
Data-Provenance Verification For Secure Hosts
Kui Xu, Student Member, IEEE, Huijun Xiong, Chehai Wu,

Deian Stefan, Student Member, IEEE, and Danfeng Yao, Member, IEEE

Abstract—Malicious software typically resides stealthily on a user’s computer and interacts with the user’s computing resources. Our

goal in this work is to improve the trustworthiness of a host and its system data. Specifically, we provide a new mechanism that ensures

the correct origin or provenance of critical system information and prevents adversaries from utilizing host resources. We define data-

provenance integrity as the security property stating that the source where a piece of data is generated cannot be spoofed or tampered

with. We describe a cryptographic provenance verification approach for ensuring system properties and system-data integrity at

kernel-level. Its two concrete applications are demonstrated in the keystroke integrity verification and malicious traffic detection.

Specifically, we first design and implement an efficient cryptographic protocol that enforces keystroke integrity by utilizing on-chip

Trusted Computing Platform (TPM). The protocol prevents the forgery of fake key events by malware under reasonable assumptions.

Then, we demonstrate our provenance verification approach by realizing a lightweight framework for restricting outbound malware

traffic. This traffic-monitoring framework helps identify network activities of stealthy malware, and lends itself to a powerful personal

firewall for examining all outbound traffic of a host that cannot be bypassed.

Index Terms—Authentication, malware, cryptography, provenance, networking.

Ç

1 INTRODUCTION

COMPARED to the first generation of malicious software
(malware) in late 1980s, modern attacks are more

stealthy and pervasive. Network- or host-based signature-
scanning approaches alone were proven inadequate against
new and emerging malware [15]. We view malicious bots
or malware in general as entities stealthily residing on a
human user’s computer and interacting with the user’s
computing resources. For example, the malware may issue
network calls to send outbound traffic for denial-of-service
attacks, spam, or botnet command-and-control. However,
conventional operating systems typically allow flexible
execution pathways and data flow patterns, and are not
specifically designed to distinguish legitimate user-in-
itiated networking or file-system activities from malware-
triggered ones.

Our goal is to improve the trustworthiness of the OS-
level data flow; specifically, we provide mechanisms that
ensure the correct origin or provenance of critical system
data, which prevents adversaries from utilizing host
resources (e.g., networking API). We define a new security
property - data-provenance integrity. It states that the source
from which a piece of data is generated can be verified.
We give the concrete illustration of how data-provenance
integrity can be realized for system-level data—namely,
keystroke events and outbound network packets—in a host-
based setting.

For outbound network packets, we deploy special
cryptographic kernel modules at strategic positions of a
host’s network stack, so that packets need to be generated
by user-level applications and cannot be injected in the
middle of the network stack. We implement our solution
and demonstrate its low overhead. The significance of
network-packet provenance is that one can deploy a
sophisticated packet monitor or firewall at the transport
layer such as [34] without being bypassed by malware—
malware bypassing or disabling transport-layer personal
firewalls is a typical problem for PCs.

We illustrate how to sign and verify keystroke events
that are from external keyboard devices in a client-server
architecture, i.e., verifying the provenance of keystrokes.
We discuss the application of this system for distinguishing
user inputs from malware inputs, which is useful in many
scenarios including keystroke-dynamics based authentica-
tion. Our method has general application beyond the
specific keystroke and network traffic problems studied.

Our contributions. We present a new cryptographic
provenance verification (CPV) approach, and demonstrate
its applications in realizing 1) keystroke-integrity service,
and 2) robust host-based traffic-monitoring. We apply basic
cryptographic mechanisms to ensure the correct data flow
and system properties of a host, especially on verifying the
provenance of dynamic system-related data. We describe
how to integrate cryptographic components with operating
systems and how to use hardware tools for the integrity of
cryptographic keys in our provenance verification opera-
tions. Our contributions are summarized as follows:

1. We propose the security model and operations in
cryptographic provenance verification. We describe
its important applications in ensuring dynamic data
flow in hosts, in particular system-related data and
properties. We point out the technical challenges in
realizing cryptographic provenance verification.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012 173

. K. Xu, H. Xiong, and D. Yao are with the Department of Computer
Science, Virginia Tech, 2202 Kraft Dr. KWII, Blacksburg, VA 24060.
E-mail: {xmenxk, huijun, danfeng}@cs.vt.edu.

. C. Wu is with AppFolio, Inc., 50 Castilian Drive, Goleta, CA 93117.
E-mail: chehai.wu@appfolio.com.

. D. Stefan is with The Cooper Union/Stanford University, 353 Serra Mall
#288, Stanford, CA 94305.
E-mail: stefan@cooper.edu, deian@cs.stanford.edu.

Manuscript received 14 Oct. 2010; revised 12 May 2011; accepted 21 Aug.
2011; published online 30 Sept. 2011.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2010-10-0182.
Digital Object Identifier no. 10.1109/TDSC.2011.50.

1545-5971/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

2. We illustrate our cryptographic provenance verifica-
tion in the design of a keystroke integrity service that
utilizes the hardware Trusted Platform Module
(TPM). We construct a lightweight cryptographic
protocol that prevents malicious bots from injecting
keystroke events into a host’s applications. This
keystroke integrity service also prevents certain
types of tampering on the host’s kernel. We
implement our prototype with an enabled on-chip
TPM, and experimentally evaluate both the compu-
tation and communication overheads. Our crypto-
graphic operations have low computation overhead
(�1 ms for each keystroke) and reasonable band-
width overhead (12 KBps upper bound).

3. We apply our cryptographic provenance verification
approach in realizing a host-based traffic-monitor-
ing framework. The framework is capable of
detecting stealthy outbound traffic of OS-level
malware by enforcing the provenance verification
for outbound network packets. Malware traffic that
bypasses normal network-stack functions can be
effectively detected.
We describe our experimental evaluation with two
proof-of-concept pieces of malware. When running
20 Windows network services and 15 networked
applications for seven days, our traffic-provenance
verification mechanism triggered no false alarms.
Our throughput validation on upstream network
traffic shows that for 64 KB packet size the overhead
for cryptographic operations is low.

Our work enables the authentication of two important
data types: user inputs and network flow. Such a framework
can be used to realize the temporal correlation between user
inputs and network traffic under more powerful malware
than what was considered in [5], [14]. In addition, our work
can also enable host-based semantic-based correlation
analysis between inputs and network packets. By verifying
the data provenance, we are able to regulate the way data
flows within a system. This regulation restricts activities
that malware may perform on a host.

Organization of the paper. Related work is described in
Section 2. We give an overview of our cryptographic
provenance verification (CPV) approach and our security
models in Section 3. To illustrate our host-based provenance
verification approach, in Section 4 we present a crypto-
graphic protocol that ensures that users’ keystroke events
cannot be forged by malware. In Section 5, we describe a
cryptographic traffic-monitoring framework and also de-
monstrate its effectiveness in catching OS-level malware
traffic. We conclude the paper in Section 6.

