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We consider Service-Oriented Computing (SOC) environments. Such environments are populated with ser-
vices that stand proxy for a variety of information resources. A fundamental challenge in SOC is to select
and compose services, to support specified user needs directly or by providing additional services. Existing
approaches for service selection either fail to capture the dynamic relationships between services or assume
that the environment is fully observable. In practical situations, however, consumers are often not aware
of how the services are implemented. We propose two distributed trust-aware service selection approaches:
one based on Bayesian networks and the other on a beta-mixture model. We experimentally validate our
approach through a simulation study. Our results show that both approaches accurately punish and reward
services in terms of the qualities they offer, and further that the approaches are effective despite incomplete
observations regarding the services under consideration.
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1. INTRODUCTION

In Service-Oriented Computing (SOC) [Singh and Huhns 2005] environments, comput-
ing resources are modeled as services which can be used directly or composed into other
services. Services are being widely adopted in modern distributed environments, such
as for cloud computing [Amazon 2009]. In many domains, often multiple services pro-
vide similar functional properties. For example, several practical services, offered by
airlines and travel agencies, provide airline tickets. Therefore, distinguishing and se-
lecting services with the desired nonfunctional characteristics becomes essential, both
for direct interaction and for specifying composite services. We address the problem of
selecting services based on criteria such as user requirements and service qualities.
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Traditional SOC approaches address only service discovery, not service selection as
such. Specifically, Web Service Definition Language (WSDL) helps describe the func-
tionality (that is, the methods) a service supports, but not the qualities of service it
offers. Even the semantic approaches, such as OWL-S, which characterize the func-
tionality of a service more precisely than WSDL, do not address service qualities. In
other words, traditional SOC approaches are confined to considering the functional
properties of services as a basis for matching services to user needs. The functional
properties are generally defined for service types. In a practical setting, however, a
successful service enactment episode depends not just on the service types but on the
specific service instances involved. Moreover, the qualities offered by a service instance
might vary over time, sometimes rapidly. Our approach considers service qualities as
they apply to service instances.

Recent research on trust modeling provides us with a promising starting point for
a solution to service selection. Trust is a key basis of interaction in an open setting,
indicating the relationships between the parties involved. For example, in a service-
oriented context, a party Alice may trust another party Bob, because Alice expects Bob
will provide a service of the desired functionality and quality. We define trust-aware
service selection as selecting desired services based on the trust placed in their ability
to deliver specified values of the specified qualities.

Estimating trust from direct experience with a service is not straightforward, be-
cause some services may not directly expose details of their composition to their con-
sumers. A consumer may interact with a composite service without knowing much
about the qualities of the services that underlie it. In such a case, evaluating the trust-
worthiness of a service is nontrivial. For example, a consumer may book an itinerary
at a travel agency which may use underlying services for flights, hotels, and ground
transportation. Suppose the consumer is not satisfied with the composite service be-
cause of its late response time. The service selection should penalize the composite
service, as well as some or all of the constituent ones. If the hotel service, for instance,
is determined to be the cause of an unsatisfactory quality value, the service selec-
tion should reflect the changes in the way that consumers or other composite services
would become reluctant to interact with it. Also, as the amount of experience of the
rater (as captured in the model) increases, the model should be able to suggest superior
compositions.

Thus, service selection should consider service compositions to model how a quality
of a component service can affect the whole composition. For example, the reliability
of a composite travel service may be affected by the reliability of the constituent hotel
and flight services. If a constituent service is not reliable, the composite service is
possibly not reliable either. Thus, the composition model should represent not only the
relationships between services, but also any dependencies between them. Of course, it
may turn out that the qualities of constituent services do not influence the composite
service. For example, a composite service may be constructed so that its reliability may
not correspond trivially to the trustworthiness of that constituent service. This would
make it difficult to collect and evaluate information about service qualities, thereby
complicating service selection in the presence of service compositions.

Contributions

This article provides a trust-aware service selection approach that addresses the pre-
viously stated challenges, and which supports the following operations.

— Selecting service instances to form suitable compositions based on the qualities
desired.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 6, No. 1, Article 5, Publication date: February 2011.



TAA00004 ACM (Typeset by SPi, Manila, Philippines) 3 of 17 February 8, 2011 17:14

Trustworthy Service Selection and Composition 5:3

— Rewarding and punishing constituent services in an appropriate manner so as to
maintain the best information as needed to support successful compositions.

This article presents a formal service selection model in probabilistic terms. It devel-
ops approaches applying which a consumer may monitor and explore desired service
compositions. This article shows how our approach dynamically rewards and punishes
the services involved despite incomplete knowledge of the composition. An important
contribution is in systematically treating the relationships between some key service
composition operators and different types of service qualities.

In this manner, this article addresses adaptive service selection from the standpoint
of service composition, which has largely been ignored in the literature.

2. RELATED WORK

Milanovic and Malek [2004] compare various modern Web service composition ap-
proaches. They identify four necessary requirements for service composition: connec-
tivity, nonfunctional qualities, correctness, and scalability. However, Milanovic and
Malek’s definition of service qualities is not extensible. Our approach, in contrast, is
extensible and can deal with a changing set of service qualities.

Menascé [2004] studies how qualities of service are aggregated in different service
composition scenarios. For example, suppose service A invokes service B, which may
invoke C and D with probabilities p. and pg, respectively. Menascé’s approach requires
knowing the invocation probabilities of the constituent services. But this information
is not always available because of two reasons. First, the providers have no incentive
to reveal such information. Second, modeling the invocation probabilities is not trivial.
By contrast, our service composition model makes no such assumptions. Our approach
monitors and explores the desired services dynamically.

