
ID-Based Encryption for Complex Hierarchies with
Applications to Forward Security and Broadcast

Encryption ∗

Danfeng Yao
Dept. of Computer Science

Brown University
Providence, RI 02912

dyao@cs.brown.edu

Nelly Fazio
Dept. of Computer Science

Courant Institute of Mathematical Sciences
New York University
New York, NY 10012

fazio@cs.nyu.edu

Yevgeniy Dodis
Dept. of Computer Science

Courant Institute of Mathematical Sciences
New York University
New York, NY 10012

dodis@cs.nyu.edu

Anna Lysyanskaya
Dept. of Computer Science

Brown University
Providence, RI 02912

anna@cs.brown.edu

ABSTRACT
A forward-secure encryption scheme protects secret keys
from exposure by evolving the keys with time. Forward secu-
rity has several unique requirements in hierarchical identity-
based encryption (HIBE) scheme: (1) users join dynami-
cally; (2) encryption is joining-time-oblivious; (3) users evolve
secret keys autonomously.

We present a scalable forward-secure HIBE (fs-HIBE) scheme
satisfying the above properties. We also show how our fs-
HIBE scheme can be used to construct a forward-secure
public-key broadcast encryption scheme, which protects the
secrecy of prior transmissions in the broadcast encryption
setting. We further generalize fs-HIBE into a collusion-
resistant multiple hierarchical ID-based encryption scheme,
which can be used for secure communications with entities
having multiple roles in role-based access control. The secu-
rity of our schemes is based on the bilinear Diffie-Hellman
assumption in the random oracle model.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public-Key Cryptosystems

∗D. Y. is funded by NSF grants CCF–0311510, CNS–
0303577, and IIS–0324846 and by a research gift from Sun
Microsystems; Y. D. was partly funded by NSF CAREER
Award CCR-0133806 and Trusted Computing Grant CCR-
0311095; A. L. is funded by NSF under grant CNS-0347661.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

General Terms
Algorithms, Security, Theory

Keywords
Forward security, ID-Based Encryption, Broadcast Encryp-
tion

1. INTRODUCTION
The idea of an identity-based encryption (IBE) scheme

is that an arbitrary string can serve as a public key. The
main advantage of this approach is to largely reduce the
need for public key certificates and certificate authorities,
because a public key is associated with identity information
such as a user’s email address. A first scheme for identity-
based encryption (BF-IBE) was based on the bilinear Diffie-
Hellman assumption in the random oracle model by Boneh
and Franklin [8]. In IBE schemes private key generator
(PKG) is responsible for generating private keys for all users,
and therefore is a performance bottleneck for organizations
with large number of users. Hierarchical identity-based en-
cryption (HIBE) schemes [6, 19, 23] were proposed to alle-
viate the workload of a root PKG by delegating private key
generation and identity authentication to lower-level PKGs.
The organization of PKGs and users forms a hierarchy that
is rooted by the root PKG. Gentry and Silverberg [19] ex-
tended BF-IBE scheme and presented a fully scalable hierar-
chical identity-based encryption (GS-HIBE) scheme. Later,
a HIBE construction with a weaker notion of security was
given by Boneh and Boyen [6]. Most recently, new IBE and
HIBE constructions that can be proved to have the full se-
curity without the random oracle model [7, 31] were given.

Due to the inherent key-escrow property1, the standard
notion of HIBE security crucially depends on secret keys re-
maining secret. Key exposure is a realistic threat over the

1A PKG knows the private keys of its child nodes.

lifetime of such a scheme. To mitigate the damage caused
by the exposure of secret key information in HIBE, one
way is to construct a forward-secure hierarchical identity-
based encryption (fs-HIBE) scheme that allows each user in
the hierarchy to refresh his or her private keys periodically
while keeping the public key the same. A forward-secure
public-key encryption scheme has recently been presented
by Canetti, Halevi and Katz [11]. But surprisingly, a prac-
tical fs-HIBE scheme has several unique requirements that
cannot be achieved by trivial combinations of the existing
fs-PKE schemes [11, 24] and HIBE scheme [6, 19].

Apart from being interesting on its own, fs-HIBE is a
useful tool that lends itself to several applications. One
such application is the implementation of forward secrecy
for public-key broadcast encryption. While forward secrecy
is an important requirement in any context, it is especially
needed for broadcast encryption [15, 17, 26, 32]. This is be-
cause by design an adversary can freely listen to any broad-
cast and store it. Then, should the adversary ever succeed
in recovering any user’s secret key, she will manage to de-
crypt all past broadcasts that such user was authorized to
receive unless we have forward secrecy.

Below, we discuss the notion of forward security for HIBE
in more detail, and then explain why it cannot be trivially
achieved by existing techniques such as a combination of
fs-PKE [11] and HIBE [6, 19] schemes.

1.1 Forward Security
The central idea of forward secrecy is that the compro-

mise of long-term keys does not compromise past session
keys and therefore past communications. This notion was
first proposed by Günther [18] and later by Diffie et al. [12]
in key exchange protocols. The notion of non-interactive
forward security was proposed by Anderson [2] in 1997 and
later formalized by Bellare and Miner [3], who also gave a
forward-secure signature scheme followed by a line of im-
provement [1, 27]. In this model, secret keys are updated
at regular intervals throughout the lifetime of the system;
furthermore, exposure of a secret key corresponding to a
given interval does not enable an adversary to break the
system (in the appropriate sense) for any prior time period.
The model inherently cannot prevent the adversary from
breaking the security of the system for any subsequent time
period. Bellare and Yee [5] provided a comprehensive treat-
ment of forward security in the context of private key based
cryptographic primitives.

The first forward-secure public-key encryption (fs-PKE)
scheme was given by Canetti, Halevi, and Katz [11] based
on the Gentry-Silverberg HIBE [19] scheme. The fs-PKE
scheme constructs a binary tree, in which a tree node cor-
responds to a time period and has a secret key. Children
of a node w are labeled w0 and w1, respectively. Given
the secrets corresponding to a prefix of a node representing
time t, one can compute the secrets of time t. In order to
make future keys computable from the current key, the se-
crets associated with a prefix of a future time are stored in
the current key. After the key for the next time period is
generated, the current decryption key is erased. The state-
of-the-art fs-PKE scheme [11] is based on the decisional bi-
linear Diffie-Hellman assumption [8] in the standard model.
Canetti, Halevi and Katz also gave a more efficient scheme
in the random oracle model [11].

1.2 Requirements of an fs-HIBE Scheme
Intuitively, forward security in a HIBE scheme implies

that compromise of the current secret key of a user only
leads to the compromise of the user and his descendants’
subsequent communications. We will give a formal definition
of security in Section 2.3. Our design of a forward-secure
HIBE scheme also takes system properties such as scalability
and efficiency into consideration. This is essential in the
management of large scale distributed systems. Below, we
define the requirements for a scalable forward-secure HIBE
scheme.

• New users should be able to join the hierarchy and
receive secret keys from their parent nodes at any time.

• Encryption is joining-time-oblivious, which means that
the encryption does not require knowledge of when a
user or any of his ancestors joined the hierarchy. The
sender can encrypt the message as long as he knows
the current time and the ID-tuple of the receiver, along
with the public parameters of the system.

• The scheme should be forward-secure.

• Refreshing secret keys can be carried out autonomously,
that is, users can refresh their secret keys on their own
to avoid any communication overhead with any PKG.

