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Abstract. Outsourced databases provide a solution for data owners who
want to delegate the task of answering database queries to third-party
service providers. However, distrustful users may desire a means of verify-
ing the integrity of responses to their database queries. Simultaneously,
for privacy or security reasons, the data owner may want to keep the
database hidden from service providers. This security property is par-
ticularly relevant for aggregate databases, where data is sensitive, and
results should only be revealed for queries that are aggregate in na-
ture. In such a scenario, using simple signature schemes for verification
does not suffice. We present a solution in which service providers can
collaboratively compute aggregate queries without gaining knowledge of
intermediate results, and users can verify the results of their queries,
relying only on their trust of the data owner. Our protocols are secure
under reasonable cryptographic assumptions, and are robust to collusion
among k dishonest service providers.
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1 Introduction

Privacy concerns are still a major obstacle that makes sensitive data inaccessible
to data mining researchers and prevents collaborative data analysis and filtering
among multiple organizations from becoming a reality. Many databases contain
sensitive information, and the data owner may not want to share it in full with
untrusted entities. Thus, the data owner may only want to allow queries of a
statistical or aggregate nature. This privacy requirement has become a common
issue for large collections of sensitive data, with applications to census data,
medical research, and educational testing [19]. For example, aggregate medical
information about a group of patients may be accessible for research purposes.
However, medical records of individual patients are confidential and should be
kept hidden from all parties except for the hospital maintaining them [17].

An increasing trend in today’s organizational data management is data out-
sourcing and cloud computing. An owner may choose to outsource the data, that
is, to allow the data to be hosted by third-party service providers. The data hosts
would be given the ability to store full or partial information from the database,
and the capability to answer queries of a certain type. Data outsourcing allevi-
ates the workload of the data owner in answering queries by delegating the tasks
to powerful third-party servers with large computational and network resources.

However, data outsourcing poses additional privacy risks to the sensitive con-
tents. The outsourcing service providers may not be fully trusted by the data
owner, or may be susceptible to attacks by malicious parties (both internal and
external). Studies have shown that in an outsourced setting it is extremely easy
for malicious employees at the service provider organization to access the pass-
words of business owners and thus their customer data [5]. Security breaches at
providers caused by outside adversaries may expose sensitive hosted information.

However, existing database-as-a-service (DAS) models are unable to support
sophisticated queries such as aggregation while simultaneously maintaining the
secrecy of microdata (i.e., individual data entries). Existing approaches based on
the encryption of outsourced contents [1, 31] apply to models where the user who
queries the encrypted outsourced data is the data owner herself. We consider a
more general setting where the database can be queried by anyone. Thus, there
is a gap between the security guarantees provided by existing data outsourcing
systems and the privacy needs of the data owners. To protect sensitive data from
these threats, it is desirable to outsource the data in such a way that aggregate
queries can be computed without revealing microdata to service providers. This
paper presents a solution that realizes this goal.

Cross-domain collaborative data analysis is another application that moti-
vates our work. For example, multiple regional hospitals collaborate to discover
the most frequently occurring flu strain of the season in that area. Existing so-
lutions that support multi-party privacy-preserving data mining require either a
trusted or semi-trusted third-party to moderate the computation [28] or the ac-
tive online participation of players in order to complete the computation [6, 33].
Neither approach provides a practical solution that can be deployed and operated
in a completely decentralized fashion. As it will soon become clear, we aim to
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realize a more practical model without any trusted party, where each data owner
may preprocess their data once, independently, and then a (qualified) user can
have aggregate query responses computed on the entire collection of data coming
from heterogeneous data sources. The privacy-preserving requirement specifies
that neither the user nor the service providers learn any microdata—just the
aggregation results.

Aside from the aforementioned privacy requirements, an outsourcing frame-
work should also address the clients’ need for assurnace of the integrity of query
results. Here, clients are individual customers of the data owner who queries the
data. For example, a client may not trust a third-party service provider to accu-
rately represent the data in the outsourced database. Suppose the client submits
an aggregate query and receives an answer from the service provider. How can
he be sure that the value was calculated correctly and completely without be-
ing permitted to see the individual data entries involved in the computation?
Aggregate query integrity has been largely ignored in the current literature. By
contrast, we present a comprehensive solution to the problem of securely com-
puting and verifying aggregate queries on outsourced databases, as we describe
next in more detail.

