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Abstract—We argue that the traditional notion of trust as a
relation among entities, while useful, becomes insufficient for
emerging data-centric mobile ad hoc networks. In these systems,
setting the data trust level equal to the trust level of the data-
providing entity would ignore system salient features, rendering
applications ineffective and systems inflexible. This would be even
more so if their operation is ephemeral, i.e., characterized by
short-lived associations in volatile environments. In this paper,
we address this challenge by extending the traditional notion of
trust to data-centric trust: trustworthiness attributed to node-
reported data per se. We propose a framework for data-centric
trust establishment: First, trust in each individual piece of data
is computed; then multiple, related but possibly contradictory,
data are combined; finally, their validity is inferred by a
decision component based on one of several evidence evaluation
techniques. We consider and evaluate an instantiation of our
framework in vehicular networks as a case study. Our simulation
results show that our scheme is highly resilient to attackers and
converges stably to the correct decision.

I. INTRODUCTION

In all traditional notions of trust, data trust (e.g., trust in the
identity or access/attribute certificates) was based exclusively
on a priori trust relations established with the network entities
producing these data (e.g., certification authorities, network
nodes) [9], [16], [17]. This was also the case when trust
was derived via fairly lengthy interactions among nodes, as
in reputation systems [4], [8], [18], [27]. Moreover, any new
data trust relationships that needed to be established required
only trust in the entity that produced those data. All trust
establishment logics proposed to date have been based on
entities (e.g., “principals” such as nodes) making statements
on data [4], [7], [9], [12], [16], [17], [24], [25]. Furthermore,
traditional trust relations evolved generally slowly with time:
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once established, they lasted a long time and changed only
after fairly lengthy operations (e.g., certificate revocation or
monitoring and then voting-off of peers).

These observations indicate that existing trust notions are
entity-centric and slow to change. However, several emerging
mobile networking systems are heavily, if not entirely, data-
centric in their functionality and operate in ephemeral envi-
ronments. In such scenarios, it is more useful to establish trust
in data rather than in the nodes reporting them. For example,
in vehicular networks, node identities are largely irrelevant;
rather, safety warnings and traffic information updates, along
with their time freshness and location relevance, are valuable.
At the same time, interactions with data reporters do not rely
on any prior association, and encounters are often short-lived,
especially due to high mobility.

In such scenarios, and unlike in traditional trust establish-
ment schemes, the trust level associated with data is not
the same as that of the node that generated the data. More
specifically, in the vehicular networks example, vehicles will
have different preset node trust levels (e.g., police cars are
more trustworthy than private vehicles), but (i) different events
reported by the same vehicle may have different levels of trust
(due to distance to the event, timeliness of the report, vehicle
equipment level) that may differ from that of the vehicle itself;
(ii) the same event reported by multiple vehicles with different
preset node trust levels has to be associated with a single trust
level that would, of course, differ from some of the levels of
the reporting vehicles; and (iii) an event reported by a vehicle
requires corroboration by other vehicles and hence its level of
trust would differ from that of the reporting vehicle.

In other words, the following question arises naturally:
how can these emerging systems be effective and trustworthy
when their basic operational requirements are not satisfied by
existing trust notions? To address this challenge, we advocate
a clean-slate approach. We propose data-centric trust estab-
lishment: data trustworthiness should be attributed primarily
to data per se, rather than being merely a reflection of the
trust attributed to data-reporting entities.

The logic we propose extends the traditional notions of
trust and methods of trust establishment in several ways.



First, unlike traditional trust, a priori trust relationships in
entities (nodes) represent only one of the default parameters
for establishing data trust. For example, our logic, while using
nodes’ statements on data, does not rely exclusively on such
statements. Instead, it takes into account dynamic factors, such
as location and time, as well as the number and type of
the statements on data, to derive data trust relations. Second,
beyond the traditional time-invariant or slow-evolving trust
notions, data-centric trust relations are by definition ephemeral
and have to be established and re-established frequently, based
on network and perceived environment changes. For example,
an event report (e.g., accident report, weather report) that must
be believed by recipient nodes in real-time cannot last longer
than the lifetime of the event or of the network that generated
this event. Multiple rounds of node interactions are typically
not possible in such networks. Third, trust does not stem from
a single source of data (e.g., a certification authority) and
generally it is application-dependent (in contrast to entity-
centric trust when, for example, multiple applications use
certificates for their access control and authentication policies).