2 RELATED WORK

Information flow control has been an active research area in
computer security. As early as in the 1970s, Denning et al.
[6], [7] proposed the lattice model for securing the
information flow and applied it to the automatic certifica-
tion of information flow through a program. Data tainting,
as an effective tracking method, is widely used for the
purposes of information leak prevention and malware
detection. Taint tracking can be performed at different
levels, for example within an application [8], within a

system [37], or across distributed hosts [16]. Our use of TPM
as a signature generator may be viewed as a special type of
data tainting. In addition to conventional taint tracking
solutions such as hardware memory bit or extended
software data structure, our TPM-based solution uniquely
supports the cryptographic operations to enforce data
confidentiality and the integrity of taint information. The
important feature about TPM is its on-chip secret key.
Therefore, the client device can be uniquely authenticated
by a remote server.

Our paper focuses on a host-based approach for ensuring
system-level data integrity and demonstrates its application
for malware detection. In comparison, network trace
analysis typically characterizes malware communication
behaviors for detection [11], [12], [13], [23]. Such solutions
usually involve pattern-recognition and machine learning
techniques, and have demonstrated effectiveness against
today’s malware. Traces of botnets’ command-and-control
(C&C) messages—i.e., how bots communicate with their
botmasters—are captured and their signatures and access
patterns analyzed. For example, a host may be infected if it
periodically contacts a server via the IRC (Internet relay chat)
protocol and sends a large number of emails afterward.
Network traffic analysis can be realized by local Internet
service providers to monitor and screen a large number of
hosts as part of a network intrusion-detection system.

The element of human behavior has not been extensively
studied in the context of malware detection, with a few
notable exceptions including solutions by Cui, Katz, and
Tan [5] and Gummadi et al. [14]. They investigated
and enforced the temporal correlation between user inputs
and observed traffic. BINDER [5] describes the correlation of
inputs and network traffic based on timestamps. It does not
provide any security protection against the detection system
itself, e.g., how to prevent malware from forging input
events. Our work provides a hardware-based integrity
service to address that problem. In comparison to NAB
[14] which is designed specifically for browser input
verification, our work provides a more general system-level
solution for keystroke integrity that is application-oblivious.

Existing rootkit-detection work includes identifying
suspicious system call execution patterns [4], discovering
vulnerable kernel hooks [32], exploring kernel invariants
(e.g., Gibraltar [1]), or using a virtual machine to enforce
correct system behaviors [9], [24]. For example, Christodor-
escu, Jha, and Kruegel collected malware behaviors like
system calls and compared execution traces of malware
against benign programs [4]. They proposed a language to
specify malware behavior and an algorithm to mine
malicious behaviors from execution traces. A malware
analysis technique was proposed and described based on
hardware virtualization that hides itself from malware [9].
Wang et al. systematically identified potential kernel hook
points in Linux kernel [32]. Although existing OS level
detection methods are quite effective, they typically require
sophisticated and complex examination of kernel instruc-
tion executions.

To enforce the integrity of the detection systems, a
virtual machine monitor (VMM) is usually required in
particular for rootkit detection (e.g., [24]). In this paper, we
utilize the existing trusted computing infrastructure. TPM is
available on most commodity computers. The advantage of
using TPM in comparison to VMM is the ease of accessing a

174 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012

host’s kernel, and the ability to construct application-level
fine-grained detection solutions, as described in the future
work section. How to address the runtime limitation of
TPM is still an active research topic. For example, Flicker is
a recently-proposed trusted computing base that allows
sensitive applications to run in isolation in an untrusted
operating system [19]. In comparison, our trusted comput-
ing architecture supports functions beyond application
integrity including enabling remote collection and verifica-
tion of dynamic system data such as user-input events.

TPM has also been used for providing a secure passage
for sensitive user data such as passwords in BitE [20] and
Bump [21]. These two systems encrypt keystrokes in order
to prevent attackers’ keyloggers from learning secret
personal information. Although we use TPM for ensuring
system integrity as in Bump and BitE, the goal of our
solution is different—our work verifies the keystroke origin
and prevents malware injection of fake key events.

The work by Srivastava and Giffin [30] on application-
aware blocking of malware traffic may bear superficial
similarity to our solution. They used a virtual machine
monitor (VMM) to monitor application information of a
guest OS without using any cryptographic scheme.

3 MODELS AND DEFINITIONS

We define cryptographic provenance verification as a
robust mechanism that ensures the true origin of the data
produced by an entity such as a system device or a
program. Such a system can be implemented by certifying
(i.e., signing) the data generated at the source. However,
our provenance verification has a fundamental difference
from the traditional cryptographic signature scheme. In
most signature schemes the signer is assumed to be a person
who exercises discretion in signing documents and also in
protecting his or her signing keys. In the context of malware
detection, the signer and verifier are programs, e.g., kernel
modules, which may be fooled or tampered with in the
certifying process. Prevention against these attacks is
critical. The techniques in cryptographic provenance ver-
ification are also different from the language-based or
policy-based tainted inference analysis [26], as we empha-
size the enforcement of normal system properties with
lightweight cryptographic primitives and trusted comput-
ing infrastructure.

Security goal. We aim to prevent unauthorized use of a
personal computer by a malicious bot (or by an individual
who is not the owner). Specifically, our goal is to address
the following important question: Is the computer being used
by the authenticated owner or by an intruder?

Malware attack models. We assume that malware actively
makes outside connections for command and control or
attacks. For example, malware may attempt to log user
inputs, inject traffic bypassing the host’s firewall, forge
input events, tamper with network traffic, modify kernel
modules and file systems, access secret keys of the detection
framework, tamper with the browser or P2P client. We
consider both application-level malware and limited kernel
malware. Kernel malware differs from application-level
malware—it is typically in the form of drivers (for
Windows) or loadable kernel modules (for Linux). In our
security model, we assume that the clean OS may be later

infected by some kernel malware after loading, so that
kernel-level malware may attempt to 1) inject inputs to the
system (keystroke injection), or 2) invoke low-level network
stack interface to send outbound traffic (traffic-checkpoint
bypassing). These behaviors allow certain types of malware
to gain useful functions, such as circumventing security
filters deployed at the network interface.

It is feasible to inject keystrokes directly into the keyboard
buffer in both Windows and Linux. In keystroke-dynamics-
based authentication systems [31], collected keystroke
sequences are physically entered to the keyboard device
and cannot be replayed. The security critically depends on
the integrity of keystroke events, which is uniquely offered
by our technique. There exist other security mechanisms that
rely on the integrity of keystrokes, in particular the line of
work that analyzes the correlation between user inputs and
system/network events for anomaly detection such as in [5].

Therefore, we aim to detect the two specific behaviors
(traffic-checkpoint bypassing and keystroke injection) un-
der the assumption that our detection system is not
compromised at the run time (See security assumptions
next). Our load-time integrity is guaranteed by TPM
attestation. For the Linux operating system, we assume
that the malware may attempt to inject keystrokes at the
application level or at the kernel level. Specifically, the
buffers lower than the TTY driver are not corrupted, which
include the keyboard event driver and the keyboard device
driver, and the on-chip storage on hardware controllers are
secure. For network-traffic monitoring, malware may
attempt to send traffic by directly invoking functions at
the network-layer, but not at the lower-level data-link or
physical layers. The purpose of these restrictions on the
malware behaviors is to accurately reflect our security
guarantees offered. We write and evaluate several such
malware in our work.

