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Abstract— In mission-critical applications deployed in mobile ad hoc networks, very frequently a 

commander will need to assemble and dynamically manage Community of Interest (COI) mobile groups to 

achieve the mission assigned despite failure, disconnection or compromise of COI members. In this paper, 

we present a dynamic hierarchical trust management protocol that can learn from past experiences and 

adapt to changing environment conditions (e.g., increasing misbehaving node population, evolving hostility 

and node density, etc.) to enhance agility and maximize application performance. With trust-based 

misbehaving node detection as an application, we demonstrate how our proposed COI trust management 

protocol is resilient to node failure, disconnection and capture events, and can help maximize application 

performance in terms of minimizing false negatives and positives in the presence of mobile nodes exhibiting 

vastly distinct QoS and social behaviors.  

Keywords— Hierarchical trust management; Community of interest groups; Intrusion detection. 

I. INTRODUCTION 

In military operation or emergency response situations, very frequently a commander will need to 

assemble and dynamically manage Community of Interest (COI) mobile groups to achieve a critical mission 

assigned despite failure, disconnection or compromise of COI members. COI-HM [8, 12] was proposed to 

achieve scalability and reconfigurability following the command chain of commander->leader->COI 

members. Under COI-HM, a COI is divided into multiple subtask groups to accomplish a mission. Each 

subtask group would be governed by a subtask group leader (SGL) dynamically appointed by the COI 

commander responsible for relaying commands from the commander to the COI group members in the 

subtask group, and filtering messages sent by COI members in the same subtask group to COI members 

located in other subtask groups. COI members in one subtask group may be reassigned to another subtask 

group for tactical reasons, thus triggering registration/deregistration actions to the subtask group leaders to 

maintain the hierarchical structure.  

This hierarchical management structure is generic and can be applied to various mission scenarios. 



Subtask groups may be physically co-located or separated. A node may be assigned to one or more subtasks, 

depending on node properties (e.g., manned or unmanned) and subtask group characteristics (functionality, 

difficulty, urgency, importance, risk, size, and composition). Thus, a node’s mobility model reflects its 

assignment, de-assignment or reassignment to subtask groups, as well as its mobility pattern moving around 

the subtask groups it is assigned to. In military applications, very frequently a COI consists of 

heterogeneous nodes with vastly different levels of functionality, capacity and resources. A SGL is 

presumably a higher-capacity node and would be assigned, de-assigned, or reassigned dynamically by the 

COI-commander to lead a subtask group.  

Despite providing scalability and reconfigurability, COI-HM does not provide tolerance against node 

compromises and collusion as there is no mechanism to defend against inside attackers or malicious nodes. 

Existing intrusion detection system (IDS) techniques based on anomaly or pattern-based detection are either 

centralized (especially for wired networks) which creates a single point of failure, or too complex for 

distributed execution in heterogeneous mobile networks at runtime.  

In this paper, we propose COI dynamic hierarchical trust management (COI-HiTrust) for intrusion 

tolerance and survivability. COI-HiTrust runs on top of COI-HM, so it can achieve scalability and 

reconfigurability since nodes will only interact with peers in the same subtask group and do not assess trust 

about every node in the network. In addition as we will demonstrate later, it also achieves trust resiliency 

and accuracy against inside attackers or malicious nodes.  

In the literature there is a large body of trust management protocols for MANETs [1, 9, 10, 16, 17, 20, 

23, 27, 36-40]. However, there is very little research on hierarchically structured trust management protocol 

design for MANETs. Verma et al. [16] and Davis [17] considered hierarchical trust management for 

MANETs. However, their schemes heavily rely on the certificates issued off-line or by trusted third parties 

which typically are not available in MANET environments. Bao et al. [14, 24] and Li et al. [19] considered 

hierarchical trust management in wireless sensor networks without considering node mobility. Zhang et al. 

[25] proposed a hierarchical trust architecture for wireless sensor networks and considered the dynamic 

aspect of trust by introducing a trust varying function. However, their work is theoretical in nature without 

addressing what trust attributes should be used (a trust composition issue), how trust is aggregated 

accurately (a trust aggregation issue), or what weights should be put on trust attributes to form trust (a trust 

formation issue). On the contrary, our work addresses all three aspects of trust management. Moreover, we 

propose the concept of dynamic hierarchical trust management by which trust protocol parameter settings 

can be dynamically adjusted in response to changing environments to minimize trust bias and maximize 

application performance.  



We envision the following original contributions from this work: 

1. Unlike most existing reputation and trust management schemes for mobile ad hoc networks in the 

literature [10], we consider not only traditional “QoS trust” derived from communication networks, 

but also “social trust” derived from social networks [2, 3] to obtain a composite trust metric as a basis 

for evaluating trust of mobile nodes in COI applications. Moreover, we are the first to propose the 

new design notion of mission-dependent trust formation with the goal to enhance mission agility and 

maximize mission survivability despite the presence of malicious, erroneous, partly trusted, uncertain 

and incomplete information. 

2. We design and validate COI-HiTrust as a dynamic hierarchical trust management protocol that can 

learn from past experiences and adapt to changing environment conditions (e.g., increasing or 

decreasing hostility, increasing misbehaving node population, etc.) to maximize application 

performance and enhance operation agility. This is achieved by addressing critical issues of 

hierarchical trust management for COI applications, namely, trust composition, aggregation, 

propagation, and formation. The learning process and adaptive designs of COI-HiTrust are reflected in 

trust aggregation, trust propagation and trust formulation. For trust composition, aggregation and 

propagation, we first explore novel social and QoS trust components and then devise trust aggregation 

and propagation protocols (for trust data collection, quality-of-information dissemination and 

analysis) for peer-to-peer subjective trust evaluation of individual social and QoS trust components, 

and prove the accuracy by means of theoretical analysis with simulation validation. The weights to 

direct trust and indirect trust are dynamically adjusted based on environment conditions to minimize 

trust bias. For trust formation, we explore a new design concept of mission-dependent trust formation 

allowing trust being formed out of social and QoS trust components to maximize application 

performance. We use a misbehaving node detection application as an example to illustrate the design 

concept. Dynamic trust management (to be discussed in more detail in Section VII) is achieved by 

first determining the best trust formation model given a set of model parameters specifying the 

environment conditions (e.g., percentage of malicious nodes), and then at runtime COI-HiTrust learns 

and adapts to changing environment conditions by using the best trust formation model identified 

from static analysis.  

3. To achieve the goals of identifying the best trust composition and trust formation for mission-oriented 

COI mobile group applications, we develop a novel model-based analysis methodology for analyzing 

and validating COI-HiTrust. The novelty lies in the new design notion of objective trust derived from 

global knowledge or ground truth derived from the mathematical model describing a COI against 



which subjective trust obtained as a result of executing COI-HiTrust may be compared and validated. 