We derive trust in data (e.g., reported event) from multiple
pieces of evidence (e.g., reports from multiple vehicles). Then,
our logic weighs each individual piece of evidence according
to well-established rules and takes into account various trust
metrics, such as time freshness and location relevance, defined
specifically in the context of an application. Then, data and
their respective weights serve as inputs to a decision logic
that outputs the level of trust in these data. We evaluate
several techniques, including voting, Bayesian inference, and
the Dempster-Shafer Theory of evidence. Notably, Bayesian
inference takes into account prior knowledge, whereas the
Dempster-Shafer Theory accounts for the uncertainty about
data. More specifically, while trust establishment mechanisms
based on popular decision logics, such as voting and Bayesian
inference, consider uncertainty as refutal of evidence, our
framework considers uncertainty as either supporting or refut-
ing evidence, thus making the decision process more realistic.
We show in this work that this distinction affects the flexibility
and resilience to attackers in some scenarios.

In the rest of this paper, we present our framework in Sec. II.
In Sec. III we mathematically develop our approach. Then, we
instantiate our framework in the context of vehicular commu-
nication systems in Sec. IV. We evaluate the effectiveness of
our scheme through simulations in Sec. V, and conclude with
a survey of related work in Sec. VI.

II. GENERAL FRAMEWORK

A. Preliminaries

We consider systems with an authority responsible for
assigning identities and credentials to all system entities that
we denote as nodes. All legitimate nodes are equipped with
credentials (e.g., certified public keys) that the authority can
revoke. Specific to the system and applications, we define a
set Ω = {α1, α2, . . . , αI} of mutually exclusive basic events.
Composite events γ are unions or intersections of multiple
basic events. Examples of basic events are “ice on the road”

and “traffic jam”. If the ice on the road causes a traffic jam,
this becomes the composite event “ice on the road and traffic
jam ahead”. Each αi is a perceivable event generated by the
environment, network, or an application running on vehicles.
There may be multiple applications, each having its own set
of relevant events. These sets are overlapping, as their events
belong to the pool of basic events.

We consider V , the set of nodes vk, classified according to
a system-specific set of node types, Θ = {θ1, θ2, . . . , θN}.
We define a function τ : V → Θ returning the type of
node vk. Reports are statements by nodes on events, including
related time and geographic coordinates where applicable. For
simplicity, we consider reports on basic events, as reports on
composite events are straightforward. We do not dwell on the
exact method for report generation, as this is specific to the
application.

B. Default Trustworthiness

We define the default trustworthiness of a node vk of type
θn as a real value that depends on the attributes related to the
designated type of node vk. For all node types, there exists a
trustworthiness ranking 0 < θ1 < θ2 < . . . < θN < 1. For
example, some nodes are better protected from attacks, more
closely monitored and frequently re-enforced, and, overall,
more adequately equipped, e.g., with reliable components.
As they are less likely to exhibit faulty behavior, they are
considered more trustworthy.

We stress here that the data-centric trust establishment
framework does not aim to replace or amend source authen-
tication, as in reputation systems, but uses it as an input to
the data trust evaluation function. In fact, if a node reputation
system were in place, its output scores could also be used as
input to the data trust function. Hence, data trust builds on the
information provided by source authentication and reputation
systems without trying to supplant them. The choice of the
entity trust establishment system is orthogonal to the scope of
this paper and has been prolifically addressed in the literature
(Sec. VI).

C. Event- or Task-Specific Trustworthiness

Nodes in general perform multiple tasks that are system-,
node- and protocol-specific actions. Let Λ be the set of all
relevant system tasks. Then for some nodes v1 and v2 with
types τ(v1) = θ1 and τ(v2) = θ2 and default trustworthiness
rankings tθ1 < tθ2 , it is possible that v1 is more trustworthy
than v2 with respect to a task λ ∈ Λ.

Reporting data on events is clearly one of the node tasks.
For the sake of simplicity, we talk here about event-specific
trustworthiness implying that it is actually task-specific trust-
worthiness. Nevertheless, the two can be easily distinguished,
when necessary; e.g., when tasks include any other protocol-
specific action such as communication.

With the above considerations in mind, we define the event-
specific trustworthiness function f : Θ × Λ → [0, 1]. f has
two arguments: the type τ(vk) of the reporting node vk and
the task λj . f does differentiate among any two or more nodes



of the same type, and if λj = ∅ (no specific event or task), f
is the default trustworthiness f = tτ(vk).

D. Dynamic Trustworthiness Factors

The ability to dynamically update trustworthiness can be
valuable, especially for capturing the intricacies of a mobile ad
hoc networking environment. For example, nodes can become
faulty or compromised by attackers and hence need to be
revoked. In addition, the location and time of report generation
change fast and are important in assigning trustworthiness
values to events.

To capture this, we define a security status function s : V →
[0, 1]. s(vk) = 0 implies node vk is revoked, and s(vk) = 1
implies that the node is legitimate. Intermediate values can be
used by the system designer to denote different trustworthiness
levels, if applicable.