Wu et al. [2007] model a consumer’s assessment of a service’s quality via a naive
Bayes network, where the root represents the overall capability of a service and a child
represents the capability of a particular quality of the service. Wu et al. apply a fuzzy
representation to express the levels of the service capabilities. Their approach en-
ables consumers to estimate the overall quality assessment. In contrast, our approach
applies Bayesian networks and probability mixtures to model service composition to
evaluate each quality of a service separately. Then a consumer can select services
based on its preferences among the various qualities.

Lin et al. [2008] select services according to the consensus of group preference or-
der of various qualities. Consumers express their preferences among the values of the
qualities in fuzzy terms. Lin et al. use fuzzy logic to resolve the conflicts between the
subjective interpretations of service qualities from each consumer. Then they aggre-
gate different fuzzy views from both consumers and providers to reach a consensus of
the preferred order of quality metrics. Similar to Wu et al. [2007], Lin et al. enable
consumers to consider more than one quality in combination. Our approach treats
each quality separately. Consumers express their subjective preferences in terms of
trust. Consumers may show different levels of trust to the same service because of
their subjective interpretations of quality metrics.

Yue et al. [2007] apply Bayesian networks to model the relationships between el-
ementary services. Yue et al.’s approach constructs Web Service Bayesian Networks
(WSBN) based on the invocations between the services. Then they can produce service
composition guidance from the Markov Blanket [Pearl 1988] of a given service. How-
ever, this approach fails to consider the dynamism of service composition because the
relationships are fixed. Our model captures the dynamism by updating the Bayesian
network, which subsequently affects the trustworthiness of a service.
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Liu [2005] views a service-oriented environment as an ecosystem and distinguishes
three levels: (1) trust: atomic service (service selection), (2) composition: composite
service (service composition), and (3) emergent behavior: network economy (organi-
zational behaviors, consumer communities, business alliances, and trusted third par-
ties). At the trust level, Liu suggests that an ideal trust representation be: (a) flexible
and adaptive to diversified needs of agents, and (b) exchangeable so agents can help
each other. Liu adopts XML Topic Maps for knowledge representation. Then she ap-
plies collaborative filtering to select services based on their semantic similarity. At
the composition level, Liu proposes ant crawling for consumers to discover semanti-
cally similar services and further classify these into clusters, thus generating a new
composition plan. Finally, at the emergent behavior level, the topology of the environ-
ment (defined via referrals) evolves based on low-level interactions between agents. A
service survives only when it is needed by others. New services are born from composi-
tion plans. Useless services are eliminated. Unfortunately, Liu does not implement or
evaluate her ideas. However, we agree with Liu on the hierarchical view of the trust-
worthy service selection and composition. We implement and evaluate our approach
via simulations.

Paradesi et al. [2009] build a trust framework for Web service compositions. They
adopt the trust representation from Wang and Singh [2010] and introduce opera-
tors for combining trust in different types of service compositions including sequence,
concurrent, conditional, and loops. In contrast, instead of service compositions, we
study how quality is composed in these types of service compositions. Our experi-
ments show our approaches are general enough to deal with various types of quality
composition.

Maximilien and Singh [2004] develop a trust-aware approach to select services
based on a well-defined ontology that provides a basis for describing consumers’ re-
quirements and providers’ advertisements. The ontology enables consumers to de-
fine nonfunctional properties. Their approach does not consider service composition
whereas ours does. We model service compositions to deal with partial observability of
the services behind compositions.

Wang and Singh [2010] develop a trust model for multiagent systems that formal-
izes how how agents map evidence to trust and vice versa. Our work studies how to
estimate the trustworthiness of services that are constituents of a composite service.
We develop a systematic way to represent qualities of service compositions via opera-
tors that correspond to typical ways of composing services. Our contribution is a way
to handle service selection in the context of service compositions.

3. TRUST-AWARE SERVICE SELECTION MODEL

We represent trust based on the beta probability distribution [Evans et al. 2000], which
can be integrated with Wang and Singh’s model [2006, 2010]. Intuitively, the trustwor-
thiness of a service should be estimated based on both direct and indirect experience.
Direct experience means the previous quality of service received from the service,
whereas indirect experience comes from referrals by peers. Previously, Hang et al.
[2009] show how to model trust from indirect experience. This is beyond our present
scope.

Figure 1 shows our approach schematically. Several services exist in the compu-
tational environment. Each consumer maintains its own local model to guide itself
to reward or penalize services based on its direct interactions with them. In one sce-
nario, a consumer maintains models of some or all of the available services. Using
this model, it selects some services and composes them into a composite service. Next,
the consumer interacts with and evaluates the composite service with respect to the
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Fig. 1. Our trustworthy service selection approach, schematically.

service qualities of interest. Based on the evaluation, the consumer applies a learning
method to update the model it is maintaining for the services. In an alternative sce-
nario, the consumer may not be responsible for composing services and would simply
select an atomic service or a composite service that another party has composed. In
this case, it would need to learn about the services from less information than in the
first scenario. Our approach handles both of these scenarios.

We introduce two service selection approaches which can construct models from
incomplete observations (direct experience) of a consumer. We emphasize incomplete
observations because not all qualities are observable from the consumers’ point of
view. For simplicity, we normalize the qualities to the real interval [0, 1]. Thus we
represent an observation of a particular quality of a service instance d at time ¢ as
a real number x/, between 0 and 1. Some qualities, say, error, can be simply consid-
ered as 1 (positive) or 0 (negative). We write an observation D! of the whole com-
position at time ¢ as D' = (x%,x},...,x%), where d is the number of services in the
composition.

