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ABSTRACT

MapReduce has emerged as a prevailing distributed computation
paradigm for enterprise and large-scale data-intensive computing.
The model is also increasingly used in the massively-parallel cloud
environment, where MapReduce jobs are run on a set of virtual ma-
chines (VMs) on pay-as-needed basis. However, MapReduce jobs
suffer from performance degradation when running in the cloud
due to inefficient resource allocation. In particular, the MapReduce
model is designed for and leverages information from the native
clusters to operate efficiently, whereas the cloud presents a virtual
cluster topology overlying or hiding actual network information.
This results in two placement anomalies: loss of data locality and
loss of job locality, where jobs are placed physically away from
their data or other associated jobs, adversely affecting their perfor-
mance.

In this paper we propose, CAM, a cloud platform that provides
an innovative resource scheduler particularly designed for host-
ing MapReduce applications in the cloud. CAM reconciles both
data and VM resource allocation with a variety of competing con-
straints, such as storage utilization, changing CPU load and net-
work link capacities. CAM uses a flow-network-based algorithm
that is able to optimize MapReduce performance under the speci-
fied constraints — not only by initial placement, but by readjusting
through VM and data migration as well. Additionally, our plat-
form exposes, otherwise hidden, lower-level topology information
to the MapReduce job scheduler so that it makes optimal task as-
signments. Evaluation of CAM using both micro-benchmarks and
simulations on a 23 VM cluster shows that compared to a state-of-
the-art resource allocator, our system reduces network traffic and
average MapReduce job execution time by a factor of 3 and 8.6,
respectively.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems — distributed applications; G.2.2 [Discrete Mathematics]:
Graph Theory — graph algorithms, network problems
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1. INTRODUCTION

MapReduce is an established framework for processing large-
scale data-intensive applications. The MapReduce model helps
businesses to process massive quantities of data in reasonable time
and extract valuable insights hidden within by distributing the job
across a large number of cost-effective cluster nodes. In particu-
lar, for many applications, such as converting archived media into
a streaming format for Internet delivery, the processing is needed
only once, and hence the resources required for processing are also
needed only for a specific duration.

Combining the MapReduce framework with the cloud provides a
number of unique advantages. It is particularly appealing for orga-
nizations that need to analyze large amounts of data without having
to acquire and manage large cluster resources. The user does not
need to own the cluster resources required to run the job, which
removes the entry barrier [6], enabling even small businesses to
perform detailed analysis on their data. An organization can focus
on its core business rather than being occupied by lower-level clus-
ter maintenance. The cloud provides the flexibility of dedicating as
many or as few virtual machines (VMs) and storage resources as
needed based on the required turnaround time [1, 2, 8]. The user
only pays for the resources for the duration of time they are used.

While cloud offers great promise, the storage infrastructure of
existing cloud environments is poorly suited for MapReduce com-
putation. Clouds are typically built on commodity clusters with
node-local disks for their cost-effectiveness and scalability. Sev-
eral issues impact the turnaround time of MapReduce jobs running
in these cloud environments.

First, running MapReduce jobs in the cloud has an expensive in-
gestion phase, where the dataset needs to be copied from a central
persistent store into the compute cluster for processing. For large
datasets, ingestion represents a significant portion of the turnaround
time. Moreover, clouds feature a stateless model and any data and
VMs copied to the physical/hypervisor cluster are discarded once
the job is completed. Subsequent jobs require transferring the data
again. Alternatively, it may be possible to have the MapReduce
tasks access the data directly from the remote store via suitable re-
mote data access protocols such as NFS, iSCSI [14], or FibreChan-
nel [19]. Such remote access has several disadvantages. For one,



all data would have to be accessed over the network. MapReduce
model achieves its efficiency by ensuring that tasks can access their
data locally. Thus, fetching data over the network severely affects
job performance. Furthermore, the bisectional bandwidth between
the compute cluster and the central store can easily become a bot-
tleneck. A large number of tasks, all accessing their data from the
central store, can quickly saturate the link and render the system
inefficient.

A further alternative is to co-locate the data with the compute
cluster. However, spreading out the data across the local disks of
cluster nodes constrains the scheduling choices available for plac-
ing VMs. VMs accessing the data located on a particular node must
all be placed on that node, but other constraints such as amount of
memory or licenses may not permit this. Providing reliability of
persistent data located on the hypervisor cluster is also a challenge.
Data stored on a centralized storage device is typically protected
from disk failures through internal replication. Providing a simi-
lar replication facility across disjoint local file systems storing the
data is difficult. A cluster file system may be used to combine
the local storage attached to individual nodes in the cluster, but
most existing cluster file systems are designed for a central storage
model in a storage area network (SAN), and perform poorly on lo-
cal storage [4]. For example, cluster file systems typically stripe
files across all available disks in the cluster to maximize through-
put, whereas such a strategy limits the performance in commodity
clusters where network is the bottleneck.

Similar issues also apply to the VM images that compose a MapRe-
duce job. The virtual image files need to be copied to the hypervisor
nodes before starting a job, which introduces a very high startup la-
tency. As before, running directly from the remote storage is not a
scalable solution and co-locating the images with the cluster limits
scheduling choices.

Second, the cloud masks the physical topology of the underly-
ing infrastructure, which can potentially inhibit optimal schedul-
ing of MapReduce tasks. The MapReduce model is designed for
and leverages information from the native clusters to operate effi-
ciently, whereas the cloud presents a virtual cluster topology. For
instance, the VMs associated with a job may be placed across mul-
tiple racks. However, this information is not typically visible to
the application. Furthermore, the cloud may also change the initial
assignment by migrating the VMs to different nodes in the cluster
based on runtime load and other constraints. While these functions
add flexibility, they also make application-level scheduling chal-
lenging. This results in two placement anomalies: (1) Loss of data
locality, where a task may be placed away from the physical loca-
tion of its data; and (2) Loss of job locality, where a task may be
placed away from the physical locations of other tasks that it com-
municates with. Map-intensive jobs are adversely affected by loss
of data locality and reduce-intensive jobs are impacted by loss of
job locality.

