
Energy-Efficient Cluster Computing via Accurate Workload Characterization

S. Huang and W. Feng
Department of Computer Science

Virginia Tech
{huangs,feng}@cs.vt.edu

Abstract

This paper presents an eco-friendly daemon that
reduces power and energy consumption while bet-
ter maintaining high performance via an accurate
workload characterization that infers “processor stall
cycles due to off-chip activities.” The eco-friendly dae-
mon is an interval-based, run-time algorithm that uses
the workload characterization to dynamically adjust a
processor’s frequency and voltage to reduce power and
energy consumption with little impact on application
performance.

Using the NAS Parallel Benchmarks as our work-
load, we then evaluate our eco-friendly daemon on a
cluster computer. The results indicate that our work-
load characterization allows the power-aware daemon
to more tightly control performance (5% loss instead
of 11%) while delivering substantial energy savings
(11% instead of 8%).

1. Introduction

According to a recent IBM report [17], the annual
budget for power and cooling is fast approaching
the annual budget for new server spending. This is
arguably why Google located one of their new data
centers in rural Oregon on the Columbia River —
to take advantage of the cheap hydroelectric power
generated by the nearby Grand Cooley Dam [19].
Rapidly increasing utility bills, coupled with how heat
from excessive power affects reliability [5], motivates
the need for power awareness in cluster computers,
whether in a supercomputing center or a large-scale
data center.

One way to address this growing problem is to im-
prove the power and energy efficiency of cluster com-
puters at different levels of abstraction: hardware [15],
[4], systems integration [5], systems software [8], [7],
middleware [13], and applications software [18]. In this
paper, we use asystems-software approachthat lever-
agesaccurate workload characterizationvia a unique

synthesis of hardware performance countersin order to
determinewhen and howto use dynamic voltage and
frequency scaling (DVFS) to improve power efficiency
while strictly maintaining performance. Because the
power consumption of a processor is proportional
to its clock frequency and the square of its voltage
supply, we use DVFS, available on virtually all modern
processors, e.g., SpeedStep on Intel and PowerNow! on
AMD, to set the voltage and frequency of the processor
so as to reduce power consumption.

In a DVFS-enabled processor, a low (or high) power-
consuming mode corresponds to processor that runs at
a low (or high) frequency and voltage. Thus, a DVFS
algorithm should reduce the frequency and voltage of
a processor only when the processor is not needed to
do useful work, e.g., waiting for the completion of a
large block of I/O accesses. Application performance
during such periods of off-chip access is insensitive
to processor performance. Thus, we can reduce the
processor voltage and frequency during such periods
to reduce power consumption while maintaining ap-
plication performance.

However, given that the time to scale voltage and
frequency takes O(10,000,000) clock cycles, sophis-
ticated use of DVFS is needed if power and energy
savings is to be realized within a performance bound.
Enabling such use requires accurate workload charac-
terization, one of the main contributions of this work.
Then, the challenge is to make use of this workload
characterization toautonomicallyscale the frequency
and voltage.

Thus, this paper presents a novel methodology for
workload characterization on a per-node basis that is
then used to enable intelligent power-aware computing
across computational nodes in a cluster, data center, or
grid. For the purposes of this paper, however, our focus
will be on the former.

We refer to our power-aware, eco-friendly algorithm
as eco and its implementation asecod. The ecod
daemon manages application performance and power
consumption in real time based on an accurate mea-



surement of CPU stall cycles due to off-chip activities
and doesnot require application-specific information a
priori. The paper will show thatecod limits perfor-
mance impact to only 5.1% (if our performance-bound
knob is set to 5%) with less than 3.5% variance, both
better than the current state of the art, while saving up
to 50% in processor energy and up to 19% in overall
system energy.

The remainder of the paper is organized as follows.
Section 2 discusses related work on power-aware al-
gorithms and its workload characterization. Section 3
presents our novel workload characterization based on
CPU stall cycles due to off-chip activities. In Section 4,
we present our power-aware, run-time algorithm called
eco, which is implemented as a daemon. Sections 5
and 6 present our experimental setup and results,
respectively, followed by a conclusion in Section 7.