Section 3.1 presents our Bayesian approach which models service compositions via
Bayesian networks in partially observable settings. The Bayesian approach captures
the dependency of providing a good service quality between the composite and the con-
stituent services. It also adaptively updates trust to reflect the most recent quality.
Section 3.2 describes our beta-mixture approach. This approach can learn not only
the distribution of the composite quality, but also the responsibility of a constituent
service in the composite quality without actually observing the constituent’s perfor-
mance. These two approaches provide different information about the services. The
Bayesian approach uses online learning to track service behavior and shows how the
composite service’s quality depends upon its constituents’ quality. The beta-mixture
model learns the quality distribution of the services and provides how much each con-
stituent service contributes to the composition.

3.1 Bayesian Approach

A Bayesian network is a directed acyclic graph G = (V,R) with random variables
V as nodes, and edges R as the direct relationships between variables. We denote
atomic and composite services with lowercase and uppercase, respectively. An edge
from service a to B means B is composed of a. In Bayesian network terminology, the
source node of an edge is the parent of its target. Thus, a is B’s parent and B is a child
of a. Notice that this terminology is opposite to the more typical composition hierarchy
where a composite service would be a parent (or ancestor) of its constituent services.
We use the Bayesian network terminology in this article.
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P(T) = P(T|H=0,C=0)P(H=0,C =0)

+P(T|H =0,C =1)P(H =0,C =1)
@ @ +P(T|H =1,C =0)P(H =1,C =0)

+P(T|H=1,C =1)P(H=1,C=1)

Fig. 2. Service composition example. The trust the consumer places in service T' is the marginal proba-
bility P(T): that is, the probability of obtaining a satisfactory quality from 7. P(T) can be calculated by
marginalizing over all the parents of 7. In this example, P(T) is computed as shown.

Note that an edge can originate from either an atomic or a composite service but
must terminate on a composite service. A conditional probability associated with each
node represents trust (a probability) of the node variable given an estimate of its par-
ent’s trustworthiness. Let each node in the Bayesian network equal trust, that is, the
probability of obtaining a good outcome from the service corresponding to the node.
The good outcome in this case depends on a specified quality. An edge represents com-
position. For example, in Figure 2, the composite hotel service H is composed of the
Four Seasons Hotel service f: that is, f is a parent of H. Then the trustworthiness of
H is the probability of obtaining a good outcome in terms of a particular quality value
from H, given f provides a good outcome. T, a travel service, is composed of hotel ser-
vice H and car rental service C which is itself composed of the Enterprise Rent-A-Car
service e.

The conditional probability table associated with each node provides a basis for de-
termining how much responsibility to assign a service that underlies a service compo-
sition. Thus, the consumers can view the conditional probabilities as the level of trust
they place in the services in the composition. Modern approaches model trust as two
values: probability and certainty. In our Bayesian approach, currently we only con-
sider probability values. We defer incorporating certainty, for example, as formalized
by Wang and Singh [2010], to future work.

In a fully observable setting, we can estimate the trustworthiness 6; of service x;
by applying Maximum Likelihood Estimation (MLE) to maximize the likelihood of the
observations Buntine [1994]. For example, let a consumer have m; = 10 good out-
comes and /; = 5 bad outcomes with service x;. Then the consumer can calculate the
trustworthiness 6; of service x; as ﬁ =2/3.

To address overfitted results produced by MLE (e.g., when m; = 10, n; = 0; then
6; = 1), we further apply Bayesian inference by introducing a beta distribution P(6;)
associated with two hyperparameters (a;, ;) over trust 6; as a conjugacy prior [Bishop
2006] to update trust (now a beta distribution) of service x;. Let the consumer’s current
trust in service x; be (a;, £;) = (5,5). Suppose the consumer observes three additional
outcomes: two good and one bad. The consumer can update the trust estimate by
adding the new observations (2, 1) to the previous estimate (5,5). That is, (a;, £;) =
(7, 6). The consumer can predict that the probability of obtaining a satisfactory quality
from the next interaction is aiﬂ‘jﬁi. To incorporate the dynamism of service behavior, a
discount factor y € [0, 1] reduces the impact of the old information when we update the
trust estimate [Hang et al. 2008]. In other words, in the previous example, we would
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obtain a new trust estimate (a;, ;) = (5y +2, 5y +1). The appendix provides additional
details of parameter estimation using MLE and Bayesian Inference.

Dealing with Incomplete Data

Quite often in service-oriented settings, some variables may not be observable, mean-
ing that the data would be incomplete. In this case, we can use Expectation Maximiza-
tion (EM) to optimally estimate parameters [Lauritzen 1995; Singh 1997].

The idea here is that, since some variables are not observable, we can consider the
variables without data as latent variables and calculate the expected values of those
variables. Let D,pserved and D piging be the observed and missing data, respectively.
Then we can apply exact inference, for example, variable elimination [Zhang and Poole
1996], to infer P(x!|Dopserved, 6F), where x! € D psing and 6! is the current parameter
estimate. We can use P(x!|Dopserved, 07) to estimate the missing counts (that is, m; and
[;). The preceding is the E step of the EM algorithm.

For example, suppose there is a travel service T' which includes a hotel service A. If
a consumer observes that T has reliability 1 at time-step ¢ (that is, x%, = 1) but does
not observe the reliability of 4 at time ¢, then we can use the expected reliability of
h, P(h = 1,T = 1), as the nominal observation (that is, x;, = P(h = 1,T = 1)). The
completed data, that is, (x4, x}) = (1, P(h = 1, T = 1)), can be used as the observation
in the M step to update the parameter estimates using Bayesian inference. The new
parameter estimation of Hi“l can be calculated by the posterior mean of 6/. The E and
M steps are executed iteratively until the estimation converges [Dempster et al. 1977].
The EM process is in essence a sequential (online) learning method: it can be repeated
whenever the consumer makes new observations. The appendix provides an extended
example.