This paper substantially extends from [41] by adding simulation validation using ns-3 (Section V) as well 

as new materials, including a theoretical analysis of the protocol’s convergence, accuracy and resiliency 

properties (Section IV), a sensitivity analysis of the effect of trust formation on application performance 

(Section VI), and a discussion on applicability (Section VII). The rest of the paper is organized as follows. 

Section II describes the system model and COI Architecture. Section III describes COI-HiTrust and explains 

the hierarchical trust protocol design for managing COI groups in MANETs. Section IV conducts a 

theoretical analysis of the convergence, accuracy and resiliency properties of COI-HiTrust. Section V 

develops a novel model-based approach to describe dynamic behaviors of nodes in MANETs in the 

presence of misbehaving nodes with the objective to yield objective trust against which subjective trust 

from executing COI-HiTrust may be compared for trust bias minimization. A performance evaluation is 

performed to demonstrate trust resiliency, convergence and accuracy properties with ns-3 simulation 

validation. In Section VI, we apply the hierarchical trust management protocol to trust-based intrusion 

detection to illustrate the design concept of application performance optimization with results and physical 

interpretations given. Section VII discusses how the results obtained can be applied for dynamic hierarchical 

trust management. Finally in Section VIII we conclude the paper and outline some future research areas. 

II. SYSTEM MODEL 

2.1 COI Architecture 

We assume that COI members move from one subtask to another due to task assignment, de-assignment, 

or reassignment, as dictated by the needs which arise during mission execution. A node can move around 

multiple subtask groups if it is assigned to multiple subtask groups. The node mobility model is therefore 

application-dependent and is given as input. A special case is that subtask groups each occupy a region in an 

operational area for military operation purposes. In this scenario, a mobility event occurs when a node 

moves across a regional boundary. One can reduce the regional size to the radio range to ensure that 

mobility and instability of radio environments will not be a major factor to prevent members of a subgroup 

from communicating directly with the SGL. Each subtask group would be governed by a SGL dynamically 

appointed by the COI commander. When a COI member in one subtask group moves to another subtask 

group, it triggers registration and deregistration actions to the two involving SGLs. 

We assume that for security reasons, each node has a unique public/private key pair using Public Key 

Infrastructure (PKI) and the public key must remain valid throughout its lifetime as a member in the COI. 

PKI can effectively detect identity attacks [22] and derivatives extending from identity attacks such as Sybil 



attacks, and outside attackers (i.e., attackers who are not members of the COI). However, it does not provide 

tolerance against compromised nodes (or inside attackers).    

Our solution is COI-HiTrust (to be described in detail in Section III) with intrusion detection as an 

application. During mission execution, each COI member performs COI-HiTrust to evaluate trust of its 

peers within the same subtask group. Each SGL performs COI-HiTrust to evaluate trust of other SGLs in the 

COI group. A SGL collects trust evaluation results from the COI members within the subtask group and 

performs a summarized trust evaluation for each COI member in its subtask group. The commander collects 

trust evaluation results from the SGLs within the COI group and performs a summarized trust evaluation for 

each SGL. A SGL may be assigned, de-assigned, or reassigned depending on the evaluation result. 

COI-HiTrust evaluates nodes based on both social trust and QoS trust for successful mission execution 

[10]. Social trust derives from the concept of social networks [2-4], including honesty, intimacy, selfishness, 

betweenness centrality, and social reputation. A COI would consist of heterogeneous mobile entities such as 

device-carry soldiers, robotic vehicles, or ground vehicles operated by humans. Therefore, unlike traditional 

network research, social trust must be considered between these mobile agents. For example, honesty is 

about integrity and may be considered as important as, if not more important than, competence (which is not 

a social trust metric) for a COI mission that concerns mission security. We use social networks to evaluate 

the social trust value of a node in terms of the degree of personal or social trends, rather than the capability 

of executing a mission based on past collaborative interactions. The latter belongs to QoS trust by which a 

node is judged if it is capable of completing an assigned mission as evaluated by communication networks. 

More specifically, QoS trust represents competence, dependability, reliability, successful experiences, and 

reputation or positive recommendations on task performance forwarded from direct or indirect interactions 

with others.  

2.2 Attack Model 

We assume that a bad node can be selfish or malicious. A malicious node is necessarily selfish. A selfish 

node may act uncooperatively, the degree of which depends on whom it works with (e.g., a friend or not) 

and whether it gains its utility. A malicious node is essentially an inside attacker who performs various 

attacks to disrupt the operation of a mission. A bad node can perform the following trust-related attacks to 

disrupt the trust system: 

1. Self-promoting attacks: a malicious node can promote its importance (by providing good 

recommendations for itself) so as to improve its trust status. Our trust protocol deals with self-promoting 

attacks by considering honesty as a trust property to detect self-promoting attacks.  



2. Discriminatory attacks: a socially selfish node can discriminatively attack non-friends or nodes without 

strong social ties because of human nature or propensity towards friends. Our trust protocol deals with 

discriminatory attacks by considering intimacy as a trust property.  

3. Bad-mouthing attacks: a malicious node can ruin the reputation of a well-behaved node by providing 

bad recommendations against the good node. This is a form of collusion attacks, i.e., it can collaborate 

with other bad nodes to ruin the reputation of a good node. Our trust protocol deals with bad-mouthing 

attacks by considering honesty as a trust property. 

4. Ballot-stuffing attacks: a malicious node can boost the reputation of another bad node by providing good 

recommendations for it. This is also a form of collusion attacks, i.e., it can collaborate with other bad 

nodes to boost the reputation of each other. Our trust protocol deals with ballot-stuffing attacks by 

considering honesty as a trust property. 

A malicious node can perform Sybil and identity attacks. We assume such attacks are detected by PKI 

techniques [22] and the offenders will be evicted from the system. More specifically, each node has a 

private key and its certified public key available. A node’s identity is authenticated based on the node’s 

public/private key pair by applying the challenge/response mechanism. Consequently, every node in our 

COI architecture has a unique identity. A cooperative attack means that malicious nodes in the system boost 

their allies and focus on particular victims in the system to victimize. Bad-mouthing and ballot-stuffing 

attacks are a form of cooperative attacks to ruin the reputation of (and thus to victimize) good nodes and to 

boost the reputation of bad nodes. COI-HiTrust is said to be resilient to the above trust-related attacks when 

the “subjective trust” as a result of COI-HiTrust execution, is close to the “objective trust” despite the 

presence of malicious nodes performing these attacks. 

III. COI-HITRUST PROTOCOL FOR COI DYNAMIC HIERARCHICAL TRUST MANAGEMENT 

Our protocol design starts by applying COI-HM [8, 12] by which we divide a COI into subtask groups. A 

node only needs to do trust evaluation of other nodes in the same subtask group. A node can send/receive 

messages to/from another node directly if they are in the same subtask group, or indirectly through the two 

nodes’ SGLs if they are not in the same subtask group provided they are considered trustworthy by the SGLs, 

i.e., passing the runtime trust test. Similarly each SGL must pass the runtime trust test to stay in the system. 

