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Abstract

With the advent of computational grids, networking performance over the wide-area network (WAN) has become a critical
component in the grid infrastructure. Unfortunately, many high-performance grid applications only use a small fraction of their
available bandwidth because operating systems and their associated protocol stacks are still tuned for yesterday’s network
speeds. As a result, network gurus undertake the tedious process of manually tuning system buffers to allow TCP flow control
to scale to today’s WAN environments. And although recent research has shown how to set the size of these system buffers
automatically at connection set-up, the buffer sizes are only appropriate at the beginning of the connection’s lifetime. To
address these problems, we describe an automated and lightweight technique called Dynamic Right-Sizing that can improve
throughput by as much as an order of magnitude while still abiding by TCP semantics. We show the performance of two
user-space implementations of DRS: drsFTP and DRS-enabled GridFTP.
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1 Introduction

TCP has entrenched itself as the ubiquitous trans-
port protocol for the Internet, as well as for emerg-
ing infrastructures such as computational grids [1, 2],
data grids [3, 4], and access grids [5]. However, par-
allel and distributed applications running stock TCP
configurations perform abysmally over networks with
large bandwidth-delay products (BDP) such as are
typical in grid-computing environments and satellite
networks [6–8].

As noted in [6–9], congestion- and flow-control
adaptation bottlenecks are the primary reason for this
abysmal performance. The former is a topic of active
research beyond the scope of this paper. (See [10–12].)
In order to address the latter problem, grid and network
researchers continue to manually tune buffer sizes to
keep the network pipe full [7, 13, 14], and thus achieve
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acceptable wide-area network (WAN) performance in
support of grid computing. However, the tuning process
can be quite difficult, particularly for users and develop-
ers who are not network experts. It involves calculating
the bandwidth of the bottleneck link and the round-trip
time (RTT) for a given connection. The optimal TCP
buffer size is equal to the product of the bandwidth
of the bottleneck link and the RTT, i.e., the effective
bandwidth-delay product of the connection.

Currently, in order to tune buffer sizes appropriately,
the grid community uses diagnostic tools to determine
the RTT and the bandwidth of the bottleneck link. Such
tools include pipechar [15], nettimer [16], nettest [17],
pchar [18], iperf [19] and netspec [20]. However, none
of these tools include a client API so applications can
tune their TCP connections and all of the tools require
a certain level of network expertise to install and use.
Furthermore, many of these tools ‘pollute’ the network
with extraneous (probe) packets.

To simplify the tuning process, several services that
provide clients with appropriate tuning parameters for
a given connection have been proposed, e.g., AutoNc-
FTP [21], Web100 [22] and Enable [23], in order to elim-
inate what has been called the wizard gap [24]. (The wiz-
ard gap is the difference between the performance that
a network ‘wizard’ can achieve by appropriately tuning
buffer sizes and the performance of an untuned applica-
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tion.) Although these services provide good first approx-
imations and can improve overall throughput by two to
five times over a stock TCP implementation, they only
measure the bandwidth and delay at connection set-up
time. This makes the implicit assumption that the band-
width and RTT of a given connection will not change sig-
nificantly over the course of the connection. In Section 2,
we demonstrate that this assumption is tenuous at best.

A more dynamic approach to optimizing communi-
cation in a grid involves automatically tuning buffers
over the lifetime of the connection, not just at connec-
tion set-up. At present, there exist two kernel-level im-
plementations: auto-tuning [25] and dynamic right-sizing
(DRS) [26–28].

Auto-tuning implements sender-based flow-control
adaptation by fairly sharing buffer space on the sender.
(It assumes that receiver always have enough buffer
space.) DRS, on the other hand, implements receiver-
based flow-control adaptation by sizing the flow-control
window according to both the buffer space on the re-
ceiver and the available bandwidth in the network.
(DRS makes no assumptions about the buffer space
on the sender. A sender without sufficient buffer space
is allowed to transmit at a slower rate than indicated
by the flow-control window of the receiver.) Because
auto-tuning does not take into account available buffer
space on the receiver when sending packets, it allows
the sender to (potentially) overrun the receiver, either
inadvertently (during a FTP transfer) or maliciously
(during a denial-of-service attack). DRS, on the other
hand, is fully compatible with regular TCP. 1

Live WAN tests show that DRS in the kernel can
achieve a 30-fold increase in throughput when the net-
work is uncongested, although speed-ups of 7–8 times are
more typical. Achieving large speed-ups requires DRS
to be installed on every pair of communicating hosts
in a grid. On the other hand, it also benefits all TCP-
based applications, e.g., FTP, multimedia streaming and
WWW, not just grid applications.