3.2 Beta-Mixture Approach

Finite mixture models are powerful statistical probabilistic tools for modeling complex
data [McLachlan and Peel 2000]. They have been widely used in machine learning,
bioinformatics, and computer vision. One of the most popular mixtures for continuous
data is the Gaussian mixture.

In general, finite mixture models can be viewed as the superposition of multiple
probability density components. Suppose there are component distributions. Then the
finite mixture model can be formulated as

K
p(D) = > mpr(DI6), 1)

k=1
where D = {x1, ..., xx} are the observations, p;, is the £ component distribution with

parameter 6, and 7z is the mixing coefficient. Mixing coefficients, which are also
probabilities, control the portion of each component in the linear combination of the
whole mixture, that is, Z,f:l 7, = 1and 0 < 7, < 1. We can understand each mixing
coefficient as an indicator of the corresponding component’s responsibility, indicating
how much contribution the component makes toward the composite quality. The mix-
ture distribution is governed by parameters 7 and ® which can be estimated by maxi-
mizing the log-likelihood function using the EM algorithm. Specifically,

N K
L(®) =Inp(D|z©) = Zln{anp(xilﬁk)}. (2)

i=1 k=1
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Let us define binary latent random variables z;, each an indicator of whether an ob-
servation is from component k. Exactly one of the z; equals 1; the rest are zero. Thus,
plzp = 1) = my, plz) = ]_[,f:l m;", and p(D|zp = 1) = pp(D|6). Then the distribution can
be rewritten as

K
p(D) =" p(2)p(xlz) = D" w1 pr(DI6k). (3)

k=1

The E steg) first uses current parameters ©°“¢ to compute the posterior distribution
p(z|D, ©°). Then it uses the posterior distribution to calculate the expectation of the
log-likelihood function as

Q(0,0°") = Equ(L|D) = > p(z|D, ) In p(D, 2|0). (4)

In the M step, we first maximize the expectation to determine the new parameter
0™ = argmaxe Q(0, ®°?). Then we verify if the log-likelihood with new parameters
has converged; otherwise, we repeat the E and M steps.

Beta-Mixture Model

Although our observations (that is, trust values) are continuous, we use the beta-
mixture model [Bouguila et al. 2006] instead of Gaussian mixture for two reasons.
First, our trust values lie between 0 and 1. The beta distribution is designed for the
distribution in a bounded interval. Second, the beta distribution can be integrated
with our trust framework, which is also based on the beta distribution.

For each composition, we use a beta mixture to model the trust distribution. The
number of components is the number of the direct constituent services in the composi-
tion. Each component is a beta distribution.

4. EXPERIMENTAL EVALUATION

To simulate different types of compositions, we consider composition operators as com-
monly defined in leading business process and scientific workflow approaches. Specif-
ically, we consider the Web Services Business Process Execution Language [BPEL
2007]. BPEL defines three types of interactions between Web services, including se-
quence, case, and (parallel) flow. Let a composition operator be denoted by a function
f. That is, xS = f(x™,...,x®) means that S is a composite service and the s; are its
(direct) children.

In our evaluation, we use the following basic scenario wherein a service C is com-
posed of constituent services @ and b by applying a composition operator f. We can ex-
press how the quality of C is composed from the qualities of @ and b as x© = f(x®, x%).
Depending on the type of interactions and quality, composition operators can be de-
fined suitably.

Table I shows some examples of how some quality metrics are composed in these
types of interactions. Let us briefly discuss five composition operators.

— SWITCH chooses exactly one of its children based on a predefined multinomial dis-
tribution. It simulates the composite quality based on one of the children. This
corresponds broadly to the case interaction type.

— MAX composes quality by inheriting from the child with the highest quality value.
This relates to latency for flow.
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Table I. Composition Operator Examples of Different Qualities and Their
Interaction Types

Quality Sequence Flow Case

Latency SUM MAX SWITCH
Throughput MIN SUM SWITCH
Failure PRODUCT PRODUCT SWITCH

— MIN composes quality by inheriting from the child with the lowest quality. This
relates to throughput for sequence.

— SUM yields the composite quality value as the sum of the quality values obtained
from all children. This relates to throughput for flow.

— PRODUCT yields the composite quality value as the product of the quality values
obtained from all children. This relates to failure (which we can think of as the
inverse of availability) for flow.

Note that our approach is not limited to the preceding operators.

In the following experiments, we consider the basic scenario introduced earlier,
wherein we let f be SWITCH, MAX, MIN, SUM, or PRODUCT. In each experiment, the
constituent services a and b are first initialized to separate beta distributions. At each
time-step, the quality values of a and b are sampled based on these distributions. Then
the composite quality is calculated using the appropriate composition operator f.

4.1 Bayesian Approach Evaluation

To evaluate our Bayesian approach, we initialize the hyperparameters (a, ) of the
constituent services ¢ and b as (10, 5) and (2, 8), respectively. Thus a on average offers
better quality than 6. For SWITCH, the probabilities of choosing a and b are 0.8 and
0.2, respectively. There are a total of 100 observations. The Bayesian approach goes
through the partial observations in order and learns the quality and dependencies of
all services online.

4.1.1 Comparison: Naive Approach. We introduce a naive approach for the purpose of
comparison. The naive approach is the same as the Bayesian approach except that
it does not use the EM algorithm. Consequently, it lacks the ability of dealing with
missing observations. With the naive approach, (conditional) trustworthiness cannot
be learned if the quality is not observed. Although the composite quality is always
observable, the naive approach still fails to learn it because the composite trust is
marginalized from the conditional trust. We show how the naive approach suffers in
the face of missing observations.