Surprisingly, the design of an fs-HIBE scheme that fulfils
the above system requirements turns out to be non-trivial,
despite the fact that both HIBE [19] scheme and fs-PKE
[11] scheme are known. Intuitive combinations of the two
schemes fail to achieve all the desired system features. Next,
we explain why this is the case.

1.3 Some Forward-Secure HIBE Attempts
In this section, we make three simple forward-secure HIBE

constructions based on HIBE scheme [19] and fs-PKE scheme
[11], and explain why these naive schemes do not satisfy the
requirements of a practical fs-HIBE scheme.

Scheme I Consider a scheme based on the HIBE [19] scheme.
The user with a given ID tuple (ID1, . . . , IDh) maintains
two sub-hierarchies (subtrees): the time subtree that evolves
over time for forward security (as in fs-PKE [11]), and the
ID subtree to which other nodes are added as children join
the hierarchy. To encrypt a message for this user at time t,
use the HIBE with identity (ID1, . . . , IDh, t). The user can
decrypt this message using HIBE decryption, using the fact
that he knows the key from the time subtree. The user’s
children are added to the hierarchy into the ID subtree.

The problem with this scheme is combining dynamic joins
with forward security. Suppose a user never erases the se-
cret key corresponding to the root of his ID subtree. Then
should this key ever be exposed, the forward secrecy of his
children is compromised. On the other hand, if this secret
key is ever erased, then no nodes can be added as children
of (ID1, . . . , IDh) in the hierarchy, and so this scheme will
not support dynamic joins.

The lesson we learn from this failed scheme is that all keys
must be evolved together.

Scheme II Let us try to repair Scheme I by making sure
that the key from which children’s keys are derived is also
evolving over time. In Scheme II, the public key of a user
consists of alternating ID-tuples and time strings, which is

referred to as an ID-time-tuple. The private key of a user
serves three purposes: decryption, generating private keys
for new children, and deriving future private keys of the
user. The public key of a newly joined child is the parent’s
ID-time-tuple appended with the child’s ID. That key is in
turn used for generating keys for lower-level nodes further
down the hierarchy. For example, if Alice joins Bob, the
root, at time (January, Week 1) and Eve joins Alice at time
(January, Week 2), Eve’s public key is (Bob, January, Week
1, Alice, January, Week 2, Eve). Encrypting a message
to Eve requires the sender to know when Eve and all her
ancestors joined the system. Therefore Scheme II is not
joining-time-oblivious.

The lesson we learn from the failed Scheme II is that the
keys must evolve in a way that is transparent to the encryp-
tion algorithm.

Scheme III In our final unsuccessful attempt, Scheme III,
a user adds a child to the hierarchy by giving him or her
secret keys that depend both on the current time and on
the child’s position in the hierarchy. This is achieved by
requiring that messages may only be decrypted by those who
know two keys: one corresponding to the current time and
the other corresponding to their positions in the hierarchy.
Each user autonomously evolves his time key, and gives his
newly joined children his time key in addition to their ID
keys.

It is easy to see that this scheme is not forward-secure.
An adversary who joins the hierarchy at the beginning of
time can corrupt a user at any future time and obtain his
or her ID key. Moreover, this adversary can derive any past
time key (because he joined at the beginning of time). Thus,
this adversary may decrypt any past message addressed to
the exposed user.

Comparisons All the above trivial approaches fail. There-
fore, constructing a forward-secure hierarchical ID-based en-
cryption scheme that is both secure and scalable is not so
straightforward. Our implementation overcomes the prob-
lems existing in naive combinations of the two schemes.

1.4 Our Contributions
We make several contributions in this paper. First, we

present a scalable and joining-time-oblivious forward-secure
hierarchical identity-based encryption scheme that allows
keys to be updated autonomously. Second, we show how
our fs-HIBE scheme can be used to obtain a forward-secure
public-key broadcast encryption (fs-BE) scheme. Third, we
generalize our fs-HIBE scheme and discuss its application in
secure communications with entities having multiple roles in
role-based access control (RBAC) [29].

1.4.1 Forward-Secure HIBE Scheme
Our fs-HIBE protocol is based on the HIBE scheme by

Gentry and Silverberg [19] and forward-secure public-key
encryption (fs-PKE) [11] scheme due to Canetti, Halevi and
Katz. It satisfies the requirements of dynamic joins, joining-
time-obliviousness, forward security, and autonomous key
updates.

A HIBE scheme involves only one hierarchy, whereas an
fs-HIBE scheme has two hierarchies: ID and time. Each
(ID-tuple, time) pair can be thought of as a point on the
two-dimensional grid as follows. On the x-axis, we start
with the identity of the root Public Key Generator in the
ID hierarchy (e.g. Hospital), then in position (1,0) we have

the identity of the first-level PKG (e.g. ER). In position
(2,0) there is the identity of the second level PKG (e.g. Doc-
tor), and in position (3,0) there may be another PKG or an
individual user (e.g. Bob). Thus the x-axis represents an
ID-tuple, for example (Hospital, ER, Doctor, Bob). Simi-
larly, the y-axis represents the time. Divide a duration of
time into multiple time periods and arrange them as leaf
nodes of a tree. Internal nodes of the tree represent the
time spans associated with their child nodes. Then, the ori-
gin of the grid corresponds to the root of the time hierarchy
(e.g. 2005). In position (0, 1) we have the first level of the
time hierarchy (e.g. January), and in position (0, 2) there
is the next level of time hierarchy (e.g. Week 1). Thus a
time period can be expressed as a tuple on the y-axis, for
example (2005, January, Week 1).

In an fs-HIBE scheme, the secret key of an (ID-tuple,
time) pair is associated with some path on the grid. For each
grid point on that path, there is a corresponding element in
this secret key. Such a path (secret key) is not joining-time-
oblivious: it depends on when the user, as well as the nodes
higher up, join the system. However, when encrypting, the
sender does not have to know the path. What is non-trivial
here is that, the path (secret key) and ciphertext of our fs-
HIBE scheme are designed in such a way that we do not need
to come up with a separate ciphertext for each possible path
in order to achieve joining-time-obliviousness.

Our fs-HIBE scheme has collusion resistance and chosen
ciphertext security in the random oracle model [4] assuming
the difficulty of the bilinear Diffie-Hellman problem [8, 11,
19], provided that the depths of the ID hierarchy and time
hierarchy are bounded by constants. The formal definitions
of the scheme are given in the paper and the proofs are in
the full paper [33]. The complexities of various parameters
in our fs-HIBE scheme are summarized in Table 1 and are
discussed in Section 6.

1.4.2 Forward-Secure Broadcast Encryption Scheme
We show how our fs-HIBE scheme can be used to con-

struct a scalable forward-secure public-key broadcast en-
cryption (fs-BE) scheme, which protects the secrecy of prior
transmissions. A broadcast encryption (BE) [13, 14, 20, 21,
25, 28] scheme allows content providers to securely distribute
digital contents to a dynamically changing user population.
Each active user is issued a distinct secret key when he joins
the system, by a trusted center. In comparison with the
symmetric-key setting, a public-key BE scheme of [13] has
a single public key associated with the system, which allows
the distribution of the broadcast workload to untrusted third
parties.

In a scalable forward-secure public-key broadcast encryp-
tion (fs-BE) scheme, users should be able to update their
secret keys autonomously, and the trusted center should al-
low users to dynamically join the broadcast system at any
time while achieving forward security. In addition, each con-
tent provider does not need to know when each user joins
the system in order to broadcast the encrypted contents.
The encryption algorithm of an fs-BE scheme should only
depend on the current time and the set of authorized users,
and thus be joining-time-oblivious. Applying our fs-HIBE to
the public-key BE scheme [13] yields such an fs-BE scheme.

