
The Union-Split Algorithm and Cluster-Based
Anonymization of Social Networks ∗

Brian Thompson
Rutgers University

Department of Computer Science
Piscataway, NJ 08854

bthom@cs.rutgers.edu

Danfeng Yao
Rutgers University

Department of Computer Science
Piscataway, NJ 08854

danfeng@cs.rutgers.edu

ABSTRACT
Knowledge discovery on social network data can uncover
latent social trends and produce valuable findings that ben-
efit the welfare of the general public. A growing amount of
research finds that social networks play a surprisingly pow-
erful role in people’s behaviors. Before the social network
data can be released for research purposes, the data needs
to be anonymized to prevent potential re-identification at-
tacks. Most of the existing anonymization approaches were
developed for relational data, and cannot be used to handle
social network data directly.

In this paper, we model social networks as undirected
graphs and formally define privacy models, attack mod-
els for the anonymization problem, in particular an i-hop
degree-based anonymization problem, i.e., the adversary’s
prior knowledge includes the target’s degree and the degrees
of neighbors within i hops from the target. We present two
new and efficient clustering methods for undirected graphs:
bounded t-means clustering and union-split clustering algo-
rithms that group similar graph nodes into clusters with a
minimum size constraint. These clustering algorithms are
contributions beyond the specific social network problems
studied and can be used to cluster general data types be-
sides graph vertices. We also develop a simple-yet-effective
inter-cluster matching method for anonymizing social net-
works by strategically adding and removing edges based on
nodes’ social roles. We carry out a series of experiments
to evaluate the graph utilities of the anonymized social net-
works produced by our algorithms.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—data sharing ; I.5.3 [Pattern Recog-

nition]: Clustering—algorithms, similarity measures

∗This work was partially supported by NSF Grant CNS-
0831186.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’09, March 10-12, 2009, Sydney, NSW, Australia
Copyright 2009 ACM 978-1-60558-394-5/09/03 ...$5.00.

General Terms
Algorithms, Measurement, Performance, Security

Keywords
Graph Anonymization, Social Networks, Clustering Algo-
rithms, Social Role

1. INTRODUCTION
Knowledge discovery on social network data can uncover

latent social trends and produce valuable findings. A grow-
ing amount of research finds that social networks play a sur-
prisingly powerful role in people’s behaviors. For example,
medical researchers discovered that obesity spread from one
person to another through social connections, which follows
a similar pattern to that of viruses [17]. A recent study on
12,067 people shows that the decision for a smoker to quit
smoking is strongly influenced by the people in the smoker’s
social network [17]. This evidence indicates the precious
value of social network data in shedding light on social be-
havior, health, and well-being of the general public.

Before the social network data can be released for research
purposes, the data needs to be anonymized. Anonymization
is a crucial process to ensure that released social network
data does not disclose sensitive information of users. De-
pending on the privacy model considered, anonymization
prevents an individual participant in the social network from
being identified.

Data anonymization techniques have been extensively
studied on relational databases with several privacy mod-
els (e.g., k-anonymity [13, 14, 18], l-diversity [9], and t-
closeness [7]). Most of the existing methods can only handle
relational data. Social networks are usually viewed as an
undirected graph with or without edge labels. Thus, most of
the known anonymization approaches such as suppression or
generalization do not directly apply to social network data.

For the past decade, graphs have been intensively studied
to model the web, in particular how web pages and links have
an impact on searching and surfing. The field of graph min-
ing generated many exciting results on discovering trends
and new knowledge from web graphs. With the availabil-
ity of multi-core personal computers and cloud computing
(a.k.a. high-performance web services coupled with scal-
able data centers), an unprecedented amount of data from
various aspects of our digital society is being collected and
analyzed, including social networks, virtual communities,
recommendation data, network traces, search queries, and
communication patterns. These types of data can be mod-

eled as graphs, e.g., Netflix Prize data [15] can be viewed as
a huge and sparse bipartite graph [5].

Very recently, several graph anonymization solutions have
been proposed to de-identify social networks using tech-
niques such as strategically or randomly inserting or delet-
ing edges or nodes. One major challenge in social net-
work anonymization is the complexity. Zhou and Pei proved
that a particular k-anonymity problem trying to minimize
the structural change to the original social network is NP-
hard [21]. They show that the problem can be reduced to a
k-dimensional perfect matching problem, which is NP-hard.
Since finding the optimal anonymized social network can
be hard, the main goal of social network anonymization is
to develop efficient heuristics that strike a balance between
preserving the original graph structure and the privacy of
individuals.

Furthermore, it is not clear how to quantify the decrease
in utility incurred from anonymizing a graph. One way to
measure the difference between the original and anonymized
graphs is to count the number of nodes and edges that were
added or removed. However, this may not always be an
accurate quantification of the effect anonymization has on
utility. For example, a new social connection between a pair
of co-workers may have little effect on the overall behavior of
their social network, but two important business executives
meeting over lunch may have a much more significant impact
on theirs.

In this paper, we take the first step to reconcile the dif-
ference between preserving structure and preserving utility
in social network graphs. We argue that an important and
unique graph property for social networks is the social role
of an individual. Intuitively, a social role is “the position
or purpose that someone or something has in a situation,
organization, society or relationship” [3]. A social network
contains the information about the social role of each partic-
ipant that is usually reflected in the way people interact with
each other and in social connections in particular. Therefore,
a good anonymization algorithm for social networks needs
to preserve as much as possible the social connectivity of
individuals.