Second, we define a set of dynamic trust metric functions
M = {µl : V × Λ → [0, 1]} indexed by a selector l indicat-
ing different node attributes (e.g., location) that dynamically
change. That is, for each attribute, a different metric µl is
defined. µl takes node vk ∈ V and task λj ∈ Λ as inputs and
returns a real value in [0, 1].

E. Location and Time

Among the possible values of l for metric µl, proximity
either in time or geographic location is an attribute of par-
ticular importance. Proximity can increase the trustworthiness
of a report: The closer the reporter is to the location of an
event, the more likely it is to have accurate information on
the event. Similarly, the more recent and the closer to the
event occurrence time a report is generated, the more likely it
is to reflect the system state.

Cryptographic primitives, such as digital signatures, can
ensure that location and time information cannot be modi-
fied if included in a report. However, the accuracy of such
information can vary, due to nodes’ differing capabilities or
(malicious or benign) faults. This is especially true for reports
that depend on fine-grained time and location data. Hence,
different types of nodes are more or less trustworthy when
reporting such data. In some cases, time- or geo-stamping a
report can be a distinct task.

F. Scheme Overview

We compute the trustworthiness of a report ej
k, generated

by node vk and providing supporting evidence for event
αj , by using both (i) static or slow-evolving information on
trustworthiness, captured by the default values and the event-
specific trust f , and (ii) dynamically changing information
captured by security status s and more so by metric µl. We
combine these as arguments to a function

F (ej
k) = G(s(vk), f(τ(vk), λj), µl(vk, λj))

that returns values in the [0, 1] interval. If vk reports no
evidence for αj , F (ej

k) = 0. These values are calculated
locally for each report received from another node and are
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Fig. 1. Data-centric trust establishment framework.

called the weights (or trust levels) of the reports. Fig. 1
illustrates our scheme.

Nonetheless, such a per message assessment may often be
insufficient. It can be hard to decide whether the reported event
took place based on a single message, and it is vulnerable
to faults (e.g., equipment failures or compromised nodes).
Instead, we propose the collection of multiple reports related to
the same event and of their weights, i.e., the accompanying F
values, and their combination into a robust decision scheme.
Thus, the reports along with their weights are passed to a
Decision Logic module that outputs an assessment on the event
in question. The way to use such decisions and inferences is
beyond the scope of this paper, as it is specific to particular
systems.

The above process is tightly related to the multisensor data
fusion techniques [11]. In fact, F can be computed using rule-
based expert systems; the output of the Decision Logic module
can be used by another expert system that makes decisions
based on reported events. There are several algorithms to
implement the Decision Logic module; we will compare next
a selected subset of these algorithms in the context of data-
centric trust establishment. It should be stressed here that
data-centric trust establishment in wireless networks is a new
application of data fusion techniques, to the best of our
knowledge.

III. EVIDENCE EVALUATION

The literature on trust in ad hoc networks proposes sev-
eral approaches for trust establishment, which we survey in
Sec. VI. In this work, we propose a new technique and
compare it to four other existing techniques. These techniques
are described below.

To mathematically model our approach, assume a node A
has to decide among several basic events αi ∈ Ω, based on K
pieces of evidence ej

k (reports from K distinct nodes).
Let di denote the combined trust level computed by evalu-

ating evidence corresponding to event αi. The Decision Logic



module outputs the event that has the highest combined trust
level, i.e., maxi(di).

A. Basic techniques

The following two techniques are used for reference and
serve as a basis of comparison for the remaining three tech-
niques.

1) Majority Voting: In this technique, the majority wins
(e.g., [19]). The combined trust level corresponding to event
αi is defined by:

di =
1
K

K∑

k=1

F (ei
k) (1)

where F (ei
k) = 1 if vk reports αi and it is 0 otherwise.

2) Most Trusted Report: The Most Trusted Report (MTR)
decision logic outputs a trust level equal to the maximum value
of trust levels assigned to reports about the event; the point of
using MTR is to show the effect of isolated high trust values
(in data or entities) on the system. The combined trust level
corresponding to event αi is defined by:

di = maxk(F (ei
k)) (2)

B. Weighted Voting

As its names implies, Weighted Voting (WV) sums up all
the votes supporting an event with each vote weighted by the
corresponding trust level to output the combined trust level:

di =
1
K

K∑

k=1

F (ei
k) (3)

It should be noted here that decisions on composite events
are harder to do using the above three techniques since they do
not provide formalisms for handling unions and intersections
of events. In contrast, the next two techniques provide such
formalisms.