1.4.3 Multiple Hierarchical ID-Based Encryption
We further generalize our forward-secure hierarchical ID-

based encryption scheme into a collusion-resistant multi-
ple hierarchical identity-based encryption (MHIBE) scheme,
and describe its application in secure communications with
individuals who have multiple roles in role-based access con-
trol (RBAC) [29]. In large-scale organizations, a user may
own multiple identities, each of which is represented by an
ID-tuple. In MHIBE, a message can be encrypted under
multiple ID-tuples (identities) and can be decrypted only
by those who have all the required identities. The collusion-
resistant property cannot be achieved using separate HIBE
schemes.

1.5 Outline of the Paper
The rest of the paper is organized as follows. In Section

2 we give definitions for fs-HIBE scheme and its security.
In Section 3, we first recall the bilinear Diffie-Hellman as-
sumption [8], and then give the construction of an fs-HIBE
scheme and analyze the security. In Section 4, we show
how an fs-HIBE scheme can be used to add forward secrecy
to a public-key broadcast encryption scheme. In Section 5,
we describe the multiple hierarchical ID-based encryption
scheme. The complexity analysis is given in Section 6.

2. FORWARD-SECURE HIBE (FS-HIBE)
This section defines the notion of forward secrecy for HIBE

scheme and the related security.
In an fs-HIBE scheme, secret keys associated with an ID-

tuple are evolved with time. At any time period i an entity
joins the system (hierarchy), its parent node computes its
decryption key corresponding to time period i and other
values necessary for the entity to compute its own future
secret keys. Once the newly joined entity receives this secret
information, at the end of each period it updates its secret
key and erases the old key. During time period i, a message
is encrypted under an ID-tuple and the time i. Decryption
requires the secret key of the ID-tuple at time i.

2.1 Notations
Time Period: As usual in forward-secure public-key en-
cryption [11] scheme, we assume for simplicity that the total
number of time periods N is a power of 2; that is N = 2l.
ID-tuple: An entity has a position in the hierarchy, defined
by its tuple of IDs: (ID1, . . . , IDh). The entity’s ancestors
in the hierarchy are the users / PKGs whose ID-tuples are
{(ID1, . . . , IDi) : 1 ≤ i < h}. ID1 is the ID for the root PKG.

Keys: There are two types of keys: skw,(ID1,...,IDh) and
SKi,(ID1,...,IDh). The node key skw,(ID1,...,IDh) is the key as-
sociated with some prefix w of the bit representation of a
time period i and a tuple (ID1, . . . , IDh). SKi,(ID1,...,IDh)

denotes the key associated with time i and an ID-tuple
(ID1, . . . , IDh). It consists of the following sk keys
(ski,(ID1,...,IDh), {skw1,(ID1,...,IDh) : w0 is a prefix of i}).
When this causes no confusion, we denote the keys as skw,h

and SKi,h, respectively.

2.2 fs-HIBE: Syntax
Forward-secure Hierarchical ID-Based Encryption
(fs-HIBE) scheme: an fs-HIBE scheme is specified by five
algorithms: Root Setup, Lower-level Setup, Update,

Encrypt, and Decrypt:

Root Setup: The root PKG takes a security parameter k
and the total number of time periods N , and returns params
(system parameters) and the initial root key SK0,1. The sys-
tem parameters include a description of the message space
M and the ciphertext space C. The system parameters will
be publicly available, while only the root PKG knows the
initial root key.
Lower-level Setup: This algorithm is run by the parent
of a newly joined child at time i to compute the child’s
private key. During a time period i, a lower-level entity
(user or lower-level PKG) joins in the system at level h.
Its parent at level h − 1 computes the entity’s key SKi,h

associated with time period i. The inputs are the parent’s
private key SKi,h−1, time i, and the ID-tuple of the child.
(Note that the functionality of our Lower-level Setup

includes the functionality of both the Lower-level Setup

and the Extraction algorithm in the HIBE [19] scheme.
This simplifies the protocol without any loss of generality.)
Update: During the time period i, an entity (PKG or indi-
vidual) with ID-tuple (ID1, . . . , IDh) uses SKi,h to compute
his key SK(i+1),h for the next time period i + 1, and erases
SKi,h.
Encrypt: A sender inputs params, the index i of the cur-
rent time period, M ∈ M and the ID-tuple of the intended
message recipient, and computes a ciphertext C ∈ C.
Decrypt: During the time period i, a user with the ID-
tuple (ID1, . . . , IDh) inputs params, C ∈ C, and its secret
key SKi,h associated with time period i and the ID-tuple,
and returns the message M ∈M.
Encryption and decryption must satisfy the standard con-
sistency constraint, namely when SKi,h is the secret key
generated by algorithm Lower-level Setup for ID-tuple
(ID1, . . . , IDh) and time period i, then: ∀M ∈ M, decryp-
tion of the ciphertext C with params and the key SKi,h

yields the message M , where C is the result of the encryp-
tion of M under time i and (ID1, . . . , IDh).

2.3 fs-HIBE: Security
We allow an attacker to make lower-level setup queries.

Also, we allow the adversary to choose the time period and
the identity on which it wishes to be challenged. Notice that
an adversary may choose the time period and the identity of
its targets adaptively or nonadaptively. An adversary that
chooses its targets adaptively first makes lower-level setup
queries and decryption queries, and then chooses its targets
based on the results of these queries. A nonadaptive adver-
sary, on the other hand, chooses its targets independently
from the results of the queries he makes. Security against an
adaptive-chosen-target adversary, which is captured below,
is the stronger notion of security than the non-adaptive one.
It is also stronger than the selective-node security defined in
the fs-PKE scheme by Canetti et al. [11].
Chosen-ciphertext Security (CCA2): We say an fs-
HIBE scheme is semantically secure against adaptive chosen
ciphertext, time period, and identity attack, if no polyno-
mial time bounded adversary A has a non-negligible advan-
tage against the challenger in the following game.

Setup: The challenger takes a security parameter k, and
runs the Root Setup algorithm. It gives the adversary
the resulting system parameters params. It keeps the root
secrets to itself.
Phase 1: The adversary issues queries q1, . . . , qm, where qi

is one of the followings:

1. Lower-level setup query (ti, ID-tuplei): the challenger
runs the lower-level setup algorithm to generate
the private key SK(ti, ID-tuplei)

corresponding to
(ti, ID-tuplei), and sends SK(ti,ID-tuplei)

to the adver-
sary.

2. Decryption query (ti, ID-tuplei, Ci): the challenger runs
the lower-level setup algorithm to generate the
private key SK(ti,ID-tuplei)

corresponding to the pair
(ti, ID-tuplei), runs the Decryption algorithm to de-
crypt Ci using SK(ti,ID-tuplei)

, and sends the resulting
plaintext to the adversary.

These queries may be asked adaptively. Also, the queried
ID-tuplei may correspond to a position at any level in the
ID hierarchy, and the adversary is allowed to query for a
future time and then for a past time.
Challenge: Once the adversary decides that Phase 1 is
over, it outputs two equal length plaintexts M0, M1 ∈ M,
a time period t∗ and an ID-tuple∗ on which it wishes to be
challenged. The constraint is that no lower-level setup query
has been issued for ID-tuple∗ or any of its ancestors for any
time t ≤ t∗.

