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AbstractÐModern distributed systems involving large number of nonstationary clients (mobile hosts, MH) connected via unreliable

low-bandwidth communication channels are very prone to frequent disconnections. This disconnection may occur because of different

reasons: The clients may voluntarily switch off (to save battery power), or a client may be involuntarily disconnected due to its own

movement in a mobile network (hand-off, wireless link failures, etc.). A mobile computing environment is characterized by slow

wireless links and relatively underprivileged hosts with limited battery powers. Still, when data at the server changes, the client hosts

must be made aware of this fact in order for them to invalidate their cache, otherwise the host would continue to answer queries with

the cached values returning incorrect data. The nature of the physical medium coupled with the fact that disconnections from the

network are very frequent in mobile computing environments demand a cache invalidation strategy with minimum possible overheads.

In this paper, we present a new cache maintenance scheme, called AS. The objective of the proposed scheme is to minimize the

overhead for the MHs to validate their cache upon reconnection, to allow stateless servers, and to minimize the bandwidth

requirement. The general approach is 1) to use asynchronous invalidation messages and 2) to buffer invalidation messages from

servers at the MH's Home Location Cache (HLC) while the MH is disconnected from the network and redeliver these invalidation

messages to the MH when it gets reconnected to the network. Use of asynchronous invalidation messages minimizes access latency,

buffering of invalidation messages minimizes the overhead of validating MH's cache after each disconnection and use of HLC off-loads

the overhead of maintaining state of MH's cache from the servers. The MH can be disconnected from the server either voluntarily or

involuntarily. We capture the effects of both by using a single parameter s: The percentage of time a mobile host is disconnected from

the network. We demonstrate the efficacy of our scheme through simulation and performance modeling. In particular, we show that the

average data access latency and the number of uplink requests by a MH decrease by using the proposed strategy at the cost of using

buffer space at the HLC. We provide analytical comparison between our proposed scheme and the existing scheme for cache

management in a mobile environment [4]. Extensive experimental results are provided to compare the schemes in terms of

performance metrics like latency, number of uplink requests, etc., under both a high and a low rate of change of data at servers for

various values of the parameter s. A mathematical model for the scheme is developed which matches closely with the

simulation results.

Index TermsÐCaching, client-server computing, data consistency, mobile computing, performance analysis.

æ

1 INTRODUCTION

CACHING relevant data at the hosts is an effective tool to
improve performance (query response time and

throughput) in any distributed system. Important issues
in designing an effective caching scheme include 1) what to
cache (and when and for how long), 2) when and how to
invalidate the cached items and at what granularity
level, and 3) data consistency provided to the user and
at what cost. Most of these concerns, especially the
consistency management of cached data are exacerbated
for mobile computing environments. Mobile computing
environments are characterized by slow wireless links

(low-bandwidth radio links) which are susceptible to
frequent disconnections from the base station (server) and
low battery power at the mobile clients (hosts), which
necessitates the clients to minimize uplink queries as well as
to voluntary disconnect from the network to conserve battery
power. This unique feature of frequent disconnection adds
a new dimension to the task of maintaining consistent cache
at the mobile client since the underlying cache maintenance
protocol should make optimal use of the limited band-
width. In addition to being tolerant of disconnections, these
protocols should be energy-efficient and adaptive to
varying quality-of-service provided by the wireless net-
work. Various models have been suggested in the literature
to estimate the usefulness of caching in mobile environ-
ments under different cost models [24], [26], [23], [9], [10],
[6], [7] with encouraging results. Our purpose in this paper
is to consider the problem of management of cache
consistency in a mobile wireless environment once the
question of what to cache has been answered. Frequent
voluntary and involuntary disconnection of clients from
servers makes this a very challenging problem [1], [2], [11].

Efficient caching schemes for mobile environments

should ideally take into account the following factors: data

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 7, JULY 2001

. A. Kahol is with Cisco Systems Inc., 170 W. Tasman Drive, San Jose, CA
95134. E-mail: akahol@cisco.com.

. S. Khurana is with Telcordia Technologies, 445 South St., Morristown, NJ
07960. E-mail: sumit@research.telcordia.com.

. S.K.S. Gupta is with the Department of Computer Science and
Engineering, Arizona State University, Tempe, AZ 85287-5406.
E-mail: Sandeep.Gupta@asu.edu.

. P.K. Srimani is with the Department of Computer Science, Clemson
University, Clemson, SC 29634-0974. E-mail: srimani@cs.clemson.edu.

Manuscript received 16 June 1999; revised 11 June 2000; accepted 30 Nov.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110073.

1045-9219/01/$10.00 ß 2001 IEEE



access pattern and update rates, communication/access
costs, mobility pattern of the client, connectivity character-
istics (disconnection pattern, available bandwidth, etc.), and
location dependence of the data. Validation checks [17] that
are normally used in a wired environment is not at all
suitable for mobile environments since it wastes the
precious wireless bandwidth. Almost all the cache coher-
ency schemes proposed for mobile environment are based
on call-back (invalidation report) mechanism. A client may
miss invalidation reports from the server if it is discon-
nected during the broadcast. In an attempt to solve this
problem, Barbara and Imilienski [3] have developed a
periodic broadcasting invalidation reports scheme.

