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ABSTRACT

Detecting large reshare cascades is an important problem in
online social networks. There are a variety of attempts to
model this problem, from using time series analysis methods
to stochastic processes. Most of these approaches heavily
depend on the underlying network features and use network
information to detect the virality of cascades. In most cases,
however, getting such detailed network information can be
hard or even impossible.

In contrast, in this paper, we propose SANSNET, a network
agnostic approach instead. Our method can be used to an-
swer two important questions: (1) Will a cascade go viral?
and (2) How early can we predict it? We use techniques from
survival analysis to build a supervised classifier in the space
of survival probabilities and show that the optimal decision
boundary is a survival function. A notable feature of our ap-
proach is that it does not use any network-based features for
the prediction tasks, making it very cheap to implement. Fi-
nally, we evaluate our approach on several real-life data sets,
including popular social networks like Facebook and Twit-
ter, on metrics like recall, F-measure and breakout coverage.
We find that network agnostic SANSNET classifier outper-
forms several non-trivial competitors and baselines which
utilize network information.

1. INTRODUCTION

Every day millions of users engage and express their feed-
back on social networking platforms like Twitter.com and
Facebook.com, using a like, comment or share. While likes
and comments provide feedback, it is resharing that has
the potential to spread information to millions of users in
a matter of few hours or days. Such a spread of informa-
tion through resharing is called a cascade |7]. Most of the
cascades do not spread far and beyond but are restricted to
only a small group of people and hence remain very small
in size [4]. However, very few of them (far less than 1%)
become substantially big and are referred to as wviral cas-
cades. Knowing whether something is going viral can be
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valuable and there are several recent related work that deal
with controlling or accelerating such cascades in various sce-
narios 23} |31].

Understanding viral cascades has several challenges. Fore-
most, there is lack of knowledge of complete network struc-
ture, through which the information propagates [10]. This
may be due to a variety of reasons. Population networks
and malware infection networks are hard to gather and ex-
pensive to construct [2]. For data like blog cascades, most
networks are only inferred networks [9]. Edges in online so-
cial networks are also typically unavailable for prediction.
As a result, either a network is unavailable, or difficult to
obtain, or noisy. In this paper, hence, we address the prob-
lem of understanding cascades without using the network
structure and instead modeling it purely as a time series.
Time series modeling is particularly practical because, e.g.
the number of reshares on Twitter or Facebook for a piece
of public meme can be readily retrieved using search APT’s.

Further, for many practical purposes, knowing whether
a cascade would grow big or not is more useful than actu-
ally measuring the exact size of the cascade (which is much
harder indeed). Such a prediction is useful if we can predict
virality much earlier in its life than much later. There are
two important characteristics of the viral cascade prediction
problem that must be modeled carefully. First, viral cas-
cading phenomena are generally rare and this rarity makes
the class distribution particularly skewed. Some approaches
consider under- or over-sampling the data to account for
the skewness, especially when the problem is treated in a
binary classification set up. Second, the time at which the
event occurs is extremely important and detecting the vi-
rality earlier is much more important than predicting the
accurate size much later.

Traditional time-series methods [3| are ill-suited to mod-
eling the above two characteristics of the problem, primarily
because they ignore diffusion dynamics. For example, auto-
regressive and exponential smoothing models do not work
for our scenario as the reshare time-series is bursty and does
not exhibit seasonality or trend correlations with historical
data. Some also try to incorporate the bursty characteris-
tics of the time series |21} [34], but they suffer from assuming
specific models for node influence or availability of network.

In contrast, survival analysis is extremely suited to pre-
dict virality for several reasons. There is no need to under-
or over-sample the data and the actual class distribution
plays an important role in modeling the survival probabil-
ities. Moreover, survival models can accommodate incom-
plete (or censored) data during training. So there is no need



to eliminate the “just started” or very small cascades from
the training data (as the first few hours play an important
role in the diffusion dynamics of the cascade), as other meth-
ods do [37]. Finally, survival probabilities are computed
using hazard rates which are robust estimators of instanta-
neous rates of change. Hence, we do not need to assume
a particular model, and a sudden rate of change in a few
cascades will not affect the survival probabilities.

We propose a classification method SANSNET, in this pa-
per, based on the survival probabilities to estimate the non-
linear decision boundary to separate the viral cascades from
the non-viral ones. The estimated decision boundary turns
out to be a survival function and it can model the cascades
that may never go viral by incorporating them as ‘right-
censored data’ (i.e. data points for which technically the
time of death is unknown). Our empirical tests show that
SANSNET is very fast, and outperforms several baselines on
multiple real life social networks, including those which uti-
lize network information. Again, as discussed before, we
predict virality instead of predicting the actual size as many
other methods. Hence we believe this gives a novel comple-
mentary viewpoint to current approaches.