C. Bayesian Inference

Among the data fusion techniques, Bayesian Inference
(BI) [20] is the one most frequently used for trust estab-
lishment. In BI, the combined trust level corresponding to
αi is the posterior probability of αi given new evidence
e = {ej

1, e
j
2, . . . , e

j
K}; it is expressed in terms of the prior

probability P [αi] using the Bayes’ theorem:

P [αi|e] =
P [αi]

K∏
k=1

P [ej
k|αi]

I∑
h=1

(P [αh]
K∏

k=1

P [ej
k|αh])

(4)

where we assume that reports are independent for the sake
of mathematical tractability (the receiver cannot sort out the
dependencies among reports from distinct vehicles since such
information is not provided in the reports).

The computation of posterior probabilities for composite
events γ (recall that they are unions or intersections of basic
events) follow the rules of probability theory.

P [ei
k|αi] is the probability that report k confirms event

αi, given that αi happened. Using trust levels as weights of
reports, this probability is equal to the trust level: P [ei

k|αi] =
F (ei

k).
For j 6= i, P [ej

k|αi] is the probability that report k does not
confirm αi (hence, it confirms ᾱi, the complement of αi in Ω),
given that αi happened. This is equivalent to a malfunctioning
or cheating node (ideally, a node would report a real event).
Hence, P [ej

k|αi] = 1− P [ei
k|αi] = 1− F (ei

k).

D. Dempster-Shafer Theory

In Dempster-Shafer Theory (DST) [22], evidence evaluation
is inspired by human reasoning. More specifically, the lack
of knowledge about an event is not necessarily a refutal of
the event. In addition, if there are two conflicting events,
uncertainty about one of them can be considered as supporting
evidence for the other. The major difference between BI and
DST is that the latter is more suitable for cases with uncertain
or no information. More precisely, in DST a node can be
uncertain about an event, unlike in BI where a node either
confirms or refutes the event. For example, if a node A
confirms the presence of an event with probability p, in BI
it refutes the existence of the event with probability 1 − p.
In DST, probability is replaced by an uncertainty interval
bounded by belief and plausibility. Belief is the lower bound
of this interval and represents supporting evidence. Plausibility
is the upper bound of the interval and represents non-refuting
evidence. Hence, in this example, node A has p degree of
belief in the event and 0 degree of belief in its absence.

In DST, the frame of discernment contains all mutually
exclusive possibilities related to an observation. Hence, in our
context, it is the set Ω defined previously. The belief value
corresponding to an event αi and provided by report k is
computed as:

belk(αi) =
∑

q:αq⊂αi

mk(αq)

which means it is the sum of all basic belief assignments
mk(αq), αq being all basic events that compose the event αi.
In this case, only αi ⊂ αi and hence belk(αi) = mk(αi).

The plausibility value corresponding to event αi represents
the sum of all evidence that does not refute αi and is computed
as:

plsk(αi) =
∑

r:αr∩αi 6=∅
mk(αr)

Belief and plausibility are related by pls(αi) = 1−bel(ᾱi).
The combined trust level corresponding to event αi is the

belief corresponding to αi:

di = bel(αi) = m(αi) =
K⊕

k=1

mk(αi) (5)

where pieces of evidence can be combined using Dempster’s
rule for combination:



m1(αi)
⊕

m2(αi) =

∑
q,r:αq∩αr=αi

m1(αq)m2(αr)

1−∑
q,r:αq∩αr=∅m1(αq)m2(αr)

As before, using trust levels as weights of reports, the basic
belief assignment that confirms αi is equal to the trust level:
mk(αi) = F (ei

k).
For composite events γ, belief can be computed similarly

using the above equations.

IV. CASE STUDY

To illustrate the application and utility of the data trust
framework, we present in the following a case study of a
real ephemeral ad hoc network instantiation, namely vehicular
networks. We first describe the system and adversary models,
then explain through examples how the different components
of data trust can be practically derived.

A. Secure Vehicular Communications System

Vehicular Ad hoc NETworks (VANET) and Vehicular Com-
munication (VC) systems [26] are being developed to enhance
the safety and efficiency of transportation systems, providing,
for example, warnings on environmental hazards (e.g., ice on
the pavement) and traffic and road conditions (e.g., emergency
braking, congestion, or construction sites). From a networking
point of view, the nodes are vehicles and road-side infrastruc-
ture units (RSUs), all equipped with on-board processing and
wireless modules, thus enabling multi-hop communication in
general.

Authorities are public agencies or corporations with admin-
istrative powers, e.g., city or state transportation authorities
entrusted with the management of node identities and creden-
tials. A subset of the infrastructure nodes serves as a gateway
to and from the authorities.

We assume that each node vk is equipped with a pair
of private/public cryptographic keys Prk/Puk, and a certifi-
cate issued by an authority X as CertX{Puk}. Nodes are
equipped with a clock and a positioning system (such as GPS
or Galileo). This allows them to include their time and location
information in any outgoing reports. Source authentication,
required to prevent Sybil attacks, is achieved by digital sig-
natures according to both industrial and academic proposals
[2], [21]. In this example, source authentication identifies the
type of the report sender and enables the assignment of default
trustworthiness, as explained in Sec. II-B.