4.1.2 Experimental Results. Figure 3 shows that the Bayesian approach outperforms
the naive approach for SWITCH. The Bayesian approach estimates the trustworthi-
ness well regardless of the amount of missing observations. In contrast, the accuracy
of the naive approach becomes low for 40% missing observations and quite low for 80%
missing observations. Similar results (Figure 4) are observed for conditional trust.
The accuracy of the naive approach is significantly reduced by the incomplete observa-
tions. The Bayesian approach deals with partial observability better by using the EM
algorithm. Figure 5 shows the average errors of the observations for all composition
operators with 40% and 80% missing observations using both the Bayesian and the
naive approaches.

Now we evaluate how the Bayesian approach identifies the constituent services’
influence on the composition based on conditional trust. In order to highlight the
difference, we choose different hyperparameters of services ¢ and b than in the
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Trust in composite service C' for SWITCH operator
0.65 T v : : v v " : "

0.60

0.55

Trust

0.50 M-

— Actual

»—x Bayesian (40% missing)
045 +—+ Bayesian (80% missing) []
i +— Naive (40% missing)

Naive (80% missing)
0.40 . v v

0 10 20 30 40 50 60 70 80 90
Timestep

Fig. 3. Trust estimation of composite service C for the SWITCH operator.

Conditional trust in C' given a for SWITCH operator Conditional trust in C' given b for SWITCH operator
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Fig. 4. Bayesian approach: conditional trust estimation of composite service C given good service a (left),
and conditional trust estimation of composite service C given good service b (right), for SWITCH.

preceding: specifically, we set o’s hyperparameters to (10,10) and &’s to (6, 8).
Figure 6 (left) compares the conditional trust in C given a and b with overall trust
in C for MAX. We observe that, in 77% of the sampled observations, service a yields
better performance than service b. In other words, in the MAX composition, 77% of
the composite quality comes from service a. The conditional trust in C given a corre-
sponds to the probability of C performing well given a performs well. We know when
a performs well, MAX tends to select a more often. Therefore, the conditional trust in
C given a is much higher than the overall trust in C. In contrast, since MAX mostly
selects a, the conditional trust in C given b is extremely close to the overall trust in
C. However, those 23% observations that come from b make the conditional trust in C
given b higher than the overall trust placed in C. As we would expect, MIN selects b
77% of the time. As Figure 6 (right) shows, the conditional trust placed in C given b
is much higher than the conditional trust in C given ¢ and the overall trust in C. The
conditional trust in C given a is slightly higher than the overall trust in C because of
those 23% observations from a.
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Fig. 6. Conditional trust in composite service C for MAX (left) and MIN (right).

4.2 Dealing with Dynamic Behavior

This experiment examines the Bayesian approach’s ability of tracking the dynamic
behavior of services. We introduce two dynamic behavior profiles.

— The random walk profile models the general more or less predictable behavior of
a service. The random walk service changes behavior every period. Its current
behavior x' depends on the previous behavior x'~!, and is defined as x’ = x'1 +
wU(—1, 1), where v is a real number between 0 and 1, and U(—1, 1) represents the
uniform distribution from —1 to 1. In our setting, the random walk service changes
behavior every ten time-steps, and v = 0.8.

— The cheating profile models a service that turns bad once its reputation is built up.
Its behavior is defined as x* = 1 when ¢ < d/2, and x! = 0 otherwise, where d is the
total number of observations. We set the discount factor y = 0.6. The total number
of observations is 100.

Here, we replace the constituent service & with a random walk or a cheating service.

Figure 7 shows how our trust values predict the actual behavior of the random walk
and the cheating service with 0%, 20%, and 40% missing data. The result shows that
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Fig. 7. Trust in a random walk (left) and a cheating (right) constituent service.

our approach captures the dynamism of the constituent services, although the missing
data slows down convergence noticeably.

4.2.1 Summary of the Bayesian Approach. The preceding experiments show our
Bayesian approach can: (1) model the relationships of the service composition; (2)
distinguish good and bad services in a partially observable setting; and (3) extract
the conditional probabilities from the relationships. In the second simulation, our
approach tracks the random walk and cheating constituent services adaptively. A lim-
itation of the Bayesian approach is that it fails to estimate the (unconditional) trust-
worthiness of the constituent services. Also, the Bayesian approach requires at least
partial observability.

4.3 Beta-Mixture Approach Evaluation

We now apply our beta-mixture approach to model the composite distribution with dif-
ferent composition operators. The number of mixture components is known to be two
because C has two children, a and 6. For each experiment, we sample 100 observa-
tions. Note that in this experiment, the quality of the constituent services a and b is
totally unobservable. The only information from which the beta-mixture approach can
learn is the composite quality.

4.3.1 Comparison: FCM-MM Approach and Nepal et al. To enable comparison, we first
introduce the FCM-MM approach. This approach uses Fuzzy C-Means Clustering (or
FCM) [Bezdek 1981] to partition the observations into two clusters. The portion of each
cluster with respect to the total is calculated as our z. Then the Method of Moments
(MM) [Fielitz and Myers 1975] is adopted to estimate the beta parameters ¢ and g of
each component based on clustered observations.

We also compare our approach with Nepal et al. [2009]. Their approach propagates
reputation from a composite service to its constituents. The propagation is based on
heuristics, with predefined and fixed mixing coefficients.