In this paper, we present a caching scheme for wireless
networks which uses asynchronous invalidation reports (call-
backs) to maintain cache consistency, i.e., reports are
broadcast by the server only when some data changes and
not periodically. Each mobile client (host) (MH) maintains
its own Home Location Cache (HLC) to deal with the problem
of disconnections. The HLC of an MH is maintained at a
designated home Mobile Switching Station (MSS). It has an
entry for each data item cached by the MH and needs to
maintain only the time-stamp at which that data item was
last invalidated.1 At the cost of this extra memory overhead
for maintaining an HLC, an MH can continue to use its
cache even after prolonged periods of disconnection from
the network. We show, through a mathematical model and
simulation studies, that the hit-rate and access latency of
this scheme is better than it's synchronous counterparts and
very close to an optimal strategy which incurs no overhead
of maintaining cache consistency.

The rest of the paper is organized as follows: Section 2
describes the system model and assumptions, an informal
overview of the proposed scheme, a brief description of the
related work, and a simple comparision with the exisiting
caching schemes for mobile environment. Section 3 gives
the formal description of our caching scheme. Performance
analysis of the proposed scheme in terms of hit ratio and
mean query delay is presented in Section 4. Section 5
presents comparative simulation results of the proposed
scheme with some existing caching schemes. Finally,
conclusions are drawn in Section 6.

2 PROPOSED SCHEME AND COMPARISON WITH

EXISTING SCHEMES

2.1 System Model

The mobile computing environment considered in this
paper is shown in Fig. 1. In this environment, the mobile
hosts (MHs) query the database servers that are connected
to a static network. The mobile hosts communicate with the
servers via wireless cellular network consisting of mobile
switching stations (MSS) and base stations.

A mobile host can be in two modes: awake or sleep.
When a mobile host is awake (connected to the server), it
can receive messages. Hence, this state includes both active
and dozing CPU modes. A MH can be disconnected from
the network either voluntarily or involuntarily. From the

perspective of the mobile host's cache, it is irrelevant

whether the invalidation were delayed due to voluntary

disconnection (e.g., switching off the laptop) or involuntary

disconnection (e.g., wireless link failure, hand-off delay).

Hence, for our purpose, a disconnected client is in sleep

mode; we use the term wakeup to indicate reconnection.
We consider the following computing scenario: The

application program runs on the mobile host as a client

process and communicates with the database server through

messages, i.e., the client sends a uplink request (query) for

the data it needs to the database server and the server

responds by sending the requested data on the down-link.

In order to minimize the number of uplink requests, the

client caches a portion of the database in its local memory.

The client-cached data is also referred to as active data [27].

Caching data at clients necessitates a protocol between the

client and the database server to ensure that the client cache

remains consistent with the shared database. The objective

of the proposed scheme is to minimize the overhead for the

MHs to validate their cache upon reconnection, to allow

stateless servers, and to minimize the bandwidth require-

ment. The general approach is to buffer the invalidation

messages at Home Location Cache (HLC) which is a static

trusted host on the static network and acts on behalf of a

mobile host.
Our caching scheme for the mobile environment is based

on the following assumptions:

. Whenever any data item is updated anywhere in the
network, an invalidation message is sent out to all
MSS via the wired network; thus, when a mobile
host MH is roaming, it gets the invalidation message
if it is not disconnected (we assume no message is
lost due to communication failure or otherwise in
the wired network).

. An MH can detect whether or not it is connected to
the network.

. An MH informs its HLC before it stores (or updates)
any data item in its local cache.
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1. The HLC model fits perfectly into existing architectures to support
mobility in wireless networks (e.g., Mobile IP [20]) which also uses the
concept of a home agent for each MH.

Fig. 1. Mobile computing environment.



. The static host, which is nearest to the MH and
maintains the HLC of the MH, forwards the MH any
invalidation it receives from the server.

2.2 An Informal Overview

The caching architecture is shown in Fig. 2. A preas-
signed static host of any mobile host (MH) maintains its
home location cache (HLC). If a mobile host is roaming, its
HLC is duplicated at the MSS of its current cell. Thus, an
MSS always maintains a HLC for each MH in its coverage
area at any given time. Consider an MSS with N mobile
hosts (MHi, 1 � i � N) at any given time. For any i, HLCi
for MHi, as maintained in the MSS, keeps track of what data
has been locally cached at MHi (state information of the
MH). In general, HLCi is a list of records �x; T ; invalid flag�
for each data item x locally cached at MHi, where x is the
identifier of a data item and T is the time-stamp of the last
invalidation of x. The key feature of our scheme is that the
invalidation reports are transmitted asynchronously and
those reports are buffered at the MSS (in the HLCs of the
mobile hosts) until an explicit acknowledgment is received
from the specific MH. The invalid flag (in the HLC record
for the specific data item) is set to TRUE for data items for
which an invalidation has been sent to the MH but no
acknowledgment has been received. Note that the time-
stamp is the same as that provided by the server in its
invalidation message.