Third, the multi-tenant cloud environment may result in interfer-
ence between MapReduce applications and other applications shar-
ing the environment. Scheduling decisions made at the beginning
of the job may become invalid during the course of the job, when
VMs are migrated around or due to changing workloads. An op-
timal allocation of resources might become suboptimal leading to
poor performance.

In order to efficiently address aforementioned issues, we present
CAM, a platform that is designed to host MapReduce applications
in the cloud. CAM provides a cluster file system that supports a
uniform file system name-space across the cluster by integrating
the discrete local storage of the individual nodes. The shared file
system enables a VM to be placed on any cluster node or subse-

quently migrated as necessary. We leverage GPFS [10] in CAM to
query and specify the physical locations of an image and its repli-
cas, which can then be used for CAM-directed placement of VMs
and data.

CAM avoids the placement anomalies with an innovative re-
source scheduler for the cloud, especially designed for improving
the performance of MapReduce jobs. Specifically, this paper makes
the following contributions:

e CAM adopts a three level approach to maximize locality.
(1) Data placement: Data is placed within the cluster based
on offline profiling of the jobs that most commonly run on
the data. Rather than accommodating an arbitrary data place-
ment, strategically placing the data can significantly improve
locality. (2) VM/job placement: For a given job, CAM
selects the best possible physical nodes to place the set of
VMs that represent the job. (3) Task placement: In order
to further minimize the possibility of a placement anomaly,
CAM exposes, otherwise hidden, compute, storage, and net-
work topologies to the MapReduce job scheduler such that it
makes optimal task assignments. This is crucial as, for exam-
ple, what appears to be a directly attached local disk within
a VM could in fact be physically located on a different node.

e CAM reconciles resource allocation with a variety of other
competing constraints such as storage utilization, changing
CPU load and network link capacities using a flow-network-
based algorithm that is able to simultaneously satisfy the
specified constraints. Each placement decision not only con-
siders the existing data and VM assignments in the clus-
ter, but also evaluates the cost of readjusting existing assign-
ments in response to data movement and VM migration to
derive the best net configuration possible.

e We evaluate CAM using both micro-benchmarks and sim-
ulations on a 23 VM cluster. We show that compared to a
state-of-the-art resource allocator, our system reduces net-
work traffic by up to 3 times, and achieves 8.6x speedup of
MapReduce jobs on average.

The rest of the paper is organized as follows. Sections 2 and 3
provide an overview of CAM’s architecture and usage model. Sec-
tion 4 details the design of data and VM placement techniques used
in CAM. Section 5 presents our experimental results. Finally, we
summarize related work in Section 6 and conclude in Section 7.

2. ARCHITECTURE

CAM is designed as an extension to IBM ISAAC product [12].
ISAAC implements key cloud functions such as creating and delet-
ing VMs and their persistent volumes, placing the VMs based on
load and capacity, maintaining availability of cloud services through
clustering and fail-over mechanisms. The architectural compo-
nents of CAM are implemented as extensions to related counter-
parts in ISAAC. In particular, we have integrated ISAAC with the
GPFS-SNC [10] file system to provide a suitable cluster file sys-
tem needed by CAM, and have extended ISAAC to support data
and VM placement based on techniques we describe in Section 4.
Figure 1 illustrates the components of CAM and their interactions
when deployed in a cloud environment. The physical resources
supporting the cloud consists of a cluster of hypervisor (physical)
nodes with local storage directly attached to the individual nodes.
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Figure 1: CAM architecture components.

2.1 GPFS-SNC Storage Layer

CAM uses GPFS-SNC [10] to provide its storage layer. GPFS-
SNC is designed as a cloud storage platform, which supports timely
and resource-efficient deployment of VMs. GPFS-SNC manages
the local disks directly attached to a cluster of commodity physical
machines. More specifically, it has a number of unique features that
make it a cloud-friendly storage system. First, GPFS-SNC supports
co-locating all blocks of a file at one location, rather than strip-
ping the file across machines. This enables a VM I/O request to be
serviced locally from the stored location instead of remotely from
physical hosts across the network. CAM leverages this feature to
ensure that co-located VM images are stored at one location and
can be accessed efficiently. Second, GPFS-SNC supports an ef-
ficient block-level pipelined replication scheme, which guarantees
fast distributed recovery and high I/O throughput through fast par-
allel reads. This feature is useful for CAM for achieving efficient
failure recovery. Finally, GPFS-SNC specifies a user-level API that
can be used to query the physical location of files. CAM uses this
API to determine actual block location, and uses this information
to infer storage closeness for data and VM placement.

2.2 Topology Awareness

MapReduce task scheduler uses the topology information of the
cluster nodes to decide task assignments. The information is sup-
plied by the user as a part of the job configuration file when the
job is submitted. However, in an attempt to abstract hardware level
details and present a simple interface to the user, existing cloud
implementations do not expose the information about the topology
of the cluster or the actual placement of VMs to the MapReduce
scheduler [2]. Furthermore, the initial configuration provided by
the user may become stale when the VMs are moved later.

CAM addresses these issues with three main components that to-
gether provide topology awareness as shown in Figure 1. First, the
CAM topology server provides the additional topology information
required to enable the MapReduce scheduler to place the tasks opti-
mally. The topology server is an integral component of the ISAAC
cloud service infrastructure and provides a REST interface, which
the scheduler invokes. The information exposed by the topology
server consists of network and storage topologies, and other dy-
namic node-level information such as CPU load. Second, a set of
agents running on the physical nodes of the cluster periodically col-
lect and convey to the topology server, a variety of pieces of data
about the respective node, such as utilization of outbound/inbound
network bandwidth, IO utilization and CPU/memory/storage load.
The topology server consolidates the dynamic information it re-
ceives from the agents and serves it along with topology informa-

tion about each job running in the cluster. The topology informa-
tion is derived from existing VM placement configuration. Third, a
new MapReduce task scheduler interfaces with the topology server
to obtain accurate and current topology information. The sched-
uler readjusts task placement accordingly whenever a change in
the configuration is observed. Note that CAM needs to provide
a different scheduler because the standard MapReduce scheduler is
designed to make the placement decisions only based on a static
configuration file and only at the beginning of the job [9]. While
the MapReduce task scheduler is modified to leverage the topol-
ogy and physical host resource utilization information in CAM, the
MapReduce applications can run without any modification.