Our Contributions In this paper, we formalize a model called PDAS (for
Privacy-preserving Database-As-a-Service) for preserving privacy and integrity
of aggregate query results. We describe a distributed architecture that supports
querying outsourced data in a multi-player setting, in which a data owner dele-
gates to third-party service providers the task of answering queries from users.

We construct lightweight cryptographic protocols for privacy-preserving com-
putation and verification of the aggregate queries SUM and AVERAGE. We de-
scribe the handling of aggregate queries with SELECT clauses as an extension.
Our protocols allow a user to verify correctness of aggregate results while the
individual data values contributing to the results are kept secret from both the
user and the service providers. The user interacts with a single service provider
to obtain aggregate results, and can verify whether or not the service provider
returns the correct results. Our solutions utilize simple cryptographic primitives
such as threshold secret-sharing.

Our algorithms are efficient. Let n be the size of the data set, and let m be the
number of service providers available to host the data. Let k be the threshold
value, i.e. k data hosts must cooperate to compute a query. Then the setup
cost is O(nmk) time and O(n) space for the data owner, plus a communication
cost of O(n) between the data owner and each of the m service providers. Each
service provider requires O(n) space but no additional setup time. The time
complexity for computing a query over a subset of size s is only O(s) for each of
the k servers participating (done in parallel); the service provider responding to
the query needs O(k2) time to compute the result, with a total communication
complexity of O(k) between the responder and the other servers. Verifying the
result requires O (min(s log n, n)) communication cost and run-time for the user.
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2 Preliminaries

In this section, we provide background on the cryptographic building blocks we
use to construct our solution.

2.1 Shamir’s Secret-Sharing Scheme

In a k-out-of-n secret-sharing scheme, the data owner distributes shares, or parts,
of the secret to n servers in such a way that any k of them can cooperate and
recover the entire secret, but any smaller group cannot [29, 4].

Shamir’s secret-sharing scheme [29] is based on polynomial interpolation.
Suppose there are m participants, and any k of them should be able to recover
the secret S. Let q be a large prime. The distributor chooses a random (k − 1)-
degree polynomial P over the field Fq such that P (0) = S. That is, he chooses
a1, . . . , ak−1 independently and uniformly at random from [0, q−1], and lets a0 =
S, where S is interpreted as an element of Fq. The corresponding polynomial
will be

P = ak−1x
k−1 + . . . + a1x + a0.

The share for each participant is a distinct point on P , but obviously not P (0).
If any k participants share their knowledge, they collectively will have k dis-
tinct points on the curve, from which they can determine P using polynomial
interpolation, and thus recover the secret S = P (0). If only k − 1 participants
cooperate, however, they will be unable to recover the polynomial. Furthermore,
each different value of S would yield a different polynomial that agrees with their
k − 1 points, so they have gained no knowledge about the secret S.

2.2 Pedersen’s Commitment Scheme

A commitment scheme is a protocol for committing to a value without revealing
it to observers, so that knowledge of the value may later be proven, but the value
to which the commitment was made cannot be changed. There are many different
schemes; here, we will use the Pedersen commitment scheme [25] because of its
homomorphic properties.

There are two parties involved, a Prover and a Verifier. The Prover would
like to commit to a value x, and only reveal it at a later time. The Verifier wants
to ensure that the Prover cannot modify the value of x during the protocol. Both
parties first agree on a group Gp of prime order p, and choose two generators
g, h for which the discrete log problem is believed to be difficult and logg h is
unknown. The Prover generates a random exponent r, and publishes the com-
mitment c = Cr(x) = gxhr ∈ Gp. Due to the use of randomness, the Verifier
cannot determine anything about x. Later the Prover may prove his knowledge
of x by revealing both x and r to the Verifier, who then checks that gxhr = c
in Gp. Because of the presumed difficulty of finding, discrete logs, the Prover
could not have changed his commitment to y because he would have had to find
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r′ = logh(c ·g−y). Thus the commitment scheme is computationally binding and
unconditionally hiding.