Installing DRS requires knowledge about modifying,
recompiling and installing an operating system (OS) ker-
nel, along with root privilege to do so. Thus, DRS func-
tionality is generally not accessible to the typical end
user. While we anticipate that DRS will be incorporated
into vendor’s kernels so that it is transparent to the
end user, users want improved performance now. Thus,
we present two portable user-space implementations of
DRS: drsFTP [29] and DRS-enabled GridFTP.

drsFTP is similar in many ways to NLANR’s Auto-
NcFTP [30]. Both are modified FTP implementations
which adjust buffer sizes to increase performance. The

1 As a result of not taking into account the buffer space on
the receiver, auto-tuning appears to violate the TCP speci-
fication.

differences are two-fold. First, AutoNcFTP relies on Nc-
FTP [31] whereas drsFTP uses the de-facto standard
FTP daemon originally from Washington University in
St. Louis [32] and the open-source Netkit FTP client [33].
Second, the buffers in AutoNcFTP are only tuned at
connection set-up while drsFTP buffers are dynamically
tuned over the lifetime of the connection to provide bet-
ter adaptation and better overall performance.

The increased performance obtained from drsFTP
(Section 6.1) motivates us to integrate dynamic right-
sizing into GridFTP [34], a subsystem of the Globus
Toolkit [35], for managing bulk-data transfers in grids.

2 Background

TCP relies on two mechanisms to set its transmission
rate: flow control and congestion control. Flow control
ensures that the sender does not overrun the receiver’s
available buffer space (i.e., a sender can send no more
data than the size of the receiver’s last advertised flow-
control window), while congestion control ensures that
the sender does not overrun the network’s available band-
width. TCP implements these mechanisms via a flow-
control window (fwnd) that is advertised by the receiver
to the sender and a congestion-control window (cwnd)
that is adapted by the sender based on the inferred state
of the network.

Specifically, TCP calculates an effective window,
ewnd ≡ min(fwnd , cwnd), and then sends data at a
rate of ewnd/RTT , where RTT is the round-trip time of
the connection. The congestion control window, cwnd ,
varies dynamically as the network state changes; how-
ever, the flow-control window, fwnd , has traditionally
been static despite the fact that today’s receivers are
not nearly as buffer-constrained as they were twenty
years ago. Ideally, fwnd should vary with the bandwidth-
delay product (BDP) of the network, thus providing the
motivation for DRS.

Historically, a static fwnd sufficed for all communi-
cation because the BDP of networks was small. Hence,
setting fwnd to small values produced acceptable per-
formance while wasting little memory. Today, most op-
erating systems set fwnd ≈ 64KB — the largest win-
dow available without scaling [36]. Yet BDPs range be-
tween a few bytes (56Kbps × 5ms → 36 bytes) and a
few megabytes (622Mbps × 100ms → 7.8 MB). In the
former case, the system wastes over 99% of its allocated
memory (i.e., 36 B / 64KB = 0.05%). In the latter case,
the system potentially wastes up to 99% of the network
bandwidth (i.e., 64KB / 7.8 MB = 0.80%).

Over the lifetime of a connection, bandwidth and de-
lay change (due to transitory queueing and congestion)
implying that the BDP also changes. We use nettimer
to quantify how much they change. (Although we would
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Fig. 1. Bottleneck Bandwidth at 20-Second Intervals
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Fig. 2. Round-Trip Time at 20-Second Intervals
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Fig. 3. Bandwidth-Delay Product at 20-Second Intervals

have like to sample at the granularity of the RTT, the
overhead of running nettimer and other tools in user
space prevent us from obtaining the measurements we
seek.) Figure 1 presents the bottleneck bandwidth be-
tween Los Alamos and New York at 20-second inter-
vals. The bottleneck bandwidth averages 17.2 Mbps with
a low and a high of 0.026Mbps and 28.5 Mbps, respec-
tively. The standard deviation is 26.3 Mbps and the half-

width of the 95% confidence interval is 1.8 Mbps. Fig-
ure 2 shows the RTT at 20-second intervals, again be-
tween Los Alamos and New York. The RTT delay also
varies over a wide range 119–475ms with an average de-
lay of 157 ms. Combining Figures 1 and 2 results in Fig-
ure 3, which shows that the BDP of a given connection
can vary by as much as 61Mbit.

Based on the above results, the BDP over the lifetime
of a connection is continually changing. Therefore, a fixed
value for fwnd is not ideal; selecting a fixed value forces
an implicit decision between (1) under-allocating mem-
ory and under-utilizing the network or (2) over-allocating
memory and wasting system resources. Clearly, the grid
community needs a solution that dynamically and trans-
parently adapts fwnd to achieve good performance with-
out wasting network or memory resources.