The network topology information is represented by a distance
matrix that encodes the distance between each pair of VMs as cross-
rack, cross-node, or cross-VM. Current MapReduce task sched-
ulers consider rack and node localities but lack the notion of VM
locality. When two VMs are placed on the same node, they are con-
nected through a virtual network connection implemented as a part
of the hypervisor. By virtue of the fact that the VMs share the same
node hardware, the virtual network provides a high-speed medium
that is significantly faster than the inter-node or inter-rack links.
The network traffic between the VMs on the same node does not
have to pass through the external hardware link. The network vir-
tual device simply forwards the traffic in-memory through highly
optimized ring buffers. CAM extends the MapReduce scheduler to
consider this fine-grain locality information to make optimal place-
ment choices for the tasks.

The storage topology information is provided as a mapping be-
tween each virtual device containing the dataset and the VM to
which the device is local. In the native hardware context, a SATA
disk attached to a node can be directly accessed through the PCI
bus. In the cloud, however, the physical blocks belonging to a VM
image attached to a VM could be located on a different node. Even
though a virtual device might appear to be directly connected to the
VM, the image file backing the device could be across the network,
and potentially closer to another VM in the cluster than the one it is
directly attached to in the virtual setup. The topology server queries
the physical image location through the GPFS API and presents the
information to the MapReduce scheduler.

The specific APIs provided by the topology server is described
in Table 1. get_V M _distance, provides MapReduce task sched-
uler with hints of the network distance between two VMs. The dis-
tance is estimated based on observed data transfer rates between the
VMs, and is expressed in units of bandwidth. get_block_location,
enables MapReduce to get the actual block location instead of the
location of a VM, thus guaranteeing data locality. The rest of the
calls are used to facilitate the MapReduce task scheduler to query
the I/O and CPU contention information related to network and
disk utilization. The MapReduce task scheduler can leverage this
additional information to make smarter decisions, such as placing
I/O intensive tasks on physical hosts that have idle I/O resources.

3. CAM USAGE MODEL

CAM is a cloud platform with specific interfaces and support for
running MapReduce jobs. The dataset to be processed is initially
placed on GPFS. This is in contrast to most cloud models, which
segregate storage and compute resources, and require the dataset to
be moved from the storage cloud to the compute cloud for process-
ing. Co-locating storage and compute clusters avoids the expensive
ingestion phase for each job run. Data placed in this manner can be
used by each subsequent job in CAM.

The placement of data is driven by the nature of MapReduce
jobs that are typically run on the data. For instance, if the dataset is



API

Description

int get_VM _distance(string vml, string vm2)

Returns the distance between two VMs.

long offset, long length)

struct block_location get_block_location(string src,

Returns the actual location of blocks.

int get_vm_networkinfo(string VM,

struct networkinfo)

Returns the network utilization information of
physical host on which the VM is running.

int get_vm_diskinfo(string vm,
diskinfo)

string device,

struct Returns disk utilization information.

int get_VM_cpuinfo(string vm,

struct cpuinfo)

Returns CPU utilization information of the
physcial host on which the VM is running.

Table 1: The key APIs provided by CAM to the MapReduce scheduler.
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Figure 2: Setup of CAM for supporting MapReduce in the cloud.

primarily used as input for various pattern search jobs, data local-
ity is likely to be more important than task locality. The user can
specify the nature of expected workloads, or the workload charac-
teristics can be automatically derived based on previously observed
I/O patterns.

The user submits a MapReduce job by providing the applica-
tion, e.g., relevant java class files, indicating a previously uploaded
dataset corresponding to the job, and the number and type of VMs
to be used for the job. Each VM typically supports several MapRe-
duce task slots depending on the number of virtual CPUs and vir-
tual RAM allocated to the VM. The more the number of VMs as-
signed to a job, the quicker the job finishes.

CAM determines an optimal placement for the set of new VMs
requested by the user by considering a variety of factors such as
current workload distribution among the cluster nodes, distribution
of the input dataset required by the job, and the physical locations
of the required master VM images. The images required to boot
the VMs on the selected nodes are created from the respective mas-
ter images using a copy-on-write mechanism provided by GPFS,
which allows fast provisioning of a VM image instance without
requiring a data copy of the master image. The job class files are
copied into the cloned VM image by mounting the image as a loop-
back file system. These changes are private to the cloned image.
Next, the data images are attached to the VMs and the respective
device files are mounted within the VM for the MapReduce tasks
to access the data contained within them.

Figure 2 illustrates the setup. Each machine is equipped with
local disks. There is a distributed file system installed on top of
these physical machines. The VM image files are stored in the
distributed file system. Moreover, there is a cloud manager that
allocates the resources for MapReduce jobs, and manages the data
placement and VM placement.

4. MIN-COST FLOW BASED PLACEMENT

In this Section, we present how CAM manages Data and VM
placement using a min-cost flow based approach. In our model,
we assume that it is possible for the cloud provider to profile a job
and estimate its characteristics such as job type (Map-Reduce in-
tensive, Map intensive, or Reduce intensive), and input, output and
intermediate data sizes. For our current implementation, we rely on
user-provided or predetermined job descriptions to identify a job’s
type. However, the system can be easily extended to determine
the amount of time an application spends in different phases (Map,
Reduce), and use this information to determine a job’s type. For
example, a job that spends more than 30% of the time in Map can
be considered as Map-intensive.

4.1 Data Placement

We express the problem of optimally placing data in a given
cloud cluster architecture as an instance of the well-known min-
cost flow problem [13]. To achieve this, we break down the place-
ment problem into three sub-problems, namely guaranteeing VM
closeness, avoiding hotspots, and balancing physical storage uti-
lization according to different job types. We capture the three con-
straints via similarly named factors in our model. VM closeness
expresses how close data should be placed to VMs so that the net-
work traffic between the corresponding VMs is minimized. Hotspot
factor expresses the expected load on a machine, and identifies ma-
chines that do not have enough computational resource to support
the VM(s) assigned to them. To avoid a hotspot, data needs to be
placed on the least-loaded machine. This can be determined by
measuring the current computational resource load of the machine
and adding it to the expected computational requirements of the
VMs that will work with the data to be placed on the machine. Stor-
age utilization expresses the percentage of total physical machine
storage space that is in use.