4.3.2 Evaluation Measurement. Here we introduce the Kolmogorov-Smirnov test (or
K-S test) for goodness-of-fit measurement. The K-S test is used to compare a sam-
ple with a reference probability distribution. A p-value from the K-S test is calculated
by quantifying the distance between the sample and the reference distributions. A
higher p-value means the distribution explains the sample better. In general, by con-
vention, a p-value higher than 0.05 is considered a good fit. That is, a p-value lower
than the 5% significant level rejects the null hypothesis; the sample is not consistent
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Table II. Actual and Estimated Parameters by FCM-MM and Beta-Mixture, and Their
K-STest Goodness-of-Fit Measurements

Actual FCM-MM Beta-Mixture
o s T a s T a B T
SWITCH 20 20 045 | 1746 1831 0.52 19.87 20.37 0.50
2 9 0.55 3.24 19.36 048 2.39 13.46  0.50
(K-S test) 0.90 0.99 0.99
SUM 20 20 16.42 559 041 17.33 6.22 031
1 6 42.04 32.08 0.59 44.49 29.63 0.69
(K-S test) N/A 0.31 0.40
PRODUCT || 20 20 1043 6545 0.64 10.43 65.45 0.43
5 9 1544 4591 0.36 12.50 48.85 0.57
(K-S test) N/A 0.25 0.65
MIN 3 4 5.82 1532 0.54 4.42 6.52 0.96
5 4 17.01 1528 0.46 5.38 69.52 0.04
(K-S test) N/A 0.54 0.97
MAX 3 4 13.47 1829 039 | 107.09 29596 0.06
4 4 2847 15.05 0.61 9.98 7.13 094
(K-S test) N/A 0.61 0.91
3 T 12¢ T T T
Learned Distribution l I Number of Observations

-~ Actual Distribution

25

Probability Density
(%)

0.5

0 .
0 0.5 1 -0.5 0 0.5 1 1.5

QoS QoS

Fig. 8. Beta-mixture approach: estimated beta-mixture and actual distribution and samples of trust in
quality for a SWITCH composition. Beta-mixture learns accurate distributions of both component services.
One provides good service (left peak); the other provides bad service (right peak).

with the reference distribution. Figure 9 shows the comparison of our beta-mixture
approach and the FCM-MM approach.

Because Nepal et al.’s approach is not based on probabilities, we cannot apply the
K-S test to compare our approach to theirs. Instead, we compute prediction errors by
measuring the absolute difference between the actual and predicted qualities.

4.3.3 Experimental Results. Table I summarizes the results for all composition opera-
tors using the beta-mixture and FCM-MM approaches. Figure 8 and the online appen-
dix accessible in the ACM Digital Library provide detailed results for all operators.

Since SWITCH follows the setting of a mixture model (that is, each observation comes
from one of the components with a probability), the beta-mixture approach performs
quite well in this case, yielding a p-value close to one. The parameters of each compo-
nent distribution and the mixing coefficients are estimated accurately.
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Fig. 9. Kolmogorov-Smirnov test comparison for FCM-MM and beta-mixture.
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Fig. 10. Prediction error comparison of Nepal et al. and beta-mixture.

For SUM and PRODUCT composition, the beta-mixture approach approximates the
composite distribution fairly well with solid p-values, but yields inaccurate parameter
estimations of the constituents. The observation histograms from SUM and PRODUCT
(shown in the appendix) tend to follow a unimodal distribution. In this case, it is
harder to estimate the parameters from each component. However, if the quality from
the constituent services can be partially observed, the accuracy of the component pa-
rameters can be improved. We defer this to future work.

MIN and MAX are similar to SWITCH in the sense that the composite quality inherits
from one of the components, except that the mixing coefficients are unknown. The
p-values show that the beta-mixture approach is still highly promising in estimating
the composite quality distribution. Note that, unlike SWITCH, MIN and MAX tend to
yield a dominant component. In this case, the mixing coefficient of that component is
close to one, making the remainder of the mixing coefficients extremely small. In other
words, the distributions of these weaker components are not learned well because of
the lack of evidence. For example, in Table II, the second component in the MIN case
and the first component in the MAX case are dominated. Their corresponding o and S
are not accurate. However, the beta-mixture approach can still distinguish the strong
from the weak components via the estimated mixing coefficients which tell us which of
the constituent services are better than others.

Figure 10 compares our beta-mixture approach with Nepal et al.’s approach. Our
approach yields better trust predictions than Nepal et al. in all cases. The prede-
fined parameters (mixing coefficients and reputations) of Nepal et al. are initialized by
FCM-MM. Consequently, once initialized, their mixing coefficients cannot be updated,
that is, remain fixed. Although the reputations of constituent services are propagated
dynamically, the accuracy is limited by inaccurate mixing coefficients.
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4.3.4 Summary of the Beta-Mixture Approach. Our experiments show the beta-mixture
approach provides a powerful way of estimating the quality distribution of a composite
service without knowing the quality of its constituents. It accurately estimates the
responsibilities of each constituent service in the overall composite quality. However,
the beta-mixture approach has two drawbacks when learning the parameters of the
constituent services. First, when the composite distribution is unimodal, it is difficult
to learn the component distributions. The accuracy in this case may be improved if the
qualities of the constituent services are partially observable. Second, the constituent
services that rarely contribute are difficult to learn because of the lack of evidence, al-
though beta-mixture can correctly identify those services. Besides, beta-mixture can-
not track dynamic behavior.

5. CONCLUSIONS AND FUTURE WORK

This article presents two probabilistic approaches for trust-aware service selection that
accommodates service composition. The approaches capture the relationships between
the qualities offered by a composite service and the qualities offered by its constituents.
The trust information is learned sequentially from directed observations and further
combined with indirect evidence in terms of service qualities. Our approaches can
deal with incomplete observations which arise when the constituent services are not
observable. Each consumer maintains its local knowledge of the environment and
monitors the quality metrics of the parties with whom it is interacting. We show how
to model the relationship between service qualities and important service composition
operators. Our approach is evaluated via simulations. We are seeking datasets from a
real service-oriented deployment.

Two possible limitations of the Bayesian approach in practical settings are: (1) the
lack of unconditional trust in the constituent services, and (2) the assumption of at
least partial observability. A possible limitation of beta-mixture is that it cannot deal
with dynamic behavior. How these two approaches can be used together to compensate
for each other is our future work.