The challenger picks a random bit b ∈ {0, 1}, and sets
C∗ = Encrypt(params, t∗, ID-tuple∗, Mb). It sends C∗ as
a challenge to the adversary.
Phase 2: The adversary issues more queries qm+1, . . . , qn,
where qi is one of:

1. Lower-level setup query (ti, ID-tuplei), where the time
period ti and ID-tuplei are under the same restric-
tion as in Challenge: the challenger responds as in
Phase 1.

2. Decryption query (ti, ID-tuplei, Ci) being not the same
as (t∗, ID-tuple∗, C∗): the challenger responds as in
Phase 1.

Guess: The adversary outputs a guess b′ ∈ {0, 1}. The
adversary wins the game if b = b′. We define its advantage
in attacking the scheme to be |Pr[b = b′]− 1

2
|.

3. A FORWARD-SECURE HIBE SCHEME
Here, we present a forward-secure hierarchical identity-

based encryption scheme. Following the presentation stan-
dard in the IBE literature [8, 19], we first present an fs-HIBE
with one-way security. One-way security is the weakest no-
tion of security. It means that it is hard to recover a plain-
text with a passive attack. A standard technique, due to Fu-
jisaki and Okamoto [16], converts one-way security to CCA2
security in the random oracle model. We give our definition
of one-way security and the Fujisaki-Okamoto conversion of
the one-way secure fs-HIBE in the full paper [33]. Next, we
first give the number theoretic assumptions needed in our
scheme, and then describe the algorithms in our construc-
tion. Due to the page limit, proofs of security of our fs-HIBE
scheme are shown in the full version of the paper [33].

3.1 Assumptions
The security of our fs-HIBE scheme is based on the difficulty
of the bilinear Diffie-Hellman (BDH) problem [8]. Let G1

and G2 be two cyclic groups of some large prime order q. We
write G1 additively and G2 multiplicatively. Our schemes
make use of a bilinear pairing.

Admissible pairings: Following Boneh and Franklin [8],
we call ê an admissible pairing if ê : G1×G1 → G2 is a map
with the following properties:

1. Bilinear: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and
all a, b ∈ Z.

2. Non-degenerate: The map does not send all pairs in
G1 ×G1 to the identity in G2.

3. Computable: There is an efficient algorithm to com-
pute ê(P, Q) for any P, Q ∈ G1.

We refer the readers to papers by Boneh and Franklin [8]
and Boneh and Silverberg [10] for examples and discussions
of groups that admit such pairings.
Bilinear Diffie-Hellman (BDH) Parameter Genera-
tor: As in IBE [8] scheme, a randomized algorithm IG is a
BDH parameter generator if IG takes a security parameter
k > 0, runs in time polynomial in k, and outputs the descrip-
tion of two groups G1 and G2 of the same prime order q and
the description of an admissible paring ê : G1 ×G1 → G2.
BDH Problem: As in IBE [8] scheme, given a randomly
chosen P ∈ G1, as well as aP, bP, and cP (for unknown
randomly chosen a, b, c ∈ Zq), compute ê(P, P)abc.

For the BDH problem to be hard, G1 and G2 must be
chosen so that there is no known algorithm for efficiently
solving the Diffie-Hellman problem in either G1 or G2. Note
that if the BDH problem is hard for a paring ê, then it
follows that ê is non-degenerate.
BDH Assumption: As in IBE [8] scheme, we say a BDH
parameter generator IG satisfies the BDH assumption if
the following is negligible in k for all PPT algorithm A:
Pr[(G1, G2, ê)← IG(1

k); P ← G1; a, b, c← Zq :
A(G1, G2, ê, P, aP, bP, cP) = ê(P, P)abc].

3.2 fs-HIBE: Implementation
For simplicity of description, our fs-HIBE construction

makes use of a version of fs-PKE scheme due to Katz [24].
In Katz’s scheme, time periods are associated with the leaf
nodes of a binary tree (Rather than with all tree nodes as in
the scheme by Canetti et al. [11]. Our fs-HIBE scheme can
also be realized based on the fs-PKE scheme by Canetti et
al., which will give faster key update time. The complexity
discussion of our scheme is in Section 6).

We construct a full binary tree of height l, as in Katz’s
scheme [24]. The root of this tree is labeled ǫ; all other nodes
are recursively labeled as follows: if the label of a node is
w, then its left child is labeled w0, and its right child is
labeled w1. This way, for each time period i ∈ {0, N − 1},
there is a leaf labeled with the binary representation of i.
Following the fs-PKE scheme [11], we denote the k-bit prefix
of a word w = w1w2 . . . wd by w|k, that is, w|k = w1 . . . wk

for k ≤ d. The word w is of length d, i.e. |w| = d. Let
w|0 = ǫ and w = w|d.

At the beginning of time, public parameters are generated.
At time t, the entity at level h with ID-tuple (ID1, . . . , IDh)
holds a secret key SKt,(ID1,...,IDh). Recall that we denote
key SKt,(ID1,...,IDh) as SKt,h when this causes no confusion.
SKt,h consists of (skt,h, {skw,h}), where w are all the labels
of the right sibling, if one exists, of each ancestor of the node
labeled t in the complete binary tree. skw,h are also called
node keys. At the beginning of time, as public parameters
are generated, the values sk0,1 and sk1,1 are created by the
root PKG, whose ID is ID1. Each skw,h, where w is any

string, can be used to compute an skw,u, where u > h, for
tuple (ID1, . . . , IDu) who is a descendant of (ID1, . . . , IDh).
The algorithm to use is Lower-Level Setup.

Each skw,h, where w is any string, is also used to com-
pute the value sk(w◦b),h, where b = 0 or 1. They are the
child nodes of w on the binary tree. The algorithm for do-
ing so is Compute Next, which is defined as follows. In
Compute Next, an entity (a PKG or a user) with ID-tuple
(ID1, . . . , IDh) uses the value skw,h associated with a node
w to compute values sk(w0),h and sk(w1),h for the two child
nodes of w. Compute Next is a helper function and is
called by the algorithm Root Setup and Update.

We must delete all information from which skt′,h for t′ < t
can be inferred. The algorithm for computing the keys for
the next time period and erasing old keys is Update.

The public parameters, time t, and ID-tuple (ID1, . . . , IDh)
are all that a sender needs in order to send an encrypted mes-
sage to ID-tuple (ID1, . . . , IDh) at time t using algorithm
Encrypt.

The value skt,h is all that the user with tuple (ID1, . . . , IDh)
needs in order to decrypt at time t. The algorithm for doing
so is Decrypt.

Let us look at the contents of each skw,h more closely. It
has two components Sw,h and Qw,h. Sw,h is a point in G1,
and Qw,h contains a set of Q-values, which will be explained
later. If w represents a leaf on the binary tree, Sw,h and the
Q-values in Qw,h together are used for decryption for ID-
tuple (ID1, . . . , IDh) at time w. If w is an internal node on
the binary tree, these values are used for generating future
decryption keys.

Computing Sw,h makes use of |w| × h number of secret
values sw|k,(ID1,...,IDj), where 1 ≤ k ≤ |w| and 1 ≤ j ≤ h.
The shorthand notation for sw|k,(ID1,...,IDj) is sk,j , when w|k
and (ID1, . . . , IDj) are clear from the context. Given a node
w on the binary tree and an ID-tuple (ID1, . . . , IDh), there
is a secret value sk,j for every (time, ID-tuple) combination,
where time corresponds to a node that has some prefix w|k
of node w (including w itself and excluding the root node
ǫ) and ID-tuple is some ancestor (ID1, . . . , IDj) of ID-tuple
(ID1, . . . , IDh) (including itself). Each sk,j is chosen ran-
domly from Zq .