Unicast and multicast communication is possible; however,
local broadcast (single hop) and geocast (flooding to a given
geographic area) are predominantly used. Vehicle-specific in-
formation (e.g., velocity, coordinates) is transmitted frequently
and periodically in the form of safety messages.1 Reports on
in-vehicle or network events are included in these messages.
Safety and other messages, generated by vehicles and RSUs,
can result in an abundant influx of information about events. It
is important to note here that our approach, based exclusively

1Typically, for a highway, every 300ms over a nominal range of 300m.

on local processing, does not add any communication overhead
and very little computation overhead to a secure VC system
where the actual overhead is due to frequent broadcasting and
asymmetric cryptography and is inherent in VANETs.2

B. Adversary Model

Nodes either comply with the implemented protocols (i.e.,
they are correct) or they deviate from the protocol definition
intentionally (attackers) or unintentionally (faulty nodes). Both
attackers and faulty nodes can cause damage to the network
and hence we consider them both as adversaries. The attacks
that can be mounted by either internal (equipped with cre-
dentials and cryptographic keys) or external adversaries vary
greatly. In brief, adversaries can replay any message, jam
communications, and modify (yet in a detectable manner due
to the digital signatures) messages. More importantly, they can
inject faulty data and reports, or control the inputs to otherwise
benign nodes and induce them to generate faulty reports.

We assume that at most a small fraction of the nodes are
adversaries, and consequently the fraction of the network area
affected by them is bounded. This bound on the presence
of adversaries could be further refined by distinct values for
different node types. But this assumption does not preclude
that a few adversarial nodes surround a correct node at some
point in time.

C. Framework Instantiation

We focus on the use of our scheme on board a vehicle.
Clearly, it could be run on RSUs; nonetheless, the challenge
is to design a scheme practical for nodes that are not part of
the system infrastructure.

The forms of the f (event-specific trust), s (security status),
µl (dynamic trust metric), and G (trust level) functions are de-
termined by the secure VC system: They are either preloaded
at the time the node is bootstrapped, or updated after the node
joined the system. Their values are either provided by the
authorities or distributed by the infrastructure.

To illustrate our instantiation, we consider an example
scenario: a highway accident in which vehicle B is involved.
Now, let us consider a vehicle A, several communication hops
away from the accident location. A receives safety messages
indicating that there is an accident on its route and has to
decide whether to trust this information. In this case, we
assume the event α1: “There is an accident at location LB”.
The granularity of the event location should be properly
defined to avoid having reports on several different events
while, actually, all these reports refer to the same event but
with slightly different locations. Now assume that one or more
attackers generate safety messages supporting the null event
α2 = ∅: “There is no accident at location LB”. If there are
several events (e.g., several distinct locations, given the defined

2It should be clarified that, although this overhead seems unreasonable for
typical ad hoc networks, VANETs have distinct properties and requirements
(making networking and security infrastructure necessary as in cellular sys-
tems) [14] and were shown to be able to support public key cryptography
[21].



granularity), the data trust is computed for each of them. The
resulting values can be used by the application to decide the
consequent action; the specific use of these values by the
application is beyond the scope of this paper.

Two important system parameters are the set of reports and
the time needed to make a correct judgment. The reports
considered valid for making decisions should be sent by
vehicles that are on the communication path between the
accident location and A. The time to correct judgment should
be equal to the time needed by the Decision Logic module
to converge to a stable output value; this time depends on
the frequency of message reception. It is also constrained
by the tolerable decision delay (e.g., in critical situations,
decisions should be made very fast, given the available data)
that depends on the event in question. The convergence in a
typical VANET scenario is illustrated in Sec. V-D.

V. PERFORMANCE EVALUATION

In this section, we examine the performance of the decision
logics described in Sec. III. Recall that a vehicle computes
the combined trust in an event based on the reports it receives
from distinct vehicles. We compare the four decision logics:
MTR, WV, BI, and DST against the basic majority voting
scheme. We use the example scenario with two events α1 and
α2 described in Sec. IV-C.

As noted earlier, the exact choice of the actual values of
the f , s, µl, and G functions depends on the system designer
and hence is out of scope of this paper. In order to provide
an analysis that is independent of administrative decisions,
we studied the effects of several general but representative
parameters, namely the percentage of false reports, prior
knowledge, uncertainty, and evolution in time; this allows us
to draw conclusions that are independent from the specific
choice of default trustworthiness values. We study the effect
of these parameters on the probability of attack success, which
is very important in a security context. In the case of basic
majority voting, this probability is equal to 1 if the percentage
of attackers is larger than 50%; basic majority voting is
represented in the following figures by a vertical or horizontal
dashed line corresponding to a percentage of false reports
equal to 50 or a probability of attack success equal to 0.5,
respectively.