The Pedersen scheme enjoys a convenient homomorphic property: Given com-
mitments ci = Cri

(xi) ∈ Gp for i = 1, . . . ,m, it is easy to compute a commitment
to the sum of the unknown values X =

∑m
i=1 xi (mod p) simply by computing

the product of the individual commitments:
∏m
i=1 ci = CR(X) ∈ Gp, where

R =
∑m
i=1 ri (mod p).

3 Models and Definitions

There are three types of players in our model. A data owner is the creator or
maintainer of a database. The data owner delegates to a set of service providers
the responsibility of answering queries. A user obtains query responses from a
single service provider and does not interact directly with the data owner. The
basic interaction model is as follows: The data owner gives the service providers
partial information about each entry in the database, along with auxiliary infor-
mation that enables the verification of query results. Upon receiving a query, a
service provider seeks the cooperation of k− 1 other service providers, who may
then jointly reconstruct the result of the query. The result is then passed back to
the user, along with sufficient information for the user to verify its correctness.

Here we describe our trust model among the players. Our model is similar
to the trust assumptions of existing literature on outsourced databases [13, 21].

• Between data owner and service provider: The data owner trusts an honest
service provider to follow the protocol. Honest service providers are expected
not to disclose their data directly to others, but rather only to provide infor-
mation as dictated by the protocol. Dishonest service providers may collude
in order to attempt to reconstruct data entries in the database from their
shares, or may not follow the protocol. For example, they may reveal their
shares to others or replace their shares with arbitrary values when answering
queries.
• Between service provider and user: The service provider is not necessarily

trusted to answer queries correctly, since it may be malicious or compromised
by outside attacks. Therefore, the user should be able to verify that responses
from the service provider are correct and complete.
• Between data owner and user: The user must trust the data owner in the

sense that the user trusts any messages signed with respect to the data
owner’s public key.

Adversarial Model There are three types of adversaries in our model.

• A curious player (user or service provider) who wants to infer the individual
data entries from the response to an aggregate query.
• A compromised service provider who may provide untruthful aggregate re-

sults or not follow the protocol.
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• An adversary who may intercept and tamper with the protocol communica-
tion, e.g., modifying query results, inserting or deleting messages.

Operations At setup, the data owner takes as input a security parameter,
computes a public-key/private-key pair (PK, SK) for a digital signature system,
and public parameters params. The data owner keeps SK secret. We define the
following operations: Commit, Distribute, Query, Respond, and Verify.

Commit: The data owner takes as input a data set D = (x1, . . . , xn). It gen-
erates auxiliary information aux, computes a digital signature Sig, and publishes
(aux, Sig) to m service providers.

Distribute: The data owner splits database entries among the m service
providers in such a way that it requires at least k providers to jointly retrieve
the original values.

Query: The user sends to a service provider SPj a request for an aggregate
query Q over a selection of data set D.

Respond: SPj and k − 1 other service providers jointly compute the ag-
gregate answer ans. SPj prepares the correctness and integrity proofs pf, and
returns the tuple (ans, pf, Sig) to the user.

Verify: The user takes as input (params, ans, pf, Sig). It verifies that the
answer ans satisfies correctness and integrity properties using proofs pf, signature
Sig, and the public key PK of the data owner (that is obtained from a trusted
source). The answer is accepted if the verification passes.

Security properties Secrecy, correctness, integrity, and collusion-resistance
are the four required security properties in our protocol.

Intuitively, secrecy requires that no entity besides the data owner should learn
more about the data set D than is implied by (Q, ans). Correctness requires that
ans is the correct response to query Q. Integrity requires that ans is computed
based on authentic (outsourced) data set D that has not been tampered with.
Collusion-resistance requires that k−1 or less dishonest service providers cannot
collude to break the secrecy requirement.

We address the property of correctness in Section 4, and the other three
properties in our formal definition of security, which is given in Section 5.