2. Related Work

The past few years has seen significant research
in power-aware cluster computing, which can be
categorized into two types [7]: off-line, trace-based
scheduling [1], [6], [16] and on-line, profile-based
scheduling [8], [11], [7], [3]. For brevity, the related
work below focuses on the latter, which is the more
challenging problem.

Lim et al. [11] design an MPI run-time system
that dynamically reduces CPU performance during
communication phases in MPI programs. Curtis-Maury
et al. [3] present a framework for autonomic power-
performance adaptation of multi-threaded programs
using thread throttling. However, these two works
have limited application in that they are designed only
for MPI and OpenMP applications, respectively. For
power-aware research using general workload charac-
terization, Choi and Pedram [2], Hsu and Feng [8] (β

algorithm), and Ge et al. [7] possess the current state
of the art for general computing systems.

Choi and Pedram propose a DVFS approach based
on the ratio of off-chip access to on-chip computation
time that is targeted to embedded systems. It uses the
number of instructions and external memory accesses
to compute the ratio of off-chip computation time
to on-chip computation time. However, this workload
characterization isCPU-frequency dependentand can-
not characterize an application. Why? Theoretically,
the off-chip access time is constant no matter what
CPU frequency is used while on-chip computation time
will decrease as CPU frequency increases. Hence, the
ratio of off-chip access to on-chip computation time
depends on the CPU frequency. Moreover, Choi’s work

only considers memory access and ignores thread syn-
chronization in exploring energy-saving opportunities.

The β algorithm [8] of Hsu and Feng assumes that
CPU boundedness is indirectly reflected via the MIPS
(millions of instructions per second) rate. Since the
MIPS rate only approximately reflects CPU bounded-
ness and is dependent on CPU frequency, it cannot
accurately characterize application workload nor can
it effectively bound performance loss. Another (ar-
guable) drawback is that theβ algorithm takes the
entire history of workload into consideration when
making DVFS decisions. While appropriate for some
applications, it is not for many other applications.

CPU MISER [7] relies on retired instruction and
cache-access statistics to provide information about
the on-chip workload. It also uses constant values to
approximate two important variables in its workload
characterization. As such, this approach only accu-
rately characterizes workload on average. Moreover,
the workload characterization of CPU MISER is CPU
frequency dependent.

The Linux on-demand governor is widely provided
in the CPUFreq subsystem of a recent Linux kernel.
It dynamically changes CPU frequency depending on
CPU utilization [14]. Because CPU utilization is mis-
leading in terms of characterizing a program’s work-
load, the on-demand governor cannot efficiently deliver
both power savings while controlling performance loss.

3. Workload Characterization

From a power-aware perspective, different appli-
cations create different opportunities for energy sav-
ings. Execution phases with memory-intensive activi-
ties have been an attractive target for DVFS algorithms
because the time for a memory access is independent
of how fast the processor is running. When frequent
memory or I/O accesses dominate a program’s execu-
tion time, they limit how fast the program can finish
executing. It is thismemory wall that provides an
opportunity to reduce power and energy consumption
while maintaining performance. In cluster computing
and grid environments, there are further opportunities
for power and energy savings, e.g., during network or
I/O synchronization, e.g.,

Below we derive a parameterλ to characterize appli-
cation workloads in order to assist in simultaneously
optimizing performance and power. We then present
our methodology for measuringλ using CPU stall
cycles due to off-chip activities.



3.1. Deriving a Workload Model

Let T (f) denote the time to execute a program
at a CPU frequencyf . The total number of clock
cycles to execute a program is then given byT (f) · f .
Alternatively, as noted in Eq. (2), this value can be
realized as the number of clock cycles to execute on-
chip activities,Con , plus the number of clock cycles to
execute off-chip activities,Coff , where the execution
time of the former is frequency-sensitiveand the latter
is frequencyinsensitive. That is,Con is the number of
CPU cycles whose execution is affected by frequency
variation while Coff is the number of CPU cycles
whose execution isnot affected by frequency variation.

Con + Coff = T (f) · f (1)

We defineToff to represent the execution time that
is CPU frequency-insensitive.