We use a Beta distribution, with its mean equal to an average
trust level (defined for each scenario), to assign the trust levels
to the reports received by a vehicle A. We chose the Beta
distribution because it approximates the Normal distribution,
a common choice in statistics, but with bounds (0 and 1).
We simulate scenarios with 10 or 50 valid reports (i.e., sent
by vehicles on the communication path between an accident
location and A, as described in Sec.IV-C).3 This means that A
includes all these reports in its decision process; each report
confirms either event α1 or α2. Table I lists the parameters
used in the following simulation scenarios.

3We do not simulate the wireless medium in this case since it is orthogonal
to our evaluation. Sec. V-D simulates a VANET, including the wireless
communication.

Scenario Parameter
number E[F (false)] E[F (correct)] N

1 0.6 0.8 50
2 0.8 0.6 50
3 0.6 0.8 10
4 0.2 0.4 50

5,6 0.6 0.8 17

TABLE I
SIMULATION SCENARIO PARAMETERS. E[F (false)] DENOTES THE

AVERAGE TRUST LEVEL OF FALSE REPORTS AND E[F (correct)] IS THE
AVERAGE TRUST LEVEL OF CORRECT REPORTS. N IS THE NUMBER OF

REPORTS. IN SCENARIOS 5 AND 6, THE VALUE OF N IS DETERMINED BY
THE NS-2 SIMULATIONS AS FURTHER EXPLAINED IN SEC. V-D.

Simulations were performed in MATLAB (Sec. V-A to V-C)
and ns-2 (Sec. V-D) with results averaged over 100 randomly
seeded runs and plotted with 95% confidence intervals.

The results show that: First, trust decisions based on MTR
are the most sensitive to different parameters since the MTR is
not corroborated by other vehicles in this case. Second, under
realistic conditions, the other three decision logics outperform
both majority voting and MTR. Third, there is no clear winner
among these decision logics as each performs best in certain
scenarios. The details follow.

A. Effect of Data Trust

To see the effect of data trust on the resilience of the
decision logic, we compare the different decision logics to
majority voting. The graphs in Figs. 2(a) and 2(b) provide
insight into the effect of the percentage of false reports in order
to disturb the perception of the observing vehicles (Sec. IV-B).
There are two different pieces of information, the false one
(originating from colluding attackers or malfunctioning honest
vehicles) and the correct one from functional honest vehicles,
that are conflicting in their content. Collusion in this case
means that all attackers report the same false information.
In addition, the trust distributions of the reports generated
by honest nodes and by attackers follow Beta distributions
with different means. We examine two scenarios: in Scenario
1 (Fig. 2(a)), the average trust of false reports is lower than that
of correct reports; Scenario 2 (Fig. 2(b)) illustrates the opposite
situation (e.g., because attackers are positioned closer to the
event). The mean values corresponding to both scenarios are
listed in Table I.

In Figs. 2(a) and 2(b), we observe that MTR is both little
resilient to small percentages of attackers and highly resilient
(on average) to high percentages of attackers. This can be
explained by the fact that MTR relies on the trust value of
only one report, which can differ significantly from the average
trust value. The other three decision logics are more resilient
to attacks than majority voting when correct reports are more
trustworthy than false ones (this is a realistic situation). BI is
the most resilient of all three methods. When false reports are
more trustworthy than correct ones, the situation is reversed
and weighted voting becomes the most resilient technique.
There are two curves for BI, each corresponding to a different
prior probability; these plots are discussed next.
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(a) Correct reports are more trustworthy than false
ones.
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(b) False reports are more trustworthy than correct
ones.
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(c) Effect of prior knowledge.
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(d) Effect of uncertainty.

4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
ro

ba
bi

lit
y 

of
 a

tta
ck

 s
uc

ce
ss

 

 
MTR
WV
BI (prior = 0.5)
BI (prior = 0.001)
DST

(e) Evolution in time; evenly distributed false re-
ports.
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(f) Evolution in time; false reports received first.

Fig. 2. Performance of the decision logics with respect to the percentage of false reports, prior knowledge, uncertainty, and time.

B. Effect of Prior Knowledge

One of the properties of BI is that it uses a prior probability
to compute the posterior probability of an event (Sec. III-C).
The prior probability represents the amount of knowledge
about the event prior to the reception of new evidence; in our
example, this is the probability of the presence of an accident.
In this section, we study the effect of prior probabilities on
the performance of BI. In VANETs, prior probability can be
derived from ITS (Intelligent Transportation Systems) studies
developed to estimate the probabilities of crash occurrence in
different scenarios (e.g., [3]). Since these estimates depend
on many parameters, notably the human factors, and cannot
be computed in a generic case, we chose a rather conservative
prior probability of 0.001 for our simulations. We also simulate
the effect of the neutral prior probability 0.5 (i.e., lack of prior
knowledge).