4 Our Protocol

For the simplicity of description, we consider a database D with n rows and
one column, with each cell containing a positive integer. 3 All of our protocols
can easily be generalized to accommodate multiple attributes (i.e., columns).
Let D = x1, . . . , xn. The data owner would like to outsource his database to m
different servers, but with an important security requirement: any k servers can
cooperate to determine the answer to an aggregate query, but k − 1 cooperating
servers cannot. To achieve this requirement, our approach is to have the data
3 Our computation can also be applied to strings or multimedia data, which first

need to be converted into numerical values using an encoding or transformation
mechanism.
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D A database
S A subset of D
x A database entry (or cell)
n Number of rows
m Number of service providers (SPs)

P A polynomial
Pi(j) SPj ’s share of value xi

k Threshold for secret-sharing scheme
ci Commitment to xi with random seed ri

X An aggregate query result

Table 1. Notation used in our protocol.

owner distribute the original entries among multiple service providers via a sim-
ple threshold secret-sharing scheme. In a naive solution, a service provider SPj
asks k − 1 other providers for their secret shares of the data entries relevant to
the query, and then combines the values to compute the aggregate for the user.
Unfortunately, this naive approach fails because SPj reconstructs the individual
data entries as an intermediate result, which violates our privacy requirement.

To solve this problem, we leverage a nice and simple feature of polynomials
that allows service providers to first aggregate or blend their shares associated
with the distinct data entries, and then send the blended values to SPj . The data
leakage problem is eliminated as the service provider SPj is unable to retrieve
individual data shares. Yet, it can still interpolate the polynomial based on the
blended shares to obtain the final aggregate result. A more detailed description
is given next.

Furthermore, to verify the correctness of the aggregate computation, we use
a special type of commitment scheme, namely a homomorphic commitment
scheme, which allows anyone to verify the query result without knowing the
data. PDAS also achieves the integrity requirement by cleverly utilizing existing
authentication data structures over commitment values. As a result, the tam-
pering of data entries during the computation process can be detected while the
secrecy of data is safely protected.

PDAS Protocol

The PDAS protocol is run between the data owner, the service providers, and
the user. Let N =

∑n
i=1 xi. For the setup, the data owner chooses a large prime

q >> N . This will avoid potential problems with overflow later. The computation
associated with aggregate queries is performed in the field Fq. The computation
with Pedersen’s commitment is in group Gp. The operations in PDAS include
Commit, Distribute, Query, Respond, and Verify.

Commit The data owner chooses parameters (Gp, g, h) and computes com-
mitments for the data entries using the Pedersen commitment scheme described
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in Section 2.2:
c1 = Cr1(x1), . . . , cn = Crn

(xn).

The data owner then generates a Merkle hash tree [20] on the commitment
values, and signs on the root hash of the tree.

Distribute The data owner distributes each database entry xi, along with
its corresponding random seed ri, according to Shamir’s secret-sharing protocol
(Section 2.1) as follows. He chooses random polynomials Pi and Qi with Pi(0) =
xi and Qi(0) = ri, and to service provider SPj for 1 ≤ j ≤ m, he gives the share
(j, Pi(j), Qi(j)). Thus, SPj has the values (j, P1(j), Q1(j)), . . . , (j, Pn(j), Qn(j)).
Shares Pi(j) are for answering aggregate queries, and shares Qi(j) are for in-
tegrity and correctness verification. The data owner also gives both the entire
Merkle hash tree and his signature on the root hash to all m service providers.
The data owner can delete the intermediate values from storage.

Query A user submits an aggregate query to a service provider, say SP1. Let
us assume the query is for the SUM XS =

∑
i∈S xi over the values in a subset

S ⊆ D. (See Section 6 for more discussion on SELECT queries.) SP1 then sends
messages requesting cooperation from k − 1 other service providers.

Respond The k service providers now jointly compute the aggregate query
result XS . Note that they simultaneously compute the corresponding value RS

for the purpose of verification.

1. Each of the k service providers computes its share of the aggregate result
as follows. Provider SPj computes XS

j =
∑
i∈S Pi(j), where Pi(j) is the

SPj ’s share of value xi. Similarly, SPj calculates its share of the random
seed RS

j =
∑
i∈S Qi(j). Both XS

j and RS
j are returned to SP1.

2. Provider SP1 collects all k − 1 shares (j,XS
j ), plus its own sum of relevant

shares. Using polynomial interpolation, SP1 determines the unique polyno-
mial P of degree k − 1 passing though these k coordinates. It computes
X = P (0) as the aggregate result.