Each MH maintains a local cache of data items which it
frequently accesses. Before answering any queries from the
application, it checks if the requested data is in a consistent
state. We use call-backs from a MSS to achieve this goal.
When a MSS receives an invalidation from a server, the MSS
determines the set of MHs that are using the data by
consulting the HLCs and sends an invalidation report to
each of them. When a MH receives that invalidation
message, it marks the particular data item in its local cache
to be invalid. When an MH receives (from the application
layer) a query for a data item, it checks the validity of the
item in its local cache. If the item is valid, it satisfies the
query from its local cache and saves on latency, bandwidth
and battery power; otherwise, an uplink request to the MSS
for the data item is required. The MSS make a request to the
server for the data item on behalf of the MH. When the data
item is received the MSS adds an entry to the HLC for the
requested data item and forwards the data item to the

MH. Note that the data item may or may not be cached
at the MSS.

A mobile host alternates between active mode and sleep
mode. In sleep mode, a mobile client is unable to receive
any invalidation messages sent to it by its HLC. We use the
following time-stamp based scheme by which the MA can
decide which invalidations it needs to retransmit to the
mobile host. Each client maintains a time-stamp for its cache
called the cache time-stamp. Cache time-stamp of a cache is
the time-stamp of the last message received by the MH from
its MA. The client includes the cache time-stamp in all its
communications with the MA. The MA uses the cache time-
stamp for two purposes:

1. To discard invalidations it no longer needs to keep,
and

2. To decide the invalidations it needs to resend to the
client.

Upon receiving a message with time-stamp t, the MA
discards any invalidation messages with time-stamp less
than or equal to t from the MH's HLC. Further, it sends an
invalidation report consisting of all the invalidation
messages with time-stamp greater than t in the MH's
HLC to the MH. When a MH wake-ups after a sleep, it
sends a probe message to its HLC with its cache time-stamp.
In response to this probe message, the HLC sends it an
invalidation report. This way an MH can determine which
data items changed while it was disconnected. A MH defers
all queries which it receives after waking up until it has
received the invalidation report from its HLC. In this
scheme, we do not need to know the time at which the MH
got disconnected and just by using cache time-stamp we
can handle both wireless link failures and voluntary
disconnections. Even if the MH wakes up and then
immediately goes back to sleep before receiving the
invalidation report, consistency of the cache is not compro-
mised as it would use the same value of cache time-stamp
in its probe message after waking-up and hence get the
correct information in the invalidation report. Thus,
arbitrary sleep patterns of the MH can be easily handled.

An Example. Consider the example scenario shown in
Fig. 3. Initially, the cache time-stamp of the MH is t0 and
MH's cache has two data items with ids x and z. When MSS
receives an invalidation message notifying it that x has
changed at the server at time t1, it adds the invalidation
message to MH's HLC and also forwards the invalidation
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message to the MH with (data-item id, time-stamp), i.e.,
�x; t1�. On receiving the invalidation message from the MSS,
the MH updates its cache time-stamp to t1 and deletes data
item x from its cache. Later, when MH wants to access y, it
sends a data request with �y; t1� to the MSS. In response to
the data request, the MSS fetches and forwards data item
associated with y to the MH and adds �y; t2� to the MH's
HLC, where t2 is the last updates time-stamp provided by
the data server. The MH updates its time-stamp to t2 and
adds y to its cache. Now, suppose MH gets disconnected
from the network and the invalidation message for y is lost
due to this disconnection. When MH wakes up, it ignores
any invalidation messages it receives (until the first query),
since later, upon the first query after waking up, it sends a
probe message (invalidation check message) to the MSS.
The MSS uses the time-stamp in this probe message to
determine the invalidations missed by the MH and sends an
invalidation report with all the missed invalidations by the
MH. In this case, the MSS determines, from MH's cache
time-stamp t2, that MH has missed invalidation for y and z
and so it resends them to the MH.

2.3 Related Works and Comparison

Existing schemes [3], [16], [14] for maintaining cache

consistency in the event of disconnections in a mobile

environment are all based on callback mechanism. The

basic problem is that the callback break (invalidation)

messages get lost when the client is disconnected. As noted

in introduction, Barbara and Imilienski [3] have developed

a periodic broadcasting invalidation report scheme to

address the problem. In this scheme, a server broadcasts

invalidation reports every L time units that carry informa-

tion about all data items that changed during the past

w � kL time units; a client still has to discard its entire

cache if it is disconnected from the network and misses

k consecutive reports and user queries generated during

the past L time units are answered only after receiving an

invalidation report. Several other schemes have been

proposed with extend broadcasting invalidation reports

scheme with respect to optimizing the size of invalidation

[14] report, adjusting the periodicity of invalidation reports

in accordance to the query rate and client disconnection

time [8], and restricting broadcast to the vicinity of the

mobile client [16]. In [28], Wu et al. have proposed an

enhancement in which the mobile host sends back to the

server the ids of all cached data items along with their time-

stamps after a long disconnection. The server identifies the

changed data items and returns a validity report. This

results in wastage of bandwidth and unnecessary uplink

requests and still does not solve the problem for arbitrarily

long sleeps, as the local cache has to be discarded after a

disconnection of time greater than W . In [13], Jing et al.