Mobility management is an inherent part of COI-HM as the node mobility model represents how and when a 

node moves from one subtask group to another due to task assignment, de-assignment, or reassignment, as 

well as how and when a node moves around subtask groups if it is assigned to multiple subtask groups. For 



the special case in which each subtask group occupies a region in an operational area, a mobility event occurs 

when a node moves across a regional boundary. 

3.1 Two Levels of Subjective Trust Evaluation 

COI-HiTrust maintains two peer-to-peer levels of trust in the COI-HM framework: node-level trust and 

SGL-level trust. Each node evaluates other nodes in the same subtask group (node-to-node) while each SGL 

evaluates other SGLs (SGL-to-SGL) and nodes (SGL-to-node) in its subtask group. The peer-to-peer trust 

evaluation is periodically updated based on either direct observations or indirect observations. When two 

nodes are neighbors within radio range, they evaluate each other based on direct observations via snooping or 

overhearing. Each node sends its trust evaluation results toward other nodes in the same subtask group to its 

SGL. Each SGL performs trust evaluation toward all nodes within its subtask group. Similarly, each SGL 

sends its trust evaluation results toward other SGLs in the COI system to the commander. The commander 

performs trust evaluation toward all SGLs (commander-to-SGL) in the system. A SGL is responsible for 

misbehaving node detection for nodes in its subtask group, while the commander is responsible for 

misbehaving SGL detection for all SGL nodes in the system. The commander node is one of the SGLs and is 

reelected periodically to remove a single point of failure. We follow the election protocol in [8] to 

periodically reelect the commander node from among the SGLs. The event can be triggered by other non-

commander SGL nodes during the SGL-to-SGL trust evaluation process. 

Our hierarchical trust management protocol dynamically performs trust evaluation and is inherently robust 

to mobility and instability of radio environments. Specifically, a SGL collects trust evaluation reports toward 

a particular member from all other members within its subtask group in each trust update interval. So a SGL 

will be able to perform SGL-to-node trust evaluation as long as it receives a majority of all reports. In case it 

does not receive enough reports in a trust interval, it can always do so in the next trust interval as soon as the 

radio communication is resumed.  

3.2 Trust Aggregation and Propagation for Peer-to-Peer Trust Evaluation 

We advocate that both social trust components such as connectivity, intimacy, honesty and unselfishness, 

and QoS trust components such as competence, reliability and delivery ratio be considered. Let X denote a 

trust component selected and let 𝑇𝑖𝑗
𝑋(𝑡) denote node i’s assessment toward node j in trust property X at time t. 

Below we describe how trust aggregation and trust propagation for peer-to-peer trust evaluation are 

conducted between two COI members in the same subtask group (i.e., node-to-node trust evaluation) or two 

SGLs in a COI (i.e., SGL-to-SGL trust evaluation). 



 

j i

past experiences
direct 

observations

new trust value

k2

j
i

k1

k3

past experiences

new trust value

recommendations

Figure 1(a): Node i evaluates node j with 

direct observations and past experiences 

in trust property X.

Figure 1(b): Node i evaluates node j with 

recommendations and past experiences 

in trust property X.

)(tTX

ji)(tTX

ji

X1
X1

X
X

 

As illustrated in Figure 1, when a trustor node (node i) evaluates a trustee node (node j) in the same level 

at time t, it updates 𝑇𝑖𝑗
𝑋(𝑡) as follows: 

𝑇𝑖𝑗
𝑋(𝑡) = {

(1 − 𝛼𝑋)𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡) + 𝛼𝑋𝑇𝑖𝑗

𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)        if 𝑖 and 𝑗 are 1‐ hop neighbors

avg
𝑘∈𝑁𝑖

{(1 − 𝛾 𝑋)𝑇𝑖𝑗
𝑋(𝑡 − ∆𝑡) + 𝛾 𝑋𝑇𝑘𝑗

𝑋,𝑟𝑒𝑐𝑜𝑚(𝑡)}                                   otherwise 
 (1)  

In Equation 1 if node i is a 1-hop neighbor of node j at time t, node i will use its direct observations 

(𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)) and past experiences (𝑇𝑖𝑗

𝑋(𝑡 − ∆𝑡) where ∆𝑡 is a trust update interval) toward node j to update 

𝑇𝑖𝑗
𝑋(𝑡). This is illustrated in Figure 1(a). We use a design parameter 𝛼𝑋 with 0 ≤ 𝛼𝑋 ≤ 1 to weight these two 

contributions and to consider trust decay over time for trust property X. A larger 𝛼𝑋  means that trust 

evaluation will rely more on direct observations. Here 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) indicates node i’s trust value toward node 

j based on direct observations accumulated over the time period [0, 𝑡] possibly with a higher priority given to 

more recent interaction experiences.  

On the other hand, if node i is not a 1-hop neighbor of node j, node i will use its past experiences (𝑇𝑖𝑗
𝑋(𝑡 −

∆𝑡)) and recommendations (𝑇𝑘𝑗
𝑋,𝑟𝑒𝑐𝑜𝑚(𝑡)′𝑠 where k is a recommender) to update𝑇𝑖𝑗

𝑋(𝑡). This is illustrated in 

Figure 1(b). Here 𝑇𝑘𝑗
𝑋,𝑟𝑒𝑐𝑜𝑚(𝑡) is the recommendation from node k toward node j in component X and can be 

just 𝑇𝑘𝑗
𝑋 (𝑡). A parameter 𝛾 𝑋 is used here to weigh these two contributions and to consider trust decay over 

time as follows: 

𝛾 𝑋 =
𝛽𝑋𝑇𝑖𝑘(𝑡)

1 + 𝛽𝑋𝑇𝑖𝑘(𝑡)
 (2)  



For ease of disposition, here we introduce another parameter 𝛽𝑋 ≥ 0 to specify the impact of “indirect 

recommendations” on 𝑇𝑖𝑗
𝑋(𝑡) such that the weight assigned to indirect recommendations is normalized to 

𝛽𝑋𝑇𝑖𝑘(𝑡) relative to 1 assigned to past experiences. Essentially, the contribution of recommended trust 

increases proportionally as either 𝑇𝑖𝑘(𝑡) or 𝛽𝑋 increases. Instead of having a fixed weight ratio 𝑇𝑖𝑘(𝑡) to 1 for 

the special case in which 𝛽𝑋 = 1, we allow the weight ratio to be adjusted by adjusting the value of 𝛽𝑋 and 

test its effect on protocol resiliency against good-mouthing and bad-mouthing attacks. Here, 𝑇𝑖𝑘(𝑡)is node i’s 

trust toward node k as a recommender (for node i to judge if node k provides correct information). 

Furthermore, to enhance QoI trust propagation, node i will only use its 1-hop neighbors  (𝑁𝑖) who are 

considered trustworthy (i.e., passing the RTT trust threshold) as recommenders. The new trust value 𝑇𝑖𝑗
𝑋(𝑡) in 

this case would be the average of the combined trust values of past trust information and recommendations 

collected at time t.  