3. Again using polynomial interpolation, SP1 determines the unique polynomial
Q of degree k−1 passing through the k points (j, RS

j ) from the k−1 assisting
providers and itself, and computes R = Q(0).

4. SP1 finally sends the following information to the user:
(X, R, {ci}i∈S , P roof), where ci is the commitment for value xi, and
the Proof contains the values of all sibling nodes along paths from the
commitments to the root in the Merkle hash tree, and the data owner’s
signature on the root hash. The Proof is provided to the user to verify
the integrity of xi and correctness of computation without revealing the
microdata.

Verify Upon receiving response (X, R, {ci}i∈S , P roof), the user verifies that
the obtained sum X is correctly computed on the original data.

1. Using the publicly-known hash function, the user re-computes the root hash
of the Merkle hash tree from the commitments {ci}i∈S and their sibling val-
ues, which are in Proof . He verifies the signature of the root hash using the
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public key of the data owner, and therefore knows that he has the authentic
commitment values.4

2. With value R and the public parameters g and h, the user calculates the
corresponding commitment CR(X) = gXhR.

3. The user checks whether the SUM is computed correctly by verifying that the
obtained SUM is consistent with the individual commitments. If

∏
i∈S ci =

CR(X), then the delivered answer is accepted.

Correctness of PDAS

The correctness of our algorithm is based on the additive property of polynomials
over a field F . If P = P1 + P2, then P (x) = P1(x) + P2(x) for all x ∈ F . We
state this claim concisely that, the sum of the shares is a share of the sum.

When the data owner distributes the data, he creates a polynomial Pi for
each data item xi. Each service provider SPj gets a share that is the point
(j, Pi(j)) along the curve. When a service provider receives a request for a SUM
XS =

∑
i∈S xi over the subset S, it returns the sum of its relevant shares,

XS
j =

∑
i∈S Pi(j).

Consider the polynomial P̂ =
∑
i∈S Pi. The summed value returned by ser-

vice provider SPj in our protocol is XS
j =

∑
i∈S Pi(j) = P̂ (j). When the re-

sponding service provider interpolates the polynomial from these k values, it
derives the summation polynomial P̂ . Therefore, the value P̂ (0) returned to the
user is equal to the desired aggregate value:

P̂ (0) =
∑
i∈S

Pi(0) =
∑
i∈S

xi = XS .

AVERAGE can be easily computed and verified by dividing SUM by the size
of the subset s = |S|. Similarly, the above protocol can be generalized to compute
any linear combination on the selected entries. Just as (P +Q)(x) = P (x)+Q(x),
we also have (aP )(x) = a · P (x), where a is an element of the field Fq. For
example, a user can query for the sum 3x1 + 5x2 + 12x3 + . . .. To that end, each
service provider simply needs to multiply their shares by the appropriate scalars.

The above description completes the basic operations in our PDAS proto-
col. In Section 6, we describe several important extensions to PDAS, including
how SELECT can be realized, support for multiple data owners, and how to
accommodate dynamic databases.

5 Security and Efficiency

In this section, we analyze the adversary model and prove the security of PDAS.
We also give the complexity analysis of our protocols. We provide security defi-
nitions, and prove that PDAS satisfies those security requirements.
4 As in many security protocols, we assume that the user has an authenticated copy

of the data owner’s public key.
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We consider an attacker who can access all commitment and signature values,
and can adaptively choose a sequence of aggregate queries, i.e., queries for ag-
gregate results and their proofs. The adversary’s goal is to have a non-negligible
probability of success in violating one of the security properties of our protocol:
secrecy, integrity, or collusion-resistance.

We consider three types of attacks: using intermediate or aggregate results
to deduce sensitive information about individual entries (inference attack), com-
puting a new incorrect query-response pair that passes the Verify algorithm
(spoofing attack), or disrupting the computation of an aggregate query (dis-
ruption attack). We give security proofs for the inference and spoofing attacks,
reducing the existence of a successful polynomially bounded adversary to the
existence of an adversary that successfully breaks one or more of the signature
scheme, the Pedersen commitment scheme, or the one-way hash function. We
then explain how PDAS can easily deal with disruption attacks.