Our Contributions Our contributions are summarized
as follows.

1. We give two efficient clustering heuristics, called
bounded t-means and union-split, for clustering indi-
viduals in a social network into groups with similar
social roles, while satisfying a minimum cluster size
constraint. The bounded t-means and union-split algo-
rithms reach beyond the specific social networks prob-
lem considered, as they can be used to cluster struc-
tured or unstructured data based on an arbitrary dis-
tance metric.

2. We describe a simple yet effective matching-based
anonymization method for social networks that strate-
gically adds and removes edges based on a node’s
inter-cluster connectivity. Our experiments show that
our anonymization method combined with the union-
split clustering algorithm outperforms the recently
proposed graph generalization method [6] in preserving
the structural properties of social networks.

Organization of the Paper We give the definitions, at-
tack models, and privacy models in the next section. We

present our bounded t-means and union-split clustering al-
gorithms in Section 3. In Section 4, we describe our graph
anonymization algorithms under our degree-based privacy
models. Our experimental evaluation is given in Section 5.
Related work is described in Section 6. In Section 7, we give
some conclusions and describe plans for future work.

2. DEFINITIONS, ATTACK MODELS,
PRIVACY MODELS

In this section, we describe the privacy model and ad-
versary model that we consider in our anonymization algo-
rithms. In particular, we formally define the type of prior
knowledge that the adversaries are allowed to have.

Definition 1. A social network graph G(V, E) is a
simple undirected graph with a set of nodes or vertices de-
noted by V and a set of unlabeled edges denoted by E. A
node v ∈ V represents an individual in the social network.
An edge (vi, vj) ∈ E signifies a social relationship between
the two individuals represented by nodes vi and vj .

1 We de-
note the degree of a node by d(v). Let n = |V | and m = |E|
be the total number of nodes and edges in G, respectively.

Immediate neighbors of a node v are denoted by N(v, 1),
where 1 represents one-hop neighbors. Two-hop neighbors
(i.e., neighbors’ neighbors) are denoted by N(v, 2), and so
on.

We consider a type of re-identification attack where the
adversary has prior knowledge about a node and its social
connections. In particular, we consider a general type of
degree-based attack where the adversary has prior knowledge
of the degrees of nodes within a given radius of the target
node.

Definition 2. An i-hop degree-based attack on a
social network G is one in which the adversary has prior
knowledge of the degree d(v) of a target node v and the de-
grees of some or all of v’s j-hop neighbors for all j ≤ i. That
is, the adversary may know {d(u)|u ∈ N(v, j)} ∀j ≤ i. In
a 0-hop degree-based attack (degree-based attack for short),
the adversary only has prior knowledge of d(v). Given the
anonymized social network graph G′, the adversary’s goal is
to successfully re-identify target node v.

Based on the above attack model, we define the
anonymization goal of a social network. Intuitively, the pur-
pose of anonymization is to prevent re-identification attacks
by modifying the graph so that to the adversary, each node
is indistinguishable from many other nodes in the graph.

Definition 3. The i-hop fingerprint of a vertex v ∈ V ,
denoted fi(v), is the sequence of degree sets d(v), {d(u)|u ∈
N(v, 1)}, . . ., {d(u)|u ∈ N(v, i)}.

Definition 4. A social network graph G(V, E) is k-
anonymous against i-hop degree-based attacks, if for each
node v ∈ V there exist at least k − 1 other nodes
u1, . . . , uk−1 ∈ V such that fi(v) = fi(uj) ∀j ∈ [1, k − 1].

1Graphs with labeled edges to express more complex social
relationships such as spouse-of, teacher-of, etc, will be stud-
ied in our future work. However, our techniques are general
enough to apply to many notions of node similarity.

In our paper, we present methods for anonymizing social
network graphs. That is, given a social network graph G, a
privacy parameter k, and an adversary model (degree-based
or 1-hop degree-based adversary), we provide an algorithm
for generating a graph G′ that is k-anonymous against the
given adversary, and preserves as best as possible the struc-
tural properties of the original graph.

3. CLUSTERING METHODS
Some previous anonymization techniques ([5], [21]) take

a greedy approach to anonymization, where anonymization
groups are chosen in an ad-hoc way. Instead, we focus on a
cluster-based approach that first partitions V into groups of
similar vertices, and then anonymizes vertices within each
group. This enables us to take a global approach that uses
the clustering information to more cleverly anonymize the
graph.

In this section, we present and analyze two new clustering
algorithms, the bounded t-means and the union-split clus-
tering algorithms. One classic clustering technique is known
as the k-means algorithm. To avoid confusion with the k
in k-anonymity, we use the term t-means throughout the
paper. We start with some definitions.

3.1 Definitions and Tools
The distance metrics that we use to measure similarity of

two graph vertices are defined next. Definition 5 can also
be generalized to the i-hop degree model for i > 1, which is
omitted here. These distance metrics are used in both the
clustering and anonymization algorithms.

Definition 5. Distance metric

In the (0-hop) degree-based model, we define the distance
between vertices u and v as

D(u, v) = |d(u) − d(v)|.

