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Abstract—Next-generation wireless networks such as LTE and
WiMax can achieve throughputs of several Mbps with TCP. These
higher throughputs, however, can easily be destroyed by frequent
handoffs, which occur in urban environments due to shadowing.
A primary reason for the throughput drop during handoffs is
the out of order arrival of packets at the receiver. As a result,
in this paper, we model the precise effect of packet-reordering
on the goodput of TCP NewReno. Specifically, we develop a TCP
NewReno model that captures the goodput of TCP as a function
of round-trip time, average time duration between packet-reorder
events, average number of packets reordered during every reorder
event, and the congestion window threshold of TCP NewReno. We
also developed an emulator that runs on a router to implement
packet reordering events from time to time. We validate our
NewReno model by comparing the goodput results obtained by
transferring data between two hosts connected via the emulator
to the goodput results that our model predicts.

I. MOTIVATION

Next-generation wireless technologies such as WiMax and
LTE (long term evolution) offer very high data rates (on
the order of several Mbps) to mobile users. As a result,
mobile users will come to expect better peak performance
from the networks than from current mobile networks. But
with mobility comes a need for the base stations to perform
frequent and transparent handoffs. For example, while driving
for 30 minutes in the San Diego downtown area, we observed
that permanent handoffs occurred every 12.21 seconds in a
vehicular environment. Similarly, while walking for 10 minutes
in a Qualcomm parking lot, rapid ping-pong handoffs occurred
due to shadowing (i.e., signal blocking by buildings or the
heads of users) every 5.43 seconds, on average.

Figure 1 shows an example of packet reordering during a
handoff. In this figure, a mobile terminal that is connected to
one base station is handed off to a new base station while
transferring data to a remote host. After handoff, data from
the old base station is routed to the new base station, before
transmittal to the remote host. In this situation it is easily
possible for the new base-station packets 5,6,7,8 to arrive at the
remote host before packets 1,2,3,4 have arrived. To illustrate
further, for a session transporting 1500 byte packets at 100
Mbps, a handoff every 5 seconds will amount to a bit-error-rate
of at least 1500·8

5·100Mbps = 2.4 × 10−5. Whereas, next generation
networks must meet a packet error rate of 10−6 to achieve 100
Mbps throughputs [5], in the absence of handoffs. This shows
that packets are disrupted by handoffs an order of magnitude
more often than they are disrupted by packet losses.

Depending on the degree of reordering, the host may think
that some packets are lost and ask for retransmission, resulting
in a drop in the goodput of the flow. Similar reordering can
occur if the host is transferring data to a mobile terminal.

Packet reordering is not limited to the scenario that we just
described. It is well documented that packet reordering is not

Fig. 1. Handoff description.

a rare event in the wired Internet [12], [13], [14], [15], and
can cause severe degradation in the performance of TCP.

Though there exists many TCP throughput models [4], [5],
[7], [8], [9], [10], [11], none of them incorporate frequent
packet reordering or stalling into their models. The analytical
modeling of TCP dynamics in the event of packet reordering
is an important subject in wireless networks that is missing
from the current literature. Our aim in this paper is to fill this
gap and provide an analytical model of TCP NewReno that
explicitly captures the effect of packet reordering.

In this paper we model the goodput of TCP NewReno, not
the throughput. Goodput is defined as the number of unique
packets delivered to an end host in a given amount of time, as
opposed to the total number of packets transmitted in a given
amount of time that includes retransmissions. The rationale
behind modeling goodput is that the end users of a TCP flow
are concerned with transferring unique packets and do not care
about the number of retransmissions performed by the sender.

This paper makes the following unique contributions:
• We derive an analytical model of TCP NewReno’s good-

put when received packets are frequently reordered. Our
model explicitly captures the effect of packet reordering
on the goodput of TCP NewReno in combination with the
fast recovery and fast retransmit mechanisms.

• We validate our model by providing experimental results
of the data transfer between two physical machines in
our lab. Both the machines were connected via a router
running an air interface emulator (for 802.20 and WiMax)
and performing packet reordering and packet discarding
from time to time. Our model explains the significant drop
in the goodput of TCP NewReno.