have proposed a Bit-Sequence scheme where each data

item in the database is represented by binary bit. The bit-

sequence structure contains more update history informa-

tion than the window w, but results in larger invalidation

reports when only a few things have changed. The cache

still has to be discarded if more than half of the items in

the database have changed. In [8], Wu and Lee have

suggested an adaptive algorithm which predominantly

uses the TS and Bit-Sequence approaches but provides

better tuning of the system according to the current

invalidation and query rates.
The schemes based on synchronous broadcasting invalida-

tion reports have the following characteristics: 1) They
assume a stateless server and do not address the issue of
mobility (except the work by Liu and Maguire [16]). 2) The
entire cache is invalid if the client is disconnected for a
period larger than the period of the broadcast (or some
multiple of it). 3) Scalability for large database systems is
not adequately addressed.

Coda file system [22], [21], [19], [18] provides an alternate

mechanism to provides support for disconnected opera-

tions on shared files in UNIX-like environment. Coda also

uses two mechanisms for cache coherency. When the client

is reachable from at least one server, a callback mechanism

is used. When the disconnection occurs, access to possibly

stale data is permitted at a client for the sake of improving

availability. Upon reconnection only those modification at

the client are committed which do not cause any conflict.

Balance between speed of validating cache (after a

disconnection) and accuracy of invalidations is achieved

by maintaining version time-stamps on volumes (a subtree

in the file system hierarchy). However, validating the

entire cache upon every reconnection may put a unneces-

sary burden on the client. Further, since Coda is a

distributed file system, it assumes a stateful server which

may not be appropriate for other applications, such as

web caching. Also, the server has to keep the cache state

of each client and the client has to perform a volume by

volume validation check after each reconnection.

2.4 Comparison with Our Scheme

As has already been noted, all of the existing schemes are
based on synchronous or periodic broadcast of invalidation
reports. None of these works investigates the effect of using
these schemes on an actual wireless network. All of the
schemes are based on aggregating queries for a fixed period
of time and then answering them after receiving an
invalidation report. This provides very poor network
utilization as there is no traffic for long periods of time
followed by a very heavy burst. This also results in higher
queuing delay for answering a query.

Unlike these strategies, all of which use synchronous
invalidation reports and are based on the basic scheme of
[3], our strategy is (A)synchronous and (S)tateful; we use
the name AS. In order to compare our scheme with the
sleepers and workaholics scheme of [3], we note the salient
features of that scheme as follows:

. A server broadcasts invalidation reports every
L time units which carry information about
all data items that changed during the past
w � kL time units. Two variations of this basic
scheme are suggested: 1) TS, where invalidation
reports carry information about changes in data
items over a larger window (k > 1), and 2) AT, for
which k � 1 (See Fig. 4).
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. Clients maintain local caches and use the informa-
tion in invalidation reports to update their caches.

. If a client is disconnected from the network and
misses k consecutive reports, it discards its local
cache.

. Queries generated during the past L time units are
answered only after receiving an invalidation report.

We also consider an Ideal Scheme to compare our

scheme to with the following characteristics: 1) Whenever

any data is changed at the MSS, the invalidation

information is available to the clients instantaneously at

no cost; 2) The above holds even when the MH is

disconnected from the MSS, i.e., there is no overhead due

to disconnections. Clearly, the ideal strategy is infeasible

for any practical system; nevertheless, it provides useful

reference points on the achievable hit-rate and delay.

Table 1 gives a comparison of the salient features of the

proposed scheme with those of the TS and AT schemes.

Quantitative bounds are shown in Table 2 for a system with

N mobile hosts each of which are caching M data items. The

improvement in performance is achieved at the cost of

maintaining additional buffer space at the MSS; since

memory is cheap especially at the stationary MSS,

performance benefits outweigh this relatively minor cost.

3 FORMAL DESCRIPTION OF THE

PROPOSED SCHEME

3.1 Data Structures

Every data object has an unique identifier. The letters x, y,

and z will be used to denote data identifiers. We will use the

notation Datax to denote the data associated with a data

item with identifier x.
The following data structures are maintained at

each MH:

. ts : Time stamp of the last invalidation report or data
received by the MH from its home MSS.

. cache: Data cache. An item in the data cache is of the
form �x;Datax; V alid flag�. The data Datax can be
considered valid only when the V alid flag is TRUE.

. First Request: A flag set to TRUE when an MH
wakes up and is yet to make its first query after
awakening. The flag is set to FALSE once the the first
request after waking up is made.