In the 1-hop degree-based model, we define the distance
between vertices u and v as

D(u, v) = |d(u) − d(v)| +
X

|d(xj) − d(yj)|

where x1, x2, . . . ∈ N(u, 1) with d(x1) ≥ d(x2) ≥ . . ., and
y1, y2, . . . ∈ N(v, 1) with d(y1) ≥ d(y2) ≥ . . . Essentially,
the neighbors of u and v are sorted based on their degrees,
and then the sum of differences in the corresponding neigh-
bors’ degrees is computed. If |N(u, 1) 6= N(v, 1)|, then we
use zero as the default degree of a node that does not ex-
ist. Intuitively, our distance metric attempts to quantify the
difference in local structure between two vertices.

We define the distance from a vertex u to a cluster c as
D(u, c) = D(u, vc), the distance from u to the cluster center
vc (also a vertex – see Section 3.2). We define the distance
between two clusters to be D(c1, c2) = D(vc1 , vc2).

Definition 6. Marginal cost Consider a social net-
work graph G(V, E), and let c1, . . . , ct ⊂ V be disjoint clus-
ters. Let v ∈ V be any vertex in the graph, and let ci and
cj be two arbitrary clusters. We define the marginal cost
g(v, ci, cj) = |D(v, ci) − D(v, cj)|.

Definition 7. Surrogate Consider a social network
graph G(V, E), and let c1, . . . , ct ⊂ V be disjoint clusters.
We define the surrogate of v to be the cluster of size < k

whose center is closest to v, where k is the privacy parame-
ter. Intuitively, the surrogate is the nearest available cluster
to v.

3.2 Mode-Based Cluster Centers

Many clustering algorithms and applications require the
notion of a cluster center, usually a point in the domain of
the dataset that represents that cluster. When the domain is
a vector space of real number coordinates, the most natural
choice of center is the vector average of all points in the
cluster. Since the domain of graph vertices does not fit nicely
into the real coordinate model, 2 we must define our own
notion of cluster center.

One idea is to have a discrete center. That is, require that
the center of a cluster be one of the nodes in that cluster.
This type of approach is similar to that taken in [21]. How-
ever, this restriction may yield poor results if none of the
nodes provide an accurate representation of the cluster. In-
stead, we opt for a virtual center, which need not correspond
to an existing node in the graph.

Under the (0-hop) degree model, we define the center of a
cluster c to be a vertex vc with degree equal to the average
degree over all vertices in c, rounded to the nearest integer.

Computing a cluster center under the 1-hop degree model
is more complicated because the center must have both a
degree and a list of neighbors’ degrees. To accomplish this
task, we find that a statistical mode-based method works bet-
ter than the commonly used mean or median. In statistics,
the mode is the value that occurs the most frequently in
a data set or distribution. We develop a simple yet effec-
tive counting method using mode to find the cluster center.
We illustrate an example in Table 1 in the appendix. The
detailed procedure is as follows.

1. Let c = {v1, . . . , vk} be a cluster of graph vertices.
Calculate the degree of the new cluster center to be

d = round
“

1

k

Pk

i=1
d(vi)

”

, the rounded average degree

over vertices in c. Allot space for d neighbor degrees.

2. Iterate d times: Find the mode η, that is, the number
that shows up in the most neighbor degree sequences.
Add η to the list of neighbor degrees for our new cen-
ter. Remove one copy of η from each member vertex’s
neighbor degree sequence in which it appears.

Now equipped with all the necessary tools, we proceed to
the bounded t-means and union-split clustering algorithms.

3.3 Boundedt-Means Clustering Algorithm
The task of clustering data has been studied in great

depth. In practice, however, it has been observed that
classic clustering algorithms frequently produce small or
empty clusters, especially when clustering high-dimensional
datasets. In order to realize k-anonymity, we require each
cluster to have size at least k. The lack of a simple and
efficient algorithm for minimum-size clustering in the litera-
ture has led us to develop two of our own. Our first solution
builds on the conventional t-means algorithm, which has no

2In general, the task of mapping vertices’ local subgraphs
into a real coordinate system that preserves isomorphism is
reducible from the graph isomorphism problem, which is not
known to have a polynomial-time solution. [20]

minimum-size constraint. We refer readers to machine learn-
ing literature for details about conventional t-means. [11]

Our bounded t-means clustering method is described as
follows.

1. Let t = ⌊n/k⌋. Arbitrarily choose t vertices to be
cluster centers and denote them as vc1 , . . . , vct

. Denote
the t clusters by c1, . . . , ct. Initially, all clusters are
empty.

2. For each vertex v ∈ V :

(a) Cluster assignment Add vertex v to the nearest
cluster ci according to a chosen distance metric,
e.g. the one given in Definition 5.

(b) Bumping If |ci| = k + 1, i.e. ci was full and al-
ready had k members, then perform the following
procedure:

For each vertex u ∈ ci, compute the marginal
cost g(u, ci, cj), where cj is the surrogate cluster
of u (definitions given in Section 3.1). Bump the
vertex u∗ with the lowest marginal cost to its sur-
rogate cluster cj .

(c) Extra vertices If |V | is not a multiple of k, re-
mainder vertices may be safely placed in their
nearest cluster, without fear of violating the
minimum-size constraint.