Job VM Hotspot | Storage
Type closeness | factor utilization
MR-intensive | Yes Yes Yes
M-intensive No Yes Yes
R-intensive No No Yes

Table 2: Significance of considered cost factors for different job
types.

Table 2 shows the significance of the three factors on the per-
formance of different MapReduce workloads. For workloads that
are both Map and Reduce intensive, related data should be placed
close together and on the least loaded machine. For Map intensive
workloads, the data should be placed on the least loaded machine,



but does not necessarily need to be placed close together due to the
light shuffle traffic in such workloads. For Reduce intensive work-
loads, the only concern is the storage utilization of the machine on
which the VM is to be placed. For all types of workloads, it is de-
sirable to place data evenly across racks to minimize the need to
rearrange data over time for supporting migrating VMs.

We use these factors in constructing a min-cost flow graph that
encodes the factors. Then we employ an extended solver to mini-
mize the global cost of the graph, thus solving the original problem
of determining how data should be placed in the virtualized cloud.

Figure 3: Sample network topology for data placement.

Hotspot
factor

Figure 4: Flow graph for sample data placement.

Figure 3 shows a sample network topology, which consists of six
physical nodes (p1, ..., pe) organized into three racks (r1,7r2,73)
with one master rack/switch (r4) connecting the racks. Note that
our model can support any topology where the network traffic can
be estimated. There are several challenges when min-cost flow is
used in our problem space. First, the three factors described above
have to be encoded into the graph. Second, the correlation be-
tween different VMs images placement has to be encoded (which
is shown to be non-trivial [13]). The flow-network model is aimed
at minimizing the flow cost, however, we employ the model to also
consider VM closeness as an objective, which requires it to solve
correlated constraints, i.e., a set of VMs would have to be placed to-
gether, but it does not matter where. Third, the three factors capture
different costs that are not directly comparable to each other. For
instance, VM closeness of 1 may signify the cost of copying 1 GB
of data within a local rack, where as Hotspot factor of 1 may signify
the cost of using a physical machine that has 1% more load than the
least-loaded machine in the cluster. The two costs are clearly not
the same. Thus, we need a way to formulate the three factors in the
same units for encoding them into a min-flow graph.

In contrast to the extant data placement techniques that work at
the granularity of the data blocks, our unit of data placement is a
VM image. Such coarse placement is justified in CAM as the goal

is to ensure that an entire image is available at one location. More-
over, our underlying storage layer of GPFS-SNC avoids striping the
data across different physical machines, thus making block-level
placement unnecessary.

We address these challenges as follows. Consider the corre-
sponding min-cost flow graph for Figure 3 as shown in Figure 4.
Here, two data items d; and d» with requests for 5 and 2 VM im-
ages, respectively, are submitted to the cloud. The number of VM
images requested by a data item is denoted as the data item’s supply
for our flow graph. Conversely, we add a sink node S to the graph,
that can “support” the VMs. The number of VMs that a sink node
can handle is assigned as a demand value. In our example, S has
a demand —7 and is the only place that can receive all the flows.
Each flow graph edge has two parameters attached to it, the capac-
ity of the edge and the cost for a flow to go through the edge. The
data nodes, represented by di and d in the graph, have outgoing
links to each rack with VM closeness as costs. The Hotspot factor is
encoded in the links from the racks to each physical node p within
its range. Note that even though r4 serves as a switch between
the racks, it is shown in the graph as directly connected to all the
physical nodes. This is to ensure that the least-loaded machine can
be chosen for Map-intensive jobs without being constrained by the
network topology. All the physical nodes, p1, ..., pe, are linked to
the sink node with Storage utilization as link costs. Note that there
is no direct link from data item node d; to the associated physical
host p;. This is to support scaling up the system, as otherwise the
number of links in the graph will increase with increasing number
of data items and physical nodes (much faster than the number of
racks). Consequently, making it inefficient to solve for min-flow on
the graph.

Data set Rack Physical Sink

d; Tk host p; S
Supply Z(Ndj) 0 0 _Z(Ndj)
Incoming N/A Ny, Rack Physical
link from host
Outgoing Rack Physical Sink N/A

link to
(cap., cost)

(Na;, aji) | host (Capi, vi)

(Capi, B:)

Table 3: Values assigned to the flow graph for data placement
used in CAM.

Table 3 provides the details of how we encode the various factors
and system information in our min-cost flow graph. Ng, is the
number of VM images requested by dataset d;. o captures VM
closeness. The cost, i, of outgoing link from the dataset d; to
physical host p; on which the data is placed on rack 7, is estimated
conservatively by the traffic in the shuffle phase as follows:

NUM Reducer — 1

Ok = S1Z€intermediate * s distancemaz, (1)

NUMReducer
where distancemaqz 1S the maximum network distance between
any two nodes in the rack 7, and siz€intermediate aNd NUM Reducer
are the total size of data output by the Map phase and the number
of reducers, respectively, of the MapReduce job running on data
set d; . Note that given its higher distancemq. a higher level rack-
/switch, e.g., 74 in our example, would have a higher « than the
lower racks, e.g., 71, r2 and r3, based on this formula. The Hotspot
factor is captured using (3; for physical node p;, and is estimated
by the current and expected load as follows:



Bi = a x (loadeqsp + loadeyrr — loadmin ), 2)

where loadcyrr and load . in represent the current load and min-
imum current load, respectively. a is a parameter that acts as a
knob to tune the weight of the Hotspot factor with respect to other
costs. Moreover, based on guidelines from [21] the expected load
is determined as loadeap = > ;(pj/(1 — pj) * CRes(d;), where
pj = A;j/uj. Here, \; represents the number of d;’s associated
jobs that arrive within a give time interval, y; represents the mean
time for each VM to process a block, and C'Res(d;) represents the
compute resources required by jobs running on data set d;. Storage
utilization of a physical node p; is captured by ~;, which is deter-
mined by the current storage utilization compared with minimum
storage utilization of all p;s.