Security assumptions. We assume that the on-chip
Trusted Platform Module (TPM) is tamper-resistant; the
cryptographic operations are implemented correctly; and
the remote server is trusted and secure. TPM provides the
guarantee of load-time code integrity. It does not provide
any detection ability for runtime compromises such as
buffer overflow attacks [10]. Thus, we assume that the
kernel code and our detection modules are not tampered
with at the runtime. Advanced attacks [2], [33] may still be
active under this assumption, indicating the importance of
our solutions.

It is worth mentioning that virtualization based intro-
spection technique pioneered by Payne and Lee [22] may be
used to relax the assumption on kernel integrity in the host-
based malware detection. Introspection allows the isolation
of the detection engine, i.e., virtual machine monitor
(VMM), separated from the guest OS being monitored to
ensure the integrity of VMM.

We consider two types of data under the context of
provenance verification on a host as follows: We also
introduce the concepts of data producer and data consumer
in our model.

. Application data. Data generated by an application
that may be a direct or indirect result of user actions.
e.g., outbound network requests of an application, or
file system requests from an application. The data

XU ET AL.: DATA-PROVENANCE VERIFICATION FOR SECURE HOSTS 175

producer is the application; the data consumer is the
kernel or another application.

. Kernel data. Data generated by the operating system
that may be consumed by other kernel components or
applications, e.g., keyboard and mouse events, in-
coming network packets, or file I/O events. The data
producer is a kernel component; the data consumer is
another kernel component or an application.

We define three operations for data-provenance verifica-
tion on a host: setup, sign, and verify.

. Setup. The data producer sets up its signing key k
and data consumer sets up its verification key k0 in a
secure fashion that prevents malware from accessing
the secret keys.

. Sign(D; k). The data producer signs its data D with a
secret key k, and outputs D along with its proof sig.

. Verify(sig;D; k0). The data consumer uses key k0 to
verify the signature sig of received data D to ensure
its origin, and rejects the data if the verification fails.

Although simple, the cryptographic provenance verifi-
cation method can be used to ensure and enforce correct
system and network properties and appropriate workflow
under a trusted computing environment. Next, we illus-
trate two such applications in Sections 4 and 5 for enforcing
the origin of keyboard inputs and outbound packets of a
host, respectively.

4 PROVENANCE VERIFICATION FOR KEYSTROKE

INTEGRITY

In this section, we demonstrate our cryptographic prove-
nance verification approach in realizing an efficient frame-
work for ensuring the keystroke integrity in a client-server
architecture. The need for verifying the keystroke integrity
is motivated by the line of existing security solutions based
on user inputs, for example keystroke-dynamics authenti-
cation [31], the user-behavior based drive-by download
detection [18], [36], and causality inference among user
actions and network traffic [5].

With our solution, keyboard events entered by human
users from the external keyboards are uniquely identified
and their provenance is cryptographically verified. Fake
inputs injected by malware—such as in attacks against
keystroke-dynamics authentication or click-fraud attac—
can be detected. Our protocol utilizes lightweight crypto-
graphic functions, and our key management leverages the
on-chip TPM. We use the TPM to ensure the secrecy of
signing and verification keys, as well as the integrity of a
host’s kernel and framework modules.

The TPM attestation [28] is useful in proving the load-
time kernel integrity. However, it is worth noting that the
TPM alone is not sufficient in preventing the injection of
fake key events, as these type of attacks can originate from
applications and are thus beyond the kernel integrity. For
example, any X application can inject events without any
communication with the keyboard driver. Our keystroke-
integrity service addresses these application-level attacks
efficiently. An existing approach (as in SATEM [35]) to
prevent application-level attacks, e.g., substituting libraries

with compromised versions, is to have applications as part
of the trusted system that gets loaded and attested by TPM.
In comparison to the SATEM approach [35], our architec-
ture is more specific to the key-event integrity problem and
thus is simpler.

Besides injecting fake inputs, strings sent to function calls
may be modified by attackers through interception. An
attacker may also attempt to record user keystroke events
and replay them at a later point. Our integrity verification
method can detect both of these attacks—the replay attack
can be detected due to the mismatch in timestamps, and the
modification attack can be detected due to the failed
verification of digital signatures. This detection of replay
attacks assumes that the system clock used to record
timestamps is secure and accurate, and the recorded
timestamps of keystroke events cannot be tampered with
before they are signed. Both assumptions are valid in our
security model in Section 3.

4.1 Architecture For Keystroke Integrity

The goal of our design is to establish a secure channel
between the host and a remote server during the initializa-
tion, and this channel is used for relaying packets. Each
packet contains an encrypted version of the keystroke event
and its signature. The origins of signed keystrokes are
proved by TPM and authenticated by the server. Our
prototype includes a trust agent in kernel, a trust client in
user-space, and a remote trusted server.

. The trust agent is a kernel module that signs each
keystroke event. This client-side trust agent and the
remote trusted server share a secret session key. The
keystroke events are obtained from the keyboard
event driver by registering a keyboard notifier.

. The trust client is a user-space program that forwards
messages between the (kernel-level) trust agent and
the remote server.

. The remote server is assumed to be trustworthy and
verifies the signatures of keystrokes. The server also
monitors the client’s boot-time integrity through
TPM-based operations, including its kernel and
components. In case such a remote server is not
available, we give alternative solutions at the end of
Section 4.

Our main operations include:

1. key exchange between the trust agent and remote
server;

2. keystroke signing by the trust agent;
3. relaying signed events by the client to the remote

server; and
4. verifying the boot-time kernel integrity by the

remote server.

Our prototype is implemented in a client-server architecture
in Linux using the Intel Integrated TPM, details of which are
described in Section 4.3. This integrity service can defend
against malware attacks such as the replay of prior-captured
user keystrokes, fake key-event injections, and tampering
with our client. This keystroke-integrity service can also be
applied to ensure the integrity of mouse events. The
capability of ensuring user-input integrity and preventing

176 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012

malware forgery of input events has general applications and
serves as a fundamental component in constructing security
systems with trusted user inputs. Next, we give the technical
details in our design and implementation.

4.2 Key Management in Keystroke Integrity Service

The key management in our keystroke integrity service is
based on TPM specifications. However, directly using the
on-chip master secret key for cryptographic operations is
slow for time-sensitive applications such as ours. There-
fore, we generate a set of secret keys from the master key
for our cryptographic operations in order to improve the
efficiency. Our design involve creating three private/public
RSA key pairs: a signing key, a binding key, and a storage key.
The signing key is used to sign and encrypt outbound
packets as well as TPM quotes. TPM quote refers to the
hash values stored in the platform configuration registers
(PCR) of the TPM. These hash values are computed at the
boot time—they are chained digests of the system code that
is loaded into the memory of the host. The TPM quote
cannot be forged or tampered with.1 The binding key is
used to securely store the signing key. The storage key is
similar to the binding key but is more general, as the latter
is specifically for storing symmetric keys whereas the
storage key does not have any constraints. We use the
storage key to secure both the binding key and signing
keys. Our key management mechanism leverages the on-
chip TPM secret key to derive additional keys. We use
TPM’s sealed storage, which provides a secure location to
store secret keys, until system integrity can be verified.
Thus, the secrecy of keys is guaranteed, and the efficiency
of kernel-level cryptographic operations is also largely
improved. Our key exchange is as follows:

1. The trust agent uses the TPM to generate two
pseudorandom numbers (a0, a1). The trust agent
generates the TPM quote and uses the signing key to
sign it. The generated data in this step are encrypted
using the server’s public key.

