMAS) 2023. 

[11] Pian W, Chi J, Ma F. The causes, impacts and countermeasures of COVID-19 
“Infodemic”: a systematic review using narrative synthesis. Inf Process Manag 
2021;58(6):102713. 

A. Chopra et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0264-410X(23)01016-2/h0005
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0005
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0005
https://covid.cdc.gov/covid-data-tracker
https://covid.cdc.gov/covid-data-tracker
https://doi.org/10.1016/S1473-3099(22)00320-6
https://doi.org/10.1016/S1473-3099(22)00320-6
https://doi.org/10.1016/S2589-7500(20)30268-5
https://doi.org/10.1016/S2589-7500(20)30268-5
https://doi.org/10.1098/rsos.210506
https://doi.org/10.1098/rsos.210506
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0035
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0035
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0035
https://doi.org/10.1136/bmj.n1087
https://doi.org/10.1016/S2468-2667(22)00337-1
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0050
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0050
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0050
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0055
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0055
http://refhub.elsevier.com/S0264-410X(23)01016-2/h0055

	Using neural networks to calibrate agent based models enables improved regional evidence for vaccine strategy and policy
	1 Introduction
	1.1 The importance of vaccine strategy and policy in emerging disease and the need for in-silico epidemiological modeling
	1.2 Breakthrough in ABM technology and application in vaccine strategy and policy during COVID-19
	1.3 Most recent advances in GradABM model

	2 Methods
	2.1 Developing tensorization and differentiability into ABM
	2.2 Specification of agent states and disease spread dynamics
	2.3 Regional variables for model calibration using deep neural networks
	2.4 Validation to real-world scenarios by transmission forecasting
	2.5 Comparison with baseline techniques
	2.6 Experimentally evaluating sensitivity to clinical & geographical variations with GradABM versus prior ABM models

	3 Results
	4 Discussion and future Work
	Declaration of Competing Interest
	Data availability
	References