This paper is organized as follows: We present the related
work in Section 2. In Section 3, we present the required
preliminaries for survival analysis, followed by the problem
definition and our approach to learn the survival separation
boundary. In Section 4, we present the empirical results and
we conclude in Section 5.

2. RELATED WORK

We focus on related work from the following main areas:
cascade analysis, survival analysis and time-series predic-
tion, epidemiology, and optimization problems. In general,
there has been a lot of interest in studying dynamic processes
on large graphs like (a) blogs and propagations |16, [19], (b)
information cascades |8} 27]; (c) marketing and product pen-
etration [26, 28] and (d) malware prediction [22].

Cascade Analysis: Methods for predicting size of infor-
mation cascades are generally characterized by two types of
approaches, feature based methods and model-based meth-
ods. Feature based methods [32] 4] compute an exhaustive
list of potentially relevant features and use them in a clas-
sification setting. There are several drawbacks with these
approaches, including laborious feature engineering, exten-
sive training, scalability issues in terms of computing these
features at scale and in an online manner (c.f. the Wiener
index [32]). In contrast we only use reshare counts per unit
time, which are very cheap to get with today’s online data
aggregation services. There are model based methods [6],
where the model predicts whether the cascade will go above
a certain size threshold. In a recent work [6], Cui et al.
proposes a logistic model considering all nodes as features.
The model in this case measures the relative importance
of each node given the nodes that have propagated before
them. One of the drawbacks of this approach is to maintain
the status of cascade across all nodes in a network and it
can be particularly difficult when the number of nodes is in
billions. We overcome such difficulty by summarizing the
cascade growth at certain frequency.

The second broad thread is by using models which gener-
atively explain the information cascade process. Such meth-
ods typically take inspiration from epidemiological models

|21], and have been used to model the spread of memes or
hashtags [35), [34], Youtube views [5| or even keyword vol-
ume [21]. Many recent methods rely on using stochastic
point processes like the Hawkes self-exciting processes (37}
25) or personalized behavioral dynamics [36]. However many
of these approaches [5), 37| either silently assume infinite
available nodes, or are not able to make a prediction if the
cascade is in the ‘super-critical’ state.

In both these broad approaches however, access to the
underlying network is assumed, which in reality as discussed
before, is not readily available or can be noisy. Further,
many of them have been designed to predict the size of the
cascade, rather than the more practically relevant question
of if and when it will go viral. Hence, we instead develop a
network-agnostic approach which avoids these issues.

Survival Analysis and Time-series Prediction: Sur-
vival analysis is often used to model the time to event data,
such as death, infection, or diagnosis of a type of cancer [15].
It is therefore fundamental to many medical studies. In the
recent past, survival theory has been used to infer the un-
observed network either using an additive or multiplicative
risk model [10]. Here the hazard rate of each node is an ad-
ditive (or multiplicative) function of infection times of previ-
ously infected nodes. Based on the hazard rates of individual
nodes an estimate of an edge being incoming or outgoing is
determined. An important take way from this work is that
either observing the complete network or inferring them is
a hard problem. In another recent work [33], survival anal-
ysis is used to predict the number of actors that would be
mentioned in a Tweet and the length of the influence chain
from that actor. This work does not deal with predicting
virality of the cascade in terms of its size. Survival mod-
els are also used in user return time prediction based on
their historical usage patterns [13]. However, none of these
works use a supervised learning approach for classification
(like max-margin classifier) using survival probabilities to
address their prediction problem.

Auto-regressive models and exponential smoothing mod-
els are the first-hand approaches for modeling a time-series |3}
20]. However, the time series of reshare cascades are bursty
in nature and the correlation between historical and future
data becomes difficult to be captured in these regression-
based approaches.

Epidemiology: The classical texts on epidemic models and
analysis are [1, [11]. Most work in epidemiology is focused
on homogeneous models. Much work has gone into finding
epidemic thresholds for networks (minimum virulence of a
virus which results in an epidemic) for a variety of virus
propagation models [24].

Optimization Problems: There exist several diffusion
based optimization problems, including the influence max-
imization problem, formulated by Kempe et. al. [14] as a
combinatorial optimization problem. Other such problems
where we wish to select a subset of ‘‘mportant’ vertices on
graphs, include ‘outbreak detection’ [18], ‘finding most-likely
culprits of epidemics’ [17], and immunization [23].

3. MODELING SURVIVAL SEPARATION

We consider a cascade to have gone viral if it crosses a spe-
cific relative size threshold (how to set it will be discussed
later). Let us first understand how survival analysis applies
to our problem. Consider a person accumulating infection



over time, and when the infection level cross the immunity
threshold, the person eventually dies due to the infection.
This is analogous to the viral cascade situation in our prob-
lem. Consider each cascade to be a person and the size of
the cascade (or number of shares) is the infection. When the
size crosses a specific threshold, the cascade has gone viral.