Each sk,j is also used for computing Qk,j , which is called
a Q-value. For each sk,j there is a Q-value Qk,j , which is
an element in G1. Q-values are used in Decrypt. Qw,h is
a set of Q-values. All sk,j values are erased once Sw,h and
Q-values are computed. The construction is shown below.

Construction Let IG be a BDH parameter generator for
which the BDH assumption holds.
Root Setup(1k, N = 2l): The root PKG with ID1 does the
following:

1. IG is run to generate groups G1, G2 of order q and
bilinear map ê.

2. A random generator P ← G1 is selected along with
random sǫ ← Zq . Set Q = sǫP .

3. Choose a cryptographic hash function H1 : {0, 1}∗ →
G1. Choose a cryptographic hash function H2 : G2 →
{0, 1}n for some n. The security analysis will treat
H1 and H2 as random oracles [4]. The message space
is M = {0, 1}n. The ciphertext space is C = G

l×h
1 ×

{0, 1}n where h is the level of the recipient. The system
parameters are params = (G1, G2, ê, P, Q, H1, H2). All

operations of fs-HIBE are performed under params.
The master key is sǫ ∈ Zq.

The root PKG needs to generate not only the sk key
associated with the current time period 0, but also the
sk keys corresponding to the internal nodes on the bi-
nary tree whose bit representations are all 0 except
the last bit. The sk key for time 0 is denoted as sk0l,1.
The rest of sk values are used by the root PKG to gen-
erate keys for future time periods, and are represented
as {sk1,0, sk(01),1, . . . , sk(0l−11),1}.

These values are generated recursively as follows.

(a) Set the secret point S0,1 to sǫH1(0 ◦ ID1), and
S1,1 to sǫH1(1 ◦ ID1).

(b) Set secret key sk0,1 = (S0,1, ∅) and sk1,1 = (S1,1, ∅).
Root PKG uses sk0,1 to recursively call algorithm
Compute Next (defined below) to generate its
secret keys. Let (skw00,1, skw01,1) = Compute

Next(skw0,1, w0, ID1), for all 1 ≤ |w0| ≤ l−1.

(c) Set the root PKG’s secret key for time period 0 as
SK0,1 = (sk0l,1, {sk1,1, sk(01),1, . . . , sk(0l−11),1}),
and erase all other information.

Compute Next(skw,h, w, (ID1 . . . IDh)): This is a helper
method and is called by the Root Setup and Update al-
gorithms. It takes a secret key skw,h, a node w, and an
ID-tuple, and outputs keys sk(w0),h, sk(w1),h for time nodes
w0 and w1 of (ID1 . . . IDh). (Note that this is similar to the
Extraction algorithms in the Gentry-Silverberg HIBE and
the Derivation algorithm in the fs-PKE schemes, only here
we extract keys corresponding to nodes in the time hierarchy
for a given ID-tuple.)

1. Parse w as w1 . . . wd, where |w| = d. Parse ID-tuple as
ID1, . . . , IDh. Parse skw,h associated with time node w
as (Sw,h,Qw,h), where Sw,h ∈ G1 and Qw,h = {Qk,j}
for all 1 ≤ k ≤ d and 1 ≤ j ≤ h, except for k = 1 and
j = 1.

2. Choose random s(d+1),j ∈ Zq for all 1 ≤ j ≤ h.

3. Set S(w0),h = Sw,h+
Ph

j=1 s(d+1),jH1(w0◦ID1 . . . IDj).

4. Set S(w1),h = Sw,h+
Ph

j=1 s(d+1),jH1(w1◦ID1 . . . IDj).

5. Set Q(d+1),j = s(d+1),jP for all j ∈ [1, h].

6. Set Q(w0),h and Q(w1),h to be the union of Qw,h and
Q(d+1),j for all 1 ≤ j ≤ h.

7. Output sk(w0),h = (S(w0),h,Q(w0),h) and sk(w1),h =
(S(w1),h,Q(w1),h).

8. Erase s(d+1),j for all 1 ≤ j ≤ h.

Lower-level Setup(SKi,(h−1), i, (ID1 . . . IDh)): Let Eh be
an entity that joins the hierarchy during the time period
i < N − 1 with ID-tuple (ID1, . . . , IDh). Eh’s parent gener-
ates Eh’s key SKi,h using its key SKi,(h−1) as follows:

1. Parse i as i1 . . . il where l = log2 N . Parse SKi,(h−1)

as (ski,(h−1), {sk(i|k−11),(h−1)}ik=0).

2. For each value skw,(h−1) in SKi,(h−1), Eh’s parent does
the following to generate Eh’s key skw,h:

(a) Parse w as w1 . . . wd, where d ≤ l, and parse the
secret key skw,(h−1) as (Sw,(h−1),Qw,(h−1)).

(b) Choose random sk,h ∈ Zq for all 1 ≤ k ≤ d. Re-
call that sk,j is a shorthand for sw|k,(ID1...IDj) as-
sociated with time node w|k and tuple (ID1 . . . IDj).

(c) Set the child entity Eh’s secret point

Sw,h = Sw,(h−1)+
Pd

k=1 sk,hH1(w|k◦ID1 . . . IDh).

(d) Set Qk,h = sk,hP for all 1 ≤ k ≤ d. Let Qw,h be
the union of Qw,(h−1) and Qk,h for all 1 ≤ k ≤ d.

(e) Set skw,h to be (Sw,h,Qw,h).

3. Eh’s parent sets Eh’s SKi,h = (ski,h, {sk(i|k−11),h}ik=0),
and erases all other information.

Update(SKi,h, i + 1, (ID1 . . . IDh)) (where i < N − 1): At
the end of time i, an entity (PKG or individual) with ID-
tuple (ID1, . . . , IDh) does the following to compute its pri-
vate key for time i + 1, as in the fs-PKE scheme [11, 24].

1. Parse i as i1 . . . il, where |i| = l. Parse SKi,h as
(sk(i|l),h, {sk(i|k−11),h}ik=0). Erase ski|l,h.

2. We distinguish two cases. If il = 0, simply output
the remaining keys as the key SK(i+1),h for the next

period for ID-tuple (ID1, . . . , IDh). Otherwise, let k̃

be the largest value such that ik̃ = 0 (such k̃ must
exist since i < N − 1). Let i′ = i|k̃−11. Using ski′,h

(which is included as part of SKi,h), recursively apply
algorithm Compute Next to generate keys sk(i′0d1),h

for all 0 ≤ d ≤ l − k̃ − 1, and sk
(i′0d−k̃,h)

. The key

sk
(i′0d−k̃,h)

will be used for decryption in the next time

period i + 1; the rest of sk keys are for computing
future keys. Erase ski′,h and output the remaining
keys as SK(i+1),h.

Encrypt(i, (ID1, . . . , IDh), M) (where M ∈ {0, 1}n):

1. Parse i as i1 . . . il. Select random r ← Zq.

2. Denote Pk,j = H1(i|k◦ID1 . . . IDj) for all 1 ≤ k ≤ l and
1 ≤ j ≤ h. Output 〈i, (ID1, . . . , IDh), C〉, where C =
(rP, rP2,1, . . . , rPl,1, rP1,2, . . . , rPl,2, . . . , rP1,h, . . . ,
rPl,h, M ⊕H2(ê(Q, H1(i1 ◦ ID1))

r)).