3. Cluster update For each cluster ci, a new cluster cen-
ter v∗

ci
is computed. For our work, we use the methods

described in Section 3.2. If the new cluster centers are
the same as for the previous iteration, then an equilib-
rium has been reached and the algorithm terminates.
Otherwise, repeat from Step 2. 3

3.4 Union-Split Clustering Algorithm
Neither the conventional t-means algorithm nor our

bounded version guarantee to produce a globally optimal
clustering solution. One property of t-means algorithms is
that the initial set of cluster centers are chosen arbitrarily,
which may affect the clustering outcome. To avoid this vari-
ability in clustering results, we design a new deterministic
clustering algorithm, the union-split algorithm, which is de-
scribed below.

1. Initialize each vertex to be in its own cluster.

2. Compute all pair-wise distances between cluster cen-
ters (see Definition 5). For each cluster, maintain the
next nearest cluster to it using a min-heap data struc-
ture.

3. While there exists an undersized cluster (< k mem-
bers):

(a) Choose an undersized cluster c whose distance to
its nearest cluster (full or undersized) is the short-
est. Union cluster c with its nearest cluster.

(b) If the combined cluster c′ is overfull (size ≥ 2k),
split it into two clusters each of size ≥ k. Splitting
may be accomplished by finding the two vertices

3In our experiments, we impose an upper limit on the num-
ber of iterations, but equilibrium is usually achieved before
the limit is reached.

in c′ that are farthest from each other, and then
applying our bounded t-means algorithm from
Section 3.2 with t = 2 to ensure that the size
constraint is satisfied.

(c) Update all relevant cluster distances.

4. When all clusters are full, stop.

Theorem 3.1. The union-split clustering algorithm con-
verges in a finite number of iterations. In particular, at each
iteration the number of clusters whose sizes are under k is
strictly reduced.

Theorem 3.2. The complexity of the union-split cluster-
ing algorithm is O(n2 log n), where n is the number of ver-
tices in the original graph.

Proofs of the theorems are given in the appendix.

4. INTER-CLUSTER MATCHING FOR
ANONYMIZATION

Once we have clustered the vertices in a graph, the prob-
lem still remains of anonymizing the vertices within each
cluster. That is, given a set of vertices in a graph, modify
the graph so that those vertices are indistinguishable to a
particular adversary.

One approach is called graph generalization [6]. The idea
is simple: once the nodes are grouped based on their simi-
larities, a general description of the graph consisting of the
number of nodes in each cluster and the numbers of edges
between each pair of clusters is revealed, and nothing else.
For example, in a generalized graph, we may know that clus-
ter 1 has 5 nodes, 10 internal edges, and 6 external edges
to cluster 2, etc. To use the published generalized graph
for research purposes, one must randomly generate a sam-
ple graph in accordance with the generalized description.
Although the generalization procedure provides strong pri-
vacy and is simple to carry out, we find that it may have
negative impacts on the utility of the anonymized graphs,
as we show in our experiments in Section 5.

Figure 1 illustrates a simple example where the gen-
eralized graph approach to anonymization might perform
poorly. Due to the way edges are randomly inserted when
generating a sample anonymized graph, samples of a sin-
gle generalized graph may produce large variations in graph
properties. In Figure 1, the solid black vertices represent
individuals with social roles of great influence over their lo-
cal networks. While the sample anonymized graph preserves
some local structure, much of the high-level graph structure
is lost. In our work, we strive to preserve social connectivity
by minimizing the changes introduced to the original graph.

In the following sections, we present a novel approach
to graph anonymization that we call inter-cluster matching.
Our method takes a clustered graph and strategically adds
and removes edges to anonymize the graph. We present al-
gorithms for both the degree-based and 1-hop degree-based
privacy models.

4.1 Basic Inter-Cluster Matching Method
The Basic Inter-Cluster Matching algorithm is for the 0-

hop degree-based privacy model, where the adversary only
has prior knowledge about the degree of the target node, not
about its neighbors. The anonymization task is to adjust the

Figure 1: A drawback of the generalized graph approach to anonymization.

degrees of nodes so that nodes within a cluster have the same
degree. Our procedure is described as follows:

1. Cluster using any clustering algorithm and compute
the (rounded) average degree of nodes within each clus-
ter.

2. For each node, determine how many edges it must add
or remove in order to match the degree of its cluster
center.

3. Match up vertices that are adjacent but both have too
many edges, and remove the edge between them.

4. If there are still vertices with too many edges, remove
the necessary number of edges arbitrarily.

5. Finally, match up vertices that have too few edges and
join them with an edge.

6. Add a fake vertex if needed. It can easily be shown
that at most one fake vertex needs to be added, and
it will likely be easy to anonymize because low-degree
vertices are common in most social networks.

4.2 Extended Inter-Cluster Matching Method
We build on the above simple method to design an Ex-

tended Inter-Cluster Matching algorithm so that the result-
ing anonymized graph is robust against 1-hop degree-based
attacks. The extended method is more complicated, as it
needs to match up not only nodes themselves but also their
neighbors. Suppose a vertex v has neighborhood degrees
{5, 4, 3, 2}, and the cluster center is {4, 4, 3}. Then v needs
to remove the edges to the vertices of degrees 5 and 2, and
add an edge to a vertex of degree 4. The removal process is
simple - just remove those edges from the graph. To add an
edge, however, is more complicated. To accomplish this, we
use a more sophisticated version of inter-cluster matching.