. First Waiting : A flag set to TRUE when an MH has
made its first query after getting reconnected to the
network but the data for it has not been received.

The following data structures are maintained at each MSS:

. HLC�1::N�: An array of lists; HLC�i� is a list of
records of the type �x; T ; invalid flag� one for each
data item x cached by MHi; N is the total number of
MHs that are in the cell of the MSS. T is the time-
stamp of the last invalidation of x. The invalid flag
is set to TRUE for data items for which an
invalidation report has been sent but no implicit
acknowledgment has been received.

3.2 Messages

. INVALIDATION_REPORT (item_list, T, first_flag):
Sent to an MH by its home MSS to report
invalidation of data items in item list. T is the
time-stamp associated with this report. first flag is
set if this invalidation report is in response to the
first query of the MH on waking up.
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Comparison of Salient Features of TS/AT and AS Schemes.



. DATA_REQUEST (i; x; t; first request): Sent by MHi

to its MSS to request data item x when x is not found
in its local cache. t is set to the time-stamp ts
maintained by the MH. The flag first request is set if
this is the first data request after the MH regains
connectivity to the network.

. DATA (x;Datax; T ): Broadcast by an MSS to send
data to all MHs caching x. T is a time-stamp set to
the current time at the MSS.

3.3 System Primitives

In designing our algorithm, we assume the availability of

the simple system primitives:

. time��: Returns the current time.

. add: Inserts an item in a set.

. delete: Removes an item from a set.

. wait: Delays the processing of an event until a given
condition is satisfied.

3.4 Pseudocode

An MSS continuously executes the procedure MSS_Main,

shown in Fig. 15. This procedure handles the following

events:

1. MSS receives a request for data from an MH

(DATA_REQUEST): With each request, an MH
sends the time-stamp of the last message it had
received from the MSS. The MSS deletes all the
entries in the HLC for the MH which had been
invalidated before the time-stamp carried in the
message. Since the messages are assumed to be
received in order, this ensures that the MH was
awake at the time each of the invalidations was
received and the MSS no longer needs to buffer the
invalidation.

If the data request is the first after a sleep, all the

items cached by the MH marked invalid since the

last message received by the MH are repeated

through an invalidation report. The invalidation

report carries a time-stamp with it.
Finally the requested data item is sent to the MH

and added to its HLC.
2. Data item(s) updated at MSS: The MSS sends an

invalidation report to all the MHs that are caching
the changed data item and to whom a previous
invalidation has not been sent for the same data. It
also updates the data time-stamp in the HLC for
these MHs and marks those items as invalid.

Each MH continuously executes the procedure MH_Main,

shown in Fig. 16. The following events are handled:

1. MH generates a request for a data item: If the MH
has woken up after a sleep and this is the first
request, it sends a data request for the item and sets
a flag (Flag Waiting) to indicate that the buffered
invalidations during the sleep period have not yet
been received. On receiving those invalidations, it
answers successive queries from the cache.

If the query is not the first after a wake up, the
cache is checked for that data item. If the item is not
in the cache, a data request is sent to the MSS
and the query is answered once the data arrives
from the MSS.

2. MH receives an INVALIDATION_REPORT from

the MSS: The MH sets its cache time-stamp to the
time-stamp in the current message and invalidates in
its cache all the data items mentioned in the report.
All invalidations received between the time an MH
awakens and receives the first query are ignored.

3. MH receives DATA from the MSS: It updates its
cache with the current information and also updates
its cache time-stamp.

4. MH wakes up after a disconnection: It sets the
First Request flag to TRUE.

4 PERFORMANCE ANALYSIS

We develop a simple model to analyze the performance of
the proposed cache management scheme. Specifically, we
want to estimate the miss probability and mean query delay
for the proposed scheme. For the purpose of analysis, we
consider the performance in a single cell, (as mobility is
assumed to be transparently handled) with one MSS and
N mobile hosts. We make the following assumptions:

. Total number of data items is M, each of size ba bits.

. The queries generated by a sleeping MH (i.e., when
the MH is disconnected from the MSS) are lost.

. A single wireless channel of bandwidth W is
assumed for all transmissions taking place in the
cell. All messages are queued to access the wireless
channel and serviced according to the FCFS (First-
Come First-Served) scheduling policy.

. Queries are of size bq bits and invalidations are of
size bi bits.

. Software overheads are ignored.

. Modeling Query-Update Pattern: The time between
updates to any data item is assumed to follow an
exponential distribution with mean 1=�. Each MH
generates a query according to a Poisson distribution
with mean rate of �. These queries are uniformly
distributed over all data items in the database. The
query-update model is shown in Fig. 5.

. Modeling Sleep Pattern for an MH: An MH
alternates between sleep and awake modes. The
sleep/wakeup pattern of an MH is modeled by
using two parameters (see Fig. 6): 1) the fraction s,
0 � s;� 1, of the total time spent by an MH in the
sleep mode and 2) The frequency ! at which it
changes state (sleeping or awake). We consider an
exponentially distributed interval of time t with
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mean 1=!. The MH is in the sleep mode for time st,
and in the awake mode for time �1ÿ s�t. By varying
the value of !, different frequencies of change of
state can be obtained for the same total sleep time.