TABLE I
NOTATION

Flightsize Number of packets transmitted by sender but not
yet acknowledged

ssthresh The value of slow-start threshold
cwnd Current size of sender’s congestion window

SMSS Sender’s maximum segment size
RTT Round trip time between the sender and the receiver
W Limit on sender’s congestion window
d Number of packets that get delayed or arrived late

at the receiver due to reordering
b Number of received packets that a single ACK

acknowledges
r RTT-number after the packet-reorder event in which

the ACKs due to the d delayed packets arrive at
the sender

G1 Goodput when delayed packets arrive after
retransmitted packets, and window can be recovered

Ĝ1 Goodput when delayed packets arrive after
retransmitted packets, and window can not be
recovered

G2 Goodput when delayed packets arrive before
retransmitted packets, and window can be recovered

Ĝ2 Goodput when delayed packets arrive before
retransmitted packets, and window can not be
recovered

RP Recovery Period: The period between two packet
reorder events

Ah Average time duration (in seconds) between two
packet reorder events

II. TCP NEWRENO: BACKGROUND

This section briefly explains the working of TCP NewReno
as given in RFC 3782 [1]. We list the notation used in this
paper in Table I.

When FlightSize is less than ssthresh, TCP can increase
its transmit rate exponentially; but when it is greater, transmis-
sions increase linearly. When FlightSize equals or exceeds
cwnd, TCP must wait for acknowledgements, i.e., ACKs,
which decrease FlightSize, before sending more packets.

Slow Start: While in slow start, the sender transmits two pack-
ets for every packet acknowledged by increasing cwnd by one
for every acknowledged packet. This increase continues until
cwnd equals or exceeds the slow-start threshold (ssthresh) or
a packet loss is detected. After either event, the sender enters
the congestion-avoidance state.

Congestion Avoidance: In this state, the value of cwnd
increases by 1/s (i.e., linearly), for every acknowledgment
received where s is the size of congestion window (in packets)
before the beginning of the current round trip time (RTT).
This means that at the end of the current RTT, cwnd will be
increased by one. When three duplicate ACKs are received by
the sender, indicating a packet loss (or reordering) the sender
enters the fast-retransmit state.

Fast Retransmit: When the TCP enters the fast-retransmit
state, the lost packet is retransmitted, and ssthresh is set to
max(FlightSize/2, 2). The value of cwnd is then reduced to
ssthresh + 3, and the sender enters the fast-recovery state.

Fast Recovery: Fast recovery varies its behavior depending
upon the type of ACK received. Repeated duplicate ACKs
cause “hole-filling” retransmissions at the front of the TCP
transmission window. New ACKs with progress in the se-
quence number “extend the TCP window” by causing new
transmissions with higher sequence numbers. This second

behavior is the “New” part of “TCP NewReno”. For every
duplicate ACK received by the sender, the sender increases the
value of cwnd by one packet and transmits a new packet if al-
lowed by the cwnd value. We assume that in fast recovery, the
sender resets the retransmit timer upon receiving a partial ACK,
which is known as the slow-but-steady variant of NewReno. We
also assume if a sender receives a full ACK in fast recovery, it
will set the cwnd to min(ssthresh, F lightsize+SMSS) and
enter congestion avoidance. The sender responds to a timeout
by reducing the value of cwnd to 1 and entering slow start.

III. TCP NEWRENO: THE ANALYTICAL MODEL

In developing our model, we consider packet reordering to
be a periodic event during the transmission between sender and
receiver. We define a recovery period (RP) as the time period
between two successive packet reorderng events. A packet
reordering event begins as soon as the receiver receives the
first out-of-order packet. We divide TCP NewReno’s response
to packet reordering into the following two cases:
• Case 1: Delayed packets arrive at the receiver af-

ter retransmitted packets. The reordered packets get
delayed significantly and arrive at the receiver after the
packets that were retransmitted by the sender. This case
is equivalent to when delayed packets are lost due to
congestion or because the physical layer dropped them.
This scenario can also occur during the handoff event
for a mobile host in cellular or next-generation wireless
networks. In this case, the receiver simply ignores the
delayed packets upon reception.