It is easy to see that most of the cascades never cross the
threshold. Hence, these cascades where the event never oc-
curred (equivalent to the person survived in our example)
add additional information to the model about the rarity
and timing of the actual event. These observations are in-
cluded in the model as right-censored observations and hence
no over- or under-sampling is required in our approach com-
pared to other classification approaches dealing with rare-
class classification.

3.1 Problem Formulation

What is Viral? The problem of predicting the survival
probabilities of each cascade depends on how well we de-
fine the virality. The most common and useful definition is
based on its size [4]. As discussed earlier, for most practical
purposes, predicting the exact size is far less important and
also harder than knowing whether a cascade would go above
a certain size threshold. The threshold can be set either as a
relative measure or absolute measure. For instance, setting
a fixed threshold of 10,000 reshares is an absolute threshold,
while setting it to 90-th percentile of the data is a relative
measure. Absolute measures are invariant to the dynam-
ics of the new observations. Relative measures are useful in
cases when the audience size is unknown and it is relative
to population observed in the latest data (especially if the
user engagement with the social network is changing). Our
method is agnostic to relative or absolute thresholds and we
leave it to the choice of the exact application.

Definition Let us now formally define the problem. Let
7 be the threshold on the size of the cascade, above which
a cascade is considered to be viral. Given hourly reshares
of m posts (i.e. m time series) from the beginning of their
time until the end of the observation period, our goal is to
predict whether a partially observed cascade at j-th hour
will become viral? Formally, let x; be the reshare-count
time series of the i-th cascade and z;(j) be the number of
reshares for cascade ¢ at time j. The current size of the
cascade at time ¢ is denoted by v;(t) = 22:1 zi(j). Our
problem is formally defined as follows.

PROBLEM 1  (VIRAL CASCADE PREDICTION). Given the
cascade virality threshold T, and m time series x1,...,ZTm of
arbitrary length i, ..., 1, with same sampling rate, and a
test time series z of length p, s.t. >°F_, 2(j) < 7, predict

whether 3 7_, 2(j) + 35—, £(k) >= T, for some q > p.

Note that as ¢ >> p it is harder to make future predic-
tions, particularly when 7—37"_, z(j) >> 0. In other words,
with little or almost no information about the cascade, it is
hard to guess whether it would go viral or not. On the other
hand, when ¢ —p~ 1 and 7 —3°7_, 2(j) ~ 0 it is much eas-
ier to make the prediction, as it is most likely to be a viral
cascade. Note that commonly used measures like absolute
percentage error (or other equivalents) are ill-suited for such
a prediction approach, as it does not score results based on
the real distribution of easy versus hard cascade predictions.

S(t)

T +— v,=10,000

t
Figure 1: Estimated survival function for various
sizes.

3.2 Estimation and Separation

Let us denote the time to event with a random vari-
able Y, and the possible values include all non-negative
numbers. Any specific value of this random variable is de-
noted by ¢. The survival function S(t) gives the probability
the cascade will not encounter an event until time ¢, i.e.
S(t) = P(Y > t). Survival functions are monotonically de-
creasing in nature. Again, note that the use of term survive
in this paper implies that the event did not happen and in
our case it is equivalent to the cascade that did not go viral.

Estimation We use the Cox-extended model [15] to esti-
mate the survival function for m different time series. The
Cox-extended model is particularly useful for our problem as
it allows for estimating the survival function, while control-
ling for time varying covariates (unlike a Cox PH model [15]).
The survival estimator for this model is:

S(tlo(t)) = e~ TV (1)

The time varying covariate in our case is the size of the
cascade (v(t)) at time ¢t. A unique integration [15] can be
used to estimate the cumulative ‘hazard’ estimator H in this
case. For all practical purposes, the estimator is available
in statistical softwares like HY To learn more about survival
analysis or estimation of Cox extended models we ask the
readers to refer [15].

Intuitively, as the size of the cascade increases the survival
probability drops at any given time ¢, i.e. S(t|v1) < S(t|v2),
where v1 > vo. As we observe more and more of the cascade
over time, the survival function models the rate at which the
survival probabilities drop as a function of time, conditioned
on the current size of the cascade. Note that if we have a
better predictor of future size of the cascade then it would
nicely complement our approach, in that, it will be able to
tell the survival probability of the future time point, given
size at that time point.

Role of size The size covariate plays an important role in
modeling the survival function. We trained a Cox-extended
estimator on the Facebook dataset (explained later), and
computed the survival probabilities over time for various
size values (1K to 10K in steps of 1K). Each curve in Fig.
represents the survival probabilities for a given size. It is
very evident from Fig. [1| that as the size of the cascade in-
creases the estimated survival probability drops significantly
at some time point ¢. The drop in the earlier time points are
relatively smaller compared to the later time points. This
is because the probability of a cascade going viral earlier is
much less compared to a later time.