3 Dynamic Right-Sizing (DRS) in the Kernel

Dynamic right-sizing (DRS) allows the receiver to es-
timate the sender’s cwnd and to dynamically change the
flow-control window fwnd to match. The estimates are
also used to keep pace with the growth in the sender’s
congestion window. 2 As a result, the throughput be-
tween end hosts, e.g., in a grid, will only be constrained
by the available bandwidth of the network, rather than
some arbitrarily set constant value on the receiver.

Initially, at connection set-up, the sender’s cwnd is
smaller than the receiver’s advertised window fwnd . To
ensure that a given connection is not flow-control con-
strained, the receiver must continue to advertise a fwnd
that is larger than the sender’s cwnd .

The instantaneous throughput seen by a receiver may
be larger than the available end-to-end bandwidth. For
instance, data may travel across a slow link only to be
queued up on a downstream router and then sent to the
receiver in one or more fast bursts. The maximum size
of such a burst is bounded by the size of the sender’s
cwnd and the window advertised by the receiver. Because
the sender can send no more than one ewnd window’s
worth of data between acknowledgements, a burst that
is shorter than a RTT can contain at most one ewnd ’s
worth of data. Thus, for any period of time that is shorter
than a RTT, the amount of data seen over that period is
a lower bound on the size of the sender’s cwnd . But how
does such a distributed system calculate its RTT?

In a typical TCP implementation, the RTT is esti-
mated by observing the time between when data is sent
and an acknowledgement is returned. However, during a
bulk-data transfer, the receiver may not be sending any
data, and therefore, will not have an accurate RTT es-

2 Under low-memory conditions, the receiver may advertise
a smaller window than the DRS algorithm suggests. The
sender is also free to send less than the advertised window.



timate. So, how does the receiver infer delay (and band-
width) when it only has acknowledgements to transmit
back and no data to send?

A receiver that is only transmitting acknowledge-
ments can still estimate the RTT by observing the time
between when a byte is first acknowledged and the re-
ceipt of data that is at least one window beyond the se-
quence number that was acknowledged. If the sending
application does not have any data to transmit, the esti-
mated RTT could be much larger than the actual RTT.
Thus, the estimate acts as an upper bound on the RTT
and should only be used when there is no other source
of RTT information. (For a rigorous presentation of the
lower and upper bounds, please see [26,27].)

We note that DRS is TCP-friendly in the sense that N
flows, DRS-enabled or not, will each receive a long-term
average of 1/N -th of the bandwidth of a fully utilized net-
work. Since the congestion-control mechanism governs
fairness and because it has the same congestion-control
mechanism, DRS responds to congestion the same way as
regular TCP. (Here we assume that the end hosts have a
fair buffer-allocation policy. If the buffer-allocation pol-
icy is not fair, both regular TCP and DRS will be unfair.
The fault lies with the buffer-allocation policy, not the
transport protocol.) In an uncongested network, how-
ever, DRS will attempt to utilize the excess capacity that
can exist when all the other connections are artificially
limited by their flow windows. As the network becomes
congested again, DRS throttles back and performs no
better (or worse) than regular TCP.

4 DRS in User Space: drsFTP

As mentioned earlier, deploying DRS requires the OS
kernel to be recompiled, which is impractical in may cir-
cumstances. Thus, we propose a user-space implementa-
tion of DRS.

Unlike the kernel-space version of DRS which bene-
fits all applications transparently, user-space DRS must
be implemented by each pair of communicating appli-
cations. In this section, we describe the implementation
DRS in an FTP client and server, resulting in drsFTP.

4.1 DRS in User-Space

The primary difficulty in developing user-space DRS
applications lies in the fact that user-space code does
not have direct access to the state of the TCP stack.
Consequently, drsFTP has no knowledge of TCP param-
eters, such as the RTT of a connection, the receiver’s
advertised window or the sender’s congestion window.
Information about a connection must be estimated from
coarse-grained user-space measurements rather than
from fine-grained TCP connection state.

FTP specifies that commands and replies are sent
over a control channel that is a completely separate TCP
connection from the data channel where the transfer
takes place. As with AutoNcFTP and Enable, we fo-
cus on (1) adjusting TCP’s system buffers over the data
channel of FTP and (2) using FTP’s stream file-transfer
mode. The latter means that a separate data connection
is created for every file transferred. If we assume the end-
hosts are not bottlenecks (and hence it makes sense to
seek higher bandwidth), the sender always has data to
transmit during the lifetime of the transfer. Once the file
has been completely sent, the data connection closes.