T (f) = Con ·
1

f
+ Toff (2)

When a program runs at maximum frequencyfmax ,

T (fmax ) = Con ·
1

fmax

+ Toff (3)

Note thatToff in Eq. (3) is the same as in Eq. (2) when
executing the same amount of program instructions
since Toff is not affected by the change of CPU
frequencyf .

To quantify the performance loss, we define a pa-
rameter δ that indicates the performance bound in
employing DVFS,

T (f) − T (fmax )

T (fmax )
< δ (4)

SubstitutingT (f) andT (fmax ) from Eq. (2) and (3),
respectively, into Eq. (4), we get

Con

Con + Toff · fmax

·
fmax − f

f
< δ

The equation can be reformulated as

λ ·
fmax − f

f
< δ (5)

where
λ =

Con

Con + Toff · fmax

(6)

The workload characterization, denoted byλ in Eq. (6),
can be reformulated as

λ =
Con

Con + Coff · fmax

f

(7)

By combining Eq. (1) and (7), we eliminate the direct

dependence onCon , thus resulting in

λ =
f2T (f) − fCoff

f2T (f) − fCoff + fmaxCoff

(8)

where 0≤ λ ≤ 1.
From Eq. (6), the workload characterizationλ is a

parameter that is independent of the CPU frequency
that the application is running at.λ only depends on
the application itself. Eq. (7) shows thatλ characterizes
the percentage of on-chip cycles out of the total CPU
cycles when running at frequencyfmax . In Eq. (7),
when λ equals to1, Coff is 0, which means that the
program spent all its time on on-chip activities. When
λ equals0, Con must be0, which means the program
spent all its time on off-chip activities. Eq. (8) provides
a method to quantify the behavior of applications even
if they are not running on frequencyfmax .

3.2. Methodology for Measuring CPU Off-
Chip Stall Cycles

In this section, we present our methodology for mea-
suringCoff . In order to achieve the desired accuracy,
we obtain the CPU stall cycles due to off-chip activities
from two aspects: on-chip (Con

off ) and off-chip (Coff
off ).

3.2.1. Measuring from the On-Chip Perspective.

Con
off = SCtotal−SCon ≃ SCtotal−SCbranch−SCreorder

whereCon
off is the on-chip measurement of CPU stall

cycles due to off-chip activities. For our platform,
we measureSCtotal using the CPU’s decoder/dispatch
stall cycles and measureSCon using the sum of the
CPU’s decoder stall cycles due to branch misprediction
(SCbranch ) and full reorder buffer (SCreorder ). Why
choose these two events? They dominate CPU stall
cycles due to on-chip activities and hardly overlap
with each other. There are also other stall cycles
contributors, e.g. segment load, serialization, and so
on. However, our empirical results show that CPU stall
cycles contributed by these events are small; thus, we
ignore them in our estimation.

3.2.2. Measuring from the Off-Chip Perspective.

C
off
off = Nmem · τmem · f + Tio · f + Tidle · f

whereC
off
off is the off-chip measurement of CPU stall

cycles due to off-chip activities.Nmem is the number
of off-chip memory accesses;τmem is the memory-
access latency;Tio is the CPU stall time for waiting
on I/O completion; andTidle is the CPU idle time. We
use L2 cache misses to emulate the number of off-chip



memory accesses and useLMBench [12] to measure
the memory-access latencyτmem . Tio and Tidle can
be obtained through/proc/stat on Linux systems.

3.2.3. Synthetic Measurement.We obtain our final
measurement by taking the minimum of on-chip and
off-chip measurement of CPU stall cycles due to off-
chip activities, i.e.,

Coff = min(Con
off , C

off
off )

Why take the minimum? Both measurements over-
estimate the number of CPU stall cycles. On the
one hand, for on-chip measurement, there is no such
hardware event that can measure CPU stall cycles due
to off-chip activities directly. In order to estimate it,
we choose a set of events out of many that can cause
on-chip CPU stalls, e.g. branch abortion, serialization,
full reorder buffer [10]. Moreover, most of the events
involve both on-chip activities and off-chip activities.
Therefore, an event cannot be simply treated as an
event due to on-chip activities or off-chip activities. To
exacerbate the problem, the events sometimes overlap
with each other.