Decrypt(i, (ID1, . . . , IDh), SKi,h, C):

1. Parse i as i1 . . . il. Parse SKi,h associated with the ID-
tuple as (ski,h, {sk(i|k−11),h}ik=0) and the key ski,h as
(Si,h,Qi,h). Parse Qi,h as {Qk,j} for all 1 ≤ k ≤ l and
1 ≤ j ≤ h, except for k = 1 and j = 1.

2. Parse C as

(U0, U2,1, . . . , Ul,1, U1,2, . . . , Ul,2, . . . , U1,h, . . . , Ul,h, V).

3. M = V ⊕H2(
ê(U0,Si,h)

g
), where g is:

Πl
k=1Π

h
j=2ê(Qk,j , Uk,j)Π

l
k=2ê(Qk,1, Uk,1).

Using Fujisaki-Okamoto padding [16] and the help of ran-
dom oracles H3 and H4, algorithm Encrypt and Decrypt

can be converted into ones with chosen ciphertext security,
as in BF-IBE [8] and GS-HIBE [19].

Theorem 3.1. Suppose there is a nonadaptive adversary
A that has advantage ǫ against the one-way secure fs-HIBE
scheme for some fixed time t and ID-tuple, and that makes
qH2

> 0 hash queries to the hash function H2 and a finite
number of lower-level setup queries. If the hash functions
H1, H2 are random oracles, then there is an algorithm B that
solves the BDH in groups generated by IG with advantage
(ǫ− 1

2n)/qH2
and running time O(time(A)).

Theorem 3.2. Suppose there is an adaptive adversary A
that has advantage ǫ against the one-way secure fs-HIBE
scheme targeting some time and some ID-tuple at level h,
and that makes qH2

> 0 hash queries to the hash function
H2 and at most qE > 0 lower-level setup queries. Let l =
log2 N , where N is the total number of time periods. If the
hash functions H1, H2 are random oracles, then there is an
algorithm B that solves the BDH in groups generated by IG
with advantage (ǫ(h+l

e(2lqE+h+l)
)(h+l)/2− 1

2n)/qH2
and running

time O(time(A)).

In our proofs, we use similar arguments to ones in the
proofs of IBE [8] and HIBE [19] schemes to show that the
adversary who uses an fs-HIBE adversary to break the Ba-
sicPub [8] scheme does not abort with non-negligible proba-
bility. Boneh and Franklin showed that BasicPub is (seman-
tically) secure in the random oracle model under the BDH
assumption [8]. To show that our fs-HIBE scheme is secure,
we give a reduction from breaking fs-HIBE scheme to Ba-
sicPub. The details of the proofs are in the full paper [33].

4. FORWARD-SECURE BROADCAST
ENCRYPTION

In this section, we show how the fs-HIBE scheme can be
used to build a scalable forward-secure public-key broadcast
encryption (fs-BE) scheme which is joining-time-oblivious.
In what follows, N denotes the total number of time periods,
E denotes the universe of users and E = |E|.

4.1 fs-BE: Syntax
Forward-Secure Broadcast Encryption (fs-BE): An
fs-BE scheme is specified by five poly-time algorithms Key-

Gen, Reg, Upd, Enc, Dec:
KeyGen: The key generation algorithm, is a probabilistic
algorithm run by the center to set up the parameters of the
scheme. KeyGen takes as input a security parameter k and
possibly rmax (where rmax is a revocation threshold, i.e. the
maximum number of users that can be revoked). The input
also includes the total number E of users in the system and
the total number of time periods N . KeyGen generates the
public key PK and the initial master secret key MSK0.
Reg: The registration algorithm, is a probabilistic algorithm
run by the center to compute the secret initialization data
for a new user. Reg takes as input the master secret key
MSKt at time t, the identity u of the user and the cur-
rent time period t < N − 1 and outputs the new secret
key USKt,u.
Upd: The key update algorithm, is a deterministic algo-
rithm run by an entity (center or user) to update its own
secret key of time t into a new secret key valid for the fol-
lowing time period t+1. For a user, Upd takes as input the
public key PK, the identity u of a user, the current time
period t < N − 1, and the user’s secret key USKt,u, and
outputs the new user’s secret key USKt+1,u. For the center,

the algorithm takes as input the public key PK, the cur-
rent time period t < N , and the key MSKt, and outputs the
secret key MSKt+1.
Enc: The encryption algorithm, is a probabilistic algorithm
that each content provider can use to encrypt messages. Enc

takes as input the public key PK, a message M , the current
time period t and a set R of revoked users (with |R| ≤ rmax,
if a threshold has been specified to the KeyGen algorithm),
and returns the ciphertext C to be broadcast.
Dec: The decryption algorithm, is a deterministic algorithm
run by each user to recover the content from the broadcast.
Dec takes as input the public key PK, the identity u of a
user, a time period t < N , the user’s secret key USKt,u and
a ciphertext C, and returns a message M .

An fs-BE scheme should satisfy the following correctness
constraint: for any pair (PK,MSKt) output by the algo-
rithm KeyGen(k, rmax, N, E), any t < N , anyR ⊆ E , (|R| ≤
rmax), any user u ∈ E \ R with secret key USKt,u (properly
generated for time period t) and any message M , it should
hold that: M = Dec(PK,u, t,USKt,u,Enc(PK, M, t,R)).

4.2 fs-BE: Security
In fs-BE scheme, if a user leaks his or her secret key and

is not revoked by a content provider, the security of subse-
quent communications broadcasted by such provider is com-
promised. As a matter of fact, the forward security of broad-
cast encryption schemes guarantees that this is the only case
where unauthorized access to the broadcast content may oc-
cur. The advantage of the adversary is not significantly im-
proved even if she corrupts multiple users at different time
periods. We formalize the security definition of fs-BE below.
Chosen-ciphertext Security: An fs-BE scheme is forward-
secure against chosen-ciphertext attack if no polynomial time
bounded adversary A has a non-negligible advantage against
the challenger in the following game:
Setup: The challenger takes security parameters k, rmax,
and runs the KeyGen algorithm, for the specified number
of users E and time periods N . It gives the adversary the
resulting system public key PK and keeps the initial master
secret key MSK0 secret to itself.
Phase 1: The adversary issues, in any adaptively-chosen
order, queries q1, . . . , qm, where qi is one of the followings:

1. Corrupt query (u, t): the challenger runs algorithm
Reg(MSKt, u, t) to generate the private key USKt,u

corresponding to user u at time t, and sends USKt,u

to the adversary.

2. Decryption query (u, t, C): the challenger first runs
the Reg(MSKt, u, t) algorithm to recover private key
USKt,u corresponding to user u at time t, and then
runs decryption algorithm Dec(PK,u, t,USKt,u, C) to
decrypt C, and sends the resulting plaintext to the ad-
versary.

Challenge: Once the adversary decides that Phase 1 is
over, it outputs two equal-length plaintexts M0, M1 ∈ M,
and a time period t∗ on which it wishes to be challenged.
The challenger picks a random bit b ∈ {0, 1}, and set C∗ =
Enc(PK, Mb, t

∗,Rt∗), where Rt∗ = {u | A asked a query
Corrupt(u, t), for some t ≤ t∗}. It sends C∗ as a challenge
to the adversary.
Phase 2: The adversary issues more queries qm+1, . . . , qn,
where qi is one of:

1. Corrupt query (u, t): the challenger first checks that
either u ∈ Rt∗ or t > t∗ and if so, it responds as in
Phase 1. Notice that if a bound rmax was specified in
KeyGen, then the adversary is restricted to corrupt
at most rmax distinct users via Corrupt queries.