2. The server generates two random numbers (b0, b1) and
encrypts them using the public key of the trust agent.

3. Server and trust agent exchange the encrypted
random numbers and XOR the decrypted values
with the sent bits to use as two symmetric keys (e.g.,
a0 � b0, a1 � b1), using one key for signing, and the
other for encryption; this key exchange protocol
follows from [25]. Finally, the server verifies the
values of the TPM quote against the correct quote
values, and also verifies its digital signature.

When the trust agent disconnects, the binding key is used
to bind the symmetric keys and securely store them so the
key exchange is not required during the next connection; the
server requests a new key exchange when necessary (after a
certain number of messages are exchanged). The secrecy of
keys is guaranteed, as they are encrypted (and stored on the
hard disk) with on-chip TPM key when not used. The TPM
quote procedure is repeated at each boot time. Our
implementation follows the Trusted Computing Group
(TCG) Service Provider Interface. This interface is part of

the TCG Software Stack. The TCG Service Provider (TSP)

layer is on top of the TCG Trusted Software Stack (TSS) core

service layer which interfaces with the TCG device driver

library used to communicate with TPM chip.

4.3 Implementation of Keystroke Integrity Service

Our prototype is implemented in the Linux operating

system using a Lenovo Thinkpad T400 with Intel Integrated

TPM and Intel Core 2 Duo (INT-C0-102, 2.53 GHz, 6 MB

cache, 1,066 MHz FSB), 3 GB RAM, following TPM Interface

Specifications 1.2. We implement the trust agent as a Linux

kernel module and the trust client as an application. The

trust client parses the non-encrypted messages and for-

wards them between the kernel-level trust agent and

remote server. Based on the Linux kernel cryptographic

API, we implement cryptographic functions on key events,

including signing key events by the trust agent and

verifying key events by the remote server. We provide the

encryption and decryption functions on the packets from

the client to the remote server to prevent network snooping

of keystrokes. Last but not least, we implement the key

management mechanism for the integrity service that

leverages TPM storage keys, as described in Section 4.2.
We describe the detailed procedure of starting and

running the integrity service between the client and the

remote server as follows:

1. Trusted boot. A kernel module, which we call trust
agent, is loaded on boot or can be compiled in the
kernel. The module creates a device /dev/

cryptkbd. We disable /dev/kmem and module
loading after boot to prevent any tampering with
the agent. A user-space trust client opens the device
/dev/cryptkbd and concurrently opens a socket
to the trusted server, waiting for communication.
When the trust client opens the device /dev/

cryptkbd, the trust agent—which has the signa-
ture of the correct client program—verifies the
integrity of the client. This verification also pre-
vents any other program from opening the device
in our security model.

2. Initial authentication. When the remote server gets
a connection from a client, it requests the initial
attestation. The trust client uses the write system
call to request the required information from the
agent. The trust agent forwards the signed TPM
quote. The trust client forwards the information to
the server which verifies the information.

3. Key exchange and monitoring. The trust agent and
the remote server set up a shared key through an
RSA key exchange protocol based on the TPM keys.
At the trust agent, each keystroke event is en-
crypted and a corresponding signature is generated.
Both the encrypted event and its signature are
wrapped in a packet. The trust client forwards the
packets to the remote server which verifies the
integrity of events by checking the signatures using
a keyed hash function. If signatures associated with
events do not pass the server’s verification, then the
trust agent is notified.

XU ET AL.: DATA-PROVENANCE VERIFICATION FOR SECURE HOSTS 177

1. We do not consider physical attacks (such as described in [29]) against
the TPM in this paper.

4.4 Performance Evaluation of Keystroke Integrity
Service

To estimate the bandwidth overhead, we assume that a
fast typist enters 212 words per minute [3] and in English
an average word has 4.5 characters [27]. Each character
has a press event and a release event, respectively.
Therefore, we obtain 12.2 KBps maximum bandwidth
overhead as follows:

212 words

60 sec
� 4:5

chars

word
� 2

events

char
� 384 B ¼ 12:2 KBps: ð1Þ

We experimentally evaluated the overhead incurred by
the event signing and encryption in the keystroke-integrity
service. The purpose is to measure the overhead associated
with TPM encryption and authentication components. We
collected data from 10 participants in a user study. The
participants continuously typed characters of their choice
for 5 minutes, with our program running in the back-
ground. We asked the participants to type actively, in order
to evaluate the overhead incurred.

We compute the average processing time over 28,612
keystroke events with the TPM key initiation amortized.
Each key press and key release event is in a separate
packet of 384 bytes. Signing a packet with a 256-bit key
takes 33.5 microseconds, and encrypting a packet using
standard AES-CBC with a 256-bit key takes 50.6 micro-
seconds on average. The entire keystroke callback proces-
sing takes 1.30 milliseconds.

We compute the communication overhead between trust
client and authentication server during the user study.
Packet relay is measured and shown in Table 1. At the peak
input-speed of a user, 153 packets are sent during a
10-second interval, which gives a bandwidth consumption
of 5.87 KBps. The average bandwidth consumption ob-
served is 2.92 KBps. The distribution of all the 10-second
intervals over the possible bandwidth consumption is
shown in Fig. 1. Throughout the user study, participants
had no visible delay or any usability issues. The crypto-
graphic operations introduced by this integrity service have
low computational and communication overheads. The
bandwidth utilization can be further optimized, for exam-
ple, by grouping multiple keystroke events in one packet.

Attack simulation. We implement a program in C that
injects keyboard events in order to simulate keystroke
forgeries. Our program creates fake keyboard events and
injects them into the core-event-stream as if they are typed
on the external keyboard. The core-event-stream runs
above the TTY-level driver and can be viewed as an
application-level service. From the application’s perspec-
tive, the fake keyboard events cannot be distinguished
from actual key events, even though the keyboard is not

touched. Using our integrity service we confirm that
forged keystroke events are recognized as rogue.

Summary. Directly using on-chip master secret keys for
cryptographic operations is slow. In comparison, our
implementation generates secret session keys from the on-
chip master key and uses session keys for the cryptographic
operations, which speeds up the signing and encryption
operations on the client side. Our protocol ensures the
authentic origin of keystroke events, and embodies our
provenance verification approach. It also yields a general
approach that can be used for the attestation of other devices.
In particular, it can be developed to prevent malware from
injecting fake events into other applications. One may
expand the TPM support for the applications to be included
in the attestation.