4.1.1 Determining Available Bandwidth
By definition, we know that the sender always has

data to send throughout the life of the FTP data con-
nection. It then follows that the sender will send data
as fast as possible, limited by its idea of the congestion-
and flow-control windows. Furthermore, the receiver is
receiving data as quickly as the current windows, net-
work and CPU scheduling conditions allow. Therefore,
the average bandwidth that a connection obtains is com-
puted by dividing the number of bytes transmitted by
the time required to transmit them.

The difficulty lies in selecting the appropriate sam-
pling interval over which to aggregate the number of
bytes transmitted. (Equivalently, we can select a fixed
number of bytes to be received periodically and measure
how long it takes.) Selecting too short of an interval dra-
matically increases overhead and reduces performance.
It also leads to erroneous estimates because of scheduling
and buffering effects. On the other hand, selecting too
long of an interval decreases the responsiveness of DRS
to changes in available bandwidth and may reduce per-
formance because the estimated bandwidth-delay prod-
uct, and hence, the receiver’s advertised window, may be
artificially small.

In the current implementation of drsFTP, the avail-
able bandwidth is computed through the periodic invo-
cation of a signal handler upon alarm expiration. Differ-
ent values for the sampling interval can easily be tested
by varying the expiration time of the alarm. The aver-
age bandwidth available to the connection over the last
interval is the number of bytes received since the last
alarm signal divided by the length of the interval. An ap-
propriate choice for the sample interval yields estimated
bandwidth values of sufficient accuracy.

4.1.2 Determining RTT
Unlike the procedure for estimating the bandwidth of

a connection, the RTT cannot be inferred in user-space
applications without injecting a very small amount of
extra traffic into the network. User-space code does not
have access to the inner workings of the TCP stack and



hence cannot know when a given packet is sent nor when
its acknowledgement is received.

To sidestep this problem, we send a small packet on
the FTP control channel for the sender to echo back. The
estimated RTT begins with the sending of a RTT probe
packet and ends when its echo is received. The additional
load on the network as the result of RTT probe packets
is generally small, depending on the sampling interval.
(Section 4.1.4 gives an optimization which minimizes the
impact of RTT probes.)

We note that sending the RTT probe packet over the
control channel assumes that the control and data chan-
nels follow the same route. In the case of three-party con-
trol of a FTP data transfer, however, the control and data
channels are likely to take very different routes. Thus the
RTT estimate may be inaccurate. We send RTT probes
over the control channel to comply with RFC 959 [37],
since commands cannot be sent on the data channel. If
probes could be sent on the data channel, then accu-
rate RTT estimates could be obtained in the manner de-
scribed above.

4.1.3 Adjusting the Receiver’s Advertised Window
User-space applications cannot directly set the flow-

control window in most TCP stacks. Instead, they must
indirectly set the window by setting the TCP receive
buffer size to an appropriate value via a setsockopt call.

In the worst case, the sender’s window is doubling
with every round trip during TCP slow start. When it
is determined that the receiver window should increase,
the new value should be at least double the current value.
There is no need to double the current value once TCP is
out of slow start. However, it is very difficult, in general,
to determine when slow start ends. Therefore, we increase
the receive buffer in drsFTP by a factor of two over the
BDP whenever the current buffer size is less than twice
the BDP. (In most protocol stacks, buffer space is not
allocated until it is actually used so excessive memory
usage is not usually a problem in practice.)

4.1.4 Adjusting the Sender’s Window
To take full advantage of dynamically changing buffer

sizes, the sender’s buffer should adjust in step with the
receiver’s. This presents a problem in user-space imple-
mentations because the sender’s code has no way of deter-
mining the receiver’s advertised window size. The FTP
protocol specification [37] does not prohibit traffic on
the control channel during data transfer, however. Thus,
a drsFTP receiver may inform a drsFTP sender about
changes in buffer size by sending appropriate messages
over the control channel.

Since FTP is a bidirectional data-transfer protocol,
the receiver may be either the server or client. RFC 959
specifies that only clients may send commands on the

control channel, while servers may only send replies to
commands. Thus, a new command and reply must be
added in order to fully implement drsFTP. Serendipi-
tously, the Internet Draft of the GridFTP protocol ex-
tensions to FTP [34] defines a ‘SBUF’ command, which
is designed to allow a client to set the server’s TCP buffer
sizes before data transfer commences. We extend the def-
inition of SBUF to allow this command to be specified
during a data transfer, i.e., to allow buffer sizes to be set
dynamically. The full definition of the expanded SBUF
command appears below.