On the other hand, off-chip measurement is also not
accurate enough. Both off-chip memory accesses and
memory latency are hard to determine precisely. The
L2 cache misses measured by the hardware counter
usually include misses due to speculative execution.
Additionally, due to CPU prefetching and block trans-
fer, some L2 cache misses will be combined and trans-
ferred together. Thus, the actual number of memory
accesses will be smaller than the measured value.

Two facts lead us to combine on-chip and off-chip
measurements. For CPU-bound applications, L2 cache
misses are smaller and the opportunity for combining
and overlapping cache misses is small. Thus, off-chip
measurement works better for CPU-bound applica-
tions. For non-CPU-bound applications, however, CPU
stall cycles due to off-chip activities dominate the total
CPU stall cycles. Therefore, on-chip measurement fits
non-CPU-bound applications well.

4. eco Algorithm

Here we present our workload-aware, eco-friendly
algorithm calledeco. The algorithm consists of multi-
ple components: (1) the high-level algorithm itself that
periodically determines whether to scale the frequency
and voltage, (2) workload prediction to enable the
decision of what to scale the frequency (and voltage)
to, and (3) once a frequency is determined, how to
schedule and emulate the frequency (and voltage) if
the platform does not explicitly support the frequency.

4.1. Overview of Algorithm

The eco algorithm is an interval-based, run-time
algorithm, whose execution time is divided into in-
tervals that span the running time of an application
program. Within each interval, the algorithm performs
the following:

1. Characterizes the workload for the current inter-
val, as noted in Section 3. As stated before, frequent
memory and I/O access, network process synchroniza-
tion, as well as CPU idling constitute the three main
opportunities for power-aware computing. However,
these three opportunities vary from application to ap-
plication and change from time to time. In short, the
ecoalgorithm quantifies the application behavior at run
time for each interval.

2. Predicts the workload characterization for the
next interval.Theecoalgorithm predicts the workload
for the next interval based on that of previous intervals.
It uses the average of aλ window of previous intervals
to predict the workload, since we observe that work-
load tends to be constant for short periods of time.

3. Schedules the frequency for the next interval.
Theecoalgorithm schedules the CPU frequency based
on the predicted workload characterization in order to
maintain the performance bound while saving as much
energy as possible. However, we must address two
problems with frequency scheduling in real systems:
(1) CPUs only support discrete frequencies, and (2)
CPU frequencies have a lower and upper bound.

4.2. Workload Prediction

Though workloads may vary from application to
application, the workloads can still be predictable at
some level. For example, we set a window size of
L and use the average across the window to predict
the λ in current interval. The window size cannot be
too large, otherwise the DVFS scheduler will not be
reactive to workload variation. The window size cannot
be too small either as it risks significant prediction
error. Empirically, we set the window size to be3
by default in our implementation ofecoalgorithm —
ecod, short for EcoDaemon.

4.3. Frequency Scheduling and Emulation

Assuming that̄λ is the predicted workload character-
ization for the current interval, then based on Eq. (5),
the ideal frequency for the current interval is

f∗ =
λ̄ · fmax

λ̄ + δ
(9)



However, the available frequencies in a real system
are limited. Thus, as in [8],f∗ needs to be calculated
as

f∗ = max(fmin ,
λ̄ · fmax

λ̄ + δ
)

Finally, the calculated frequencyf∗ may not be di-
rectly supported on a real system. So, we apply the
method proposed in [8] to emulate the calculated
frequencyf∗.

4.4. The eco Algorithm

Synthesizing the steps shown above, we design our
eco algorithm. Figure 1 presents the pseudocode for
the ecoalgorithm. Steps 1 and 2 encompass workload
characterization. Step 3 is workload prediction, and
Steps 4 and 5 deal with frequency scheduling and
emulation.

Hardware:
n frequenciesf1, · · ·, fn

Parameters:
I: time-interval size
δ: performance bound
L: prediction window size

Algorithm:
Initialize theλ window
Repeat

1. Measure CPU stall cycles due to off-chip
activities for current intervalCoff

2. Compute coefficientλ for current interval

λ =
f2I − fCoff

f2I − fCoff + fmaxCoff

3. Predict the workload for next interval
for all λ in window [0, L]

λ̄ = average(λ)

4. Compute the desired frequencyf∗

f∗ = max(fmin ,
λ̄ · fmax

λ̄ + δ
)

5. Schedule next interval I atf∗

Figure 1. Pseudocode for eco algorithm

5. Experimental Set-Up

Here we detail the experimental set-up for evaluating
our eco algorithm, including hardware and software
platform, power and energy measurement, andecod
implementation.