The remote trusted server is for the verification of the
load-time system integrity and runtime keystroke integrity
of the host. If there is no remote server available, both types
of verification need to be realized locally with additional
security assumptions. The TPM seal and unseal opera-
tions can be used to protect the integrity and secrecy of
signing keys—the keys are accessed or unsealed only when
the host’s load-time quote matches the quote when the key
is stored or sealed. One needs to add to the host a new
kernel module that verifies the signatures of keystrokes.
This new component’s load-time integrity is verified as
part of the quote. One needs to assume that it cannot be
tampered with at the runtime.

In the next section, we describe a traffic provenance
verification mechanism for a host to monitor all outbound
packets including those sent by stealthy malware.

5 TRACKING PROVENANCE OF OUTBOUND TRAFFIC

In this section, we illustrate our cryptographic provenance
verification approach in a network setting, in particular for
ensuring the integrity of outbound packets, as they flow
through the host’s network stack. We describe the design
and implementation of a lightweight traffic-monitoring
framework. It can be used as a building block for construct-
ing powerful personal firewalls or traffic-based malware-
detection tools. Malware disabling or bypassing personal
firewalls on a host renders the firewalls useless.

178 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012

Fig. 1. Distribution of bandwidth consumption over 10-second intervals.

TABLE 1
Network Bandwidth Consumption in Our

Keystroke-Authentication User Study

We demonstrate the effectiveness of our traffic-monitor-
ing framework in identifying the network activities of
stealthy malware. Specifically, our provenance verification
scheme requires outgoing network packets to flow through
a checkpoint (e.g., a kernel module) on a host, to obtain
proper provenance proofs for later verification. Any traffic
sent through disabling or bypassing the firewall can be
detected, as the packets are unable to provide their
provenance proofs. Thus, we effectively prevent any traffic
to be sent without passing through a certain checkpoint—-
significantly improving the assurance of traffic-based
malware detection on hosts. Such a simple-yet-powerful
traffic-monitoring framework can yield advanced detection
mechanisms such as input-traffic correlation analysis on
application-level traffic such as [32]. In particular, our
solution provides an effective defense against common
bypassing attacks.

Malware may communicate with the outside world, with
the intent of exporting sensitive data. Legitimate outbound
network traffic passes through the entire network stack in
the host’s operating system. We develop a robust crypto-
graphic protocol for enforcing the proper provenance of a
packet on a host.

5.1 Architecture of Traffic Provenance Verification

The Internet protocol stack or network stack is part of the
host’s operating system and consists of five layers—
application, transport, network, data link, and physical
layers. User-space outbound traffic (e.g., browser or email
packets) travel all five layers on the stack from the top to the
bottom before being sent out. System services (e.g., Windows
updates) are typically implemented as applications, thus
their network flow also traverses the entire Internet protocol
stack (which we validate with experiments).

Our design of the traffic-monitoring framework extends
the host’s network stack and deploys two kernel modules,
Sign and Verify modules, as illustrated in Fig. 2. Both
signing and verification of packets take place on the same
host but at different layers of the network stack—the Sign
module is at the transport layer, and the Verify module is
at the network layer. The two modules sharing a secret
cryptographic key monitor the integrity of outbound

network packets. All legitimate outgoing network packets
first pass through the Sign module, and then the Verify
module. The Sign module signs every outbound packet,
and sends the signature to the Verify module on the same
host, which later verifies the signature with a shared key.
The signature proves the provenance of an outgoing
packet. If a packet’s signature cannot be verified or is
missing, then the packet is labeled as suspicious. Directly
invoking the lower data-link layer or the physical layer
functions to send traffic is hardware-dependent and
difficult in practice. Therefore, installing the Verify module
at the network layer is adequate.

For the key management, when the system starts up, the
Sign module and the Verify module generate their respec-
tive public/private key pairs and notify each other of their
respective public keys. Then the two modules securely
exchange a symmetric key, which is used for signature
generation and verification. In the Windows OS, modules
communicate by sending I/O request packets (IRPs).
IoCallDriver is the function for sending IRPs to a
specific driver. Specifically, the Verify module sends a
random number encrypted with Sign module’s public key
and the Sign module replies with another random number
encrypted with the Verify module’s public key. The XOR
result of the two numbers is the symmetric key which is
used to sign and verify network packets. Our protocol has
three main operations: SYSTEM BOOT, KEY EXCHANGE, and
SIGN AND VERIFY.

SYSTEM BOOT: After the Verify module is started, it
randomly generates a public/private key pair. Then, the
Sign module is started, which randomly generates a public/
private key pair.

KEY EXCHANGE:

1. The Sign module initiates the connection with the
Verify module. The two modules exchange their
public keys. The Sign module generates two random
numbers a0 and a1, and encrypts a0 and a1 using the
Verify module’s public key. The Sign module sends
encrypted a0 and a1 to the Verify module.

2. The Verify module receives and decrypts a0 and a1

with its private key. It then generates two random
numbers b0 and b1. The Verify module encrypts b0

and b1 using the Sign module’s public key. The Sign
module decrypts them with its private key.

3. Both the Sign and Verify modules have a0, a1, b0, and
b1. They compute the signing key as a0 � b0 and the
symmetric key for their communication encryption
as a1 � b1.

SIGN AND VERIFY:

1. The Sign module gets the packet payload from the
application layer and generates a signature for
the data using UMAC. The Sign module encrypts
the signature and packet information (e.g., source
and destination addresses and ports) with the
communication key.

2. The Sign module sends the encrypted data to the
Verify module. The Verify module decrypts the
received information, and inserts the records into a
hash table indexed by the packet information.

XU ET AL.: DATA-PROVENANCE VERIFICATION FOR SECURE HOSTS 179

Fig. 2. Schematic drawing of components in the framework and their
interactions with the host’s network stack. Legitimate traffic origins from
the application layer whereas kernel-level malware traffic may be
injected to the lower layers. Traffic checkpoints are placed at the Sign
and Verify modules.

3. The Verify module intercepts every network packet
before it is sent to the network interface card and
computes its signature. The Verify module then
retrieves the stored signature corresponding to the
packet from the hash table. If the retrieved signature
matches the one computed, then the corresponding
packet is allowed to be passed down to the next
layer. Otherwise, the Verify module reports the
packet as being suspicious.

In our evaluation in Section 5.4, we measure the
overhead associated with signing the entire packet payload
or part of the payload (referred to as partially signed
packets). To ensure the integrity of the detection framework
at load time and signing key secrecy, we may utilize the on-
chip TPM to generate the signing keys and to attest kernel
and module integrity at boot. The detail is similar to
keystroke-integrity service described in Section 4, where the
attestation of kernel and module integrity may use a remote
trusted server. Enlisting a remote server for integrity
purpose was also previously used in [1]. In comparison to
the virtualization-based traffic detection approach by
Srivastava and Giffin [30], our solution provides an effective
cryptographic alternative that leverages the available
trusted computing infrastructure.