Syntax:

sbuf = SBUF <SP> <ID> <SP> <size>

<ID> ::= <number>

<size> ::= <number>

This command requests the server-PI (server protocol
interpreter) to set the send-buffer size to <size> bytes,
assuming sufficient buffer space is available. <ID> is
provided to match a SBUF command to its reply. SBUF
may be issued at any time, including before or dur-
ing an active data transfer. If specified during a data
transfer, it affects the data transfer that started most
recently. The command is informational and need not
be acted upon, thus providing interoperability with
existing, non-drsFTP, applications.

Response Codes:

200 SBUF <SP> <ID> <SP> <size>

The server-PI issues a 200 response code containing
the <ID> of the corresponding command and the new
size of the server’s buffer. <ID> allows the client-PI
(client protocol interpreter) to match replies to com-
mands in case multiple SBUF commands are outstand-
ing in the active transfer. <size> allows the client-PI
adjust its buffer usage in case the server-PI chooses
to allocate less than the requested amount of buffer
space.

In addition, we propose a new response code to allow
the server-as-receiver to notify the client-as-sender of
changes in the receive window.

New Response Code:

126 SBUF <SP> <ID> <SP> <size>

A 126 response may be sent by the server-PI while
it is receiving data from the client-PI. As with the
SBUF command, this reply is informational and need
not be acted upon or responded to in any manner by
the client-PI. A non-drsFTP application will simply
ignore the reply, guaranteeing interoperability with a
drs-FTP server.
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Fig. 4. Data and Control Flow for a Three-Party Transfer.

This response code is consistent with RFC 959 and does
not interfere with any FTP extension or proposed exten-
sion.

We note that the SBUF command also provides a
vehicle for determining RTT without injecting a sepa-
rate message into the network. Since RTT probes need
only contain an <ID>, we allow SBUF commands to serve
the dual purpose of conveying the receiver’s buffer size
to the sender and probing for the RTT. Separate RTT
probes, as discussed in Section 4.1.2, are not needed in
most instances. Separate probes only become necessary
if the time between buffer-size changes becomes so large
that the RTT becomes stale. Since the mechanism for
determining RTT via SBUF messages is already in place,
“empty” SBUFmessages with the current buffer size serve
as the RTT probe in this case.

4.1.5 TCP Window Scaling
Because the window-scaling factor in TCP is estab-

lished at connection set-up time, an appropriate scale
must be set before a new data connection is opened. Most
operating systems allow TCP RCVBUF and TCP SNDBUF to
be set on a socket before a connection attempt is made
and then use the requested buffer size to establish the
TCP window scaling.

drsFTP sets the send- and receive-buffer sizes to allow
windows of up to 16MB worth of data before initiating
connection set-up. Once the connection has been made
(and the window scale factor set properly), drsFTP resets
the buffer sizes back to their initial values.

In order to set the window scale factor appropriately,
the network buffer-size limits of the operating system
may need to be increased. The steps involved in increas-
ing the limits are operating system dependent. See [38]
for an example of the steps required for a variety of op-
erating systems.

5 DRS in GridFTP

In order to maintain strict compatibility with the
FTP specification, drsFTP only supports two-party
transfers. Figure 4 shows a three-party transfer in
which the client coordinates a data transfer between
two servers. Because SBUF messages travel over the
control path in drsFTP, the RTT for a three-party

transfer is incorrect. Three-party transfers are easily
supported if control commands and their replies can be
sent and received on the data channel between servers.
GridFTP [34], part of the Globus Toolkit [35], already
extends the FTP specification in ways that provide most
of the needed support for three-party transfers with
DRS. The additional features of GridFTP include:

• Support for secure transfers.
• Parallel data transfers — where the data may be

transferred in parallel streams between two nodes,
• Striped data transfers — where the data may be

transferred to multiple nodes,
• Partial file transfers,
• Automatic negotiation of TCP buffer sizes.

The mechanisms provided by the last feature allow SBUF
messages to be exchanged on the data channel. These
messages are shown as dashed lines in Figure 4.

Like the drsFTP server, the current GridFTP server
is a version of the wu-ftpd server, modified to support
most of the GridFTP protocol extensions. The GridFTP
protocol extends the FTP specification by including an
Extended Block Mode (Mode E ). Mode E has 64-bit off-
set and length fields in the header and supports out-of-
order transmission. It also supports parallel or striped
transfers.

5.1 Determining RTT over the Data Channel

In drsFTP, RTT probes are sent on the control chan-
nel. This implicitly assumes that the path delay on the
control channel is the same as on the data channel. If the
control and data paths do not follow the same route, as is
the case with three-party transfers, the RTT computed
by drsFTP will be incorrect. As three-party transfers are
an important and oft-used feature of FTP, particularly
in scientific computing, a different approach is needed to
estimate RTT.