• Case 2: Delayed packets arrive at the receiver be-
fore retransmitted packets. The acknowledgment at the
sender because of delayed packets arrive before the sender
is out of the fast recovery state.

For both cases, the RTT begins when the receiver detects the
first out-of-order packet. Variable d denotes the number of
consecutive packets that get reordered on average during every
packet-reordering event. We denote Ah as the average time
duration in seconds between two packet-reordering events, i.e.
the average value of an RP. Since we consider that the TCP
flows are window-limited [3], we denote W as the limit on
the size of TCP’s congestion window. The TCP receiver can
consider different values for the number of packets it want to
acknowledge with a single ACK. We denote b as the number
of packets being acknowledged by single ACK.

A. Delayed packets arrive after retransmitted packets
Figure 2 describes the sender side behavior for this case.

Since the d packets are so late, they appear to be lost, and the
sender will never see the ACKs due to the reception of these
packets at the receiver. As a result, during RTT1 in Fig. 2 there
will be no ACKs received by the sender for first d packets.
Since the sender is not receiving any ACKs, there will be no
transmissions either. This period of no ACKs will be followed
by three duplicate ACKs, which will trigger the sender to enter
the fast retransmit state. The sender will then retransmit the
packet with the sequence number requested in the duplicate
ACKs, i.e. the first lost packet. The sender will also set the
value of ssthresh to max(FlightSize/2, 2).

Assume that before the packet loss, the sender’s congestion
window was W . So, the sender sets the value of ssthresh to
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Fig. 2. Sender side of NewReno when d packets in a window W are lost.

FlightSize/2 or W/2. According to NewReno, the value of
cwnd is then reduced to ssthresh + 3, i.e. cwnd =

(
W
2 + 3

)
and enters fast recovery, and for every duplicate ACK received,
cwnd will increase by 1. Until the value of cwnd becomes
equal to W , which is the current FlightSize, the sender cannot
send any new packets. This means that for the next

(
W
2 − 3

)
duplicate ACKs, the sender will not send any new packets. For
the other

(
W
2 − d

)
duplicate ACKs that the sender will receive

in RTT1, it will send one new packet per ACK. So, the sender
will send

(
W
2 − d

)
new packets in RTT1.

Next, as shown in Figure 2, the sender will receive a partial
ACK for the first retransmission in RTT1. Upon receiving
partial duplicate ACK, TCP NewReno will retransmit the next
unACKed packet. Note that it takes a full retransmit window
(W ) to retransmit the next unACKed packet. At this moment,
the FlightSize is reduced by 1, and the sender can transmit
another new packet to the receiver. During RTT2, for the(

W
2 − d

)
duplicate ACKs, the sender sends 1 new packet for

every duplicate ACK received.
So, for next d RTTs, the number of new packets transmitted

by the sender, or the size of cwnd, will increase by 1 per
RTT. After d RTTs, NewReno exits fast recovery, and the new
packets transmitted by the sender will increase by 1/b per RTT.

Depending on the duration between two packet-reordering
events, a goodput model can be developed for two different
scenarios. In one, Ah is large enough so that the sender can
grow its congestion window back to W . In the other, Ah is so
small that the sender cannot grow its congestion window back
to W . Since Ah is the average duration of an RP, Ah

RTT denotes
the number of RTTs in an RP for both scenarios. Below we
model the goodput of these two scenarios.

Window can be recovered. Figure 3 shows the number of
new packets transmitted by the sender in Ah

RTT RTTs after the
RTT in which d packets were lost. The area under the curve
represents the overall goodput when the window recovers to
W . This area can be calculated by subtracting the area of
Region1 and Region2 from the total area of Figure 3.