In this case, the other endpoint needs to be a vertex of
degree 4 that also needs to gain a neighbor of degree 3. To
state it generally, a vertex of degree X that needs to gain
a neighbor of degree Y must be matched with a vertex of
degree Y that needs to gain a neighbor of degree X. Note

that for all these purposes we use the anonymized degrees of
the vertices, not the actual degrees. Our algorithm proceeds
as follows:

1. Cluster using any clustering algorithm and compute
the cluster centers using the mode-based method from
Section 3.2.

2. Match up vertices that are adjacent but both desire to
lose their common edge, and remove the edge.

3. If there are still vertices who desire to lose edges, re-
move those edges accordingly.

4. Precompute a neighborhood matching table as follows.
The rows represent the anonymized degree of a vertex,
or the I am of that vertex. The columns represent the
neighbor degrees that need to be gained, or the I need
of a vertex. The cell at (X, Y) contains a multi-set
of all vertices with anonymized degree X that need to
gain a neighbor of degree Y .

5. Match up remaining vertices in a way that brings them
mutual benefit: for each vertex at cell (X, Y) in the ta-
ble, pair it up with a vertex at cell (Y, X), adding an
edge between the two and removing them from the ta-
ble. Anytime multiple options are available, heuristics
may be used to choose the edge that best preserves the
social roles of the vertices involved.

6. If there are vertices left in the table for which the com-
plementary table entry is vacant, then create fake ver-
tices with the required degrees to pair up with these
left-over vertices.

The above inter-cluster matching approach can be further
generalized to handle i-hop degree-based attack models for
i ≥ 2. Due to space limitations, we omit the details here.

5. EXPERIMENTAL RESULTS
We run our experiments on Intel(R) Core(TM)2 CPU

2.40GHz machines with 2G memory, and running Fedora

Figure 2: Running time of several clustering algorithms on graphs of varying size. The graph to the left is under the 0-hop

degree model, and the graph to the right is under the 1-hop degree model.

Figure 3: The average distances and average squared distances of vertices to their cluster centers in an R-MAT(4096, 12)

graph using four different clustering methods. The graphs to the left are under the 0-hop degree model, and the graphs to the

right are under the 1-hop degree model.

6 Linux. We implement all of our algorithms in Java. We
write a program to generate graphs using the R-MAT algo-
rithm [4]. R-MAT generated graphs have a power-law vertex
degree distribution and small-world characteristic, key prop-
erties exhibited by social networks [10]. All the experiments
described in the following are tested on R-MAT generated
graphs. R-MAT(n, d) represents a graph with n vertices and
average degree of d. The greedy method in our experiments
is briefly described as follows: (1) pick an arbitrary node
v ∈ V , (2) find the k − 1 remaining nodes most similar to
v, (3) consider those k nodes an anonymization group and
remove them from the set. (4) Repeat steps 1-3 until all
nodes are grouped. All versions of t-means algorithms are
allowed to run for at most 10 iterations.

The running time experiments are on R-MAT-generated
graphs with |V | = {128, 256, 512, 1024, 2048}, and average
degree of log |V |. The results are shown in Figure 2. The

performance of various clustering algorithms in terms of the
average distance and average squared distance is shown in
Figure 3. 4 For the 0-hop degree-based model, our union-
split algorithm runs in roughly half the time of the classic
or bounded t-means algorithms, all of which are significantly
faster than the greedy algorithm. This is expected, since the
greedy algorithm has running time complexity of O(n2) and
the t-means algorithms run in O(nt) time, whereas union-
split only involves O(n) union or split operations. Although
the asymptotic running time complexities are the same for
the 1-hop degree-based model, union-split suffers from the
high overhead cost of computing the center of a cluster (us-
ing our mode-based method), which it must perform at each
iteration.

4We also measure distances for graph sizes 512, 1024, 2048.
Due to space limitations, we only report results on graph
size 4096.

Figure 4: Utilities of the anonymized graphs in comparison to the original graph R-MAT(512, 9) under four different metrics

for k = 20. In each graph, the red line represents our anonymization method; the thick black line represents the original graph;

the grey lines represent several samples of generalized graphs; and the blue line is the random graph. Y-axis is frequency in

the lower two sub-graphs, the size of largest connected component in resiliency, and the number infected in infectiousness.

Figure 5: Comparison of the degree distribution as another utility measure under different k = 5, 10, 20, 50 for R-MAT(512,9).

Y-axis is frequency.

Overall, we find that our union-split algorithm performs
the best in terms of reasonable run-time and low average dis-
tances under both privacy models in most cases. However,
in a few cases, union-split produces higher average distances
and average squared distances than greedy or bounded t-
means. The reason for this observation is that union-split
may produce large cluster size between [k, 2k), whereas oth-
ers produce clusters of size exactly k. As the cluster size in-
creases, the average distance and squared distance from the
cluster center increase. On the other hand, larger clusters
bring better privacy as the crowd of similar nodes gets larger.
Thus, these sets of experiments show a trade-off between
clustering performance and privacy. In general, union-split
consistently performs well for different graph sizes, cluster
sizes, and adversary models. Therefore, in the following tests

of the anonymization methods and their utility evaluations,
we use union-split as the clustering algorithm.