~vi = b* (storageUtil,, — storageUtilmin) 3)

Here, b is another parameter used to fine tune the weight of
Storage utilization with respect to the other two factors. Finally,
Cap; = freespacep,/sizevimg, is a conservative estimation
of the capacity of each physical host calculated as the ratio of the
available storage capacity of p; and the size of the VM image. We
assume that all VM images have the same size (10 G'B in our ex-
periments) when initially uploaded to the cloud.

To enable the graph to capture the correlation between VM im-
age placement for one data request, we extend the solver to take
into account an additional parameter for each edge, split factor,
which specifies whether flows from a node are allowed to be split
across different links, and is either frue or false. In our example,
split factor for all the links from d; and ds are set to false. This
implies that all the flows from data nodes will wholly go through
one of the 1, ..., r4, but will not be split between the racks.

Once a new data upload request comes in, the cloud server up-
dates the graph and computes a global optimal solution. The graph
is updated as follows. First, the graph is cleaned of data and state
from the previous iteration. This is done by deleting the data nodes
that correspond to the datasets that have finished uploading, and
their outgoing links from the graph. Next, the cost of the edges
corresponding to the Hotspot factor and Storage utilization of the
physical nodes where the data was stored need to be updated using
equations 2 and 3. Then, a new data node d; is created for the new
data upload request with edges to each rack node 7, with costs cal-
culated based on the above equation 1. Once the graph is updated,
a new min-flow value is calculated, which is then used by the cloud
scheduler. This process ensures that the cloud scheduler is timely
provided with updated information to accommodate varying loads.

4.2 VM Placement

The goal of VM placement is to maximize the global data local-
ity and job throughput. Our model considers both VM migration
and delayed scheduling of a job as part of the optimal solution. De-
laying a job is used to explore better data locality opportunities that
can arise in the near future, while minimizing time wasted during
the waiting. Migrating a VM belonging to a job enables our sched-
uler to make room for other suitable jobs or to explore better loca-
tion opportunity. There are two assumptions that we make about
how VMs are migrated. First, we assume that once the VMs for
a job are allocated, the job will not be suspended or killed. There
is no preemption, which guarantees that the job will have some
quota of resources at all times during its life span. Second, even if
some of the VMs belonging to a job get migrated, their total num-
ber remains the same. We model the VM placement as minimum

cost flow problem, which has similar characteristics to the min-cost
flow based data placement.

An example graph for VM placement is shown in Figure 5. Each
job v; is submitted to the system at the source node with the num-
ber of requested VMs, Ny, as the value of supply. The goal of the
VM allocator is to either keep the job unscheduled (allocate 0) or
allocate Ny, VMs for each request. There is a single sink node, 5,
in the system with demand equal to minus the sum of the supply.
The request from each job acts as a flow that goes either through the
rack nodes, 7y, or through the unscheduled nodes, u;, and finally
to the sink. If a job is unscheduled, none of its VMs are allocated.
Otherwise, the flow goes through the physical nodes, p;. Each job
v; has a “preferred” node pr; that has outgoing links to a set of
physical hosts that would be preferable for v; to be scheduled on.
Based on the min-cost solution, a allocation scheme with min-cost
can be easily derived. If the VMs are allocated to the highest level
rack, it implies that the VMs can be allocated arbitrarily to any set
of nodes in the VMs under the rack. Once v; is scheduled, a “run-
ning” node (ru;) is added to the graph to keep track of information
about the execution of v;, which is then used by the solver to direct
migration decisions.

Figure 5: Flow graph for VM placement.

The job type information is modeled as the cost of the edge from
each job to the rack nodes in our flow based graph. The higher level
rack has higher cost than the lower lever rack in terms of reduce
traffic. We use conservative approximation to compute bounds on
data transfer costs. The cost to the highest level rack is estimated
by worst case VM arrangement with regards to the map and reduce
traffic. Similar rules apply to the lower level rack. The cost of the
edges to the unscheduled nodes are set to be increased over time so
that delayed jobs get allocated sooner than recently submitted jobs.
This cost also controls when a job stops waiting for better locality,
and thus offers a knob to tune the trade-off between data locality
and latency. The aggregated unscheduled nodes control how many
VMs can remain unscheduled, which is another system parameter
to control the system resource utilization and data locality trade-
off. The cost of the edges to running nodes set is increased over
time and is job-progress aware. For example, a reduce intensive
job run during the reduce phase might not be suitable for migration
to make room for a contending job request.

Similarly as for data placement, we provide means for expressing
the cost of reading data across different level of racks, migrating
VMs, and delay scheduling in the same units. For example, we
can choose that the copying of 1 GB data across rack local switch
costs the same as copying 0.5 GB data across one level higher rack,



Job node Preferred | Running | Unscheduled | Unscheduled Rack node | Physical host Sink

set node set | node set | node set aggregator node | set node set
supply > (Ny,) 0 0 0 0 0 0 —> (Ny,)
Incoming N/a job job job all unschedule job; rack; preferred | physical
link from nodes higher nodes set; host;

rack running unscheduled
nodes set aggregator

Outgoing Rack(Ny;, p;) | Physical | Physical | Unscheduled | Sink Physical Sink N/A
link to Prefer(Ny;, 0;) | host host aggregator (Nunsched, 0) host (Num, 0)
(cap., cost) RUH(NUj 2 05) (di,0) (ri,0) (NU]‘ ,0) (Nry,0)

U(NU]' , €5 )
flow Ny, 0/Noy, 0/Noy, 0/Noy, 0/Nunsched 0, N, 0,1 > (No,)

Table 4: Values assigned to the flow graph for VM placement used in CAM.

or the same as setting up of and starting one VM, or the same as
delaying a VM execution by say 10 seconds.