2. Decryption query (u, t, C): the challenger first checks
that either C 6= C∗ or u ∈ Rt∗ or t 6= t∗ and if so, it
responds as in Phase 1.

Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins
the game if b = b′. We define its advantage in attacking the
scheme to be |Pr[b = b′]− 1

2
|.

4.3 fs-BE: A Construction Based on fs-HIBE
Here, we show how our fs-HIBE scheme can be applied

to the construction of the public-key broadcast encryption
of [13] to obtain a forward-secure public-key BE scheme.
Dodis and Fazio [13] provided a construction that extends
the symmetric-key broadcast encryption scheme of Naor et
al. [28] to the public-key setting, based on any secure HIBE
scheme. The construction of [13] also applies to the scheme
of Halevy and Shamir [21], that improves upon the work of
[28]. The symmetric-key BE scheme of Halevy and Shamir is
an instance of the Subset Cover Framework [28]. The main
idea of the framework is to define a family S of subsets of
the universe E of users in the system, and to associate each
subset with a key, which is made available to all the users
belonging to the given subset. To broadcast a message to
all the subscribers except those in some set R, a content
provider first covers the set of privileged users using subsets
from the family S . This is done by identifying a partition
of E \R, where all the subsets are elements of S . Then, the
provider encrypts the message for all the subsets in that par-
tition. To decrypt, a user u /∈ R first identifies the subset in
the partition of E \R to which he belongs, and then recovers
the corresponding secret keys from his secret information.

In the public-key BE scheme [13], the subsets containing
a given user are organized into groups, and a special secret
key, protokey, is associated with each of these groups. A
user only needs to store these protokeys, from which he can
derive the actual decryption keys corresponding to all the
subsets in the group. Such an organization of the subsets
of the family S produces a hierarchy, in which the leaves
are elements of S and each internal node corresponds to a
group of subsets. Using HIBE, a secret key can be associated
with each internal node in the hierarchy, and constitutes the
protokey for the group corresponding to that internal node.

In order to add forward secrecy in the public-key BE
scheme, we essentially apply the fs-HIBE scheme to the
above hierarchy. In fs-BE scheme, a protokey is associated
with not only a node in the hierarchy, but also with a time
period t. In the KeyGen operation, the center runs the
Root Setup algorithm of fs-HIBE to compute its master
secret SK0,1. This key evolves with time, and is used by
the center to compute protokeys for users. In the Reg op-
eration, a user joins the broadcast at some time t, and the
center uses its current master secret key SKt,1 to derive pro-
tokeys for the user by running the Lower-level Setup of
fs-HIBE. The center and users evolve their secret keys with
time autonomously by calling the Update algorithm of fs-
HIBE. In the Enc algorithm, a content provider uses the
Encrypt algorithm of fs-HIBE to encrypt the message not
only with respect to the nodes in the hierarchy that repre-

Parameters fs-HIBE MHIBE fs-BE
Key generation time O(h log N) O(hm) O(log3 E log N)

Encryption time O(h log N) O(hm) O(r log E log N)
Decryption time O(h log N) O(hm) O(r + log E log N))
Key update time O(h) N/A O(log3 E)
Ciphertext length O(h log N) O(hm) O(r log E log N)
Public key size O(h + log N) O(hm) O(r log E + log N)
Secret key size O(h log N) O(hm) O(log3 E log N)

Table 1: Dependencies of param-
eters on the total number N of
time periods, the length h of an ID-
tuple, the number m of ID-tuples in
an identity-set in MHIBE, the to-
tal number E of fs-BE users and the
number r of actual revoked users in
fs-BE.

sents the subsets in the partition of E \ R, but also to the
current time t. In the Dec operation, the user first runs
the Lower-Level Setup algorithm of fs-HIBE to derive
the current secret keys from his protokey at time t. These
secret keys are used for decryption. The construction of our
fs-BE scheme is given in the full version of the paper [33].
We analyze the complexity of fs-BE operations in Section 6.

5. MULTIPLE HIERARCHICAL IDENTITY-
BASED ENCRYPTION SCHEME

ID-based cryptographic schemes have been used in com-
plex access control scenarios [22, 30]. In this paper, we gen-
eralize the fs-HIBE into a collusion resistant multiple hi-
erarchical ID-based encryption (MHIBE) scheme, where a
message can be encrypted under multiple ID-tuples. The
applications of MHIBE scheme include secure communica-
tions with users having multiple identities.

Motivations for MHIBE In role-based access control sys-
tems (RBAC) [29], individuals are assigned roles according
to their qualifications, and access decisions are based on
roles. Communications to a specific role may need to be
protected so that messages can be read only by members
of that role. What makes the problem interesting is that
the intersection of identities is different from the union of
identities, which implies that a proper scheme should be
collusion-resistant: secure even if adversaries with partial
roles collude. In other words, it requires that compromising
the private keys of individual identities does not compromise
the messages encrypted with the intersection of identities.
This property cannot be achieved by the broken Scheme III
described in Section 1.3, where two separate HIBE schemes
are used, as it is not collusion-resistant.

Identity-set and Joining-path-obliviousness In MHIBE,
we define an identity-set as the set of identities that a user
has, each represented as an ID-tuple. For example, Bob’s
identity-set is {(Hospital, ER, Doctor), (Hospital, School,
Manager)}. He obtains his private key from either of his two
parents, who have the identity-set {(Hospital, ER), (Hospi-
tal, School, Manager)} and {(Hospital, ER, Doctor), (Hospi-
tal, School)}, respectively. The highest-level PKG in this ex-
ample has the identity-set {Hospital, Hospital}. An MHIBE
scheme needs to be joining-path-oblivious. This means that
encryption should be oblivious of the path from which the
receiver and his ancestors acquire their private keys. Having
the receiver’s identity-set is sufficient to encrypt a message.

Generalization Our fs-HIBE scheme naturally gives rise
to an MHIBE scheme. In fs-HIBE, a message is encrypted
under both an ID-tuple and the current time. This can be
viewed as the encryption under two tuples, one being the
current time. Therefore, the identities in MHIBE scheme
capture a broader sense of meaning. The MHIBE scheme

generalized from our fs-HIBE scheme supports dynamic joins
and joining-path-oblivious encryption. More importantly,
it is collusion-resistant, which cannot be achieved by using
multiple separate HIBE [19] schemes. In our MHIBE imple-
mentation, a message encrypted under {(Hospital, ER, Doc-
tor), (Hospital, School, Manager)} or {(Hospital, School,
Manager), (Hospital, ER, Doctor)} requires different de-
cryption keys. We note that in this scheme, the fact that a
user holds the private key corresponding to multiple identi-
ties does not imply that he or she has the private key to any
subset of identities.

We omit the details of MHIBE scheme (definition of secu-
rity, description of scheme, and proof of security), as this is
a direct generalization of fs-HIBE scheme. The complexities
of various parameters of our MHIBE scheme are shown in
Table 1 in Section 6.