We have five measures of utility to evaluate how close
the anonymized graphs are to the original one. The utility
metrics are (1) degree distribution, (2) shortest path dis-
tribution (degrees of separation), (3) transitivity spectrum,
(4) resiliency, and (5) infectiousness. Our utility results are
shown in Figures 4 and 5. The transitivity (or clustering co-
efficient) of a vertex is the fraction of pairs of its neighbors
that share an edge. We measure the distribution over the
transitivity values of all vertices in the graph. Resiliency
measures the size of the largest component after deleting a
fraction of the nodes in the graph, starting with those of
largest degree. Infectiousness computes the number of in-
fected nodes corresponding to a transmission rate.

Consider the degree distribution in Figure 5. When the
graph size n is relatively small and k is relatively large (e.g.,
n = 512 and k = 50), our anonymized graph has larger de-
viations from the original graph due to the k-anonymity re-
quirement on the degree. In comparison, generalized graphs
do not demonstrate this type of behavior as they are under
a different privacy model. In most cases, however, graphs
anonymized by our method (red lines) produce quite ac-
curate utility values compared to the original graph (black
lines). In comparison, samples of the generalized graphs fol-
lowing the approach in [6] (grey lines) produce a large degree
of variation in some utilities. Certain utility measures (e.g.,
degree distribution) are better at distinguishing the differ-
ent anonymization methods than others (e.g., shortest path
distribution).

Interestingly, we find that the generalized graph samples
give similar utility values to those of an independently, ran-
domly generated R-MAT graph (blue line). This demon-
strates that while they might preserve properties common to
many social networks, generalized graphs may not accurately
represent important differences between social networks.

The advantages of our anonymization approach can be
summarized as follows:

1. As demonstrated by Figures 4 and 5, the graphs
anonymized via inter-cluster matching very closely
represent the original graphs for all five utility mea-
sures, except for the discrepancy in degree distribution
explained above.

2. The generalized graph method introduces a high
degree of variability in anonymized graph samples.
Therefore, while there is a chance that their method
will produce a graph that very closely resembles the
original, there is also a chance that a generalized graph
sample will be a very poor representative of the origi-
nal social network.

3. By attempting to retain both local and global elements
of graph structure, our methods may perform well in
preserving other properties pertaining to social con-
nections within a network that are not measured here.

6. RELATED WORK
Data anonymization has traditionally been studied by the

database community, as the focus is on relational data. How-
ever, because the formulation and analysis of privacy prob-
lems, including attack models and anonymization goals, bear
the same spirit as security and cryptography issues, interest
from researchers in the security and cryptography commu-
nities has grown significantly in recent years.

Hay et al. has recently proposed an anonymization
method by grouping similar nodes into anonymous groups
and then publishing a generalized graph [6]. The generalized
graph describes the inter- and intra-group connectivity, e.g.,
there are 10 edges connecting group A and B, 50 internal
edges in group A, 18 internal edges in group B. A sample
of a generalized graph is then needed if one wants to make
use of the anonymized social networks for data mining. In
order to group nodes in the social network, they use sim-
ulated annealing to do a random exploration of the search
space for a good set of clusters, where the branching factor
may be exponential.

Our anonymization algorithm bears a similar spirit to the
neighborhood anonymization approach [21], but there are
several major differences. Zhou and Pei’s approach uses
a greedy approach to group and anonymize similar nodes
in one phase. Their method also relies on frequent checks
for isomorphisms between subgraphs, a problem which has
no known polynomial-time solution. Indeed, their algo-
rithm runs in exponential time in the size of the subgraphs
examined, although they provide optimizations that make
the computation feasible in practice. In comparison, our
anonymization method is more lightweight. Our approach
happens in two stages: cluster and anonymize. We clus-
ter graph vertices based on simple distance metrics first,
and then anonymize to the clusters. Our edge insertion and
deletion are performed strategically to match needy nodes
and avoid unnecessary modifications.

The t-means algorithm is a data mining technique that
clusters n objects into t groups (t < n) based on a given
distance metric. Bennett, Bradley, and Demiriz proposed a
constrained t-means algorithm that accommodates the con-
straint of minimum cluster size [1]. They reformulate the
clustering problem as a Maximum Network Flow problem,
which is then solved using dynamic programming. Our so-
lution is more natural, and is easier to implement and use.

Our data anonymization problem is related to privacy-
preserving relational data, which has been extensively stud-
ied in the past decade. Most of the literature considers the
attack model as re-identification of individuals by joining
the published table with some external tables modeling the
background knowledge of users. To defend against this type
of attacks, the mechanism of k-anonymity was proposed in
[16, 18]. Specifically, a dataset is said to be k-anonymous
if every group of tuples that are of the same values on the
quasi-identifier attributes (i.e., the minimal set of attributes
in the table that can be joined with external information to
re-identify individual records) consists of at least k tuples.
The larger the value of k, the better the privacy is protected.
To improve on k-anonymity, new notions (e.g., l-diversity [9],
t-closeness [7], (α, k)-Anonymity [19]) have been proposed
to provide stronger privacy. We adapt the concept of k-
anonymity to our problem since it is the most essential and
most applicable privacy model. However, because relational
data and graph data have intrinsically different representa-
tions, many techniques for relational data cannot be directly
applied to social networks.