Our assertion is that, because different trust properties have their own intrinsic trust nature and react 

differently to trust decay with time, each trust property X has its own best (𝛼𝑋 ,  𝛽𝑋 ) set under which 

subjective assessment of 𝑇𝑖𝑗
𝑋(𝑡) from Equation 1 would be the most accurate against actual status of node j in 

trust property X.  To discover the best (𝛼𝑋, 𝛽𝑋) set for trust property X, we resort to the development of a 

mathematical model describing the dynamic behavior to yield actual status of node j. 

3.3 Mechanisms for Evaluating Direct Trust 𝑻𝒊𝒋
𝑿,𝒅𝒊𝒓𝒆𝒄𝒕(𝒕) 

In Equation 1 there is a direct trust term 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) computed by node i toward node j based on 

evidences observed by node i. For each trust property X, this work will develop and validate evidence-based 

trust aggregation protocols executed by node i such that 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) thus obtained is accurate against actual 

status of node j at time t. Below we describe trust aggregation protocols by which node i can collect 

evidences to assess 𝑇𝑖,𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) for the case in which i and j are 1-hop neighbors at time t for X=intimacy, 

honesty, unselfishness (social components) and competence (a QoS component) below. 

 𝑇𝑖,𝑗
 𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡): This measures intimacy or closeness of node i toward node j. It follows the maturity 

model proposed in [1] in that the more interaction experiences A had with B, the more trust and confidence 

A will have toward B. The mechanism for node i to compute 𝑇𝑖,𝑗
 𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is as follows: If node j is a 

friend to node i as deriving from a “friendship” matrix [6], then 𝑇𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) = 1.  Otherwise node i 

computes 𝑇𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) by the ratio of the number of interactions it has with node j during [𝑡 −

𝑑∆𝑡, 𝑡] to the maximum number of interactions with any other node. Here d is the window size giving 



recent interaction experiences higher priority over ancient experiences. Note that for encounter-based COI 

applications, encountering experiences are interaction experiences. In this case, 𝑇𝑖,𝑗
𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is 

computed by the ratio of the amount of time nodes i and j are 1-hop neighbors during [𝑡 − 𝑑∆𝑡, 𝑡].  

 𝑇𝑖,𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) : This refers to the belief of node i that node j is honest based on node i’s direct 

observations during [ 𝑡 − 𝑑∆𝑡, 𝑡 ]. The mechanism for node i to estimate 𝑇𝑖,𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is beta 

distribution as commonly used in Bayesian Inference [26]. Specifically, node i uses a set of anomaly 

detection rules such as interval, retransmission, jamming and delay rules [13, 21] to keep a count of 

compliant experiences of node j (called A) and a count of suspicious experiences of node j (called B) 

during [𝑡 − 𝑑∆𝑡, 𝑡]. Node i then computes 𝑇𝑖,𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) by A/(A+B). If A+B=0, meaning there are 

neither compliant nor suspicious experiences observed over [𝑡 − 𝑑∆𝑡, 𝑡], then 𝑇𝑖,𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is set to 

0.5 meaning no new knowledge is available. This will result in trust decay over time based on Equation 1. 

 𝑇𝑖,𝑗
𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠ℎ𝑛𝑒𝑠𝑠,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡): This provides the belief of node i that node j is unselfishness based on direct 

observations during [𝑡 − 𝑑∆𝑡, 𝑡].  The mechanism for node i to estimate 𝑇𝑖𝑗
𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠ℎ𝑛𝑒𝑠𝑠,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is also 

Bayesian Inference [26]. Specifically, node i estimates 𝑇𝑖𝑗
𝑢𝑛𝑠𝑒𝑙𝑓𝑖𝑠ℎ𝑛𝑒𝑠𝑠,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) by the ratio of the number of 

cooperative interaction experiences to the total number of protocol interaction experiences. Note that both 

counts are related to protocol execution except that the former count is for positive experiences when node 

j, as observed by node i, cooperatively follows the prescribed protocol execution. 

 𝑇𝑖,𝑗
𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡): This refers to the belief of node i that node j is competent at time t. The mechanism 

for node i to estimates 𝑇𝑖,𝑗
𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is also Bayesian Inference [26]. Specifically, node i overhears 

node j’s packet transmission activities during [𝑡 − 𝑑∆𝑡, 𝑡] and measures the transmission delay experienced 

each time. If the delay measured is within the normal range, it is recorded as a positive experience in 

competence; otherwise it is a negative experience. Node i then estimates 𝑇𝑖𝑗
𝑐𝑜𝑚𝑝𝑒𝑡𝑒𝑛𝑐𝑒,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) by the ratio 

of the number of positive packet transmission experiences to the total number of packet transmission 

experiences.  In practice, as long as node j is alive (energy is not depleted and there is no hardware/software 

failure), node j is competent.  

The above trust aggregation protocols will be tested for their validity. An important task is to assess the 

accuracy of 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) obtained. We compare 𝑇𝑖𝑗

𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) with 𝑇𝑗
𝑋(𝑡), i.e., the actual status of node j at 

time t in trust property X. The latter quantity can be obtained by defining a continuous-time semi-Markov 



process describing the dynamic behavior of node j and thus yielding actual status of node j at time t. This 

provides a basis for validating trust aggregation designs such that 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) computed is as close to actual 

status of j as possible. The difference between 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) and 𝑇𝑗

𝑋(𝑡) is the direct trust assessment error, 

𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡), defined as follows: 

𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) = 𝑇𝑖𝑗

𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) −  𝑇𝑗
𝑋(𝑡) (3)  

𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡)  above is one source of trust inaccuracy. Another source of trust inaccuracy is due to 

compromised nodes providing incorrect trust recommendations through bad-mouthing and ballot-stuffing 

attacks. The difference between 𝑇𝑖𝑗
𝑋(𝑡)  (from Equation 1) and 𝑇𝑗

𝑋(𝑡)  is the trust bias in component X, 

𝑇𝐵𝑖𝑗
𝑋(𝑡), defined as follows: 

𝑇𝐵𝑖𝑗
𝑋(𝑡) = 𝑇𝑖𝑗

𝑋(𝑡) − 𝑇𝑗
𝑋(𝑡) (4)  

𝑇𝐵𝑖𝑗
𝑋(𝑡) is the end result of a trust aggregation protocol execution. The goal of trust propagation protocol 

design is to minimize 𝑇𝐵𝑖𝑗
𝑋(𝑡).  We minimize 𝑇𝐵𝑖𝑗

𝑋(𝑡) by dynamically selecting the best set of (𝛼𝑋, 𝛽𝑋) set 

under which subjective assessment of 𝑇𝑖𝑗
𝑋(𝑡) from Equation 1 would be the most accurate against actual 

status of node j in trust property X, i.e., 𝑇𝐵𝑖𝑗
𝑋(𝑡) is minimized. 