The GridFTP specification adds two commands for
setting TCP buffer sizes. The ABUF command sets
buffer sizes automatically at connection setup time by
actively probing the network for the RTT and available
bandwidth. The ABUF command is not implemented in
the current version of GridFTP. The SBUF command is
used to set the buffer sizes at a remote node. (As men-
tioned in Section 4.1.4, we extend the semantics of the
SBUF command to allow it to be sent at any time during
a data transfer.) Because DRS-enabled GridFTP con-
tinuously modifies buffer sizes as appropriate during a
transfer, the need for the ABUF command is eliminated.

Figure 5 shows structure of the extended block
header. The eight-bit descriptor field indicates the type
of transfer. We define two new descriptor codes, using
two unallocated bits in the descriptor field as shown in
Figure 6.
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Fig. 5. SBUF Message Encapsulated in a Mode E Header.

Descriptor Code Meaning

01 SBUF message

02 Reply to SBUF message

Fig. 6. SBUF Descriptors in a Mode E Header.

Upon expiration of an alarm, the receiver sends a ex-
tended block header to the sender without a payload. The
descriptor field in the header indicates an encoded SBUF
message, while the byte-count field is set to the value
of the receiver’s current buffer-size. When the sender re-
ceives a SBUF packet on the data channel, it attempts to
set its buffers to the value contained in the <byte-count>
field. It also sends an acknowledgement in an outgoing
extended block header in a manner similar to the way
TCP piggy-backs acknowledgements.

When the receiver obtains the acknowledgement, it
calculates the RTT as the difference between the ac-
knowledgment reception time and the SBUF send time.
As in Section 4.1.2, using SBUF messages to compute
RTT, as well as for conveying buffer sizes, eliminates the
need to inject extra traffic into the network.

Note that estimating RTT requires the data channel
to be bidirectional during a data transfer, i.e., full-duplex
communication must be supported over the data chan-
nel. This is an extension to the current GridFTP imple-
mentation. By estimating RTT over the data channel,
parallel and striped transfers are seamlessly supported.

5.2 Determining Bandwidth in DRS-enable GridFTP

Bandwidth is computed in the same way as described
in section 4.1.1. The average throughput over a sampling
interval is calculated on the receiving end upon the pe-
riodic expiration of an alarm. The sampling interval can
be adjusted to obtain values of sufficient accuracy.

6 Experiments

In this section, we present results for both drsFTP
and DRS-enabled GridFTP. In particular, we will show
that the throughput improves by over 600%.

6.1 Performance of drsFTP

The experimental apparatus consists of three iden-
tical machines connected via Fast Ethernet (100Mbps).
The machines need only be fast enough to ensure that the
hosts are not the bottleneck. Each machine contains dual
400MHz Pentium II processors with 128MB of RAM

eth1eth0 eth1eth0 eth1eth0

FTP Server WAN Emulator FTP Client

To LAN To LAN

Fig. 7. Experimental Apparatus

and two network-interface cards (NICs). One machine
acts as a WAN emulator with a 102ms round-trip time
(RTT) delay; each of its NICs is connected to one of the
other machines via a switch.

The WAN emulator, which is implemented using
TICKET technology [39], forwards packets at line rate
and has a user-settable delay. (In the results that fol-
low, the average round-trip time is 102.1 ms.) All FTP
traffic, both data and control, occurs through the WAN
emulator.

As a baseline, we use stock FTP with TCP receive
buffers set at 64 KB. (Most modern operating systems
set their default TCP buffers to 32 or 64 KB. Therefore,
this number represents the high end of OS-default TCP
buffer sizes.) We next test drsFTP, allowing the buffer
size to vary in response to network conditions, starting
from 64 KB. Last of all, we test statically-tuned FTP
with TCP buffers sizes chosen to represent over- and
under-provisioning.

The over-provisioned buffer size, representing the
best performance possible, is 16 MB, which is larger
than the BDP (12.2MB). The under-provisioned buffer
size is 212.5KB, which represents a BDP that is sam-
pled when the network is loaded. (The median value of
BDP for the data in Figure 3 is 143.3 KB. A buffer size
of 212.5KB is in the 66th percentile.)

For each test, we transfer a set of files, ranging from
8KB to 64MB, over the emulated WAN. The drsFTP
sampling interval used to estimate the available band-
width is one second, a conservative configuration with
very low overhead. (The performance is not sensitive to
the duration of the sampling interval as long as the sam-
pling interval is greater than the round-trip time. This is
an artifact of not emulating cross-traffic.)