Byun et al. came up with a clustering idea for anonymiz-
ing relational databases [2]. They presented a solution for
database records that are in the form of vectors, where each
dimension is a numerical value or a label in a fixed hierarchy.
Again, their work is for relational databases, and does not
have a direct application to data in the form of a graph.

Cormode et al. developed a safe grouping approach for
anonymizing bipartite graphs [5]. In comparison, we con-
sider general undirected graphs. Compared with social net-
work graphs that we consider, bipartite graphs generated
by recommend systems differ in several aspects. First,
unlike in the social network graphs where every node is
de-identified, recommendation graphs contain considerable
numbers of nodes whose identifications are revealed (e.g.,
the names of movies, music, books, etc.). Second, un-
like social network graphs which are normally dense, most
real-world recommend system datasets are very sparse [12].
Thus, anonymization techniques developed for recommen-

dation data have a different focus and emphasis from the
ones for social networks.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the data anonymization prob-

lem in static social networks. In particular, we investigated
whether clustering algorithms can be used for anonymiza-
tion and how effective they are in finding similar nodes in
social networks. To that end, we developed new constrained
graph clustering methods, namely the bounded t-means and
union-split clustering algorithms, and showed that they are
effective and general approaches to grouping similar nodes
on large social network graphs for anonymization.

Our similarity metrics and anonymization algorithms were
based on the k-anonymity privacy model. We considered
an i-hop degree-based neighborhood adversary model that
can be generalized to capture more complex neighborhood
knowledge of an adversary. We implemented our clustering
and anonymization algorithms in Java and ran experiments
on synthetic social network graphs. Our experimental re-
sults demonstrated that our methods are effective in pre-
serving the statistical graph utilities studied.

For future work, we decide to formally define and study
the relationships between l-diversity and social relationship
attacks in social networks. In this paper, we consider adver-
saries whose goal is to re-identify a target in the anonymized
social networks. A different type of attack is what we call
social relationship attacks, or link disclosures according to
Liu and Terzi [8], where the adversary’s goal is to gain more
information on the target’s social connectivity, for example,
to learn whether or not the target node has an edge with a
socially popular node of high degree. Although the adver-
sary may not be able to identify a target, she may learn that
the target is socially connected with an individual that is
well-connected (e.g., a popular person with Britney Spears’
status). In order to prevent these kinds of social relation-
ship attacks, our privacy model needs to be expanded to
introduce the concept of diversity, similar to the l-diversity
definition in anonymizing relational data [9]. Intuitively,
the diversity in social networks means that certain sensitive
nodes with distinct properties need to connect to at least l
diverse anonymous groups. We plan to formalize the defi-
nition and investigate how l-diversity affects the utilities of
the anonymized graphs.

8. REFERENCES
[1] P. Bradley, K. Bennett, and A. Demiriz. Constrained

k-means clustering. Technical Report
MSR-TR-2000-65, Microsoft Research, 2000.

[2] J.-W. Byun, A. Kamra, E. Bertino, and N. Li.
Efficient k-anonymization using clustering techniques.
In Proceedings of the 12th International Conference on
Database Systems for Advanced Applications
(DASFAA), volume 4443 of Lecture Notes in
Computer Science, pages 188–200. Springer, 2007.

[3] Cambridge English Dictionary.
http://dictionary.cambridge.org/define.asp?

key=68410&dict=CALD.

[4] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. In M. W. Berry,
U. Dayal, C. Kamath, and D. B. Skillicorn, editors,
SDM. SIAM, 2004.

[5] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang.
Anonymizing bipartite graph data using safe
groupings. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2008.

[6] M. Hay, G. Miklau, D. Jensen, D. Towsley, and
P. Weis. Resisting structural identification in
anonymized social networks. In Conference on Very
Large Databases (VLDB), 2008.

[7] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In
Proceedings of the 23rd International Conference on
Data Engineering (ICDE), pages 106–115, 2007.

[8] K. Liu and E. Terzi. Towards identity anonymization
on graphs. In J. T.-L. Wang, editor, SIGMOD
Conference, pages 93–106. ACM, 2008.

[9] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In Proceedings of the International
Conference on Data Engineering (ICDE), 2006.

[10] S. Milgram. The small world problem. Psychology
Today, 1(1):60–67, May 1967.

[11] A. W. Moore and D. Pelleg. X-means: Extending
k-means with efficient estimation of the number of
clusters. In Proceedings of the Seventeenth
International Conference on Machine Learning, pages
727–734. Morgan Kaufmann, 2000.

[12] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In IEEE
Symposium on Security and Privacy, pages 111–125.
IEEE Computer Society, 2008.

[13] M. E. Nergiz and C. Clifton. Thoughts on
k-anonymization. Data Knowl. Eng., 63(3):622–645,
2007.

[14] M. E. Nergiz, C. Clifton, and A. E. Nergiz.
Multirelational k-anonymity. In Proceedings of the
23rd International Conference on Data Engineering
(ICDE), pages 1417–1421, 2007.