We want to estimate the average hit ratio at the local cache

of an MH, i.e., the percentage of queries, generated at an

MH that would be satisfied by the local cache and the

average delay experienced in answering a query.

4.1 Estimation of Hit Ratio

Since the queries generated by a sleeping MH are lost, the
effective rate of query generation, �e, by an MH can be
approximated as

�e � �1ÿ s��:
Since queries are uniformly distributed, the rate at which

queries are generated for a given data item x, �x, is given by

�x � �e
M
� �1ÿ s��

M
:

A query made for a specific data item x by an MH would

be a miss in the local cache (and would require an uplink

request) in case of either of the following two events

(Consider the time interval t between the current query for

x and the immediately preceding query for x by the MH):

1. Event 1: During this interval t, the data item x has
been invalidated at least once (see Fig. 7a).

2. Event 2: Data item x has not been invalidated during
the interval t; the MH has gone to sleep at least once
during the interval t, it woke up last time at time

tÿ t1 and the current query is the very first one after
waking up from last sleep (Fig. 7b). Note that the
first query generated by a sleeping MH after waking
up needs an uplink request to the MSS regardless of
whether the required data item is in the local cache.

We compute the probabilities of Event 1 and Event 2 as
follows:

. Probability of miss due to absence of valid data item
in cache:

P �Event1� �
Z 1

0

��xeÿ�xt��1ÿ eÿ�t�dt

� �

�x � � �
M�

�1ÿ s���M�
:

. Probability of miss due to disconnection:

P �Even 2� �Z 1
0

�P �no invalidation and query for x during time t�
� P �the query �for x� is 1st after wakeup��dt:

The first factor in the expression is given by (note

that there is a query at time t) �xe
ÿ�xteÿ�t. The

second factor can be evaluated as follows:

P �the query �for x� is 1st after wakeup�

�
Z t

t1

P �no query or sleep during interval

tÿ t1after last wakeup�dt1
�
Z t

t1

�P �at least one sleep during interval tÿ t1�

� P �no query or sleep during t1 given at

least one during tÿ t1��dt1
�
Z t

t1

�xe
ÿ�xteÿ�t 1ÿ eÿ!�tÿt1�

� �
dt1

� !

!� �e 1ÿ eÿ�!��e�t
� �

ÿ !

�e
eÿ!t ÿ e�ÿ!��e�t
� �

��; say:
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Fig. 6. Modeling sleep behavior of an MH.

Fig. 7. Two mutually exclusive events when uplink request messages
are needed. (a) Miss due to absence of valid data item in cache. (b) Miss
due to disconnections.

Fig. 5. Modeling query-update pattern.



Thus, the probability P �Event2� can now be
evaluated as:

P �Event2�
�
Z 1

0

�xe
ÿ�xteÿ�t�dt

� !�x
�e�!� �e�

�e
�� �x ÿ

!� �e
�� �x � !�

!

�� �x � �x � !
� �

:

The probability, Pmiss, of a query requiring a uplink
request is the sum of the probabilities for Event 1
and Event 2 and is given by

Pmiss � P �Event 1� � P �Event 2�;
and the probability of a hit is

Phit � 1ÿ Pmiss:

4.2 Estimation of Mean Query Delay

We now estimate the mean query delay Tdelay. Note that a
single wireless channel of bandwidth C is assumed for all
transmissions taking place in the cell and all messages are
queued to access the wireless channel and serviced
according to the FCFS scheduling policy; also, queries are
of size bq bits and invalidations are of size bi bits.

In order to determine Tdelay, we do the following:

. Model the servicing of uplink queries as a M/D/1
queue under the assumption that there is a
dedicated uplink channel of bandwidth C. The
query arrival rate �q is estimated to be NPmiss�e
since there are N MHs in a cell and, for each MH
in the cell, the uplink query generation rate is
Pmiss�e. The query service rate �q is then estimated
to be C

�bq�ba� .
. Model the servicing of invalidation on down-link

channel as a M/D/1 queue under the assumption
that there is a dedicated down-link channel of
bandwidth C. The average invalidation arrival rate
�i is estimated to be M� and the invalidation service
rate �i is then estimated to be C=bi.

. In order to model a single wireless channel of

bandwidth C for both uplink and down-link traffic

and estimate the mean query service rate Tq on this

shared channel, we combine both uplink and down-

link M/D/1 model. Since we are interested in only

the query service rate, the invalidations on the

channel merely add to the delay in servicing the

queries. Thus, we assume that the service rate of the

channel for both types of traffic to be �q, the service

rate for queries, and adjust the arrival rate of

invalidations in proportion to the service rate of

queries. Thus, the effective arrival rate of invalida-

tions is taken as ~�i � �i
�q
�i. The combined M/D/1

queue is shown in Fig. 8. Using the standard

queuing theory result for an M/D/1 queue, the

average delay experienced by a query going uplink

is given by [12]:

Tq � 2�q ÿ ��q � ~�i�
2�q��q ÿ ��q � ~�i��

:

. All queries that are cache hits do not experience any
delay. Thus, the average delay experienced by any
query in the system is given by Tdelay � PmissTq.