From Figure 3, the areas of Region1 and Region2, ar1

and ar2, respectively, are

ar1 = d
W

2
+

d2

2
, ar2 = b

W 2

8

(W/2) + d

(W/2) - d

slope = 1/b

slope = 1

d
AH/RTT

W

Region 1

Region 2

d

W/2

b * ( W/2 ) 

Fig. 3. New packets transmitted by the sender during an RP in which window
was recovered back to W

So, the total data transferred in Ah time is given by(
W Ah

RTT − ar1 − ar2

)
, i.e.,

W
Ah

RTT
− b

W 2

8
− d

W

2
− d2

2
(1)

If we divide (1) by the total amount of time used for the transfer
(i.e., Ah), the goodput G1 is

G1 =
W

RTT
− 1

Ah

[
b
W 2

8
+ d

W

2
+

d2

2

]
(2)

Window cannot be recovered. Figure 4 shows the scenario
when the RP is so small that the sender cannot grow its
congestion window back to W . By comparing the width of
Region2 in Figure 3 and the width of Region4 in Figure 4,
the minimum number of packets that are required to be lost
so that the sender can not grow its congestion window back to
W must satisfy bW

2 >
(

Ah

RTT − d
)
. Rewriting this condition

we arrive at Eqn. (3):

Ah

RTT
< d + b

W

2
(3)

(W/2) + d

(W/2) - d

slope = 1/b

slope = 1

d
AH/RTTRegion 3

Region 4 W/2

(AH/RTT) - d 

((AH/RTT) - d)/b 

Region 5

Fig. 4. New packets transmitted by the sender during an RP in which window
was not recovered back to W

From Eqn. (3), Ah

RTT is the number of RTTs in an RP, and(
d + bW

2

)
is the minimum number of RTTs that are required

to grow the window back to W . This also tells us that the
larger the number of packets that a single ACK acknowledges
(i.e. b), the larger the time required by the sender to grow the
congestion window back to W .

If the sender cannot recover the window back to W , the
value of window at the start of the subsequent RPs decreases,
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Fig. 5. Unique packets transmitted when the sender was unable to grow the
congestion window back to W

causing the sender to timeout after a certain number of RPs,
as shown in Figure 5. In the nth RP, the sender timeouts
and enters slow start. Calculating n will help us calculate the
goodput during these n RPs, as shown below.

First, we use Figure 4 to derive a general expression of the
window size after the nth RP when d packets were lost at the
start of nth RP:

Wn =
Wn−1

2
+

1
b

(
Ah

RTT
− d

)
(4)

where Wn is the size of congestion window after nth RP, and
Wn−1 is the value of congestion window after (n− 1)th RP.

The recurrence relation of Eqn. (4) can be solved to get:

Wn =
W0

2n
+

2
b

(
Ah

RTT
− d

) (
1− 1

2n−1

)
, n > 1, (5)

Next, because we know the value of congestion window at
the start of the first RP, i.e., W0, and can derive the value of
congestion window after first RP, i.e., W1, using Eqn. (4), we
can use these values, along with Eqn. (5), to calculate the value
of n for which Wn is d + 2:

n = log2




W − 4
b

(
Ah

RTT
− d

)

d + 2− 2
b

(
Ah

RTT
− d

)


 (6)

Second, we also use Figure 4 to derive a general expression
for the amount of data transferred in nth RP for the scenario
where the window cannot be recovered back to W . From
Figure 4, the total amount of data transferred is the sum of
the areas of Region 3, Region 4, and Region 5.

Dn =
d2

2
+ d

(
Wn−1

2
− d

)
+

(
Ah

RTT
− d

)2 [{(
Wn−1

2

)/(
Ah

RTT
− d

)}
+

1
2b

]
, (7)

So, the goodput obtained during the the n RPs is given by

Ĝ1 =
1

nAh

n∑

i=1

Di, (8)

where Di is given by Eqn. (7) and n is given by Eqn. (6).
Whether or not the window recovers back to W after the

(n + 1)th RP will depend on the ssthresh value at that time,
which will be d/2. Figure 6 shows a detailed growth in the
new packets transferred during (n + 1)th RP, and the size of

window reached at the end of (n+1)th RP, in terms of packets
will be

d

2
+

1
b

(
Ah

RTT
− log2

d

2

)
, (9)

For a more accurate analysis, we can use the value in (9) as
the value of W0 in our analysis of Eqns. (5), (6), (7), and (8).