5.1. Experimental Platform

The hardware platform in our experiment includes
a four-node cluster for computing and an additional
node for recording the power and energy consumption.
Each compute node contains two dual-core AMD
Opteron 2218 processors and 4-GB main memory.
Each CPU core includes one 128-KB split instruction
and data L1 cache. Two cores on the same die share
one 1 MB of L2 cache. Each processor supportssix
power/performance modes . Finally, the nodes are
interconnected with Gigabit Ethernet.

We run Red Hat Linux (kernel version 2.6.18)
on each compute node. The Linux kernelCPUFreq
subsystem is used for controlling DVFS andPERFCTR
for hardware counter monitoring. With respect to the
benchmarks, we use the latest NAS Parallel Bench-
marks (NPB3.2-MPI). We usempich2 (version 1.0.6)
to run the benchmarks.

5.2. Energy Measurement and Processing

We use the “Watts Up? PRO ES” power meter
to measure the total system energy for each node.
Energy values are recorded immediately before and
after the benchmark runs. The difference of the two
energy values is the energy consumed by the system
when the benchmark ran. Since DVFS scheduling only
affects the power consumption of CPU, it is (arguably)
misleading to evaluate ourecoalgorithm based on the
energy consumption of total system. So, in addition to
reporting the total system energy, we also evaluate the
effect of theecoalgorithm on CPU energy by applying
a CPU power model used in [8] to isolate the CPU
energy from the total system energy.

5.3. Theecod Implementation

Figure 2 illustrates the software architecture of
our ecod implementation. We implementecod as a
lightweight daemon that monitors all the cores in a
node and schedules appropriate frequencies for them.
When ecod starts up, it reads the configuration file
and dynamically detects processor settings, e.g. avail-
able frequencies, number of cores, etc. In each sam-
pling interval, the master daemon fetches hardware-
event information from the “Hardware Event Monitor
Module.” Then, workload prediction and performance
rectification are performed. The former is discussed
in Section 4.2 while the latter is a mechanism to
compensate for the performance loss due to the mis-
prediction ofλ. Due to space limitations, we refer to
technical report [9] for more details. In the end, the



daemon dispatches the desired frequency to “DVFS
Scheduler Module,” which then takes care of frequency
scheduling of the cores.

Figure 2. Software architecture of ecod

5.4. Parameters and Sensitivity Analysis

ecod is configurable and tunable. The user-
configurable parameters aresampling interval, perfor-
mance bound,and prediction window size.Below are
the tradeoffs of these user-configurable parameters.

Sampling Interval. As sampling intervals increase in
length, the precision of workload characterization and
its prediction will worsen, resulting in performance
that cannot be tightly controlled. Conversely, when
the sampling intervals get too short, the overhead of
sampling the workload and scheduling the frequency
is not as easily amortized.

Performance Bound. The larger the performance
bound (or percentage slowdown), the more energy that
will be saved. However, once the frequency reaches
the system’s lowest frequency, it cannot save any more
energy.

Prediction Window Size. If the window size is large,
the algorithm will depend on a larger amount of
historical information, thus making more instantaneous
workload prediction inaccurate. If the window size
is small, the algorithm will be too sensitive to the
workload variation.

In our experiments, we compareecod with the β-
algorithm [8] and the Linux on-demand governor [14].
Forecod, I is set to 1 second andδ is set to 5% andL
is set to 3. Forβ algorithm, the performance constraint
is set to 5%. As for Linux on-demand governor, we
use the default configuration with a sampling rate of
560,000 ms and up threshold of 80%.

6. Experiments and Analysis

In this section, we first validate the workload char-
acterizationλ obtained by measuring the CPU stall
cycles due to off-chip activities against an off-line ap-
proach [9]. Then, we evaluate the workload prediction
method used inecoalgorithm Finally, we demonstrate
the efficacy ofecod, our power-aware daemon based
on eco, on the NAS Parallel Benchmarks (NPB3.2-
MPI) in a cluster environment.