5 PERFORMANCE COMPARISON

5.1 Experimental Setup

We simulated our proposed scheme of cache invalidation in

a single cell with a base station and varying number of

mobile hosts. We experimented for different rates of

invalidation of data items. The purpose of the experiments

were twofold: 1) To investigate how closely the experi-

mental results coincide with the values for performance

metrics (delay, uplink requests) predicted by our simple

model and 2) to investigate how efficiently our proposed

scheme AS manages disconnection in a mobile environ-

ment. For this purpose, we experimentally compared our

scheme AS with the Ideal Scheme. The default parameters

used for each scenario are as shown in Table 3. Delay is

defined to be the time it takes to answer a query. The delay

is assumed to be zero when there is a local cache hit.

5.2 Experimental Results

5.2.1 Comparision at Low Data Invalidation Rate

The first scenario studies the performance of the TS

and AS schemes when the data changes infrequently.
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Fig. 8. Combining the uplink and down-link M/D/1 queues.

TABLE 3
Default Parameters for AS and AT/TS.



The value of � used is 10ÿ4 updates/sec. Delay and

number of uplinks per query were studied by varying

s. The TS scheme performs better than the AT scheme at

low invalidation rates.
Delay. Fig. 9a shows the variation in average delay with

the sleep characteristics of the mobile hosts. For the
TS scheme delay has two components: query's waiting
time to be serviced by the MSS and the time it must wait
for the next invalidation report to be broadcast (to ensure
the data item has not been invalidated since the last
update was received). Only the network delay component
is shown. If the time to wait for the next invalidation
report is added, an additional L=2 delay is seen for AT/TS.
A significant improvement in total delay is seen when the
AS strategy is used. The network delays are higher for TS as
queries tend to go uplink in bursts causing congestion in the
network. This is a consequence of waiting for the next
invalidation report to arrive to answer the query. The delay
for the TS scheme increases with s, as the cache has to be
discarded more often reducing the hit rate and generating
more uplink queries. However, the total query rate is
reduced as the sleep rate increases. At very high sleep rates
this effect dominates and the delay decreases.

Uplinks. Fig. 9b shows the variation in the number of

uplinks per query with the sleep characteristics of mobile

hosts. AS requires an uplink for the first query after every

sleep interval. If the item queried is already in the cache and

not invalidated, then this uplink is additional to the Ideal

scheme. Thus, AS has a marginally higher number of

uplinks per query as opposed to the Ideal scheme

which increase as the sleep rate increases. The shape of

the TS curve can be explained based on the fact that it

has to discard its cache after an extended sleep. This

results in low hit rates and more uplink queries. The effect

is not so dominant when the sleep rate is low but

increases as the average sleep percentage increases.

5.2.2 Comparision at High Data Invalidation Rate

In this section, we present results for a scenario where the
data in the network changes frequently. The data change
rate � is assumed to be 1=1800 updates/sec. All other
parameters are as in Table 3. We compare our AS scheme
only to the AT scheme since the AT scheme performs better
than the TS scheme at high invalidation rates. This is
because the AT scheme wastes less bandwidth than the
TS scheme by not repeating the same invalidation report
multiple times.

Delay. Fig. 10a shows a plot of average delay against s.
The network delays are slightly higher as compared to
Fig. 9. This is due to additional invalidation reports being
sent in the AS scheme and the increase in size of each
report for the AT scheme. The decrease at a very high
sleep rate is due to the number of queries decreasing as
most hosts are sleeping. There is an almost 7 to 8 times
improvement in overall delay (network delay + wait for
next report) when the AS strategy is compared to AT
similar to Fig. 9.

Uplinks. Fig. 10b shows the variation of the number of
uplinks per query with the sleep rate. As the invalidation
rate is high the cache is less effective and more
queries result in uplinks as compared to the scenario
of Section 5.2.1. In the AT/TS strategy, the MH must
wait for the next invalidation to come before it can answer
a query. Since the time window for answering a query is
greater, there is a greater probability that the item would
be invalidated by that time. The hit rate of the cache is
therefore poorer. This, combined with the drop in hit rate
due to discarding the cache, contributes to the number of
uplinks for AT. AS performs marginally worse than the
Ideal scheme as in the case of low invalidation rate.

5.2.3 Comparison with Ideal Scheme

Fig. 11a and Fig. 11b show the delay and uplinks per query,
respectively, at different query rates for the ideal and AS
schemes. As the number of queries per second increases,
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Fig. 9. Delay and uplinks at high invalidation rate. (a) Delay. (b) Uplinks.



both the number of uplinks per query and the average delay

to answer a query increase. This is consequence of the

decrease in hit rate. As there is a greater delay between

queries, the probability of an invalidation occurring

between queries increases. This results in more uplinks

and higher delay. As the sleep rate increases, the probability

of an invalidation between successive queries increases

even further. In all cases, the plots for AS closely follow that

of the ideal scheme with the gap increasing as the sleep rate

increases.