Our approach is able to accommodate a variety of service composition operators in a
uniform manner, thus covering the situations that arise in scientific and business ap-
plications. Our approach is neutral with respect to the specific qualities considered as
long as they can be measured. In particular, it would apply to subjective qualities such
as the quality of user experience or system-level qualities such as privacy preservation
of user data. We would define the appropriate mixtures for the composition operators
with respect to such qualities, and then our approach would apply equally well.

This work suggests important directions for future work. An important direction
involves situations where the composition operators inherently have the effect of hid-
ing or diminishing the information about the constituent services. Section 4.3.3 dis-
cusses this situation. We can address this challenge by considering multiple service
compositions, each potentially involving different but overlapping sets of constituent
services, thereby acquiring further information about additional constituent services,
even if they cannot be readily observed directly. Another direction of interest is to apply
Structural EM [Friedman 1998] instead of parameter estimation, which would learn
not only the trust information but also the graph structure. The learned structure can
be used as a basis for suggesting new service compositions. A third direction of interest
is to expand the preceding methods to deal with situations where the consumers par-
ticipate in a social network wherein they may exchange referrals and ratings about
services. Such indirect evidence can be aggregated with the trust information, thus
helping consumers discover strangers and identify desired services more quickly than
otherwise.
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ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. BAYESIAN NETWORKS
We provide some additional technical background in this section.

A.1 Parameter Estimation

Given an acyclic Bayesian network graph G over d variables, x1, xo, ..., x4, the associ-
ated joint distribution is written as

d d
P(xy,...,xq) = H P(x;|xpg;) = H@', (5)

i=1 i=1
where 0; is the conditional probability P(x;|x,,), and x,, is the set of parent variables
of x;. Suppose the consumer obtains n complete observations, D = {(x}, ... ,xfl),t =
1,...,n}. In a fully observable environment, §; can be learned from the observed data

by Maximum Likelihood Estimation (MLE) [Buntine 1994].

In our model, each parameter 6; represents trust: the conditional probability of
obtaining a good outcome from x; given obtaining a good outcome from each of the ser-
vices in x,,. We assume that all variables x; are pairwise independent and identically
distributed (i.i.d.). @ is the set of all parameters 6;. The likelihood function is defined
as the probability of the observations given the parameters. Following Bishop [2006],
we write this as

P(D|0) = [ | Ph, ... x410), (6)

=1
tn d

=[11]e- (7)
t=1 i=1
d

=TT IT ", (8)
i=1 X, Xpg;
d

=[Jorma-a, ©)
=1

where n(x;, xpq,) is the number of observations that satisfy the variable assignment,
m; = n(x;, Xpg,), and l; = n(x,q,) — m;. Then, given the observations, the parameters that
maximize the likelihood are

A m;
i

mi+li'

For example, suppose a consumer obtains 10 good outcomes out of 15 interactions
with service x;, given that x,, provides good services. Then we have, m; = n(x; =
1,54, =1) =10 and /; = n(xpq, = 1) — m; = 15 — 10 = 5. From these observations, the
consumer can calculate that the estimated trustworthiness 0; is %. By using MLE, a

© 2011 ACM 1556-4665/2011/02-ART5 $10.00
DOI 10.1145/1921641.1921646 http://doi.acm.org/10.1145/1921641.1921646
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consumer can estimate the trustworthiness of a service from the consumer’s observa-
tions of it.

A.2 Bayesian Inference

Note that when the number of observations is small, MLE may yield overfitted results.
Consider an extreme case where x! = 1 for ¢ = 1,...,n. That is, all the observations
are the best possible. The parameter §; maximizing the likelihood is » =1, which is
not reasonable. Thus, we use Bayesian inference to treat this problem by introduc-

ing a beta distribution P(6;) over the parameter §; as a conjugacy prior [Bishop 2006,
Chapter 2].

I'(ai+ fi) o1 _
— D pnmi (1 — g)fit 1
Fargy 1% (10

Here o; and p; are hyperparameters controlling the distribution of the parameter 6;,

and I'(x) = [, u*le7“du. The coefficient rr(;‘j);fﬁz) in Eq. (10) ensures fol P6)db; = 1. We

P;) =

simplify the coefficient to a function B of the hyperparameters «; and f;, yielding
P(6) = Blay, 0] (1 — 6/, (11)
The expected value or mean of 6; is given by E(6;) = ai‘fﬂi. Bayesian inference uses
observations to update the prior. The parameters 6; can be learned using Bayes’ rule.
P(D|6;)P(6;)
P;|D) = ————— 12
©:|D) D) (12)

That is, the posterior distribution P(6;|D) is proportional to the multiplication of the
prior P(6;) and the likelihood function P(D|6;). Now we combine Eqgs. (9), (11), and (12)
to obtain

P@;|D) = B(m; + ay, I; + O/ 1(1 — 6;)+hi1, (13)

Note that the posterior distribution is also a beta distribution with hyperparameters
m;+a; and [;+f;. Here we assume the values of x; are independent of ;, that is, P(D|6;) =
6;. Then the predictive distribution of x; given the observations D is defined by the
mean of ¢; given the observations D. This enables consumers to learn the parameters
from the observations without the problems caused by MLE in some extreme cases.

1
P(x|D) = / P(x,10) P(0:] D)dlb (14)
0
1
= / 0, P(6;| D)do; (15)
0
_ E@ID) (16)
_ m; + o; (17)

mi+ai+li+,b’i

Bayesian inference provides an intuitive way to update the trust (a beta distribution)
placed in a service. For example, let a consumer’s current trust value of service x;
be 6; = (a;, B;) = (5,5). Suppose the consumer observes two new good outcomes and
one bad outcome. The consumer can update the trust value by simply adding the new
observations to the previous value. That is, §; = (&;, 5;) = (7,6). Then the consumer
can predict that the probability of obtaining a satisfactory quality value from the next

interaction is %
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Fig. 11. Service composition example.