Figs. 2(a) and 2(b) show to some extent that the availability
of prior knowledge increases the resilience of BI to false data
attacks. In Fig. 2(c), there are fewer reports (only 10 compared
to 50 in the previous two scenarios) and we can clearly see
the benefit of prior knowledge. The reason for this increase in
resilience when the number of reports decreases is that large
numbers of reports damp the effect of prior probability in the
calculation of the posterior probability (Sec. III-C).

C. Effect of Uncertainty

In a nutshell, BI does not take uncertainty into account
whereas DST does (Sec. III-D). To simulate the effect of

uncertainty (Fig. 2(d)) on the decision logics, we use low mean
data trust levels for both false and correct reports; the exact
values are listed in Table I (such values can result from low
values of the security status s, e.g., due to the discovery of
a virus in the network). In this case, DST is indeed the most
resilient of the decision logics.

An interesting observation is related to the behavior of BI.
At high trust levels (Fig. 2(a)), it exhibits behavior similar
to that of WV and DST. But at low trust levels (Fig. 2(d)),
it behaves opposite to the other two methods. This is so
because BI deals with only the probabilities of true and false
hypotheses and if a report is assigned a 0.2 trust level (i.e.,
0.2 probability of being correct), it is assumed to have a 0.8
mistrust level (i.e., 0.8 probability of being false). In fact,
BI requires that hypotheses be mutually exclusive and hence
does not support general uncertainty that may overlap with
either hypothesis. Thus, given a small percentage of supporting
reports with low trust levels, there is a high percentage of
refuting reports with low trust levels also. In BI, this high
percentage is transformed into a high percentage of supporting
reports with high trust levels (i.e., the opposite). Similar
reasoning applies to high percentages of supporting reports.

It is important to note here that we applied BI in the
typical way widely used in both research and industry (e.g.,
[15]). There are efforts to transform belief function models to
probability models, thus enabling BI to handle uncertainty [6].
The use of such methods may reduce the adverse effects of
uncertainty on the performance of BI shown in this section.



D. Evolution in Time

In ephemeral networks, it is important to evaluate data trust
rapidly in order to permit an application logic to use the
resulting values. Hence, a decision logic should be able to
output the final result as fast as possible, based on the freshly
received reports. This property distinguishes the mechanisms
explored in this work from other approaches that rely on a
longer history of available reports (e.g., reputation systems
[4], [18], [27]). In this section, we are only interested in
the decision delay as reports arrive. The total event detection
delay by the observing vehicle depends also on how fast the
reporting vehicles detect the event, which in turn depends on
the particular detection sensors and hence we do not consider
it in this work.

To simulate ephemeral networks, we use VANETs with mo-
bile vehicles. Our scenario is a 2 km-long highway with 3 lanes
in each direction. There are 300 vehicles moving at speeds
between 90 km/h and 150 km/h; the average distance between
two vehicles on the same lane is 40 m. Vehicles periodically
broadcast safety messages every 300 ms within a radius of
300 m (single hop), according to the DSRC specification [1];
the broadcast start times are uniformly distributed between 0
and 2 seconds, approximately. In our simulations, we study the
reception of reports at a vehicle A positioned in the middle
of the scenario on the 90 km/h lane. We assume that an
event (e.g., “ice on the road”) is generated by honest vehicles
between coordinates 1300 m and 1400 m (the icy section).
The attackers report the opposite event (“no ice on the road”).
As A moves towards the icy section, it receives reports from
vehicles that pass inside this section. Only the last report from
each vehicle is considered; this allows A to update its decision
as vehicles enter the icy section and change their reports.

The parameters for this scenario are listed in Table I. We
observe that each vehicle receives on average (over 100 runs)
17 reports sent by distinct vehicles from inside the icy section.
The received reports are assigned corresponding trust levels in
MATLAB. In Fig. 2(e), the percentage of false reports received
in each timestep is drawn from a Binomial distribution with
a probability 0.5 (i.e., the mean percentage of false reports is
50); this figure shows the stability of the decision logics when
the percentage of false reports varies. In Fig. 2(f), the total
percentage of false reports is also 50, but all false reports are
received at the beginning of the simulation time to simulate
the speed of convergence of the decision logics.

By examining Figs. 2(e) and 2(f), we can see that the speed
of convergence of all four decision logics depends on the
number of received reports and hence the scenario parameters
(event generation time, vehicle density, etc.). We leave further
investigation of these parameters to future work due to the lack
of space. Nevertheless, we can observe the general trend of
convergence to a stable output value before A reaches the icy
section and despite variations in the percentage of false reports
(of course, as long as the total percentage of false reports is
constant). The output values roughly correspond to the results
of Fig. 2(a), as expected.