3.4 Trust Formation 

We advocate trustee-dependent trust formation by which the best way to form trust from social trust and 

QoS trust is identified and applied to each individual node, properly reflecting trustee properties given as 

input. We also advocate mission-dependent trust formation by which the best way to form trust from social 

trust and QoS trust is identified and applied to each individual subtask group to maximize application 

performance, properly reflecting subtask group mission characteristics given as input.  

Let 𝑇𝑖𝑗(𝑡) denote node i’s trust toward node j at time t. To form trust from social trust and QoS trust, let 

𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) and 𝑇𝑖𝑗

𝑄𝑜𝑆(𝑡) denote node i’s social trust and QoS trust toward node j at time t, respectively, 

derived from 𝑇𝑖𝑗
𝑋(𝑡) in Equation 1. We will explore the importance-weighted-sum trust formation with which 

trust is an importance-weighted sum of social trust and QoS trust. It encompasses more-social-trust, more-

QoS-trust, social-trust-only, and QoS-trust-only in trust formation. It is particularly applicable to missions 

where context information is available about the importance of social or QoS trust properties for successful 

mission execution. For example, for a subtask group consisting of unmanned nodes, the more-QoS-trust or 

QoS-trust-only trust formation model will be appropriate. Specifically, 



𝑇𝑖𝑗(𝑡) =  𝑤𝑠𝑜𝑐𝑖𝑎𝑙𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡)+ 𝑤𝑄𝑜𝑆𝑇𝑖𝑗

𝑄𝑜𝑆(𝑡) (5)  

where 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 and 𝑤𝑄𝑜𝑆  are “importance” weights associated with social trust and QoS trust, respectively, 

with 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 + 𝑤𝑄𝑜𝑆 = 1.  

Note that in the above formulation, 𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) and 𝑇𝑖𝑗

𝑄𝑜𝑆(𝑡) are aggregate trust derived from Equation 1 

with X=social trust components and X=QoS trust components, respectively. We explore the weighted-sum-

form model to aggregate 𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) and 𝑇𝑖𝑗

𝑄𝑜𝑆(𝑡) to allow the relative importance of each trust property in its 

category (social or QoS) to be specified. As an example, suppose that a mission dictates intimacy and 

honesty be picked as two social trust properties and both are considered equally important. Then, 𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) 

would be computed by 𝑇𝑖𝑗
𝑠𝑜𝑐𝑖𝑎𝑙(𝑡) =  0.5 𝑇𝑖𝑗

𝑖𝑛𝑡𝑖𝑚𝑎𝑐𝑦(𝑡)+ 0.5 𝑇𝑖,𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡). 

 

Figure 2: Information Flow of Hierarchical Trust Evaluation in COI-HiTrust. 

 

3.5 Hierarchical Trust Evaluation 

Figure 2 illustrates the information flow of hierarchical trust evaluation in COI-HiTrust with node-to-

node, SGL-to-node, SGL-to-SGL and commander-to-SGL trust evaluation. Leveraging the COI-HM 

structure, each node reports its trust evaluation toward other nodes in the same subtask group to its SGL, 

possibly through trust-based routing to counter black-hole attacks. The SGL then applies statistical analysis 

principles to 𝑇𝑖𝑗(𝑡)  values received to perform SGL-to-node trust evaluation towards node j to yield 

𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡). One application-level trust setting design is to set a drop-dead minimum trust threshold 
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𝑇𝑡ℎ. A SGL, say node c, takes 𝑇𝑖𝑗(𝑡) from node i only if it considers node i is trustworthy, i.e., 𝑇𝑐𝑖(𝑡)>𝑇𝑡ℎ. 

Then it can compute 𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡)for node j as the average of 𝑇𝑖𝑗(𝑡)′𝑠 from trustworthy nodes in its 

subtask group, i.e., be appropriate. Specifically, 

𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡) = 𝑎𝑣𝑔

𝑖∈𝑁𝑅 ∧ 𝑇𝑐𝑖(𝑡)≥𝑇𝑡ℎ
{𝑇𝑖𝑗(𝑡)} (6)  

where 𝑁𝑅 is the set of COI members in the subtask group. The SGL (node c) if certified to be trustworthy by 

the commander could announce j as compromised if 𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡) is less than 𝑇𝑡ℎ; otherwise, node j is not 

compromised. This is discussed more in Section IV Misbehaving Node Detection below. Also the SGL may 

leverage 𝑇𝑖𝑗(𝑡) values received to detect if there is any outlier as an evidence of good-mouthing or bad-

mouthing attacks.  

IV. THEORETICAL ANALYSIS 

In this section we formally prove the convergence, accuracy, and resiliency properties of our trust 

management protocol against trust attacks. We first provide proofs for the case in which the environment is 

stationary, i.e., the node status (good vs. malicious) is stationary. Then we extend the proof to the case in 

which the environment is non-stationary. Later in Section V, we present ns-3 simulation results to validate 

the convergence, accuracy, and resiliency properties of our protocol design in non-stationary environments. 

For ease of disposition, we simplify the notations 𝑇𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) to 𝐷𝑖𝑗

𝑋(𝑡) (with D standing for direct trust), 

and 𝑇𝑘𝑗
𝑋,𝑟𝑒𝑐𝑜𝑚(𝑡) to 𝑅𝑘𝑗

𝑋 (𝑡) (with R standing for recommendation trust). Also for ease of disposition, we omit 

the superscript X in 𝑇𝑖𝑗
𝑋(𝑡), 𝐷𝑖𝑗

𝑋(𝑡) , and 𝑅𝑘𝑗
𝑋 (𝑡), since the analysis is generic and applicable to all trust 

properties.  

We consider the instantaneous trust (reflecting the actual behavior) of a node 𝑗 as a stochastic process 

𝐺𝑗 = {𝐺𝑗(𝑛): 𝑛 = 1,2, … } where n is the nth trust update interval, i.e., 𝑡 = ∆𝑡1 + ∆𝑡2 + ⋯ + ∆𝑡𝑛. We define 

objective trust (or ground truth trust) at step n as the expected value of 𝐺𝑗(𝑛), i.e., 𝐸[𝐺𝑗(𝑛)]. The goal of trust 

management is to estimate objective trust using direct observations on a node’s instantaneous behaviors and 

recommendations. The direct trust of node 𝑖 towards node 𝑗 (also a stochastic process 𝐷𝑖𝑗 = {𝐷𝑖𝑗(𝑛): 𝑛 =

1,2, … } might be different from 𝐺𝑗  due to noises. We assume the noise process 𝜀𝑖𝑗  is a white noise with 

𝜀𝑖𝑗(𝑛): 𝑛 = 1,2, … being independent and identically distributed and drawn from a zero-mean distribution. 