We categorize the various nodes in the graph into different types
as shown in Table 4.

e Preferred node set (pr;): These graph nodes point to a set
of physical nodes p; that have a job v;’s associated dataset
stored on them. An edge from a preferred node to p; has the
cost of 0 and the capacity of the number of VM disk images
stored on p;.

e Running node set (ru;): These are dynamically added nodes
that point to p;s that are currently hosting the v;’s VMs. An
edge from ru; to p; has a cost of 0 and the capacity of the
number of VMs running on p;.

e Unscheduled node set (u;): These nodes provide information
about currently unscheduled jobs. wu; has an outgoing edge
with capacity of N, and cost 0 to a unscheduled aggregator.

e Unscheduled aggregator node (ua): The graph contains a
single unscheduled aggregator. u has an outgoing edge with
cost 0 to the sink with capacity of Nynsched = Z(ij) =
M + M;qie, where M is the total number of VMs that the
cluster can support and M; ;. denotes the number of idle VM
slots allowed in the cluster.

e Rack node set (r): The rack node 7, represents a rack in the
topology of the cluster. It has outgoing links with cost 0 to
its subracks or, if it is at the lowest level, to physical nodes.
The links have capacity NN, that is the total number of VM
slots that can be serviced by its underlying nodes.

e Physical host node set (p;): Each physical host p; has an
outgoing link to the sink with capacity the number of VMs
that can be accommodated on the physical host N, and cost
0.

e Sink S: The single sink node with demand — 3 (Ny; ).

e Job node set (v;): This set represents each job node v; with
supply Nv;. It has multiple outgoing edges corresponding
to the potential VM allocation decisions for v;. These edges
are discussed in the following:

— Rack node set r,: An edge to 7y indicates that r, can
accommodate vj. The cost of the edge is p; that is
calculated by the map and reduce traffic cost. If the
capacity of the edge is greater than N, it implies that

the VMs of v; will be allocated on some p;s on the
rack.

— Preferred node set (pr;): An edge from job v; to the
job wide preferred nodes set pr; has capacity N,; and
cost ;. The cost is estimated by only the reduce phase
traffic, because in this case map traffic is assumed to be
0.

— Running node set (ru;): A link from job v; has capac-
ity of Ny; and cost ¢; = c*T', where T'is the time the
job has been executing on the set of machines and c is
a constant used to adjust the cost relative to other costs.

— Unscheduled node set (u;): An edge to the job-wide
unscheduled node wu; has capacity N,, and cost e,
which corresponds to the penalty of leaving job v; un-
scheduled. €; = d = T, where T is the time that job
vj is left unscheduled and d is a constant used to adjust
the cost relative to other costs. The split factor for this
link is marked as t rue, which means the allocation of
all the VMs are either satisfied or be delayed until the
next round.

When a VM allocation request is submitted, the flow graph is up-
dated to calculate a new global optimal solution for the VM sched-
uler. Similar to the update process for data placement, the graph
is cleaned by removing unnecessary nodes and edges. For exam-
ple, for each finished job v;, the associated nodes including the
unscheduled node w;, the preferred node pr; and the running node
ru; are deleted from the graph since the job has released its VM
resources. Then, the costs of edges related to the jobs that are still
running are updated according to Table 4 to reflect the jobs’ cur-
rent state. Next, a set of new nodes and edges are added into the
graph for the current VM allocation request, namely, a job node, a
related unscheduled node, and a preferred node. Moreover, the cor-
responding edge costs are again calculated as described in Table 4.

Once the solver outputs a min-cost flow solution, the VM alloca-
tion assignment can be obtained from the graph by locating where
the associated flow leads to for each VM request v;. Flow to an
unscheduled node indicates that the VM request is skipped for the
current round. If the flow leads to a preferred nodes set, the VM
request is scheduled on that set of nodes. Finally, if the flow goes
to a rack node, it implies that the VMs from the job are assigned to
arbitrary hosts in that rack.

The number of flows sent to a physical host through rack nodes
or preferred nodes set is not higher than the number of available
VMs of each physical hosts. This is guaranteed by the specified



link capacity from physical host to sink. Thus, all VM requests that
are allocated will be matched to a corresponding physical host.

S. EVALUATION

In this section we show the effectiveness of our approach through
a set of Hive [22] based, I/O-bound micro-benchmarks running on
a real cluster. We evaluate CAM’s network and storage topology
awareness against vanilla Hadoop, as to our best knowledge, CAM
is the first technique that reintroduces the concept of data local-
ity by exposing topology information in a cloud setting. We also
compare CAM’s data and VM placement against a state-of-the-art
technique using a mix of workloads on a large simulated cluster.

Number of jobs | 21 | 9| 7 | 4 3 3 3
Map tasks /job [ 1 | 2| 10 | 50 | 100 | 200 | 400

Table 5: Distribution of job sizes in terms of number of map
tasks used for micro-benchmark tests.

5.1 Micro-Benchmark Results

In this section, we use an I/O intensive workload based on a Hive
benchmark to show the effectiveness of topology awareness and
storage awareness for task placement. The reported numbers are
averages across three runs of a test.

Our cluster consists of 4 RHEL 6.0 physical machines that use
KVM as the hypervisor. Each machine has two quad-core 2.4 GHz
Intel ES620 processors and 48 GB of main memory. The machines
are organized in one rack and are connected to a dedicated Giga-
bit switch. We launched 23 VMs, 1 master and 22 slaves, on the
four physical hosts. Each VM is configured with 1 GB of main
memory and two 2.4 GHz vCPUs. Each VM has one map slot and
one reduce slot, with a map block size of 64 MB. MapReduce fair
scheduler is employed.

We generate a job submission schedule with 50 I/O-intensive
Grep jobs using Poisson distribution with job inter-arrival time 10
seconds. To make the comparison consistent, we generate the sub-
mission schedule with a submission duration of 554 seconds, record
it into a file and use it throughout the experiments. The size distri-
bution of each Grep job for this experiment is shown in Table 5
and is based on the experiments performed by Zaharia et al. [24].
Thus, our schedule is representative of a typical workload of a pro-
duction MapReduce cluster with a mix of many small jobs with a
single map task per job, and a few large jobs with more than 100
map tasks per job. The input for the Grep jobs is generated using
Teragen [5], with each map file consisting of 100 M records of size
0.1K for a total input size of 10 M B.