AH/RTT

W

log d/2

slope=1/b

ssthresh = d/2

Fig. 6. New packets transferred during (n + 1)th RP

B. Delayed packets arrive before retransmitted packets

Here the sender receives the ACKs from the delayed packets
before it exits fast recovery. We first explain the behavior of
TCP NewReno for two special cases: (1) ACKs due to delayed
packets arrive in the first RTT after the RTT in which packets
were reordered. (2) ACKs due to delayed packets do not arrive
in the first RTT after the RTT in which packets were reordered,
but arrive before the next packet-reorder event. After explaining
the behavior of sender for these two cases, we will develop two
goodput equations, one for when the congestion window can
be recovered back to W and the other when the congestion
window cannnot be recovered back to W .
ACKs arrive in first RTT after packet-reorder event.
Figure 7 shows how the sender behaves when ACKs due to the
delayed packets arrive in RTT1. During RTT1, the very first
ACKs that the sender receives will be three duplicate (DUP)
ACKs due to the reordering of d packets. Upon receiving the
third DUP ACK, the sender retransmits the first packet that
was delayed. Then, according to NewReno specification, the
sender sets the value of ssthresh to W/2 and the value of
cwnd to [(W/2)+3]. We can assume that the delayed packets
at the receiver may not arrive in sequence. Thus, the sender
will receive a mix of partial ACKs (due to delayed packets)
and duplicate ACKs (due to non-delayed packets). For every
duplicate ACK received, the sender increases the value of
cwnd by 1, and for every partial ACK received, the sender
reduces the number of outstanding packets depending upon the
packet number being ACKed. Figure 8(a) shows the number
of new packets transmitted by sender in the RTTs after the
RTT in which packets got reordered. The window growth in
Figure 8(a) stops when the congestion window reaches its limit
(i.e. W ), or if another packet reorder event happens before the
window can be recovered back to W .

It is possible that the sender may end up retransmitting up
to (W −3) old packets in RTT1. To explain, let us assume that
only first packet got delayed and arrives as the fourth packet.
The ACKs due to the remaining packets in this RTT will be
considered as partial ACKs. Why? After receiving three DUP
ACKs, the sender enters the fast-retransmit state, and these
ACKs do not cover the last new packet transmitted before the



R T T 0 R T T 1Dd e l a y e da n d e v e n l ys p r e a d “ d ”p a c k e t s � D u e t o D U P A c k ( D ) , a t t h i s p o i n ts e n d e r w i l l r e d u c e t h e s i z e o fc o n g e s t i o n w i n d o w t o ( W / 2 ) + 3� A n d f i r s t d e l a y e d p a c k e t w i l l b er e t r a n s m i t t e d ( R )

“ d ” p a c k e t s p u s h e dd u e d e l a y e d p a c k e t s S e n d e r w i l l r e c e i v e p a r t i a l a n dD U P A C K s , a n d d u e t o t h i s , i tw i l l r e t r a n s m i t s o m e o l dp a c k e t s a n d a t l e a s t “ W / 2 ”n e w � p a c k e t sMi xedDUPACK sand
parti alACK s

DD R
W p a c k e tw i n d o w

Fig. 7. Sender behavior when ACKs due to delayed packets arrive in RTT1.

sender entered fast retransmit. Hence, every partial ACK will
result in retransmission of the next unACKed packet. Such
retransmissions can be avoided via the SACK option in TCP
(though SACK will not affect the goodput in this case).

ACKs arrive in rth RTT after packet-reorder event, where
r ≤ d. This scenario can be regarded as the general case for
the previous scenario, where the ACKs due to delayed packets
arrived in the very first RTT. Here the value of r is less than
or equal to the value of d; otherwise this scenario will be same
as the scenario where the delayed packets were lost because
after the dth RTT, the sender will be out of fast recovery.