"https://cran.r-project.org/web/packages/survival/
survival.pdf
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Figure 2: An illustration of survival separation func-
tion to separate the viral cascade survival probabil-
ity distribution from the non-viral ones.

Separation How do we use these dynamic survival proba-
bilities for the purpose of classification (viral or not)? Let
Si(t) denote the estimated survival probability of cascade ¢
at time t. Consider the distribution of survival probabilities
Si(t) at any time point ¢ across all the cascades ¢. Then the
tail of the survival distribution characterizes the viral cas-
cades (with low survival probabilities). This is particularly
useful in an unsupervised classification setting. However, we
know the class labels (viral or not) for each of the observed
cascades. We use these labels to separate the survival distri-
bution of viral and non-viral cascades at each time point, in
a supervised manner. This is illustrated using a graphic in
Fig. The plot shown is an illustration—however, the ac-
tual distribution of survival probabilities is non-parametric
and does not make any model assumptions.

Our proposal is to find the optimal survival function sep-
arating the two classes using the following optimization:

minimize Z Z ci - yi - sgn(Si(t) — 5¢) 2)

S=581,...,8T =1 i1
subject to  Si41 — & <0, Vi=1,...,T—1

In this formulation y; is the class label of the ith cascade
being viral (+1) or not viral (—1), i.e. y; € {—1,+1} and ¢;
is the cost of mis-classification. We account for the skewness
in the class distribution by setting ¢, = myn/m and ¢, =
my/m as the mis-classification cost for viral and non-viral
class data points respectively. Here m, and m, are the
number of training data points in non-viral and viral classes
respectively.

The objective of Eq. is to maximize the separation be-
tween the two classes using the survival probabilities or in
other words minimize the mis-classification cost. The con-
straint ensures that the resulting separation boundary S* is
a survival function and satisfies monotonicity property. This
is important as it minimizes the training error and ensures
that the resulting decision function is a survival function. In
other words, if a cascade is non-viral at time ¢ and it does
not increase in size further, then it should remain non-viral
at t' > t. Note that in our analysis and formulation we have
discrete time points (and not continuous), since the under-
lying time series is sampled at some rate. Also, the survival
boundary S™ is estimated until the end of observation period
T,ie S*=s1,85,...,87.

It is easy to see that, if we did not have the monotonicity
constraint, then Eq. can be broken down in to 7" inde-
pendent sub-problems. Each of this sub-problem is linear in
nature and requires O(m) time computation to evaluate the

optimal value. However, let us say, we solve the constrained
version using an unconstrained Lagrangian, the objective
becomes combinatorial in nature. Consider the case where
we find the optimal value for s7 and start to back-solve for
T — 1. If we find that s7_; < sT, then s7 has to be re-
computed, since it violates monotonicity. In a brute force
manner, there will be O(m”) computations required to find
the optimal solution.

As a matter of fact, we know that each of the m input
survival functions corresponding to each input time series
is monotonic [15]. Let us use this fact and show next (in
Theorem [1)) that the resulting decision boundary is also a
survival function, then the constraint becomes trivial and
the problem can be solved in linear time.

3.3 Analysis

Let F{(s) be the fraction of wiral data points that fall
below the decision boundary s at time ¢, i.e. F.(s) = |{i |
(S:(t) < s) A (ys = +1)}|/ms. Similarly, for non-viral class,
Fi(s) = |{i | (Si(t) < s) A (ys = —1)}|/mn. Clearly, both
the functions are non-decreasing in s.

LEMMA 1. For any given survival probability 0 < s < 1,
Fi(s) and F%(s) non-decreasing with s. That is,

Fl(s) > Fi(s'),¥s > s, ¥t
Fi(s) > FL(s'),¥s > s, ¥t

Using Lemmal[I] we can see that both the fraction of viral
and non-viral points increases at time t, for any s > s’
Moreover, we also observe from the data that this increase
in the fraction of non-viral points, at a future time (' > t), is
always higher than the increase in the fraction of viral points,
with reference s;. In other words, the survival probability
of non-viral points do not decrease towards zero as rapidly
as the viral ones. Formally, we specify this condition in
Observation [1

OBSERVATION 1. Given an optimal separation point s at
time t, Fi™ (sep1) = Fy ™ (se) < Fitt(sea) =i (se), Vst —
St41 <0 and Vt > 1.

THEOREM 1. The optimal survival boundary solving Eq. (@
S* = s1,85,...,87 is itself a survival function.