[15] Netflix Prize. http://www.netflixprize.com.

[16] P. Samarati and L. Sweeney. Generalizing data to
provide anonymity when disclosing information
(abstract). In PODS, page 188. ACM Press, 1998.

[17] R. Stein. Social networks’ sway may be
underestimated. Washington Post, May 26, 2008.

[18] L. Sweeney. k-Anonymity, a model for protecting
privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10(5):557 –
570, 2002.

[19] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α,
k)-anonymity: an enhanced k-anonymity model for
privacy preserving data publishing. In T. Eliassi-Rad,
L. H. Ungar, M. Craven, and D. Gunopulos, editors,
KDD, pages 754–759. ACM, 2006.

[20] V. N. Zemlyachenko, N. M. Korneenko, and R. I.
Tyshkevich. Graph isomorphism problem. Journal of
Mathematical Sciences, 29(4):1426Ű1481, May 1985.

[21] B. Zhou and J. Pei. Preserving privacy in social
networks against neighborhood attacks. In Proceedings
of the 24th International Conference on Data
Engineering (ICDE), pages 506–515, 2008.

APPENDIX

A. EXAMPLE OF MODE-BASED
CLUSTER CENTER

Vertex Vertex’s Degree 1-Hop Neighbors’ Degrees
v1 2 {3,3}
v2 3 {5,2,2}
v3 2 {3,3}
v4 3 {5,3,2}
v5 5 {3,3,3,3,3}
v6 3 {5,3,2}
v7 3 {5,3,3}
v8 3 {5,3,3}

Table 1: An example cluster with degrees of nodes

and their neighbors.

Table 1 gives an example of our mode-based cluster center
generation algorithm. We first compute the cluster center as
having a degree of 3, the rounded average degree of vertices
in the cluster. The three (virtual) neighbors’ degrees are
{5,3,3}.

B. PROOFS OF THEOREMS
Proof of Theorem 3.1: Denote the number of undersized
clusters by X. The union-split algorithm terminates when
there is no undersized clusters, i.e., X = 0. At each iteration,
three cases can happen and X decreases in all three cases.

1. Two undersized clusters are unioned into one under-
sized cluster, then X = X − 1.

2. Two undersized clusters are unioned into one cluster
whose size is ≥ k, then X = X − 2.

3. One undersized cluster is unioned with a cluster whose
size is ≥ k, then X = X − 1.

Therefore, each iteration strictly reduces the number of un-
dersized clusters and the algorithm converges in a finite num-
ber of iterations. 2

Proof of Theorem 3.2:

Let n = |V (G)|, d = avg − deg(G), k = minimum allow-
able cluster size. Let m denote the number of clusters in
the current partition. Note m ≤ n/k. Let κ(c) denote the
number of points in cluster c. Let κ denote the maximum
number of points in any cluster at any time. In the union-
split algorithm, κ ≤ 3k−2. Let µ denote the distance metric
being used. A cluster is small if it contains < k points. A
cluster is large if it contains ≥ 2k points.

We will denote by αµ
G the maximum time to calculate

the distance between any two points in the graph G using
distance metric µ. We denote by βµ

G the maximum time it
takes to calculate the center of a cluster of ≤ κ points in G
using distance metric µ.

In the union-split algorithm, we maintain two dynamic
data structures. The first is the Inter-Cluster Distance Ta-
ble, which records the distance between every pair of clus-
ters, and is thus an m×m matrix. The second is the Nearest
Cluster Heap List, which for each cluster c stores a heap con-
taining all other clusters, prioritized by their distance from
c. We will use this during the union-split algorithm to find
the nearest cluster to c. At the beginning of the algorithm

we initialize these data structures, which takes O(m2 · αµ
G)

and O(m2) time, respectively, using the linear-time heap-
building algorithm.

Choosing which cluster to union by iterating through the
current clusters and finding the small cluster with the small-
est value at the top of its heap takes O(m) time. After
unioning those two clusters, which takes O(κ) = O(k) time,
we calculate the new center and then update the tables.
Calculating the new center takes O(βµ

G) time. In the Inter-
Cluster Distance Table, we must nullify the distances for
the rows and columns corresponding to the unioned clus-
ters, and replace it with newly calculated distances from
all clusters to the new unioned cluster. This takes time
O(m ·αµ

G). For each modified entry, we update that value in
the corresponding heap, which takes O(m log m) time total.
Finally, we create a new heap for the new unioned cluster in
time O(m). The total run-time for these operations is thus
O(m log m +m ·αµ

G + k + βµ
G. Finding the two points in the

cluster farthest from each other requires calculating all the
pairwise distances, which takes O(k2 · αµ

G) time. The total
run-time of step 2b is O(m log m + m · αµ

G + k2 · αµ
G + βµ

G.
We bound the number of iterations of the union-split al-

gorithm by keeping track of the number of small clusters.
Initially there are n clusters, and every cluster is small. Dur-
ing every iteration, the number of small clusters decreases
by at least one when the union is performed. Since splitting
only results in clusters of size ≥ k, no new small clusters are
created. Therefore the algorithm terminates in at most n it-
erations. Assuming αµ

G, βµ
G, and k to be application-specific

constants, we conclude that the total run-time of the union-
split algorithm is O(m2 log m) and thus O(n2 log n).