We can see that before the rth RTT, similar to the case
when delayed packets were lost, the number of new packets
transmitted by the sender will increase by one during every
subsequent RTT. This is shown in Figure 8(b). After the rth

RTT, the sender will come out of the fast-recovery state, the
congestion window size will be set to ssthresh = W/2 =
min(flightsize, ssthresh), and the congestion window size
will now increase by 1/b packets per RTT. The size of
congestion window will grow until it reaches its limit (i.e. W ),
or another packet reorder event happens that will prevent the
congestion window from recovering back to W .

For the case when ACKs due to delayed packets arrive in
rth RTT, we can consider two sub-cases. One, in which the
sender was able to recover the congestion window back to W .
And the other sub-case, in which the sender was not able to
recover its congestion window back to W .

Figure 9(a) shows the growth in the window size when the
sender was able to recover it congestion window back to W
before the next packet-reorder event. The goodput equation for
this sub-case can be given as follows

G2 =
W

RTT
− 1

Ah

[
b

8
W 2+

r

(
W

2
+ max(0, d− r)

)
+

r2

2

]
(10)

The derivation of Eqn. (10) is similar to the analysis presented
for deriving Eqn. (2). Eqn. (10) is a more general form for

d

slope=1

slope=1/b
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received in first RTT
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until window reaches  "W"

RTT #

New Packets
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(W/2)
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(a) ACKs due to delayed packets arrive in first RTT after the RTT
in which packets were reordered (r = 1).

d

slope=1
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r

(b) ACKs due to delayed packets arrive in rth RTT after the RTT in
which packets were reordered (r < d).

Fig. 8. New Packets sent per RTT by NewReno sender when ACKs due to
delayed packets arrive before end of fast-recovery.

Eqn. (2). That is, when r becomes greater than d (i.e., delayed
packets were lost), Eqn. (10) reduces to Eqn. (2).

For the sub-case when the sender cannot recover the con-
gestion window back to W , we perform a similar analysis to
what we did in the case when delayed packets were lost and
the congestion window was not recovered. Figure 9(b) shows
the growth in congestion window for this sub-case. Since the
window cannot be recovered, the size of congestion window
becomes smaller and smaller in every subsequent RP. Finally,
the size of congestion window reaches d + 2, and upon losing
d packets out of d+2, the sender timeouts after this RP. If we
denote the RP after which the sender timeouts as the mth RP,
we can calculate m as we did for Eqn. (6):

m = log2




W0 − 4
b

(
Ah

RTT
− r

)

r + 2− 2
b

(
Ah

RTT
− r

)


 , (11)

where the value of W0 is the initial size of congestion window.
To calculate the goodput, W0 can be considered as the size of
congestion window after the mth RTT in which the sender will
time out. (Note that the value of the m in Eqn. (11) is a general
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Fig. 9. ACKs due to the d delayed packets arrive in rth RTT after the RTT
in which packets were reordered.

form for the value of n in Eqn. (6)). The value of m becomes
equal to n for r = d. The value of W0 does not depend on the
value of r, and can be given by Eqn. (9). Again, similar to the
analysis performed for developing Eqn (7), we can develop a
general equation for the total new data transferred during mth

RP. This can be given as

D̂m =
r2

2
+ r

(
Ŵm−1

2
− d

)
+

(
AH

RTT
− r

)2
[{(

Ŵm−1

2

)/(
AH

RTT
− r

)}
+

1
2b

]
,(12)

where the window size after mth RTT can be given by

Ŵm =
W0

2m
+

2
b

(
Ah

RTT
− r

) (
1− 1

2m−1

)
,m > 1. (13)

The goodput for this scenario, where the ACKs due to the
d delayed packets arrive in rth RTT, can be given by

Ĝ2 =
1

mAh

m∑

i=1

D̂i, (14)

The derivation of Eqns. (12) and (13) follow the same
approach as for Eqns. (5) and (8). As a result, the discussion
has been omitted to save space. It is easy to see that Eqns. (13)
and (14) are the general form of Eqns. (5) and (8).