5.2 Windows Network Architecture and Issues with
Firewalls

We have implemented our traffic provenance-tracking
mechanism in Windows XP, and experimentally evaluated
it with two proof-of-concept malware and assess the
throughput of upstream network traffic. Windows personal
firewalls typically work in Winsock SPI, TDI, or NDIS layers
from the top to the bottom. The Winsock SPI (Service
Provider Interface) layer is in the user level. The TDI layer is
typically used in commercial host-based security solutions.
At this layer, the firewall may add a filter device in the kernel
to filter outbound network packets. The firewall at the TDI
layer has the access to the process information, which
provides useful contextual data for filtering packets. How-
ever, TDI filter devices can be disabled or bypassed, which
renders the firewall useless. The NDIS layer captures all
network traffic, and is hard to bypass firewalls at the NDIS
layer. However, it is difficult to retrieve high-level process
information about network packets at the NDIS layer.

We note that the keystroke integrity and traffic prove-
nance of our work are independent of each other—each
illustrating an application of our proposed CPV approach.
Due to the internal organization of Linux OS, its network
stack is not as modular as Windows network stack;
specifically, there is no clear-cut boundary between the
transport layer and network layer. Thus, we opt for
Windows OS for building our traffic-provenance prototype,
which is presented next.

5.3 Prototype Implementation

Our implementation is realized in C/C++ in Windows XP
operating system. The Sign module is realized as a TDI
filter device and the Verify module is realized as part of
the NDIS driver. In our prototype, we use UMAC (message
authentication code using universal hashing) in lieu of a
public-key digital signature scheme for proving message

integrity due to UMAC’s efficiency and simplicity [17].
Similar to Section 4, TPM may be used to ensure the
secrecy of signing keys and the integrity of the operating
system at the load time, which is not implemented for this
prototype for traffic-provenance verification. Due to the
lack of access to Windows XP kernel cryptographic library,
we implement our own cryptographic operations.

Sign module captures and signs network packets that
flow through the Winsock API. Our implementation is
based on an open-source TDI filter device in the kernel
space called TDIFW. It is a Windows kernel driver and can
filter all network traffic from the application layer. We
modify the function tdi_send to support the signing
operation. This function intercepts outbound network
packets including UDP datagrams and TCP segments. All
TCP control messages such as SYN, FIN, ACK packets are
not captured by Sign module, because they are generated
by the TCP/IP stack which is below our filter device. The
process ID can be learned by calling PsCurrentProces-

sID, since the filter driver works in the context of the
process which calls Winsock APIs to send outgoing packets.

In function tdi_send, we capture all TCP segments,
and compute the message authentication code for each
segment. Signatures are sent directly to the Verify module
through the system call IoCallDriver.

Verify module is an NDIS intermediate miniport driver.
It intercepts and verifies all packets just before they are sent
to network interface card drivers. The Verify module is
implemented on the Passthru, which is an NDIS intermedi-
ate miniport device in Windows. We modify the function
MPSendPackets to support the verification operation. TCP
control messages are put on the white list and are not
subject to our verification test.

Our prototype does not verify any TCP control packet,
but signing TCP control packets may be done if the Sign
module is placed at a lower level on the network stack. The
SYN flood attack is a problem in TCP where the attacker
exhausts the resource of a victim server by sending many
SYN packets and resulting in many half-opened connec-
tions. Our traffic provenance service aims at enforcing the
regulation of the network stack utilization and is not
directly related to the prevention of SYN flood attack.
Server-side solutions have been proposed such as using the
SYN cookie and adaptive timeout to defend against the
SYN flood.

Intuitively, the Verify module at the network layer has to
reassemble Ethernet frames in order to reconstruct the
original transport layer data segments and then compute
signatures. Fortunately, because UMAC computes signa-
tures incrementally and outgoing Ethernet frames in the
network stack are sequential, the Verify module does not
need to reassemble fragments. It updates the corresponding
signature for each fragment on-the-fly, which significantly
reduces the time and memory costs. It is important to note
that the packet signature is not appended to each packet, as
this would result in unnecessary checksum recalculations
by the Verify module. Instead, the Sign module sends
UMAC directly to the Verify module, as shown in Fig. 2.
UMAC values are kept in a hash table indexed by the
packet’s source address, destination address and port for
the fast look-up.

180 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012

5.4 Performance Evaluation

To evaluate the running time, we use jperf to generate
workload, which is a wrapper of iperf with a graphic user
interface. For each setup we performed multiple runs (�3)
and compute the averaged time. Data are collected while
the throughput is stabilized. We use a Windows virtual
machine as the destination, i.e., iperf runs on the host
machine and generates traffic to the virtual machine. The
secret key is hard-coded in our experiments. The key length
is 128 bits (default for UMAC).

Our experimental evaluation in Fig. 3 shows that the
overhead imposed by the cryptographic integrity verifica-
tion on the outbound traffic streams is minimal when
transport-layer segment size is large (e.g., 64 KB). For small
packet sizes (which are typical in web browser traffic),
Table 2 shows the throughput with UMAC divided by the
throughput without UMAC. The slow down observed in
small packets is slightly higher than large packets due to
our cryptographic overhead, but is still tolerable. In our
experiments with the web browser and other common
networked applications, there is no visible slow down
observed by the user. Instead of signing the whole packet,
an alternative is to sign a portion of the packet, which
reduces the computation overhead and increases the
throughput, as is shown in Fig. 3 bottom. An attacker
may attempt to tamper with the unsigned part of packet.
We can randomize the choice of signed portion to make this
attack more difficult. Furthermore, malware piggybacking
its payload to other packets is useless for the attacker unless
the packets’ destinations are modified to be the attacker’s
intended destination.

In summary, with the provenance verification on each
packet, the throughout decreases in general. However, as
the packet size grows, the costs of signing and verification
are amortized. The observed performance degradation is
acceptable in practice. Most personal computers have low
upstream traffic even with peer-to-peer applications run-
ning. Our detection framework enforces the correct flow of
outbound traffic through the host’s network stack. This
feature enables advanced traffic inspection solutions at the
transport layer, without worrying about malware bypassing
the inspection checkpoint. Installing sophisticated traffic
inspection at the transport layer of a host is desirable, due to
the ease of accessing user-space information.

5.5 Two Proof-of-Concept Attacks against Personal
Firewalls

We develop two pieces of proof-of-concept malware that
can turn off or bypass the typical transport layer firewall
and send outgoing packets in Windows XP. We evaluate
our prototype for traffic-provenance verification against
them. The malware can disable URL filtering functionality
of Trend Micro OfficeScan Client. In comparison, our Verify
module can detect the network activities of such malware.

Bypass malware I. This experiment demonstrates an
attack that attempts to disable the Sign module in our
traffic-provenance verification mechanism. The attack can
be detected by our Verify module because of the missing
proofs due to the disabled Sign module. We implement a
malicious driver with the ability to remove all the hooks
attached to Windows OS TDI drivers without reboot. As a
result, the Sign module is disabled. This attack is loaded
dynamically by any Windows driver loader application and
does not require restarting the machine to execute the
malicious code.

We confirm that the Verify module is able to catch the
outbound packets that do not have corresponding proofs
immediately after the malware is launched.