6. DISCUSSIONS
We analyze the complexity of our fs-HIBE scheme, the

generalized MHIBE scheme, and the fs-BE scheme in Table
1 showing running time complexities and key sizes. Key gen-
eration time of fs-HIBE and MHIBE is the time to generate
secret keys for a child node by the parent. Key genera-
tion time of fs-BE scheme is the running time of Reg algo-
rithm. In our fs-HIBE scheme, the time periods correspond
to leaf nodes of a binary tree, and the key update time is
O(h log N), where N is the total number of time periods
and h is the length of an ID-tuple. Because of the node
arrangement, the key generation time and key update time
of our fs-HIBE scheme grows logarithmically with the total
number of time periods N . Faster key update time (O(h))
can be achieved, if the time periods are associated with all
the nodes of the tree in a pre-order traversal, as in the fs-
PKE scheme by Canetti et al. [11]. Because the realization
of such an fs-HIBE scheme can be easily derived from the
construction in Section 3.2, it is omitted in this paper. We
show the optimized running time in Table 1. Even drop-
ping the joining-time-obliviousness requirement (as in the
naive Scheme II of Section 1.3), our implementation cannot
achieve a ciphertext with linear length O(h + log N).

7. ACKNOWLEDGEMENTS
We are grateful to Shai Halevi and Jonathan Katz for helpful
discussions. The first author is thankful to Seth Proctor at
Sun Microsystems Lab for his helpful comments.

8. REFERENCES
[1] M. Abdalla, S. K. Miner, and C. Namprempre.

Forward-secure threshold signature schemes. In Topics
in Cryptography — CT-RSA ’01, volume 2020 of
LNCS, pages 441–456. Springer-Verlag, 2001.

[2] R. Anderson. Two remarks on public-key cryptology.
Invited lecture, 4th ACM Conference on Computer
and Communications Security, 1997. Available at
http://www.cl.cam.ac.uk/ftp/users/rja14/.

[3] M. Bellare and S. K. Miner. A forward-secure digital
signature scheme. In Advances in Cryptology —
Crypto ’99, volume 1666 of LNCS, pages 431–448.
Springer-Verlag, 1999.

[4] M. Bellare and P. Rogaway. Random oracles are
practical: a paradigm for designing efficient protocols.
In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73.
ACM, 1993.

[5] M. Bellare and B. Yee. Forward security in private-key
cryptography. In CT-RSA, volume 2612 of LNCS,
pages 1–18. Springer-Verlag, 2003.

[6] D. Boneh and X. Boyen. Efficient selective-ID secure
identity-based encryption without random oracles. In
Advances in Cryptology — Eurocrypt ’04, volume 3027
of LNCS, pages 223–238. Springer-Verlag, 2004.

[7] D. Boneh and X. Boyen. Secure identity based
encryption without random oracles. In Advances in
Cryptology — Crypto ’04, volume 3152 of Lecture
Notes in Computer Science, 2004.

[8] D. Boneh and M. K. Franklin. Identity-based
encryption from the Weil pairing. In Advances in
Cryptology — Crypto ’01, volume 2139 of LNCS,
pages 213–229. Springer-Verlag, 2001.

[9] D. Boneh and A. Silverberg. Applications of
multilinear forms to cryptography. Contemporary
Mathematics, 324:71–90, 2003.

[10] R. Canetti, S. Halevi, and J. Katz. A forward-secure
public-key encryption scheme. In Advances in
Cryptology — Eurocrypt ’03, volume 2656 of LNCS,
pages 255–271. Springer-Verlag, 2003.

[11] W. Diffie, P. van Oorschot, and W. Wiener.
Authentication and authenticated key exchanges. In
Designs, Codes and Cryptography, volume 2, pages
107–125, 1992.

[12] Y. Dodis and N. Fazio. Public-key broadcast
encryption for stateless receivers. In Digital Rights
Management — DRM ’02, volume 2696 of LNCS,
pages 61–80. Springer, 2002.

[13] Y. Dodis and N. Fazio. Public-key trace and revoke
scheme secure against adaptive chosen ciphertext
attack. In Public Key Cryptography — PKC ’03,
volume 2567 of LNCS, pages 100–115.
Springer-Verlag, 2003.

[14] A. Fiat and M. Naor. Broadcast encryption. In
Advances in Cryptology — Crypto ’93, volume 773 of
LNCS, pages 480–491. Springer-Verlag, 1993.

[15] E. Fujisaki and T. Okamoto. Secure integration of
asymmetric and symmetric encryption schemes. In
Advances in Cryptology — Crypto ’99, volume 1666 of
LNCS, pages 537–554. Springer-Verlag, 1999.

[16] A. Garay, J. Staddon, and A. Wool. Long-lived
broadcast encryption. In Advances in Cryptology —
Crypto 2000, volume 1880 of LNCS, pages 333–352.
Springer-Verlag, 2000.

[17] C. Günther. An identity-based key exchange protocol.
In Advances in Cryptology — Eurocrypt ’89, volume
434 of LNCS, pages 29–37. Springer-Verlag, 1989.

[18] C. Gentry and A. Silverberg. Hierarchical ID-based
cryptography. In Advances in Cryptology — Asiacrypt
’02, volume 2501 of LNCS, pages 548–566.
Springer-Verlag, 2002.

[19] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient
tree-based revocation in groups of low-state devices.
In Advances in Cryptology — Crypto ’04, LNCS, 2004.

[20] D. Halevy and A. Shamir. The LSD broadcast
encryption scheme. In Advances in Cryptology —
Crypto ’02, volume 2442 of LNCS, pages 47–60.
Springer-Verlag, 2002.

[21] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman.
Hidden credentials. In Proceedings of the 2nd ACM
Workshop on Privacy in the Electronic Society
(WPES), pages 1–8, October 2003.

[22] J. Horwitz and B. Lynn. Toward hierarchical
identity-based encryption. In Advances in Cryptology
— Eurocrypt ’02, volume 2332 of LNCS, pages
466–481. Springer-Verlag, 2002.

[23] J. Katz. A forward-secure public-key encryption
scheme. Cryptology ePrint Archive, Report 2002/060,
2002. http://eprint.iacr.org/.

[24] C. Kim, Y. Hwang, and P. Lee. An efficient public key
trace and revoke scheme secure against adaptive
chosen ciphertext attack. In Advances in Cryptology
— Asiacrypt 2003, volume 2894 of LNCS, pages
359–373. Springer-Verlag, 2003.

[25] M. Luby and J. Staddon. Combinatorial bounds for
broadcast encryption. In Advances in Cryptology —
Eurocrypt ’98, volume 1403 of LNCS, pages 512–526.
Springer-Verlag, 1998.

[26] T. Malkin, D. Micciancio, and S. K. Miner. Efficient
generic forward-secure signatures with an unbounded
number of time periods. In Advances in Cryptology —
Eurocrypt ’02, volume 2332 of LNCS, pages 400–417.
Springer-Verlag, 2002.

[27] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In Advances in
Cryptology — Crypto ’01, volume 2139 of LNCS,
pages 41–62. Springer-Verlag, 2001.

[28] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29, Number 2:38–47, 1996.

[29] R. Tamassia, D. Yao, and W. H. Winsborough.
Role-based cascaded delegation. In Proceedings of the
ACM Symposium on Access Control Models and
Technologies (SACMAT ’04), pages 146 – 155. ACM
Press, June 2004.

[30] B. R. Waters. Efficient identity-based encryption
without random oracles. In Advances in Cryptology —
Eurocrypt ’05, Lecture Notes in Computer Science,
2005.

[31] C. Wong, M. Gouda, and S. Lam. Secure group
communications using key graphs. In Proceedings of
the ACM SIGCOMM ’98, pages 68 – 79. ACM Press,
1998.

[32] D. Yao, N. Fazio, Y. Dodis, and A. Lysyanskaya.
Id-based encryption for complex hierarchies with
applications to forward security and broadcast
encryption. Full paper at http://www.cs.brown.edu/
people/dyao/fs-hibe-full.pdf.