An adversary may act as a user, a service provider, or have a network of
colluding service providers. Note that a SP can simulate a user’s query request,
and thus has at least as much discerning power as a user. Under our security
assumptions, the value of k is chosen to be greater than the number of dishonest
or compromised service providers. For the rest of this discussion, we assume the
worst case: a network adversary that has a network of k − 1 colluding service
providers.

Theorem 1. The PDAS protocol provides information theoretic security against
an inference attack by a computationally unbounded adversary. No information
is leaked beyond that which can be deduced from the aggregate query results alone.

Proof Consider a network adversary who requests aggregate queries over l
subsets of the data S1, . . . , Sl, yielding sums XS1 , . . . , XSl . To determine each
sum XSi , he may request the corresponding shares from any of the m service
providers: XSi

1 , . . . , XSi
m . In addition, he has access to all data shares from the

k − 1 service providers SPα1 , . . . , SPαk−1 in his adversarial network.
Suppose the adversary has an algorithm A that takes as input

{XSi
1 , . . . , XSi

m |i = 1, . . . , l} and returns some sensitive information about the
database (e.g., one of the individual data entries). Let OA be an oracle for al-
gorithm A. We construct an algorithm A∗ that computes the same output as A
but using only the l aggregate query results as input.

1. Input the aggregate query results XS1 , . . . , XSl .
2. Compute the aggregate shares XS1

αj
, . . . , XSl

αj
for each service provider SPαj

in the adversarial network.
3. The aggregate query result XS1 and the k− 1 shares XS1

α1
, . . . , XSl

αk−1
are in

total k points along the polynomial PS1 ; similarly for PS2 , . . . , PSl
. Derive

PS1 , . . . , PSl
using polynomial interpolation.

4. Query the oracle OA using input {PSi
(1), . . . , PSi

(m)|i = 1, . . . , l}, and re-
turn the result.

Therefore no information about the data is leaked that cannot be gained
from the query results alone, and so we have guaranteed the security properties
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of secrecy and collusion-resistance. The question of whether sensitive informa-
tion can be inferred from the combination of multiple aggregate query results
is an orthogonal issue known as inference control [9, 17], and privacy guarantees
pertaining to that are beyond the scope of this paper.

Note that an adversary may also try to recover individual data entries using
the published commitment values. However, a similar argument to that above
shows that the individual random seeds involved in the commitment protocol
are protected by the same means as for data entries. Since the random seeds are
not disclosed, the Pedersen commitment scheme enjoys unconditional hiding of
committed values (see Section 2.2).

Theorem 2. The PDAS protocol is secure against a spoofing attack by a
polynomially-bounded adversary. An adversary with access to the committed
database values and signature on the root hash of the data owner’s Merkle hash
tree cannot spoof the data owner’s signature on commitments to a set of incorrect
data entries in polynomial time with non-negligible probability.

Proof Suppose an adversary computes a new incorrect query-response pair
that passes the Verify algorithm. Since the Verify algorithm checks the com-
mitments against a signed root hash, the adversary must have achieved one of
the following:

1. Generated a new pair (x′i, r
′
i) such that Cr′i(x

′
i) = Cri(xi).

2. Generated a commitment to a new value (x′′i , r
′′
i ) such that H(Cr′′i (x′′i )) =

H(Cri
(xi)), where H is the collision-resistant hash function used in con-

structing the Merkle hash tree.
3. Forged the data owner’s signature for the resulting new root hash.

In case (1), the adversary has broken the computationally binding property of
the Pedersen commitment scheme. Case (2) is equivalent to finding a collision in
the collision-resistant hash function. In case (3), the adversary has broken the
signature scheme. By the respective security guarantees of these cryptographic
tools, these tasks cannot be achieved with non-negligible probability in polyno-
mial time. Thus we have preserved the integrity of the data.

Claim: PDAS can effectively counter disruption attacks.