Bypass malware II delivered through drive-by down-
load. In this attack, malicious code is delivered to the
victim’s machine and executed through a drive-by-down-
load exploit. In the drive-by-download [36], malicious code
can be fetched and executed through compromised
applications (such as the browser) on a victim’s machine
without the user’s permission. This exploit is capable of

XU ET AL.: DATA-PROVENANCE VERIFICATION FOR SECURE HOSTS 181

Fig. 3. Comparisons on outbound packet throughput with or without
signing at the top and with partially signed packets at the bottom.

TABLE 2
The Throughput with UMAC as the Percentage of the

Throughput without UMAC for Small Packet Sizes

removing the Sign module from the file system, thus
disabling it after the machine restarts. Restarting the
computer is necessary in order to remove the copy of the
Sign module in the memory. Our traffic-provenance
verification mechanism can successfully detect this attack.

The Verify module is part of the NDIS driver, which is an
intermediate driver between the network driver interface in
transport layer and network physical device. Disabling the
Verify module would disable the entire NDIS driver, which
cripples the basic network functions. In contrast, the Sign
module places a hook to the TDI driver, which is much
simpler to remove without affecting other parts of the
network stack. Thus, our assumption on the integrity of the
Verify module is valid in practice.

5.6 False Positive Evaluation of Traffic-Provenance
Verification

This experiment is to find out empirically the number of
false alarms triggered by our traffic-provenance verifica-
tion. A false alarm may be due to a network service or an
application that does not send outbound traffic through
the typical transport-layer entry point. We ran common
networked applications on a Windows 7 personal computer
for seven days. The applications include browsers (Chrome,
Firefox, IE8), Skype, Yahoo Messenger, Gtalk, AIM, Win-
dows Media Player, Real Player, Google Earth, eMule,
Thunderbird, Wireshark, and TrendMicro Office Scan. We
manually interacted with each application for a certain time
period (30 minutes), such as using an instant message
application to chat, using peer-to-peer file sharing applica-
tion to download and upload files, and browsing webpages
with browsers. We recorded the number of alerts that our
traffic-provenance verification generates. The collected data
are of size 12 MB.

None of the applications that we evaluated generates
any false alarm. During the experiments, there are a total
of 20 active Windows services (e.g., automatic update)
with network activities running on the host. None of the
Windows services triggered any alert either. Our results
indicate that legitimate applications and network services
typically follow the network stack to send outbound
traffic, and thus our traffic-provenance verification has
no false positives.

6 CONCLUSIONS

We described a general approach for improving the
assurance of system data and properties of a host, which
has applications in preventing and identifying malware
activities. Our host-based system security solutions against
malware complement network-traffic-based analysis. We
demonstrated CPV’s application in identifying stealthy
malware activities of a host, in particular how to distinguish
malicious/unauthorized data flow from legitimate one on a
computer that may be compromised.

We made the following technical contributions in this
paper: 1) We proposed the model and operations of
cryptographic provenance verification in a host-based
security setting. We pointed out its important usage for
achieving highly assured kernel data and application data
of a host, and associated technical challenges. 2) We
demonstrated our provenance verification approach in a

lightweight framework for ensuring the integrity of out-
bound packets of a host. This traffic-monitoring framework
creates checkpoints that cannot be bypassed by malware
traffic. 3) We described an efficient TPM-based keystroke-
integrity verification protocol in a client-server architecture
that prevents malicious bots from forging keystroke events.
This keystroke-integrity service serves as an important
building block for the future construction of human-
behavior-driven security solutions.

ACKNOWLEDGMENTS

This work was supported in part by DIMACS REU
programs and US National Science Foundation grants
CCF-0728937, CNS-0831186, and CAREER CNS-0953638. A
preliminary version of this work appeared in the Industrial
Track of the Eighth International Conference on Applied
Cryptography and Network Security (ACNS ’10). Industrial
Track papers were not archived in ACNS’s LNCS proceed-
ings. Stefan and Wu’s parts of the work were done when
they were a visitor and a student at Rutgers University,
respectively.

REFERENCES

[1] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic Inference and
Enforcement of Kernel Data Structure Invariants,” Proc. 24th Ann.
Computer Security Applications Conf. (ACSAC ’08), 2008.

[2] A. Baliga, P. Kamat, and L. Iftode, “Lurking in the Shadows:
Identifying Systemic Threats to Kernel Data,” Proc. IEEE Symp.
Security and Privacy, pp. 246-251, 2007.

[3] B. Blackburn and R. Ranger, Barbara Blackburn, the World’s Fastest
Typist. 1999.

[4] M. Christodorescu, S. Jha, and C. Kruegel, “Mining Specifications
of Malicious Behavior,” Proc. Sixth Joint Meeting of the European
Software Eng. Conf. and the ACM SIGSOFT Symp. the Foundations of
Software Eng. (ESEC-FSE ’07), pp. 5-14, 2007.

[5] W. Cui, R.H. Katz, and W. tian Tan, “Design and Implementa-
tion of an Extrusion-Based Break-in Detector for Personal
Computers,” Proc. 21st Ann. IEEE Computer Security Applications
Conf. (ACSAC ’05), pp. 361-370, 2005.

[6] D.E. Denning, “A Lattice Model of Secure Information Flow,”
Comm. ACM, vol. 19, pp. 236-243, May 1976.

[7] D.E. Denning and P.J. Denning, “Certification of Programs for
Secure Information Flow,” Comm. ACM, vol. 20, pp. 504-513, July
1977.

[8] M. Dhawan and V. Ganapathy, “Analyzing Information Flow in
Javascript-Based Browser Extensions,” Proc. Ann. IEEE Computer
Security Applications Conf. (ACSAC ’09), pp. 382-391, 2009.

[9] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware
Analysis via Hardware Virtualization Extensions,” Proc. 15th
ACM Conf. Computer and Comm. Security (CCS ’08), pp. 51-62, 2008.

[10] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and X.
Zhang, “Trustworthy and Personalized Computing on Public
Kiosks,” Proc. Sixth Int’l Conf. Mobile Systems, Applications, and
Services, pp. 199-210, 2008.

[11] J. Goebel and T. Holz, “Rishi: Identify Bot Contaminated Hosts by
IRC Nickname Evaluation,” Proc. First USENIX Workshop Hot
Topics in Understanding Botnets, Apr. 2007.

[12] J.B. Grizzard, V. Sharma, C. Nunnery, B.B. Kang, and D. Dagon,
“Peer-to-Peer Botnets: Overview and Case Study,” Proc. First
USENIX Workshop Hot Topics in Understanding Botnets, Apr. 2007.

[13] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “BotMiner: Clustering
Analysis of Network Traffic for Protocol- and Structure-Indepen-
dent Botnet Detection,” Proc. 17th USENIX Security Symp., 2008.

[14] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy,
“Not-a-Bot: Improving Service Availability in the Face of Botnet
Attacks,” Proc. Sixth USENIX Symp. Networked Systems Design and
Implementation (NDSI ’09), 2009.

[15] M.G. Jaatun, J. Jensen, H. Vegge, F.M. Halvorsen, and R.W.
Nergârd, “Fools Download where Angels Fear to Tread,” IEEE
Security & Privacy, vol. 7, no. 2, pp. 83-86, 2009.