E. Discussion

Based on the above results, we can see that there is no clear
winner among the decision logics that fits best all scenarios.
But we can elaborate several guidelines for the evaluation of
data-centric trust:
• If the uncertainty in the network is low, BI is the most

resilient to false reports. To avoid the case of few highly
trustworthy false reports (Fig. 2(b)), the decision of BI
should be positioned with respect to another logic, such
as DST or WV, and the most conservative value (i.e., the
one that yields the lowest probability of attack success)
should be taken.

• The availability of prior knowledge can further improve
the resilience of BI.

• If the uncertainty in the network is high, DST performs
consistently better than other methods (MTR does not
always yield better results).

VI. RELATED WORK

Work on trust has produced rich literature in conventional,
P2P and ad hoc networks. In the latter, most contributions
assume that there is no infrastructure and no PKI; trust is a
relation among entities; trust is based on observations, with a
history of interactions needed to establish trust. To the best of
our knowledge, the computation of trust values in the context
of ad hoc networks has been considered in only two cases:
certification [7], [25] and routing [4], [27]. Otherwise, trust
evaluation assumes the prior establishment of trust relations.
In both certification and routing, trust values are established
in very specific ways that cannot be generalized to other
approaches.

Eschenauer et. al. [7] introduce the general principles of
trust establishment in mobile ad hoc networks and compare
them to those in the Internet. They describe examples of
generic evidence generation and distribution in a node-centric
authentication process.

Several papers [4], [8], [18], [27] describe the use of
modified Bayesian approaches to build reputations systems
with secondhand information to establish trust in routing pro-
tocols. As mentioned throughout the paper, reputation systems
monitor node actions over several interactions to compute node
trust values. In contrast, data trust, as defined in this work,
focuses on evaluating data rather than nodes and based on
only one message per node (to cope with the ephemerality
of the network). In addition, all of these works relied on BI
to compute reputation scores, whereas we showed that DST
is more resilient to attacks when there is high uncertainty in
the network (Sec. V-C). Data trust can actually complement
reputation systems in non-ephemeral networks.

The main approach advanced by Jiang and Baras [12]
is based on local voting that is a weighted sum of votes.
Conflicting votes are mitigated by each other when summed.
They also favor local interactions that we use as well.

The main idea behind the work by Sun et. al. [24] is that
trust represents uncertainty that in turn can be computed using



entropy. They also introduce the notion of confidence of belief
to differentiate between long-term and short-term trust. Trust
can be established through direct observations or through a
third party by recommendations.

Theodorakopoulos and Baras [25] assume the transitivity of
trust to establish a relation between two entities without pre-
vious interactions. In this context, they model trust evaluation
as a path problem on a directed graph. Routing protocols are
the main target of this approach.

More closely related to VANETs and thus the case-study
instantiation of our framework, Ostermaier et al. [19] analyze
the performance of voting schemes for local danger warnings
in VANETs. As mentioned earlier, voting schemes cannot
properly express composite events. Another paper by Golle et.
al. [10] proposes a framework for data validation in VANETs;
it consists in comparing received data to a model of the VANET
and accept their validity if both agree. Building and updating
such a model in real-time may not satisfy the requirement
of fast data processing in VANETs. Klein [15] describes the
application of several data fusion techniques at the traffic
management center.

There is little work on applying the Dempster-Shafer Theory
to ad hoc networks, the most relevant to our work is the
paper by Chen and Venkataramanan [5] that describes how
DST can be applied to distributed intrusion detection in
ad hoc networks. Siaterlis and Maglaris [23] apply DST to
DoS anomaly detection. The notion of belief, disbelief, and
uncertainty appears in the work of Jøsang [13]. The paper
describes a certification algebra based on a framework for
artificial reasoning called Subjective Logic.

VII. CONCLUSION

In this work, we developed the notion of data trust. We
also addressed ephemeral networks that are very demanding
in terms of processing speed. We instantiated our general
framework by applying it to vehicular networks that are both
highly data-centric and ephemeral. We evaluate data reports
with corresponding trust levels using several decision logics,
namely weighted voting, Bayesian inference, and Dempster-
Shafer Theory. Simulation results show that Bayesian infer-
ence and Dempster-Shafer Theory are the most promising
approaches to evidence evaluation, each one performing best
in specific scenarios. More specifically, Bayesian inference
performs best when prior knowledge about events is available
whereas Dempster-Shafer Theory handles properly high uncer-
tainty about events. In addition, the local processing approach
based on either one of the above techniques converges to a
stable correct value, which satisfies the stringent requirements
of a life-critical vehicular network.
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