Note that under our security assumptions, a service provider who gives an
incorrect share value for a query can be detected. In this case, we would like
to guarantee that the user can still retrieve the correct results of a query. This
fault-tolerance property can be achieved using a publicly verifiable secret-sharing
scheme [26], even if there are k − 1 dishonest service providers disrupting the
procedure. Due to space limitations, discussion is omitted in this paper.

Furthermore, in the PDAS model, service providers can easily be held ac-
countable for their actions. That is, if a service provider gives several faulty
values, it can be reported to the data owner, who can then disregard the bad SP
and redistribute the data to the remaining m− 1 service providers.
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Commit Respond Verify Storage

Data Owner O(nmk) —— —— O(n)
Primary SP —— O(k2) ——

O(n)
Helper SP —— O(s) ——

User —— —— O(min(s log n, n)) ——

Table 2. Summary of computation and space complexities for PDAS, not including
communication costs. Distribute and Query are omitted because they incur no com-
putation cost. Here, s is the size of the subset over which the query is performed.

Distribute Query Respond

Data Owner O(nm) —— ——
Primary SP

O(n)
O(ks log n) O(k)

Helper SP O(s log n) O(min(s log n, n))
User —— O(s log n) O(min(s log n, n))

Table 3. Communication complexity of operations in PDAS. There is no communica-
tion cost associated with the Commit or Verify operations.

Efficiency of PDAS The run-time, space, and communication complexities of
operations by each entity in PDAS are summarized in Tables 2 and 3. We note
that the amount of storage required at the data owner is O(n) instead of O(nk),
since the data owner does not need to store all the secret shares. The shares are
erased by the data owner after they are distributed to service providers.

6 Extensions

Our PDAS protocol provides a general framework for managing the privacy and
security of outsourced databases. In this section, we describe several important
extensions of PDAS, including the handling of dynamic insertions and deletions,
selection queries, and multiple data owners.

While some real databases remain largely unchanged over time, many other
applications require a database system to allow for the addition or deletion of
database entries. The first question to ask, then, is how well our infrastructure
for outsourced databases can deal with dynamic data. Similarly to before, we
assume that honest service providers follow the protocol specification.

Additions When a new entry is added to the database, the data owner
generates a random polynomial for the entry and distributes shares according to
our protocol (Section 4). The shares of other database entries were independently
generated and are not affected. The data owner must also update the Merkle
hash tree and broadcast the update to all service providers. However, because
of the tree structure, this only incurs an additional O(log n) cost.

Deletions In the case of a deletion, the data owner simply needs to broadcast
to the service providers that they must delete their shares of that entry. There is
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User ID age state [weight]

00159265 16 NJ 122

00173094 35 NJ 168

00298216 18 CA 145

SELECT AVG weight WHERE age > 15 AND age < 19 AND state = ‘NJ’

Fig. 1. An aggregate query for the sensitive attribute ‘weight’, computed over a selec-
tion based on insensitive attributes.

no need to remove the commitment value from the Merkle hash tree - the value
will just never be used again during verification.

Since all secret-sharing polynomials are independently and randomly cho-
sen, these additional operations introduced to the PDAS protocol do not affect
our security guarantees. In conclusion, our protocol can accommodate dynamic
databases both efficiently and securely.

Our database system can also handle multi-attribute data and answer com-
plex aggregate queries. Consider a database with one attribute containing sen-
sitive data, and also several insensitive attributes, such as the example given in
Figure 1. Values for the sensitive attribute will be distributed according to our
secret-sharing protocol, whereas values for the insensitive attributes can be sent
to the service providers in plaintext. When a user poses a complex query, the
responding service provider first determines the subset over which to aggregate
using the selection conditions on the insensitive data, and then computes the
aggregate query according the PDAS protocol.

Consider an environment in which several data owners have disjoint sets of
data with the same attributes, and are willing to collaborate to allow aggregate
queries over the union of their data. However, they still want to protect the
privacy of their own constituents, so are not willing to reveal their data to the
other parties.

This scenario fits in perfectly with our PDAS protocol. The collaborating
parties must first agree on choosing several parameters: the field Fq, the m
service providers, the security parameter k, and the parameters for the commit-
ment scheme (Gp, g, h). From then on, their contributions are independent of
each other. Each data owner distributes his data and signs on the root hash of
his Merkle hash tree. A service provider may then take aggregates over all the
data regardless of its origin. When verifying a query result, the service provider
simply sends the commitment values from the appropriate data owners.