182 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2012

[16] H.C. Kim, A.D. Keromytis, M. Covington, and R. Sahita,
“Capturing Information Flow with Concatenated Dynamic Taint
Analysis,” Proc. Int’l Conf. Availability, Reliability, and Security
(ARES ’09), pp. 355-362, 2009.

[17] T. Krovetz, “UMAC: Fast and Provably Secure Message Authen-
tication,” http://fastcrypto.org/umac, 2011.

[18] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “BLADE: An Attack-
agnostic Approach for Preventing Drive-By Malware Infections,”
Proc. 17th ACM Conf. Computer and Comm. Security, 2010.

[19] J.M. McCune, B.J. Parno, A. Perrig, M.K. Reiter, and H. Isozaki,
“Flicker: An Execution Infrastructure for TCB Minimization,”
Proc. Third ACM SIGOPS/EuroSys European Conf. Computer
Systems, pp. 315-328, 2008.

[20] J.M. McCune, A. Perrig, and M.K. Reiter, “Bump in the Ether: A
Framework for Securing Sensitive User Input,” Proc. USENIX
Ann. Technical Conf., General Track, pp. 185-198, 2006.

[21] J.M. McCune, A. Perrig, and M.K. Reiter, “Safe Passage for
Passwords and Other Sensitive Data,” Proc. Annual Network and
Distributed System Security Symp. (NDSS ’09), 2009.

[22] B.D. Payne and W. Lee, “Secure and Flexible Monitoring of
Virtual Machines,” Proc. 23rd Ann. Computer Security Applications
Conf. (ACSAC ’07), pp. 385-397, 2007.

[23] M. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “My Botnet Is
Bigger Than Yours (Maybe, Better Than Yours),” Proc. First
USENIX Workshop Hot Topics in Understanding Botnets, Apr. 2007.

[24] R. Riley, X. Jiang, and D. Xu, “Guest-Transparent Prevention of
Kernel Rootkits with VMM-Based Memory Shadowing,”
R. Lippmann, E. Kirda, and A. Trachtenberg, eds., pp. 1-20,
Springer, 2008.

[25] B. Schneier and N. Ferguson, Practical Cryptography, John Wiley
and Sons, 2003.

[26] R. Sekar, “An Efficient Black-Box Technique for Defeating Web
Application Attacks,” Proc. ISOC Network and Distributed Systems
Symp. (NDSS ’09), Feb. 2009.

[27] C. Shannon, “Prediction and Entropy of Printed English,” Bell
System Technical J., vol. 30, no. 1, pp. 50-64, 1951.

[28] S.W. Smith, Trusted Computing Platforms: Design and Applications,
Springer-Verlag, 2005.

[29] E. Sparks, “A Security Assessment of Trusted Platform Modules,”
senior hons. thesis, Dept. of Computer Science, Dartmouth
College, 2007.

[30] A. Srivastava and J. Giffin, “Tamper-Resistant, Application-Aware
Blocking of Malicious Network Connections,” Proc. 11th Int’l
Symp. Recent Advances in Intrusion Detection, pp. 39-58, Springer-
Verlag, 2008.

[31] D. Stefan and D. Yao, “Keystroke-Dynamics Authentication
against Synthetic Forgeries,” Proc. Int’l Conf. Collaborative Comput-
ing: Networking, Applications and Worksharing (CollaborateCom ’10),
Nov. 2010.

[32] Z. Wang, X. Jiang, W. Cui, and X. Wang, “Countering Persistent
Kernel Rootkits through Systematic Hook Discovery,” Proc. 11th
Int’l Symp. Recent Advances in Intrusion Detection, pp. 21-38,
Springer-Verlag, 2008.

[33] J. Wei, B.D. Payne, J. Giffin, and C. Pu, “Soft-Timer Driven
Transient Kernel Control Flow Attacks and Defense,” Proc. Ann.
Computer Security Applications Conf., pp. 97-107, 2008.

[34] H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao, “User-
Assisted Host-Based Detection of Outbound Malware Traffic,”
Proc. Int’l Conf. Information and Comm. Security (ICICS ’09), Dec.
2009.

[35] G. Xu, C. Borcea, and L. Iftode, “Satem: Trusted Service Code
Execution Across Transactions,” Proc. 25th IEEE Symp. Reliable
Distributed Systems (SRDS ’06), pp. 321-336, 2006.

[36] K. Xu, D. Yao, Q. Ma, and A. Crowell, “Detecting Infection Onset
with Behavior-Based Policies,” Proc. Fifth Int’l Conf. Network and
System Security (NSS ’11), Sept. 2011.

[37] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing Systemwide Information Flow for Malware Detection
and Analysis,” Proc. 14th ACM Conf. Computer and Communication
Security (CCS ’07), 2007.

Kui Xu received the bachelor degree in compu-
ter science from the University of Science and
Technology of China. He is a PhD candidate in
the Department of Computer Science at Virginia
Tech, Blacksburg. He is interested in cyber
security research. In particular, he focuses on
utilizing user behavior information in strengthen-
ing security. Major research topics cover drive-
by download detection, user-activity-based
authentication, DNS tunneling analysis, and

personalized anomaly detection. He is a student member of the IEEE.

Huijun Xiong is a fourth-year graduate student
in the Computer Science Department of Virginia
Tech, Blacksburg, Virgina. She received the
master’s and bachelor’s degrees in computer
science from Wuhan University in China. Her
research interests are in network security,
information security, and applied cryptography
in cloud computing.

Chehai Wu received the MS degree in com-
puter science from Rutgers University, New
Brunswick, New Jersey, where he worked on
malware detection with Prof. Danfeng Yao. He
is a senior software engineer at AppFolio, Inc.,
in Goleta, California.

Deian Stefan received the BE and ME degrees
in electrical engineering from The Cooper Union,
where he focused on the application of FPGAs
and GPUs to speeding up cryptographic algo-
rithms. He is a PhD candidate in the Computer
Science Department at Stanford University,
California. His research interests include operat-
ing systems and programming languages with a
focus on security. He is particularly interested in
language- and library-based approaches to

decentralized information flow control and secure computation. He has
received several awards, including the NDSEG fellowship and best
paper award at CollaborateCom 2010. He is a student member of the
IEEE and the IEEE Computer Society.

Danfeng Yao is an assistant professor in the
Department of Computer Science at Virginia
Tech, Blacksburg. She received the PhD degree
in computer science from Brown University.
Before joining Virginia Tech, she was a tenure-
track assistant professor in the Computer
Science Department at Rutgers University for
two years. Her research interests are in network
and information security, in particular user-
centric security and privacy, social- and human-

behavior pattern recognition, insider threats, data privacy, and applied
cryptography. She received the US National Science Foundation
CAREER Award in 2010 for her work on human-behavior-driven malware
detection. She won the Best Student Paper Award at ICICS 2006 and the
Award for Technological Innovation from Brown in 2006, both for her
privacy-preserving identity management work, and the Best Paper
Award at CollaborateCom 2010 for keystroke security. She has a PCT
patent filed for her recent bot detection techniques. She is a member of
the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: DATA-PROVENANCE VERIFICATION FOR SECURE HOSTS 183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