We can also give a general form for Eqn. (3), which provides
the condition that will prevent the sender to grow back its
congestion window to W after a packet drop event, as

Ah

RTT
< r + b

W

2
. (15)

An interesting observation is that the Eqn. (15) does not
contain d. This suggests that when the ACKs due to delayed
packets arrive in the rth RTT (r < d), then whether window

can be recovered or not, is independent of the number of
packets that get delayed, i.e. d.

We can now say that Eqns. (10) and (14) constitutes the
analytical goodput model developed in this paper. Next, we
will present some experimental results to validate our model.

IV. EXPERIMENTAL RESULTS AND MODEL VALIDATION

Eqns. (10) and (14) can be used to predict goodput of a TCP
NewReno flow as a function of RTT, window limit, average
time duration between two packet-drop events, and the average
number of packets reordered (or dropped) during every event.
In this section, we validate these equations by presenting results
of data transfer between two physical hosts within our lab
setup.

A. Experimental Setup

The experimental setup is shown in Figure 10. Both the
sender and receiver run Linux kernel 2.6.21.

    Linux Router
running PRE and

 performing
 packet reordering

Linux Sender
Linux Receiver

data

ACKs ACKs

data

Fig. 10. Experimental setup within our lab.

The router that connects sender to the receiver is running the
Packet Reorder Emulator (PRE). PRE was written to explore
wireless MAN air interface designs at our lab. With appropri-
ate parameters, PRE can emulate 802.20 or WiMax. It also
includes a simple handoff model. The PRE is parameterized,
and the most important parameters with their default values
are:
• Slot Size (911 microseconds)
• Air Interface Total Throughput (2.33 MBps)
• Backhaul Delay (20 milliseconds RTD)
• Handoff Interarrival (7.5 secs), Pushout (200 ms), and

Packets-Pushed (10).
The throughput limitation of 2.33 MBps emulates the 802.20

wireless air interface bottleneck. The handoff interarrival time
is the time between handoff events. Handoff is emulated by
“pushing” a certain number of packets into the future, so that
they are delivered out-of-order and late. The “pushout” is the
amount of delay into the future, and the “packets pushed” is
the number of packets that will be pushed. To help keep our
experiments deterministic, handoff events were kept periodic.

B. Measurements while Emulating Handoffs

Here we present the measurement data collected while
transferring 50 MegaByte file between two hosts that were
connected through the router running PRE. PRE was used
to emulate different values of RTT , different durations be-
tween two packet-reorder events (Ah), and different number
of packets getting reordered (d). Several different limits on
window size (W ) were used during the experiments by using
TCP system control (sysctl) variables within the linux kernel.
We collected data under different combinations of the model



(a) RTT=70 msecs (b) RTT=100 msecs (c) RTT=150 msecs

Fig. 11. Comparison of actual goodput and the goodput calculated using our model at different RTTs.

(a) 64K Window Limit (b) 160K Window Limit (c) 1024K window Limit

Fig. 12. Comparison of actual goodput and the goodput calculated using our model for window limited flows.

parameters in order to validate the models presented in (10)
and (14).

Variable RTT. Our first set of experiments were conducted
while keeping the values of d, W , and Ah as constants. Value
for the number of packets that got delayed due to reordering
(i.e. d) was set to 1. Limit on congestion window (i.e. W )
was set to 193 KiloBytes, and the value of time duration
between two packet reorder events (i.e. Ah) was set as 2
seconds. We varied the values of RTT from 70 to 150 milisecs.
Figures 11(a) to 11(c) presents the comparison of goodput
calculated using Eqns. (10) and (14) (as applicable), and the
actual goodput achieved while transferring the data between
two hosts connected via PRE. X-axis in Figures 11(a) to 11(c)
shows the amount of time by which d packets got delayed and
y-axis show the achieved goodput. The values on X-axis are
used to calculate the value of r, i.e. the RTT in which the
ACKs due to delayed packets arrive at the sender.