Proof (Sketch). Let my+ (mp+) and my— (ms,—) be the cor-
rectly and incorrectly classified viral (non-viral) data points
given the decision boundary s;. Then the objective func-
tion in Eq. can be written for some particular time ¢ and
decision point s} as,

g¢(st) = min [cyMy— — oMyt + CnMp— — CuMiny].
Adding and subtracting c,m,+ and ¢pmn+, we get,

g:(st) = min [comy + CoMn — 2Co Myt — 2CnMin] -
Using F}(s}) = Myt /me and Fp(s7) = 1 — Mt /M,

g+(sy) = min [K — 2cvva5(5t) + 20nmnF,i(st)] .
where K is a non-negative constant independent of ¢ and s.
Next, note that in our setting (¢, = mn/m and ¢, = m,/m),
the total mis-classification cost is balanced between the two
classes i.e. cyMmy = CpMpn = MeMa/m = a. So we get
gu(s7) = K — 2a(Fi(st) — Fi(s7)).

Equivalently7 the mis-classification cost at ¢ + 1 for the
points s;, and s;.; can be written as, giyi(s;) = K —
2a(Fy T (s1)—Fi (s1)) and gy (sia) = K—=2a(Fy (si41)—
Fflﬂ(st“)) respectively. Subtracting these two costs at s;



and s;,; we get,
ge+1(81) — ge1(st41)
= 2a[(Fy " (st11) — Fa ' (si41)) — (FV7 (s7) = Fi ' (s1)]
= 2a[(Fy " (si11) = o (1) = (B (si0) = F ' (s0)]
=2af
Here ao > 0, but 5 < 0 from Observation for all sj 1 > s;.
Hence for all sfy; > s;, we can write gi41(s;) — geg1(sir1) <
0. Thus there does not exist an optimal survival decision
boundary point si;; at ¢t 4+ 1, such that s;,; > s; and
gt+1(st+1) < ge+1(si), as s; is more optimal at ¢ + 1 in
such case. Hence sj,1 < s;,Vt>0. [

3.4 Early Prediction

Early prediction of virality has immense practical value
like that of predicting the virality of cascade itself. It can be
particularly useful to counteract spam or malicious content
before it becomes viral and infects thousands of users. Our
approach is flexible enough to answer not only whether a
cascade would go viral, but also how early can we detect it.

We have, so far, estimated the optimal survival boundary
S* by minimizing the mis-classification error, or in other
words, maximizing the margin between positive and nega-
tive classes. Given a partially observed time series z until
time ¢, we can compute the current size of the time series as
v, = 22:1 2(j). We can measure how early each approach
can predict by measuring the performance at different times
before the cascade became viral (actual virality). Addition-
ally, we can also calculate the FEarly Prediction Advantage
(EPA). For the current size, compute the first time point
t* > t at which the estimated survival probability for z in
the future is less than s7, i.e.

t* = argmin 1(s; > S(f[vs)) (3)
>t

The difference between the actual time of virality and ¢* is
the EPA for that cascade.

3.5 SansNet: Algorithm

In this section we describe the algorithm for our approach,
SANSNET (see Figure [3).

The key part of the algorithm is computing the risk in-
tervals for each time series. This is essential for perform-
ing the Cox-extended estimation as the hazard function will
change at the end of each risk interval. A risk time point is
when a death (+1) or a right-censoring was observed in the
training data. For example, if there are p, ¢ and r risk time
points, then following three risk intervals will be constructed
[0,p),[p,q),[q,7). Then for each of these intervals we need
to compute the total reshare size for x; at the end of the
interval. Then a table (D) containing the id of the cascade,
the start time of the interval, end time of the interval, cur-
rent size at the end of interval, and ground truth label can
be used to estimate the survival model M using the coxph
routine [30] in R (or other statistical packages like SAS).

Once the survival model M is computed, for each of time
points t we compute the survival probabilities for all m time
series based on its current size at t. We then use Eq.
to find the optimal survival separation point at ¢. Then,
we compute this for all time points t = 1,...,T to get the
complete survival boundary. Finally, for each of the test
time series based on its size, we can obtain the survival
probabilities. If the estimated survival probability for the

Algorithm SansNet(X = {z1,...,Zm}: m input time series,
7: threshold)
begin
y = Get labels for each time series using threshold 7
and its final size (41 if above threshold, -1 otherwise)
R = Get risk time points, where a time series was censored
or crossed threshold 7.
Initialize D #+#(data table used for Cox-estimation)
for each z; in X
&; = Break the time series into risk intervals
using the time points in R
d; = Get current size at the end of each risk interval
for time series x;
Add d; to D
end for
M = Train Cox-extended model using D
T = Maximum risk time point in R
for eacht=1,...,T
sy = Find the optimal S* value at time t using
model M and the current size of each time series

at time ¢.
end for
return(S* = s},...,s%)

end

Figure 3: SansNet Algorithm

test time series is less than S*(¢) at ¢ then the cascade is
determined to be viral. Similarly, Eq. can be used to
compute the predicted time of virality. The total time com-
plezity of SANSNET is O(m(|R| + T')), where computing all
risk intervals takes O(m|R|) and finding the optimal survival
boundary takes O(mT'), which makes it very scalable.