Figure 8 shows the average FTP bandwidth as a func-
tion of the size of the transfer. (The x-axis has markers
placed according to the powers-of-two file sizes tested.
The width of the 95% confidence interval is less than
±5% in all cases.) The average bandwidth of FTP with
stock buffer sizes approaches 5 Mbps for file sizes as small
as 8 MB. In contrast, the average bandwidth of drsFTP
asymptotically approaches 30 Mbps at over 64 MB file
transfers. Thus, the utilization of available bandwidth
by drsFTP is approximately six times better than stock
FTP.

The best bandwidth (34.5 Mbps) is achieved by the
over-provisioned FTP which has larger-than-required
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buffer sizes. As shown, drsFTP achieves 78.7% of the
over-provisioned bandwidth. The primary reason for the
difference in performance is that drsFTP must rely on
coarse-grained measurements to infer available band-
width and round-trip time and hence may not grow the
buffer sizes quickly enough. This is an inherent limi-
tation indicative of the interim nature of the drsFTP
application. Even though its performance is not as good
as the kernel-space implementation [26, 27], drsFTP
was developed to provide the benefits of DRS to the
grid community while vendors implement DRS in their
kernels.

Figure 8 also compares the average bandwidth of drs-
FTP to a statically-tuned case where the BDP was sam-
pled at an inopportune time, e.g., at one of the lower data
points in Figure 3. Here we see that drsFTP utilizes the
available bandwidth 2.4 times better than the statically-
tuned case. The comparison illustrates the benefit of
inferring the available bandwidth and setting the flow-
control buffers automatically.

So far, we have only addressed the issue of optimizing
transfer rates. We now turn our attention to buffer usage.
As motivation, we conjecture that memory consumption
will become a more serious issue as computational grids
become widely used and hence indispensable parts of the
computational infrastructure.

While applications are able to use buffer space with
abandon now, we envision the time when grid nodes will
become heavily loaded with large numbers of potentially
diverse applications. One example might be a repository
for human genome information which will be accessed
simultaneously by thousands of researchers. If each con-
nection over-provisions its buffers, it is likely that the
node will run out of buffer space and reject connections
which could otherwise be serviced had the connections
been more frugal.

Figure 9 shows the growth of the drsFTP receive
buffer as a function of time during three transfers of a
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512MB file. The final buffer sizes for the three trans-
fers range from 1.9 MB to 3.1 MB, with an average of
2.7MB. Due to changing conditions during the trans-
fers, the buffer sizes grow at different rates, particu-
larly during the latter part of the transfer. In contrast,
the over-provisioned FTP uses a 16 MB buffer which is
statically allocated during connection set-up. Thus drs-
FTP achieves over three-quarters of the over-provisioned
performance while only using one-sixth the amount of
memory. In other words, drsFTP achieves an average of
10.1Mbps per MB of buffer space used while statically-
tuned FTP achieves only 2.2Mbps per MB of buffer space
used.

As Figure 10 shows, drsFTP achieves five times bet-
ter utilization of the network with respect to memory
than the over-provisioned case. Even if the theoretically
optimal BDP of 12.2 MB been allocated instead of over-
provisioning, drsFTP would still have been able to sup-
port more connections with a 3.6 times improvement
inMbps per MB. The difference between drsFTP and the
statically-tuned case where the BDP was sampled at an
inopportune time is even more dramatic.



6.2 Performance of DRS-enabled GridFTP

In this section, we present the performance of DRS-
enhanced GridFTP on three-party transfers.

The experimental apparatus consists of four identical
machines, as shown in Figure 11. Each machine contains
dual 500 MHz Pentium III processors with 1GB of RAM
and two 100 Mbps network-interface cards (NICs). One
machine acts as a WAN emulator with a 102.1 ms RTT.
Each of its NICs is connected to one of the server ma-
chines via a switch. The final machine acts as the client.

The three-party data transfer is initiated by estab-
lishing a control channel connection with the receiving
host. The client sends a PASV command to the receiv-
ing host to instruct it to listen for a connection from the
sending host. The response to the PASV command is
a host and port address. Next, the client connects with
the sender and issues a PORT containing the host and
port addresses it obtained from the receiver. The PORT
command instructs the sender to use these values for the
data connection.

We test GridFTP with default, statically tuned over-
provisioned and DRS-tuned buffer sizes. The files sizes
range from 1 MB to 512MB. As shown in Figure 12, the
average bandwidth of GridFTP with default buffer sizes
is 4.7 Mbps for the 512MB transfer. In contrast, the aver-
age bandwidth of DRS-enabled GridFTP for the same file
size is 30.0 Mbps, an increase of 633%. The average band-
width of GridFTP with statically over-provisioned buffer
sizes is 38.7 Mbps. Thus, DRS-enabled GridFTP achieves
77.5% of the over-provisioned performance without the
need to tune the buffers by hand.