By looking at the results presented in Figures 11(a) to 11(c),
it may seem that our model is not very accurate when the
delayed packets arrive the first RTT after packet-reorder event.
This is because the actual goodput obtained when the packets
arrive in the first RTT after the packet reorder event is higher
than the goodput calculated using our goodput model. But
our model is accurate, and this seemingly inaccurate behavior
can be explained by looking at the implementation details
of TCP NewReno in the Linux kernel. After looking at the
implementation of NewReno in linux kernel, it seems that
when the ACKs due to the delayed/reordered packets arrive
at the sender before the end of the first RTT after which
packets got reordered, the NewReno sender is overly aggressive
in increasing its congestion window size. This fact is also
documented by Sorolahti and Kuznetsov in [6]. They explain

that the Linux fast recovery do not completely follow the
behavior given in RFC 3782, and as a result when the reordered
packets arrive in the first RTT after packet reorder event, the
goodput results will be higher than those calculated by our
model. Our result confirm the documented behavior of Linux
in [6]. This behavior of NewReno implementation in Linux
kernel will be present in rest of our experiments as well.
Variable Congestion Window. In our next set of experiments,
we varied the value of the limit on congestion window, i.e. W ,
while keeping the values of d, RTT , and Ah as constants.
The value of Ah was set to be 4 secs, d as 10, and RTT as
100 msecs. Figures 12(a) to 12(c) shows the results for these
experiments. An interesting observation here is that increasing
the congestion window size can not significantly improve the
goodput of a NewReno flow if the flow is experiencing regular
packet reorder events.
Variable Reordered Packets. For these experiments, we var-
ied the number of packets that gets reordered, i.e. d, while
keeping the values of RTT , W , and Ah as constants. The value
of RTT was kept constant at 100 msecs, limit on congestion
window W as 193 KB, and Ah as 2 secs. Figures 13(a) to 13(c)
shows the results of our experiments for these settings. From
the results in Figures 13(a) to 13(c), we can observe that if
the number of packets getting reordered increase, the further
drop in goodput is not significant. It means that as few as one
packet is sufficient to cause a significant drop in the goodput
of a flow.
Variable Ah. In these experiments, we varied the value of Ah,
i.e. the time duration between two packet reorder events. We
kept the values of W , RTT , and d as constants. Figures 14(a)
to 14(c) show the results for this scenario. These figures show
that the packet reordering has already caused the goodput to



(a) 5 Packet Reordering (b) 10 Packet Reordering (c) 15 Packet Reordering

Fig. 13. Comparison of actual goodput and the goodput calculated using our model for different number of delayed packets.

(a) 4 second time between two handoffs (b) 6 second time between two handoffs (c) 8 second time between two handoffs

Fig. 14. Comparison of actual goodput and the goodput calculated using our model for different handoff frequencies.

drop to a significantly low value and marginally increasing the
time duration between two packet reorder events will not help
in improving the goodput.

Flat Goodput Curves. Further, one can observe that in all the
presented results, the experimental goodput curve, as well as
the curve for the goodput calculated using our model remains
almost flat. The goodput decrease marginally as the ACKs due
to reordered packets gets delayed. This can be explained with
the help of Figure 9. We can see that for RTTs from [0, · · · , r),
the congestion window increase with slope 1, and for RTTs
from [r, · · · , r+bW/2), the congestion window increases with
slope 1/b. This means that if the value of RP is large as
compare to r (the RTT-number in which ACKs due to delayed
packets arrive), r will have very small impact on the overall
goodput. This is the reason why the goodput curve remains
almost flat when the value of r increase in our experiments.

V. CONCLUSION

We presented an analytical model that captures the goodput
of TCP NewReno as a function of round-trip time, average
time duration between packet-reorder events, average number
of packets reordered during every reorder event, and the
congestion window threshold of TCP NewReno. In the process
of developing our model, we identified several interesting
properties of TCP NewReno.

We validated our model by presenting extensive experimen-
tal results of data transfer between two physical hosts using
TCP NewReno as the transport protocol. Our model fills an
important gap in the literature by explicitly capturing detailed
and accurate behavior of a TCP NewReno flow that experiences
packet-reorder events from time to time.
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