4. EMPIRICAL RESULTS

Predicting large cascades is a hard problem. In this sec-
tion, we evaluate the effectiveness of the prediction quality
and the Early Prediction Advantage (EPA) for all cascades
and show that our approach performs well in both measures.

4.1 Data Sets

We have used three real-life data sets from two popular
social networks, Facebook and Twitter.

Facebook: We collected the hourly reshare counts of a ran-
dom sample of 250,000 publi(E| photos and videos that were
uploaded on August 8, 2015. We tracked the hourly reshare
counts of these photos and videos for a period of one week.

Twitter: In order to evaluate our approach on a public
data set we used a Twitter data setﬂ which was also used
in a recent paper [37]. This data set contains 166,072 tweets
and their exact time of reshares and the resharers number
of followers. This data set was collected from October 7 to
November 7, 2011. The data set was already pre-filtered to
contain only tweets that had at least 50 reshares or more.
Using this data set also allows us to directly compare our
results, as it has been used recently in cascade prediction
studies (as described in baselines).

4.2 Baselines

To compare SANSNET, we use a variety of different types
of baselines that cover both recent |37, 29] and popular ones,
network-centric and non-network centric approaches includ-
ing regression and classification schemes.

2Public content can be seen by everyone on Facebook.
3http://snap.stanford.edu/seismic/


http://snap.stanford.edu/seismic/

Linear: We used a linear model as described in [29] for this
baseline: In(Ro) ~ In(B- R;) + €, where R is the final size
of the cascade and R; is the total number of reshares (or
retweets) at time ¢. € is the noise term that accounts for
the randomness in the individual content dynamics. Note
that the final size and current sizes are log-transformed in
this model. For the purpose of classification, if the predicted
final size reaches (>=) the threshold, then we consider it to
be a viral cascade and not viral otherwise.

Logistic: We considered the total number of reshares for
cascade i at each hour until the prediction hour ¢ as the fea-
ture set for this classifier, i.e. X*(i) = [z:(1),...,:(t)]. For
each prediction hour ¢, we constructed a separate classifier
with this feature set. The training and testing ground truth
was constructed based on the actual final size. If the final
size reaches the threshold the cascade is classified as viral
(+1) and not viral (-1) otherwise. Importantly, as the cur-
rent total size until time ¢ (i.e. 22:1 z;()) and hourly rate
of change of reshares (x;(t) — z;(t — 1)) are collinear to the
actual reshares observed (i.e. feature set X'(i)), we ended
up including the actual hourly reshare counts until ¢. This
baseline is similar to the one constructed in [4], as the most
important features in this cascade prediction model are their
temporal features.

CTree: CTree stands for conditional inference trees [12].
They learn a decision-tree based model on the input fea-
ture space and depending on the output variable they can
either be regression or classification trees. The main differ-
ence between CTree and decision trees is how the variable
selection and splitting is performed. In CTree the statisti-
cally significant variable with the lowest p-value is selected
and the split is performed using the maximum value of the
test statistic. Moreover, the stopping criterion is statistically
grounded and hence no further pruning is required as needed
in decision trees. We use the same set of features used in the
Logistic baseline and the output variable is binary—whether
the cascade is viral or not based on the threshold.

Seismic: This is a very recent approach proposed in [37].
The approach uses a stochastic process model, called the
self-exciting point process, to model the spread of the re-
shares in the network. The self-exciting model assumes that
all previous instances influence the future evolution of the
process. The authors show the performance gains for this
approach over other feature-based baselines. They use net-
work information such as degree of each resharer and also
the exact time of reshare of each tweet. The method pre-
dicts the final size of the cascade—so if the predicted final
size is above the threshold, we predict that cascade as a viral
cascade. We used the code available as a R package®.

We do not use network-based features for our other baselines
in part so that we can do a fair comparison. However, we
compared against Seismic anyway (which uses the network)
on the same data set as in |37| primarily to objectively test
whether network-agnostic approaches like SANSNET can get
similar (or even better) performances to the best network-
aware ones. Note that the comparison is inherently a bit
unfair for our approach as by definition SANSNET uses less
information. Indeed the motivation for our paper is that the
underlying network is frequently unavailable or too noisy for
use.

4.3 Evaluation Setup

We evaluated all approaches using a 3-fold cross validation
scheme. The error bars reported are one standard deviation
of the three fold evaluation. We set up three different ex-
periments to evaluate the effectiveness of the approach. The
virality threshold 7 for both Facebook and Twitter datasets
was set at 99.5-th percentile, i.e. 0.05% of cascades go viral.