7 Related Work

A substantial amount of research has been done on how to verify outsourced data
and computation [3, 7, 14, 13, 15, 21–23, 18], including the verification of both cor-
rectness and completeness of relational database queries. Existing literature on
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database query verification has focused on non-aggregate queries such as select,
project, join, set union, and set intersect. Merkle hash trees have been used
extensively for authentication of data elements [20]. Aggregate signatures are
another approach for data authentication, where each data tuple is signed by
the data owner [23]. The privacy issue of verifying non-aggregate queries was
addressed in [24], which gave an elegant solution using hashing for proving the
completeness of selection queries without revealing neighboring entries.

The aggregate query verification problem has been studied in the DAS
model [14, 15, 22], an instantiation of the computing model involving clients who
store their data at an untrusted server, which is administrated by a third-party
service provider. The clients have limited computational power and storage, and
thus rely on the service provider for its large computational resources. The chal-
lenge is to make it impossible for the service provider to correctly interpret the
data, but still allow it to compute and return aggregate queries. The data is
owned by the clients, and only they are permitted to perform queries on the
database.

The paper by Hacigümüs, Iyer, and Mehrotra addresses the execution
of aggregate queries over encrypted data using a homomorphic encryption
scheme [15]. Their model has two parties: the data owner and the untrusted
service provider. Mykletun and Tsudik propose an alternative approach where
the data owner pre-computes and encrypts the aggregate results and stores them
at the service provider [22]. Hohenberger and Lysyanskaya were the first to give
formal security definitions for outsourced computation, and probabilistic solu-
tions for checking failures in outsourced exponentiation and the Cramer-Shoup
cryptosystem [16]. However, these solutions are only applicable to the two-party
model, where the querier is also the data owner. In comparison, our PDAS pro-
tocol works in the more general three-party model, where the client who queries
the service provider may not be the same as the data owner.

In the data mining literature, one approach to protecting data privacy is
to publish modified versions of database tables so that each individual entry
enjoys a certain degree of anonymity [2, 27, 30, 32]. This imposes no restrictions
on queries that may be performed on the data, but the anonymization process
necessarily introduces some loss of integrity in the accuracy of the data. Our
solutions differ from these efforts in that we support authenticated data analysis
without releasing any data to the public. Because the aggregate is computed
over exact data instead of anonymized data, there is no loss of data accuracy in
the aggregation results.

A new approach to providing anonymity when sharing data has appeared
with the recent stream of research on differential privacy [8, 11, 12, 10], in which
noise is added to query results to prevent the querier from inferring information
about individuals. Our work, on the other hand, is concerned with adding proofs
of integrity to exact responses to queries to the database, and so our protocols are
vulnerable to the privacy attacks studied in the differential privacy literature—as
are all protocols whose responses to queries are close to exact. It is a challenging
open problem to design protocols that resist the differential-privacy attacks while
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still providing integrity guarantees for the protocol’s responses compared to the
original data.

8 Conclusions

In this paper, we proposed a simple privacy-preserving protocol PDAS for com-
puting and verifying queries in outsourced databases. We focused on computing
aggregate queries including SUM and AVERAGE with SELECT clauses. The
main goal of PDAS is to prevent microdata (i.e., individual data entries) from
being accessed by users or any of the third-party service providers who are del-
egated by the data owner to answer queries. Existing DAS models are unable to
support sophisticated queries such as aggregation while maintaining secrecy of
microdata simultaneously. We overcame this challenge and introduced two main
techniques:

• A distributed architecture is introduced for outsourcing databases using
multiple service providers. We extended threshold secret sharing schemes
to support sophisticated aggregation operations by leveraging the additive
property of polynomials over a field.

• A verification protocol is developed for the user to verify that the out-
sourced computation is indeed computed correctly, without leaking any mi-
crodata.

We provided security analysis that our protocol achieves secrecy, integrity,
correctness, and collusion-resistance properties. We also discussed possible vari-
ants of our PDAS model, including handling of dynamic databases, multiple
data owners, and inference control.
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