Table Ill. An Example Observation Derived from a
Consumer’s Experience

t xXr X, Xy Xo X
1 1 1

2 (0.67) (0.61) 0

3 (0.67) 0 1 0 1

Additionally, to incorporate the dynamism of service behavior, a discount factor y
reduces the impact of the old information when we calculate the posterior distribution.
In other words, instead of Eq. (17) we have

m; + 7y a;

P(x;|D) = .
(il D) mi+ya;+l+yp

(18)

The notion of a discount factor is common in trust and reputation systems. The esti-
mate reflects the overall behavior if it is high; otherwise, the estimate depends more
on the recent behavior. Hang et al. [2008] study the effect of the discount factor on
updating trust estimates. Section 4.2 shows how our approach keeps track of dynamic
service behavior in a service composition.

B. EXTENDED EXAMPLE FOR BAYESIAN APPROACH

We can implement a sequential approach to construct and learn the service compo-
sition model from observations. Taking the scenario of Figure 11 as an example,
Table IIT shows the incomplete observations from a consumer in terms of its response
time. In the first observation, the consumer interacts with the hotel service H and
obtains a satisfactory response time. The consumer is also aware of the constituent
Four Seasons Hotel service f and its good response time. In the second observation,
the consumer interacts with the car rental service C but with a bad response time.
Here the consumer is not aware of any constituent services. In the third observation,
the consumer directly interacts with the travel service T' with a positive experience.
Here the consumer also realizes the presence of the two constituent services H and
C. T reports service H as offering good outcomes and service C as offering bad out-
comes. Service C further reports its bad response time as having been caused by its
constituent Enterprise service e.

Table IV shows the parameters estimated using Bayesian inference. The para-
meters are represented as pairs of hyperparameters «;, f; of the corresponding beta
distribution. The numbers in the parentheses in Table III are the inferred counts to
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Table IV. Parameter Estimation Over Time Based on the Observations
of Table IlI

¢ 0% 6; 0% £=0 Oty =1 Oie=0  Obiem1

0 (1,1 (1,1 (1,1)

1 (2,1) (1,1) (2,1) (1,1

2 (2.67,1.33) (1,1) (1.17,1.17) (2.44,1.22) (1,20 (1,2)

3 (333,167 (1,20 (1.5,1.17) (3.11,1.22) (1,3) (1,2)

le
complete the missing data in the E step. For example, n(x% =1)= E(@}) = Tf/;l =0.67.
“rtPr
Then we can infer n(x% = 1) as follows.
n(x%, =1) = n(x%, = 1|x?c =1) +n(x%{ = 1|x?c =0)
P(x3; = 1% = DP(x} = 1) + P(xy; = 1jx% = 0)P(x% = 0)
0.5 x 0.33 +0.67 x 0.67 = 0.61

Subsequently, we use the completed data to update the parameter estimation. For
example, the new estimation 67 (including 67 ,_, and 67 _,) is given by

(03 1> B f=1)
= (a}qlf:l +nlxy =1, x?p =1), ,B}Ille +n(x% =0, x% =1))
= (2+ P(x3 = 1x7 = 1) x &%, 1+ Plxg = 0lx% = 1) x x})
= (2.44,1.22)
(“?ﬂ £=05 ﬂ%ﬂ f=0)
= (oc}ﬂfzo +n(xy =1, x?c =0), ,b’}ﬂf=0 +n(x% =0, x?c =0))
= (1+ P(x3; = 1a7 = 0) x (1 —x%), 1+ P(x%; = 0]x% = 0) x (1 — x%)
= (1.17,1.17).

Note that some parameters may not exist until a particular observation because
the consumer may not be aware of the corresponding random variables. For exam-
ple, service C is not reported until the second observation. Further the conditional
dependencies may change because some constituent services may be observed later.
For example, ‘9(1)|e:0 actually means Hé in the first observation because service e is not
reported. However, 6§ changes to 63,_, and g, is initialized because service e and
the dependency on service C are discovered in the third observation. In these cases,
the Bayesian network is updated at the same time to reflect the new discovery.

C. ADDITIONAL EXPERIMENTAL RESULTS

Here we present some additional experimental results. The explanations for these
graphs (Figures 12, 13, 14, 15) follow those given in the main article.
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Fig. 12. Beta-mixture approach: estimated beta-mixture and actual distribution of trust in quality for a
SUM composition. The composite distribution is learned accurately. However, the beta-mixture approach
fails to learn the constituent components well, because the composite histogram tends to follow a unimodal
distribution (i.e., only one peak).
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Fig. 13. Beta-mixture approach: estimated beta-mixture and actual distribution of trust in quality for a
PRODUCT composition. Similar to Figure 12, the histogram is accurately fit by the composite distribution,
but the accuracy of the constituent distributions is hard to learn because of the unimodal observations.
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Fig. 14. Beta-mixture approach: estimated beta-mixture and actual distribution of trust in quality for
a MIN composition. The histogram is dominated by one constituent component (i.e., one provides good
service), which is accurately learned by the beta-mixture approach. Also, beta-mixture accurately estimates
the responsibility (dominance) of each component. However, the component other than the dominating one
is not accurately learned because of the lack of evidence.
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Fig. 15. Beta-mixture approach: estimated beta-mixture and actual distribution of trust in quality for a
MAX composition. Similar to Figure 14, the composite distribution, and the dominating constituent com-
ponent is predicted well, but the lack of evidence affects the accuracy of the minor component. However,
beta-mixture learns the responsibility (dominance) well.
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