6.1. Validation of Workload Characterization

Before evaluatingeco on the NAS Parallel Bench-
marks, we first validate our workload characterization
(λ) on a representative set of 10 SPEC CPU2000
benchmarks: three CPU-bound, three memory-bound,
and four in between. Specifically, by evaluatingλ, we
indirectly evaluate our approach to measure CPU stall
cycles due to off-chip activities.

Figure 3 shows our evaluation of measuredλ to
that of an off-line approach [9], with the benchmarks
arranged in such a way that the CPU-boundedness (i.e.,
Y-axis) of the benchmarks decrease going left to right.
The error of the measuredλ to off-line value is only
3.4% on average.

Figure 3. Validation of measured λ against that
obtained offline

6.2. Evaluation of Workload Prediction

Here we use the workload characterization (λ) ob-
tained by CPU stall cycles due to off-chip activities
as a baseline in order to evaluate the effectiveness
of our workload prediction method. Due to space
constraints, we only show thecrafty benchmark from
SPEC CPU2000 to illustrate the predictive perfor-
mance of our methodology.

Figure 4 shows a comparison between the measured
λ and predictedλ for thecrafty benchmark, where the
y-axis denotes the workload characterizationλ. Over
the execution time of the benchmarks, the difference



between measuredλ and predictedλ is within 2%.
The figure also shows that the predictedλ changes
more smoothly than the measuredλ. This reflects
the stability of our algorithm, which in turn, avoids
significant DVFS scheduling overhead since the larger
the frequency transition, the more overhead that is
induced in DVFS scheduling [8].

Figure 4. Measured λ versus predicted λ for crafty
over execution time

6.3. Parallel Experiment

With the validation of our workload characterization
and workload prediction, coupled with our sensitivity
analysis, all on a per-node basis as shown above, we
are now ready to evaluate oureco algorithm, imple-
mented as an eco-friendly daemon that we callecod
in a cluster environment. In such an environment, we
expect the performance of our eco-friendly daemon
to be quite good given the additional opportunities
for energy savings due to frequent memory and I/O
access, network process synchronization, as well as
CPU idling.

To evaluateecod, we use the NAS Parallel Bench-
marks. We run the benchmarks with a Class C work-
load on 16 cores across four compute nodes, with each
compute node containing four cores. Since the cores
on the same die have a common power/performance
mode, we schedule the core frequency according to
the higher one on the same die in order to guarantee
performance.

Figures 5 and 6 show the performance control and
energy savings ofecod in comparison with theβ al-
gorithm and Linux on-demand governor, respectively.
Table 1 summarizes the statistics on performance loss
and energy savings. The performance loss averages
5.1%, which is better than theβ algorithm (10.6%)
and Linux on-demand governor (7.9%). The standard
deviation of performance loss forecod is also the best
among the three algorithms.

The CPU energy savings are comparable between
ecod (average of 31.5%),β-algorithm (average of

Table 1. Statistics on Parallel Experiment

ecod β on-demand
Perf. Loss(Avg) 5.1% 10.6% 7.9%

Perf. Loss(Std Dev) 3.5% 10.3% 7.7%
Energy Savings(Avg) 31.5% 32.9% 28.6%

32.9%) and on-demand governor (average of 28.6%).
Considering thatecod achieves the same energy sav-
ing by sacrificing far less performance,ecod clearly
performs better than theβ algorithm and Linux on-
demand governor. Theoretically, if we set the perfor-
mance boundδ of eco to the actually performance
loss ofβ-algorithm (10.6%) and on-demand governor
(7.9%) respectively, the energy saving ofeco will be
more than that of the later two.

Finally, with respect to overall energy savings,ecod
performs better than theβ algorithm and the Linux on-
demand governor on average, as shown in Figure 7.
ecod can achieve 11% energy savings on average
across the NAS Parallel Benchmarks. Bothβ and the
Linux on-demand governor save 8% of energy for the
same benchmarks on average.