5.2.4 Model Validation

Fig. 12 shows the comparison between the miss rate for the

proposed AS scheme obtained through simulation and that

predicted by the mathematical model (MM). Fig. 13

shows the comparison between the delay for the

proposed AS scheme obtained through simulation

(denoted as Sim in the plots) and that predicted by the

mathematical model. The model captures the behavior

very well and the results are closer at low invalidation
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Fig. 11. Delay and uplinks compared with Ideal scheme at low invalidation rate. (a) Delay. (b) Uplinks.

Fig. 10. Delay and uplinks at high invalidation rate. (a) Delay. (b) Uplinks.



rates. This is because of the heuristic used in the

modeling for estimating the equivalent arrival rate of

invalidation messages.

6 CONCLUSIONS

We have presented a cache maintenance (invalidation)

strategy for a distributed system that is predisposed to

frequent disconnections. Such disconnections happen in a

mobile wireless environment due to various reasons. The

proposed algorithm minimizes the overhead preserving

bandwidth, reducing the number of uplink requests and

average latency. State information about the local cache at

MH with respect to data items is maintained at the home

MSS; by sending asynchronous call-backs and buffering
them till implicit acknowledgments are received, the cache
continues to be valid even after the MH is temporarily
disconnected from the network. We have provided both
theoretical and experimental comparison of the proposed
scheme with the existing ones.

In Coda, the server maintains state information for all the
clients. As opposed to this, in our scheme, the state
information is maintained at the home MSS of a mobile
client. A server only needs to maintain information
regarding which MSSs in the network need invalidation
reports. It is expected that the number of mobile hosts will
far exceed the number of static hosts. Hence, the amount of
state information stored at each server is significantly
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Fig. 12. Uplinks: Simulation and mathematical model. (a) High invalidation rate. (b) Low invalidation rate.

Fig. 13. Delay: Simulation and mathematical model. (a) High invalidation rate. (b) Low invalidation rate.



reduced. Maintaining state information at the MSS can be

considered as an overhead, but has the capability to provide

various other benefits beyond this scheme. For example,

profiling techniques can be used by the MSS to determine
what to cache at the hosts when cache space is limited [25]. It
is expected to provide a platform to enable prefetching of
data [5] or hoarding of files [15] at the clients.

The proposed scheme ensures, in absence of any loss of
invalidation reports in wired network, that the data
returned to a mobile client is at most � seconds old, where
� is the maximum latency of forwarding an invalidation
report from the server to the client via its home MSS. This is
different from the Coda scheme where a diconnected client
is allowed both read and write access to its cached data.
When the client gets reconnected, its cached data is
reintegrated with the server data. The user needs to resolve
any conflict arising from independent modification of data
by multiple disconnected clients. Coda's design is suitable
for its goals, i.e., providing Unix-like file system semantics
in an environment where write-write conflicts are rare (e.g.,
college campus) and access to stale data does not lead to
dire consequences or is detectable by the application. As
opposed to this, our scheme is targeted towards applica-
tions which require strict data currency guarantees and
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Fig. 14. Delivering message to an MH in Mobile IP.

Fig. 15. Event handler for an MSS.



where access to stale data is undesirable. Such applications
include access to critical data such as bank account
information and air traffic information.

The proposed scheme can be easily integrated with

Mobile IP. In the mobility management scheme used in

Mobile IP, each mobile host has a home address and a care-

of-address. The home address is the IP address on the home

network of the mobile host. The care-of-address is the

address indicating the current location of the mobile host.

Two architectural entities, a home agent and a foreign

agent, are used in Mobile IP to deliver datagrams to mobile

clients. A home agent tunnels (encapsulates in another

datagram packet) any datagrams sent to the mobile client at

its home address to its current care-of-address(es). A

foreign agent (in case mobile uses foreign care-of-address)

on the current network of the mobile client decapsulates the

packet and delivers it to the mobile client to which the

datagram is addressed (see Fig. 14). We assume that the

mobility agents (home or foreign agent) (MAs) are located

at the MSSs. The HLC of a mobile host can be maintained by

the home agent. Further, the HLC can be replicated with the

foreign agent when the mobile host moves to a foreign

network. A possible future work would be to incorporate

our caching scheme in a Mobile IP implementation and

measure its performance.
The performance analysis and simulation results show

the benefits in terms of bandwidth savings (reduction in
uplink queries) and data acess latency compared to Barbara
and Imilienski's caching schemes [3] which provide similar
data currency guarantees as the proposed scheme. In this
paper, we have studied the combined effect of a mobility
pattern and disconnections on our mobility scheme. Future
work includes studying the effect of different mobility
patterns on latency, hit ratio, and cost of invalidations.
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Fig. 16. Event handler for an MH.
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