Then,  



𝐷𝑖𝑗(𝑛) = 𝐺𝑗(𝑛) + 𝜀𝑖𝑗(𝑛) (7)  

Assume that 𝐺𝑗 and 𝐷𝑖𝑗 are random variables in the space of [0, 1], so 𝜀𝑖𝑗 is in the space of [-1, 1]. That is, 

if 𝐺𝑗=1 but 𝐷𝑖𝑗 = 0, then 𝜀𝑖𝑗 = −1.  if 𝐺𝑗=0 but 𝐷𝑖𝑗 = 1, then 𝜀𝑖𝑗 = 1. Our proof does not rely on the specific 

distributions of these random processes. For example, for the honesty trust property, a node might behave 

honest or dishonest, i.e., 𝐺𝑗 follows Bernoulli distribution; for the cooperativeness trust property, 𝐺𝑗  could be 

a random variable in the space of [0, 1] following a Beta distribution.  

According to our trust aggregation and propagation protocol described in Section 3.2, the subjective trust 

evaluation of node 𝑖 towards node  (𝑇𝑖𝑗 = {𝑇𝑖𝑗(𝑛): 𝑛 = 1,2, … }) is updated by either direct observations 𝐷𝑖𝑗 

or recommendations from another node 𝑘 (𝑅𝑘𝑗 = {𝑅𝑘𝑗(𝑛): 𝑛 = 1,2, … }). 

When node 𝑖 directly interacts with node 𝑗, we have: 

𝑇𝑖𝑗(𝑛) = (1 − 𝛼)𝑇𝑖𝑗(𝑛 − 1) + 𝛼𝐷𝑖𝑗(𝑛) (8)  

Otherwise, if node 𝑖 interacts with another node 𝑘, we have: 

𝑇𝑖𝑗(𝑛) = (1 − 𝛾)𝑇𝑖𝑗(𝑛 − 1) + 𝛾𝑅𝑘𝑗(𝑛) (9)  

where 𝛾 =
𝛽𝐷𝑖𝑘(𝑛)

1+𝛽𝐷𝑖𝑘(𝑛)
.We analyze the trust accuracy, convergence and resiliency properties of our protocol 

based on trust bias, i.e., 𝑏𝑖𝑗(𝑛) = 𝑇𝑖𝑗(𝑛) − 𝐺𝑗(𝑛). We define trust accuracy, convergence and resiliency by 

lim𝑛→∞ 𝐸[𝑏𝑖𝑗(𝑛)], i.e., how much the subjective trust deviates from the objective trust when it converges in 

the presence of malicious attacks. Note that as lim𝑛→∞ 𝐸[𝑏𝑖𝑗(𝑛)] converges, the variance will be stabilized, 

leading to an upper bound of trust bias that defines trust accuracy achieved. 

We first consider a stationary environment in which 𝐺𝑗 and 𝐷𝑖𝑗 are stationary random processes. We also 

first consider a simple case in which there is no trust-related attack, i.e., 𝑅𝑘𝑗(𝑛) = 𝐷𝑘𝑗(𝑛)  or the 

recommended trust of node k toward node j is equal to the direct trust of node k toward node j. Later on we 

will relax these assumptions.  

If node 𝑖 interacts with a node at stage 𝑛, there are two ways to update trust: 

(1)  If node 𝑖  directly interacts with node 𝑗, it uses direct observations to update its trust toward node 𝑗 

according to Equation 1. So the trust bias of node 𝑖 towards node 𝑗 at stage 𝑛 is: 

           𝑏𝑖𝑗(𝑛) = 𝑇𝑖𝑗(𝑛) − 𝐺𝑗(𝑛)  = (1 − 𝛼)𝑇𝑖𝑗(𝑛 − 1) + 𝛼𝐷𝑖𝑗(𝑛) − 𝐺𝑗(𝑛) (10)  



Since 𝐷𝑖𝑗(𝑛) = 𝐺𝑗(𝑛) + 𝜀𝑖𝑗(𝑛), we have 

𝑏𝑖𝑗(𝑛) = (1 − 𝛼)𝑇𝑖𝑗(𝑛 − 1) + 𝛼 (𝐺𝑖𝑗(𝑛) + 𝜀𝑖𝑗(𝑛)) − 𝐺𝑗(𝑛) (11)  

Reformatting the equation above by subtracting and adding (1 − 𝛼)𝐺𝑗(𝑛 − 1) in the right side, we have: 

𝑏𝑖𝑗(𝑛) = (1 − 𝛼) (𝑇𝑖𝑗(𝑛 − 1) − 𝐺𝑗(𝑛 − 1)) + (1 − 𝛼)𝐺𝑗(𝑛 − 1) + 𝛼 (𝐺𝑗(𝑛) + 𝜀𝑖𝑗(𝑛)) − 𝐺𝑗(𝑛) (12)  

Since 𝑏𝑖𝑗(𝑛 − 1) = 𝑇𝑖𝑗(𝑛 − 1) − 𝐺𝑗(𝑛 − 1), we have: 

𝑏𝑖𝑗(𝑛) = (1 − 𝛼)𝑏𝑖𝑗(𝑛 − 1) + (1 − 𝛼)𝐺𝑗(𝑛 − 1) − (1 − 𝛼)𝐺𝑗(𝑛) + 𝛼𝜀𝑖𝑗(𝑛) (13)  

(2)  If node 𝑖 interacts with another node 𝑘, rather than 𝑗 at stage 𝑛, it uses the recommendation from node 𝑘 

to update its trust toward node 𝑗 according to Equation 1. Using a similar derivation as above, we have 

the trust bias of node 𝑖 towards node 𝑗 at stage 𝑛 as follows: 

𝑏𝑖𝑗(𝑛) = (1 − 𝛾)𝑏𝑖𝑗(𝑛 − 1) + (1 − 𝛾)𝐺𝑗(𝑛 − 1) − (1 − 𝛾)𝐺𝑗(𝑛) + 𝛾𝜀𝑘𝑗(𝑛) (14)  

Note that in this derivation above, we assume there is no trust-related attack, so 𝑅𝑘𝑗(𝑛) = 𝐷𝑘𝑗(𝑛) =

𝐺𝑗(𝑛) + 𝜀𝑘𝑗(𝑛). 