5.1.1 Impact of Network Topology Awareness

In our first experiment, we use our submission schedule to evalu-
ate the impact of network topology awareness in a CAM-based im-
plementation of Hadoop [5]. For this purpose, we measure the exe-
cution time for our schedule. We also measure the achieved locality
expressed as the percentage of total Map tasks that are scheduled
on the VMs (for VM locality) or physical nodes (for node locality)
that have the associated data. As a base case for comparison we use
vanilla Hadoop, which is unaware of the actual network topology
and in this case cannot determine if two VMs are running on the
same node or not.

The results are shown in Table 6. We observe that by exposing
topology information to Hadoop, the node locality is improved by
6.4%, and the average job execution time reduces by 8%. Figure 6

System VM Node Average
locality | locality | execution time

Hadoop 29.1% | 42.6% 48.3s
CAM-based | 29.0% 49% 3425
Hadoop

Table 6: Impact of network topology awareness on Hadoop per-
formance.

shows a break-up of the node locality in terms of the number of map
tasks for the two studied cases. Observe that network topology in-
formation effectively improves the node locality for jobs with 10
and 50 map tasks by 8% and 9%, respectively. Jobs with more
than 50 map tasks see a decreasing improvement, because with
the increased number of maps in the small cluster the chance of
co-locating map tasks on the same node also increases. However,
topology awareness is important even in such a small cluster as
most MapReduce jobs have fewer than 50 map tasks [24]. Note
that the relatively good performance of vanilla Hadoop is due to
the fact that the test cluster consists of a small number of physical
hosts located on the same rack.

Node Locality

Topology Aware —e—
_ Topology unAware -—x—

0 50 100 150 200 250 300 350 400

0

Number of Map Tasks

Figure 6: Breakdown of observed locality for jobs with different num-
ber of map tasks, with and without network topology awareness.

System Average execution time
Hadoop 65.6s
CAM-based 48.3s

Hadoop

Table 7: Impact of storage topology awareness on Hadoop per-
formance.

5.1.2 Impact of Storage Topology Awareness

In our next experiment, we observe the impact of providing stor-
age topology hints to Hadoop. For this test, we use the 22 VM
slaves with local data, and then migrate 6 of the VM images from
one physical host to another. This makes 27% (= 6/22) of the data
to become remote. Once again we measure the average job execu-
tion time for our schedule. The results are sown in Table 7. We
observe that storage awareness can help improve the MapReduce
execution time for our job schedule by 26.5%, on average.

These results show that CAM-based Hadoop can provide better
performance for Hadoop tasks by exposing network and storage
topology information to the Hadoop scheduler.
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Figure 8: Fraction of data accessed remotely for Map-intensive work-
loads.

5.2 Macro-Benchmark Results

In our next set of experiments, we show the effectiveness of our
approach. For this purpose, we extend the simulator PurSim [21]
to include the min-cost flow data placement, VM placement, net-
work awareness, and storage awareness mechanisms described in
Section 4. PurSim is a network flow level discrete event simulator
that simulates the MapReduce execution semantics. Similarly as
in previous tests, we generate a schedule with job size distribution
based on Zaharia et al. [24] shown in Table 8. For these experi-
ments the interarrival time is randomly generated between 60 and
90 seconds.

Number of jobs | 38 | 16 | 14 | 8 6 6 4 8

Map tasks /job | 1 | 2 | 10 | 50 | 100 | 200 | 400 | 800

Table 8: Distribution of job sizes in terms of number of map
tasks used for macro-benchmark tests.

5.2.1 Data and VM Placement

In this section, we evaluate the effectiveness of min-cost flow
(MCF) Data and VM placements used in CAM. We consider three

types of MapReduce workloads, namely Map-intensive, MapReduce-

intensive, and a workload with a mix of Map, MapReduce, and
CPU-intensive jobs.

We consider two data placement strategies, namely load and lo-
cality aware (LLA) data placement and MCF data placement. We
also consider two VM placement strategies, namely Hybrid VM
placement and MCF VM placement. The LLA and Hybrid strate-
gies are defined in Purlieus, and are used as a baseline for compar-
ison to CAM’s MCF based approach.

Figures 7, 9, and 11 show the average execution time for the
three workloads considered. Similarly, Figures 8, 10, and 12 plot
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Figure 9: Execution time for MapReduce-intensive workloads.
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Figure 10: Fraction of data accessed remotely for MapReduce-
intensive workloads.

the percentage of total data (for the tests) that is accessed remotely
across the rack under each combination of VM and data placements
for the three studied workloads. For the Map-intensive workload,
the combination of MCF VM and data placement produces a 3z
speedup over the baseline, which is due to a 3.3x decrease in rel-
ative cross rack traffic. On the other hand, the same combination
for the MapReduce-intensive traffic produces an 8x speedup with a
corresponding 3 fold decrease in network traffic. The MCF place-
ments see the best speedup of 8.6z verses the baseline for the mixed
workload, due to the fact that they all but eliminate cross network
traffic.

For all workload types using either the MCF data placement
combined with the baseline VM placement, or conversely using the
MCF VM placement with the baseline data placement, produces a
significant speedup. Hence, the MCF graphs constructed for both
placement optimization problems successfully optimize the respec-
tive factors and produce an optimal solution. Note that combining
both techniques does not yield further significant benefit.

5.2.2  Impact of Network Topology Awareness

In this experiment, we configure our VM cluster to run 100 jobs
simultaneously on 192 VMs using Hadoop fair share scheduling
mechanism. Table 9 shows that network topology awareness im-

Network topology | VM locality | Average job
awareness execution time
Unaware 82% 24.6s
Aware 99% 224 s

Table 9: Impact of network topology awareness on Hadoop per-
formance.
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proves the map tasks locality on average by 7%, and reduces the
average job execution time by 9%. Figure 13 shows the breaks up
for the percentage of map VM locality with respect to the num-
ber of map tasks. We observe that network topology awareness is
most effective for jobs that have less than 50 map tasks, improving
locality by 24.2% on average.
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Figure 13: Impact of network topology awareness on locality of map
tasks broken down in terms of number of map tasks.