Figure 5. Performance loss on NAS parallel
benchmarks

Figure 6. CPU energy savings on NAS parallel
benchmarks



Figure 7. Overall energy savings on NAS parallel
benchmarks

7. Conclusion

This paper presents a novel behavioral quantification
of cluster workloads using CPU stall cycles due to off-
chip activities. We leverage this quantification to create
a power-aware, eco-friendly, run-time algorithm called
eco. This algorithm dynamically monitors processor
states and obtains the workload characterization at
run time in order to guide the appropriate scaling
of frequencies and voltages in a parallel computing
environment. Results show that our implementation
ecod achieves the best performance control over the
β-adaptation algorithm and Linux on-demand governor
while delivering an overall energy savings of 11%.

Acknowledgement

We would like to thank Chung-Hsing Hsu for his
feedback on earlier versions of the manuscript.

This research was supported in part by NSF Grant
0848670.

References

[1] K. W. Cameron, R. Ge, and X. Feng. High-
performance, Power-aware Distributed Computing for
Scientific Applications. InIEEE Computer, 2005.

[2] R. Choi and M. Pedram. Fine-Grained Dynamic
Voltage and Frequency Scaling for Precise Energy and
Performance Trade-off Based on the Ratio of Off-
Chip Access to On-Chip Computation Times.IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 24(1), 2005.

[3] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos,
and D. S. Nikolopoulos. Online Power-Performance
Adaptation of Multithreaded Programs using Hardware
Event-Based Prediction. InInternational Conference on
Supercomputing (ICS06), Queensland, Australia, 2006.

[4] J. Ebergen, J. Gainsley, and P. Cunningham. Transistor
Sizing: How to Control the Speed and Energy Con-
sumption of a Circuit. 2004.

[5] W. Feng and C. Hsu. Green Destiny and Its Evolving
Parts. InInnovative Supercomputer Architecture Award,
International Supercomputer Conference, Heidelberg,
Germany, June 2004.

[6] V. Freeh, D. Lowenthal, F. Pan, and N. Kappiah. Using
Multiple Energy Gears in MPI Programs on a Power-
Scalable Cluster. InPrinciples and Practices of Parallel
Programming (PPoPP), 2005.

[7] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU
MISER: A Performance-Directed, Run-Time System
for Power-Aware Clusters. InInternational Conference
on Parallel Processing (ICPP07), 2007.

[8] C. Hsu and W. Feng. A Power-Aware Run-Time Sys-
tem for High-Performance Computing. InACM/IEEE
Supercomputing 2005 (SC05), 2005.

[9] S. Huang and W. Feng. A Workload-Aware, Eco-
Friendly Daemon for Cluster Computing.Technical
Report, Computer Science, Virginia Tech, 2008.

[10] AMD Inc. BIOS and Kernel Developer’s Guide for
AMD Athlon 64 and AMD Opteron Processors. Febu-
rary 2006.

[11] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal.
Adaptive, Transparent Frequency and Voltage Scal-
ing of Communication Phases in MPI Programs. In
ACM/IEEE Supercomputing 2006 (SC06), 2006.

[12] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. InUSENIX Annual Technical
Conference, 1996.

[13] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and
N. Venkatasubramanian. Integrated Power Management
for Video Streaming to Mobile Handheld Devices. In
ACM Multimedia, 2003.

[14] V. Pallipadi and A. Starikovskiy. The On-Demand
Governor – Past, Present, and Future.Ottawa Linux
Symposium, 2006.

[15] P. Penzes, M. Nustrom, and A. Martin. Transistor
Sizing of Energy-Delay-Efficient Circuits. Technical
Report. California Institute of Technology, 2002.

[16] B. Roundtree, D. K. Lowenthal, S. H. Funk, V. W.
Freeh, B. R. de Supinski, and M. Schulz. Adaptive,
Transparent Frequency and Voltage Scaling of Com-
munication Phases in MPI Programs. InACM/IEEE
Supercomputing 2007 (SC07), 2007.

[17] C. Scott. Energy Efficiency in the Data Center. 2007.

[18] T. Tan, A. Raghunathan, and N. Jha. Software Ar-
chitectural Transformations: A New Approach to Low-
Energy Embedded Software. InDesign, Automation
and Test in Europe, 2003.

[19] New York Times. Hiding in Plain Sight, Google Seeks
More Power. 2006.