The first set of experiments are evaluating the virality pre-
diction effectiveness at different life times of the cascades,
say the 4th, 8th and 12th hour of the cascade. Though the
absolute time of cascade is useful in understanding how ef-
fective each classifier is based on the age of the cascade, it
does not tell how well the classifier can classify relative to the
time of virality. It may be the case that some methods are
good at detecting long range signals while some are better
at detecting a couple of hours before the cascade goes viral.
Hence, to understand this effect we run our second set of
experiments to evaluate various metrics relative to the time
to virality, say 1, 2,3 hours before the cascade becomes viral
(hits the threshold). The third set of experiments measures
the effectiveness of predicting the time of virality itself com-
pared to their actual time.

The first two sets of experiments use the standard eval-
uation measures from classification literature, such as F-
measure. F-measure is a harmonic mean of precision and
recall that measures the balance between them, using a pa-
rameter beta. As our problem is a rare class classification,
we use a beta of three. For the third task, we measure the
Early Prediction Advantage (EPA) defined in Section
i.e. the average difference between the actual time of virality
(crossing the threshold 7) and first predicted time of viral-
ity. So the better performing approach should have a larger
EPA. If a method fails to predict the cascade going viral,
then the difference is counted as zero (that is the prediction
time is same as when the cascade crossed the threshold 7).

4.4 Prediction and Cascade Age

How well can we predict the large cascades? We evalu-
ate the effectiveness of all approaches, in Fig. [} in terms
of their absolute age in hours since they have started. We
consider exponentially growing time gaps for our analysis,
since most of the cascade activity happens at the beginning
of the cascade (within the first 24 hours). For each predic-
tion time ¢ we compute the predictions from all approaches
after eliminating that cascades that are already viral at that
prediction time. This way no approach gets the trivial ad-
vantage of predicting things that have already gone viral
(i.e. crossed 7). We do not use any input filtering threshold
for Facebook data set and we considered all data as-is. For
the publicly available Twitter data set only tweets that have
crossed the threshold of 50 reshares are available.

Results: As one can see from Fig. [d] SANSNET gets a good
balance between precision and recall and consistently out-
performs all approaches in terms of F-measure. The linear
models do really well only in the beginning of the cascade,
as they tend to estimate the size really poorly as time pro-
gresses. This is particularly because the log of current cas-
cade size is not really predictive enough of the final size, in
part due to the highly non-linear nature of the signal. How-
ever, the logistic models do very well for older cascades as
the complete reshare sequence is made use of in estimating
the rates of change. CTree performs extremely poorly as
there is no viable decision boundaries that delineates all the



viral cascades from the non-viral ones. Also, the non-linear
(log) transformations on the input size seems to really make
a significant difference in performance.

The most surprising aspect is the performance of Seismic.
It performs better than most of the other approaches, espe-
cially towards the later times. This is due to the fact that
there are only a few cascades that go viral after 24 hours
and these cascades that last longer have crossed the ‘super-
critical’ state; so Seismic is able to make robust predictions
in their case. However still, the availability of network infor-
mation to this approach does not improve significantly over
the baselines. More importantly, SANSNET which does not
explicitly use any network information, seems to perform
much better than Seismic overall. This is mainly because
survival probabilities are computed from hazard rates which
are robust estimators of instantaneous rates of change. They
implicitly account for the network structure in terms of the
rise and fall of the reshare time series. For instance, con-
sider the two extreme examples of a chain and clique graph.
Now, if we grow a cascade with simple BFS process at each
time step, it is easy to see that rate of change of reshare cas-
cades for chain is constant and clique is exponential. Then,
the survival functions will reflect this network structure by
having a constant slope for chain or larger slope for clique
compared to any natural (or power-law) graphs.

4.5 Prediction and Time to Virality

How early can we predict the cascade outbreak? We mea-
sured the effectiveness of each method at various stages of
the growth of cascade in Section @ This gives a perspec-
tive on relative performance of each approach with respect
to the age of the cascade. However, this does not tell us how
effective each approach is before the cascade hits the viral-
ity threshold. Next, we evaluate the prediction performance
of the methods relative to the time at which the cascade
crossed the (virality) threshold.

Time to virality: We define the term time to virality
as the number of hours before the hour at which cascade
crossed the threshold. For example, if the cascade crossed
the threshold at 10th hour after it was first posted, then time
to wvirality is 3 hours at the 7Tth hour for that cascade. Each
social network has different dynamics due to the nature of
the underlying network (bi- vs. uni-directional) and its pur-
pose (friending vs following). Accordingly, in the datasets
we used, the median time to virality for Twitter, Facebook
Photos and Videos were 8, 15 and 23 hours respectively. As
most of the activity happens with-in twice the median value,
we focus on this period for all our analysis. Given a time
to virality in hour as k, we compute the predictions from
all methods exactly k hours before it hits the viral thresh-
old. Note that this applies only for cascades that went viral.
Cascades that did not go viral will not have a time of vi-
rality reference point and hence cannot be included in this
analysis. Also, note that if a cascade went viral at k-th hour
(say 10th hour) then time to virality is valid only until k — 1
(i.e. 9th hour).