Since we assume a stationary environment and a zero mean noise, we have 𝐸[𝐺𝑗(𝑛 − 1) − 𝐺𝑗(𝑛)] = 0,

𝐸[𝜀𝑖𝑗(𝑛)] = 0, and 𝐸[𝜀𝑘𝑗(𝑛)] = 0. Let 𝑝 (0 ≤ 𝑝 ≤ 1) denote the probability that node 𝑖 interacts with node 𝑗 

at stage 𝑛. Then, with the independence assumption, we have: 

 𝐸[𝑏𝑖𝑗(𝑛)] = {𝑝(1 − 𝛼) + (1 − 𝑝)(1 − 𝐸[𝛾])}𝐸[𝑏𝑖𝑗(𝑛 − 1)] =  Θ𝐸[𝑏𝑖𝑗(𝑛 − 1)] (15)  

Since 𝐷𝑖𝑘(𝑛) = 𝐺𝑘(𝑛) + 𝜀𝑖𝑘(𝑛) is independent of 𝑏𝑖𝑗(𝑛 − 1), 𝛾 =
𝛽𝐷𝑖𝑘(𝑛)

1+𝛽𝐷𝑖𝑘(𝑛)
 is independent of 𝑏𝑖𝑗(𝑛 −

1). Consequently, as long as 0 ≤ Θ < 1, lim𝑛→∞ 𝐸[𝑒𝑖𝑗(𝑛)] = 0, i.e., the trust evaluation converges. To 

make sure 0 ≤ Θ < 1, we need 0 < 𝛼 ≤ 1 and 0 < 𝐸[𝛾] ≤ 1. Notice that 0 < 𝐸[𝛾] = 𝐸 [
𝛽𝐷𝑖𝑘(𝑛)

1+𝛽𝐷𝑖𝑘(𝑛)
] ≤ 1 if 

𝛽 > 0. Hence, we have Lemma 1 as follows: 

Lemma 1: In a stationary environment, if there is no trust-related attacks, the trust evaluation in our trust 

management protocol converges as long as 0 < 𝛼 ≤ 1 and 𝛽 > 0. 

From Equation 15, we note that the trust evaluation converges exponentially when 0 ≤ Θ < 1. Thus, the 

convergence speed increases as Θ decreases. This leads to Lemma 2. 



Lemma 2: In a stationary environment, if there is no trust-related attacks, the trust convergence speed of 

our trust management protocol increases as 𝛼 or 𝛽 increases (0 < 𝛼 ≤ 1 and 𝛽 > 0). 

We measure trust fluctuation by the variance of trust bias, i.e.,𝑉𝑎𝑟 [𝑇𝑖𝑗(𝑛) − 𝐸[𝐺𝑗(𝑛)]].  Consider a 

stationary environment, we have 𝑉𝑎𝑟 [𝑇𝑖𝑗(𝑛) − 𝐸[𝐺𝑗(𝑛)]] = 𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)]. Below we analyze the effects of 

trust parameters on trust fluctuation. Again, we consider two cases based on the node with which node 𝑖 

interacts: 

(1)  If node 𝑖 interacts with node 𝑗, it uses direct observations to update trust according to Equation 1. Then, 

we have, 

         𝑇𝑖𝑗(𝑛) = (1 − 𝛼)𝑇𝑖𝑗(𝑛 − 1) + 𝛼 (𝐺𝑗(𝑛) + 𝜀𝑖𝑗(𝑛)) (16)  

𝑇𝑖𝑗(𝑛 − 1) is obtained based on past direct observations and trust bias at step 𝑛 − 1, so it is independent 

of 𝐺𝑗(𝑛) and 𝜀𝑖𝑗(𝑛), which are also independent of each other. Therefore: 

𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] = (1 − 𝛼)2𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛 − 1)] + 𝛼2(𝑉𝑎𝑟[𝐺𝑗(𝑛)] + 𝑉𝑎𝑟[𝜀𝑖𝑗(𝑛)]) (17)  

Since 𝐺𝑗(𝑛)  and 𝜀𝑖𝑗(𝑛)  are stationary random processes, 𝑉𝑎𝑟[𝐺𝑗(𝑛)] + 𝑉𝑎𝑟[𝜀𝑖𝑗(𝑛)]  is constant. 

Therefore, after trust convergence (0 < 𝛼 ≤ 1 and 𝑛 → ∞), the variance of trust evaluation will stabilize to a 

constant value, i.e., 𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] = 𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛 − 1)], that is, 

𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] = (1 − 𝛼)2𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] + 𝛼2(𝑉𝑎𝑟[𝐺𝑗(𝑛)] + 𝑉𝑎𝑟[𝜀𝑖𝑗(𝑛)]) (18)  

This simplifies to: 

          𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] =
𝛼

2 − 𝛼
(𝑉𝑎𝑟[𝐺𝑗(𝑛)] + 𝑉𝑎𝑟[𝜀𝑖𝑗(𝑛)]) (19)  

From Equation 19, we can see that in this case, after trust convergence, the trust fluctuation increases as 𝛼 

increases. 

(2)  If node 𝑖 interacts with another node 𝑘, rather than 𝑗 at stage 𝑛, it uses the recommendation from node 𝑘 

to update trust in accordance with Equation 1. Using a similar derivation as in case (1), we have 

              𝑉𝑎𝑟[𝑇𝑖𝑗(𝑛)] =
𝛾

2 − 𝛾
(𝑉𝑎𝑟[𝐺𝑗(𝑛)] + 𝑉𝑎𝑟[𝜀𝑖𝑗(𝑛)]) (20)  

Since 𝛾 =
𝛽𝐷𝑖𝑘(𝑛)

1+𝛽𝐷𝑖𝑘(𝑛)
 in this case, after trust convergence, the trust fluctuation increases as 𝛽 increases. 



Because the trust update falls into either case (1) or case (2) above, we have Lemma 3 as follows: 

Lemma 3: In a stationary environment, if there is no trust-related attacks, the variance or trust 

fluctuation of the trust value after convergence in our trust management protocol increases as 𝛼  or 𝛽 

increases (0 < 𝛼 ≤ 1, 𝛽 > 0). 

Now we extend the analysis to the more general case when there are malicious nodes performing trust 

related attacks. Because of attacks, the trust evaluation may not converge to objective trust. However, we can 

select appropriate trust parameters such that the trust evaluation converges and the trust bias is minimized. 

Suppose that the percentage of malicious nodes in the network is 𝜆 and the probability that node 𝑖 interacts 

with node 𝑗 at stage 𝑛 is 𝑝. Again, there are two cases: 

(1)  If node 𝑖  interacts with node j, it uses direct observations to update trust. Then following the same 

derivation for Equation 13, the trust bias of node 𝑖 towards node 𝑗 at stage 𝑛 is: 

            𝑏𝑖𝑗(𝑛) = (1 − 𝛼)𝑏𝑖𝑗(𝑛 − 1) + (1 − 𝛼)𝐺𝑗(𝑛 − 1) − (1 − 𝛼)𝐺𝑗(𝑛) + 𝛼𝜀𝑖𝑗(𝑛) (21)  

(2)  If node 𝑖 interacts with another node k (who had prior interaction experience with node j) rather than with 

node 𝑗 itself at stage n, it uses the recommendation from node 𝑘 to update trust. Following the same 

derivation for Equation 14, we have the trust bias of node 𝑖 towards node 𝑗 at stage 𝑛 as follows: 

            𝑏𝑖𝑗(𝑛) = (1 − 𝛾)𝑏𝑖𝑗(𝑛 − 1) + (1 − 𝛾)𝐺𝑗(𝑛 − 1) − (1 − 𝛾)𝐺𝑗(𝑛) + 𝛾𝜀𝑘𝑗
′ (𝑛) (22)  