Figure 13 shows the performance of GridFTP for
various numbers of parallel streams. The average band-
widths on a 512 MB transfer are 25.9, 79.3 and 84.8 Mbps
for the default, DRS-tuned and over-provisioned buffer
sizes, respectively. Even with parallel streams, DRS-
enabled GridFTP delivers 306% of the bandwidth of
the stock case using equal numbers of streams. In or-
der to achieve the same performance as DRS-enabled
GridFTP with 4 streams, GridFTP with default buffer
sizes would require approximately 14 streams. Using
multiple streams with stock buffers is not scalable since

GridFTP Server BGridFTP Server A WAN Emulator

eth0 eth0 eth1 eth0

GridFTP Client

(Controlling Node) Control ChannelControl Channel

Data Channel Data Channel

Fig. 11. Experimental Setup for Three-Party Data Transfer
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multiple streams increase operating system (OS) over-
head. Finally, we note that the performance difference of
DRS-enabled GridFTP with respect to GridFTP using
over-provisioned buffers appears to be independent of
the number of streams for large files sizes.

Figure 14 compares the delivered bandwidth com-
pared with the amount of buffer space used. We use the
Mbps per MB metric we define in Section 6.1. DRS-
enabled GridFTP achieves 36.4 Mbps per MB of buffer
used, while GridFTP with over-provisioned buffers
achieves 23.0Mbps per MB, a difference of 158%. The
ratio is even greater for smaller file sizes (e.g., the per-
formance of DRS-enabled GridFTP is 16.9 times better
than GridFTP with over-provisioned buffers at a file
size of 1MB file).

Finally, we note that the performance of DRS-
enabled GridFTP for two-party transfers is indistin-
guishable from the three-party case. This is to be ex-
pected as two-party transfers are a degenerate case of
three-party transfers in which one of the end points is
also the client.
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7 Future Work

The results of the experiments conducted so far indi-
cate that DRS, both kernel- and user-space, is likely to
perform well in the real world. Anecdotally, we have ob-
served very good performance on live networks but still
need to rigorously quantify the improvements. We need
to do more testing on connections with low and medium
bandwidth-delay products. We also need to test DRS
with varying amounts of cross traffic.

Although we have shown preliminary results which
indicate that DRS is complementary to parallel streams
as a means of increasing throughput for large data trans-
fers, the interaction between DRS and parallel streams
needs to be better characterized. Does DRS subsume the
need for parallel streams or should a combined approach,
as we implemented in GridFTP, be used? The results
seem to indicate that a hybrid approach will yield the
best performance for the fewest numbers of streams (and
hence OS resources).

Finally, we are working to get DRS incorporated into
the official Linux source tree. Once incorporated, appli-
cations will transparently see an increase in delivered
bandwidth. In the meantime, we are continuing to de-
velop drsFTP and GridFTP.

8 Conclusion

This paper makes a number of significant con-
tributions to the high-speed networking and grid-
computing communities. First, we demonstrated that
the bandwidth-delay product (BDP) can vary widely
over the lifetime of a connection. Therefore, simply tun-
ing buffers at connection set-up is not good enough; they
must be tuned over the lifetime of the connection. This
is the motivation for dynamic right-sizing (DRS).

Further, since we used nettimer to measure the
BDP of a connection, our estimates may be conservative

because nettimer measures static bottleneck band-
width and dynamic delay. With the recent release of
pathload [40], which measures dynamic available band-
width and delay, our initial tests indicate that the BDP
actually fluctuates by an additional order of magnitude.

Second, we illustrated how a receiver can measure
the bandwidth and round-trip time of a connection (i.e.,
BDP) without “polluting” the network with extraneous
probing packets. The BDP value is then used as an upper
bound for the flow-control window in DRS.

Third, in the context of DRS, we have shown how
a TCP receiver can determine the approximate size of
the sender’s congestion window so that the receiver can
advertise a flow-control window that neither needlessly
constrains throughput nor unnecessarily over-allocates
buffer space. Furthermore, this can be done automati-
cally and transparently while abiding by TCP semantics.
We have shown how it can be done in user space and
have implemented it in drsFTP.

Fourth, we have demonstrated DRS support for grid
computing by extending the GridFTP application. Un-
fettered by constraints imposed by the FTP specifica-
tion, we have extended GridFTP to support three-party,
parallel and striped transfers that are ubiquitous in grids
computing.

Finally, we are making our implementations of DRS
available under an open-source license. The DRS kernel
implementation has already been incorporated into the
Web100 project [41]. We are also working to fold the mod-
ifications necessary to support DRS into the GridFTP
code base.
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