We firstly measured recall, the number of cascades that
are correctly predicted given the total number of cascades
that went viral, in this analysis. Precision or F-measure
cannot be computed in this analysis, as cascades that did
not go viral do not have virality time as a reference point to
compute the time to virality (x-axis) for these plots.

In addition, to measure our effectiveness at predicting the
top of the list, we also use the Breakout coverage@Qk: it is
the fraction of correctly predicted viral cascades out of the
top-k cascades (based on its final size at the end of each
observation period). It tells us how well each method per-
forms at the top of the list, where the list of viral cascades
are sorted in descending order by the final size.

Results: See Fig.[] It is evident from Fig.[5{a,d,g) that all
approaches do very well 1 hour before the outbreak, in terms
of recall value of ~0.9 for Facebook and ~0.8 for Twitter
data sets. However, this may be too short for any man-
ual intervention or strategic decision making. As time pro-
gresses each method’s performance degrades at a different
rate. SANSNET seems to have the slowest rate of change and
tends to predict with considerably high recall (up to ~60%
improvement) at 24 hours before the viral outbreak. Other
baselines find it hard to predict the outbreak with a stagger-
ing low recall of 0.35 or below for Facebook photo data set.
CTree performs the worst amongst all baselines and in con-
trast linear and logistic approaches are quite competitive.

Coverage@10 is trivial for most approaches and our ap-
proach overlaps a lot with other baselines. Though, as we
increase the top-k£ to 20 and 30 we begin to see the dif-
ference accumulating between SANSNET and the baselines.
This is clearly visible by comparing the plots in the second
and third column of Fig.[5| The complete coverage at 100%
of the data is the recall which is shown in the first column of
Fig. |5l In the Twitter data set, all approaches have a slower
rate of degradation as most of the activity happens in the
first 8 hours of the cascade.

4.6 Early Prediction Advantage

Above, we have measured the performance of each ap-
proach with respect to the actual time of virality of the
cascade. Recall and breakout coverage @ k measures how
well each approach can recover the cascades that went viral
several hours before it reaches its virality threshold. Here
we measure how early (on average) each method can predict
virality across all viral cascades, called Farly Prediction Ad-
vantage (EPA). Specifically, as defined in Section EPA
is the mean of actual time of virality minus the prediction
time across all cascades that went viral. The prediction time
here is the first time the approach predicted that the cas-
cade will go viral. The prediction time for our algorithm
SANSNET is given by Eq. . For other baselines, we sweep
the cascade at every time point and pick the first time point
at which the approach predicted the cascade as viral. For
those cascades that were missed to be classified as viral, we
assign a value of 0.

The EPA metric is an important measure for evaluating
different approaches for our problem. A method with low
recall that could predict only several hours before the actual
time of virality, is preferred over a method with high recall,
but predicts the viral cascade only a hour before the virality.

Results: See Fig.[6] SANSNET is a clear winner in all data
sets. Seismic does really well in Twitter data set—however,
it does not do that well in Facebook data set. One reason
could be several parametric assumptions that it makes, in-
cluding the functional form of the memory kernel ¢(s) |37].
In contrast, SANSNET is semi-parametric and the baseline
hazard used in our models is completely non parametric,
which offers the flexibility to work well for any dataset.
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Figure 5: The recall and breakout coverage results for time to virality experiments.

4.7 Scalability

Finally, note that running SANSNET is really cheap based
on the relative time and cost benefits compared to other
baselines. As a reference point, SANSNET takes only 125.18
seconds for training (and testing is just O(1) for us) on Twit-
ter data set on average per fold. Seismic took 1832.51 sec-
onds and was the slowest baseline as it needs to estimate the

parameters and predict for size for each cascade separately.
Other baselines ran faster, but their performance in terms of
Recall and F-measure was poor (less by upto 60% in terms
of recall). In terms of run time, CTree took 55.14, Logis-
tic took 115.02, and Linear Regression took 13.94 seconds.
Thus SANSNET offers the best tradeoff interms of both effi-
ciency and effectiveness, among all the evaluated methods,
for the virality prediction problem.
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S.  CONCLUSIONS

We address the important problem of detecting a large
cascade on social networks in this paper. In contrast to
most of the state-of-the-art, the key novelty of our approach
SANSNET is that it is network-agnostic. Using the concept of
survival functions from medical statistics, we develop a su-
pervised classifier to estimate the non-linear decision bound-
ary to separate the viral-cascades from non-viral ones. Our
results especially show that our network agnostic approach
performs very well when the cascade is young and robustly
on all datasets unlike other network-aware ones: showcasing
its generalizability, and effectiveness on sparse data.

Future work can look into incorporating some content-
based features to our method, particularly in the Cox model
as additional features, to tailor it more for any domain (like
‘diseases’ vs ‘dog-videos’).
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