5.2.3  Impact of Storage Topology Awareness

In our next experiment, we demonstrate the effectiveness of pro-
viding storage topology information hints to MapReduce. We vary
the number of VM image files that are placed remotely with respect
to the physical node where the VM is to be run. First, we measure
how loss of VM image locality affects the average execution time.

Figure 14 shows the results. We observe that as more VMs are
placed remotely, the average job execution time increases. For ex-
ample, with 80% remote VM images, the average Mapreduce job
execution time worsens 36% compared to the all local images case
(0%). As seen from the previous experiments, CAM-based Hadoop
achieves all local images using the storage topology information,
and thus offers an effective solution for VM placement.
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Figure 14: Impact of storage topology awareness on MapReduce per-
formance in terms of percentage of remote VM images.

Next, we measure the locality of map tasks achieved with vary-
ing VM images placed remotely from their physical host. Figure 15
shows the percentage of the number of local map tasks with varying
remote VM images. We see that without exposing storage topology
information, the locality of map tasks is decreased. Conversely, the
amount of data accessed remotely across the rack increased. Thus,
by exposing storage locality, CAM can minimize the cross rack
traffic due to remotely accessing VM images.
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Figure 15: Impact of storage topology awareness on MapReduce per-
formance.

5.2.4  Scalability of CAM

We now discuss the scalability of our min-cost flow model. In
our macro-benchmark experiments we found the overhead to be
negligible in a cluster of size 192 after repeated tests. As shown
in Quincy [13], even for a large cluster size (thousands of nodes) a
similarly-sized flow network can be solved in a few seconds, which
is significantly smaller than the running time of typical MapReduce



jobs. That is because techniques such as successive approximation
push-relabel can process large-scale graphs efficiently. Moreover,
the overhead of the solver is incurred only once, when the job is
submitted for scheduling.

In summary, CAM offers to simultaneously meet the different
constrains to co-locate VM and data on physical hosts, and im-
proves overall MapReduce in the cloud application performance.

6. RELATED WORK

Resource allocation for MapReduce in the cloud has received a
lot of attention in recent works [13,15,18,21,25]. The project clos-
est to our own is a resource allocation system called Purlieus, devel-
oped by Palanisamy et al. [21]. Purlieus arrives at a job-local data
and VM placement solution according to heuristics specifically de-
veloped for different job types, such as Map-input or Reduce-input
heavy. The system defines both data and VM locality, as well as
physical machine load, which are similar to the notion of VM close-
ness and Hotspots in CAM. Unlike Purlieus, CAM employs a min-
cost flow based approach, which can consider both VM migration
as well as delayed scheduling to arrive at a global optimal place-
ment. Additionally, CAM optimizes for Storage utilization, which
allows it to do data, as well as CPU utilization, load balancing, con-
sequently improving the overall VM placement. Moreover, CAM
uses both the actual location of data and network topology as its
inputs, whereas Purlieus relies on the virtual topology which may
be different from the physical topology.

LATE [25] improves MapReduce performance in the cloud by
performing effective speculative execution to reduce the job run-
ning time, while ignoring speculative task locality. CAM is differ-
ent from LATE in that it couples the data placement, VM place-
ment, and task placement to systematically improve data locality
for MapReduce in the cloud.

There are several efforts that focus on MapReduce task schedul-
ing in terms of data locality and fairness. Mantri [3] manages out-
liers in a resource and cause aware manner on native cluster. De-
lay scheduling [24] target fairness scheduling while maximize the
map tasks locality on native clusters by delaying a task multiple
times. Although delay scheduling offers a simple technique to pro-
vide better locality, it does not consider global scheduling, thus it
loses the opportunity for achieving better performance. Moreover,
the effectiveness of delay scheduling relies on the assumption that
most tasks comprise of either small or long jobs. Quincy [13] uses
similar graph techniques, but it differs from CAM in terms of prob-
lem space and associated flow network construction. Quincy strikes
a balance between fairness and data locality, while CAM focuses
on optimizing data/VM placement of MapReduce applications in
the cloud. As a result, the factors encoded in the flow graph (VM
closeness, Hotspot, etc.) are fundamentally different from that of
Quincy’s.

A plethora of VM placement and migration techniques are pro-
posed in the cloud to optimize for minimizing network traffic, en-
ergy, meeting SLA requirement, etc. [7,11,16,17,20,23]. The VM
placement problem is essentially a bin-packing problem for which
various heuristics are applied. Such work is different from CAM,
because unlike CAM it does not consider data placement and task
placement, which are critical for MapReduce applications in the
cloud.

7. CONCLUSION

In this paper, we have presented the design of CAM, a platform
with an innovative resource scheduler designed to address perfor-
mance degradation of MapReduce jobs when running in the cloud.

CAM adopts a three level approach to avoid placement anomalies
due to inefficient resource allocation: placing data within the clus-
ter that run jobs that most commonly operate on the data; select-
ing the most appropriate physical nodes to place the set of vir-
tual machines assigned to a job; and exposing, otherwise hidden,
compute, storage and network topologies to the MapReduce job
scheduler. CAM uses a flow-network-based algorithm that is able
to reconcile resource allocation with a variety of other competing
constraints such as storage utilization, changing CPU load and net-
work link capacities. Evaluation of our approach using both micro-
benchmarking and simulation on a 23 VM cluster shows that com-
pared to a state-of-the-art resource allocator, CAM reduces network
traffic and average MapReduce job execution time by a factor of 3
and 8.6, respectively.

CAM leads to important follow-on work. While we observe
promising results in our experiments, we would like to further tune
our min-cost flow model for data and VM placement and validate
its effectiveness in larger real VM clusters. The topology infor-
mation exposed by CAM could be leveraged by other topology-
sensitive applications. We would like to create a standardized API
that could be adopted as a cloud standard such that applications are
able to access the service regardless of the specific cloud imple-
mentation.
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