Equation 22 is similar to Equation 14 except that we have used 𝜀𝑘𝑗
′ (𝑛) instead of 𝜀𝑘𝑗(𝑛) to account for 

possible recommendation attacks from node k. Let 𝜆 be the percentage of malicious nodes. With probability 

1- 𝜆, node k is a good node in which case 𝐸[𝜀𝑘𝑗
′ (𝑛)] = 𝐸[𝜀𝑖𝑗(𝑛)] = 0 as before. With probability 𝜆, node k is 

a malicious node in which case there is a non-zero-mean trust-related recommendation attack noise and 

𝐸[𝜀𝑘𝑗
′ (𝑛)] ≠ 0.  Meanwhile we still have 𝐸[𝐺𝑗(𝑛 − 1) − 𝐺𝑗(𝑛)] = 0  since we assume a stationary 

environment. Summarizing above, the expected value of 𝑏𝑖𝑗(𝑛) in Equation 22 is given by: 

𝐸[𝑏𝑖𝑗(𝑛)] = {𝑝(1 − 𝛼) + (1 − 𝑝)(1 −  𝐸[𝛾])} 𝐸[𝑏𝑖𝑗(𝑛 − 1)] + 𝜆(1 − 𝑝)𝐸[𝛾]𝐸[𝜀𝑘𝑗
′ (𝑛)] (23)  

We can see from Equation 23 that as long as 0 ≤ Θ = 𝑝(1 − 𝛼) + (1 − 𝑝)(1 − 𝐸[𝛾]) < 1, 𝐸[𝑏𝑖𝑗(𝑛)] 

will eventually converge. Therefore, 𝐸[𝑏𝑖𝑗(𝑛)] = 𝐸[𝑏𝑖𝑗(𝑛 − 1)] eventually at which point we will have: 



𝐸[𝑏𝑖𝑗(𝑛)] =
𝜆(1 − 𝑝)𝐸[𝛾]

1 − (𝑝(1 − 𝛼) + (1 − 𝑝)(1 − 𝐸[𝛾]))
𝐸[𝜀𝑘𝑗

′ (𝑛)] (24)  

Reformatting the equation above, we have: 

|𝐸[𝑏𝑖𝑗(𝑛)]| =
𝜆(1 − 𝑝)𝐸[𝛾]

𝛼𝑝 + (1 − 𝑝)𝐸[𝛾]
|𝐸[𝜀𝑘𝑗

′ (𝑛)]| < 𝜆|𝐸[𝜀𝑘𝑗
′ (𝑛)]| (25)  

Here 𝐸[𝛾] = 𝐸 [
𝛽𝐷𝑖𝑘(𝑛)

1+𝛽𝐷𝑖𝑘(𝑛)
] <1 and −1 < 𝐸[𝜀𝑘𝑗

′ (𝑛)] < 1 since in our protocol, a trust value is in the range 

of [0, 1]. Therefore, |𝐸[𝑏𝑖𝑗(𝑛)]| < 𝜆. Equation 25 leads to Lemma 4 as follows: 

Lemma 4: In a stationary environment, if there are malicious nodes performing trust related attacks, the 

trust evaluation in our trust management protocol stabilizes as long as 0 < 𝛼 ≤ 1 and 𝛽 > 0. The trust bias 

is less that 𝜆 after trust stabilizes and decreases as 𝛼 increases or as 𝛽 decreases. 

Now we extend the proof to non-stationary environments in which 𝐺𝑗and 𝐷𝑖𝑗 are non-stationary random 

processes. We note that the objective trust status may change before trust converges since trust convergence 

and stabilization take time. However, from Equations 15 and 23, subjective trust obtained as a result of 

executing our trust management protocol will approach objective trust even if objective trust changes 

dynamically, and will converge to objective trust if objective trust stabilizes after each change. Hence, as 

long as we select high 𝛼 and 𝛽 to shorten trust convergence time at the expense of high trust fluctuation, the 

system operating under our protocol will quickly adapt to environment changes. □ 

V. TRUST PROTOCOL PERFORMANCE 

We develop a mathematical model based on continuous-time semi-Markov stochastic processes each 

modeling a mobile node in the COI mission-oriented group. Specifically, we leverage the stochastic Petri 

net techniques [7, 31-35] to define a continuous-time semi-Markov process describing the status of a node 

as time progresses, including the subtask group the node resides, compromise status, selfishness status, 

hardware/software failure status, and energy status, thus providing global information regarding the 

probability that the node is in a particular subtask group, whether it is compromised or not, whether it is 

selfish or not, and whether it is still alive and thus competent to perform the mission assigned at time t. A 

node is considered incompetent when its energy is depleted or it suffers from a hardware/software failure. 

Each node is characterized by its specific mobility model (representing movements between subtask 

groups), compromise rate, selfish rate, hardware/software failure rate, initial energy (a SGL has more 

resources and more energy than a regular nodes), and role-based energy consumption rate. Thus, a node’s 



semi-Markov stochastic process must reflect the node’s specific characteristics in addition to the COI’s 

operational and environmental characteristics. Moreover, a node with its own stochastic process will go 

from one state to another, depending on its interactions with other nodes, each having its own continuous-

time semi-Markov process. We develop an iterative computational procedure so that all semi-Markov 

stochastic processes converge, thus properly reflecting node interaction experiences with each other. The 

output of the mathematical model is the objective trust function for each trust property X for node j at time t, 

i.e., 𝑇𝑗
𝑋,𝑂𝐵𝐽(𝑡)  from which we obtain objective trust 𝑇𝑗

 𝑂𝐵𝐽(𝑡)  based on a trust formation model (e.g., 

Equation 5) to be compared with subjective trust 𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡) obtained in Equation 6 for accuracy 

assessment. 

Table 1 lists the default parameter values. We consider an environment with N = 400 heterogeneous 

mobile objects/devices, each with energy E drawn from uniform distribution U[12, 24] hours. Devices are 

connected in a social network represented by a friendship matrix [6]. Physically, nodes move according to 

the SWIM mobility model [5] modeling human social behaviors in 16×16 regions with the length of each 

region equal to radio range R, so that two nodes are neighbors is they are in the same region or in the 

neighbor regions. We consider the case in which a 4×4 area is a subtask group area. Each node is subject to 

dishonesty and selfishness behavior attacks with rates λcom and λselfish respectively. Initially All nodes are 

honest and unselfish, but may turn into dishonest and selfish as time progresses depending on the attack 

rates. A dishonest node performs self-promoting, bad-mouthing and ballot-stuffing attacks as described in 

Section II. A selfish node performs discriminatory attacks. All nodes runs COI-HiTrust to perform peer-to-

peer trust evaluation with the update interval ∆𝑡 = 0.2hr with the observation window size d=2. 

In the following we report analytical results based on Equations 1-6. We further experimentally validate 

analytical results with extensive simulation using ns-3 [18, 28]. 

Table 1: Parameters and Default Values/Ranges used. 

Parameter Value Parameter Value 

E U[12, 24] hr R 250 m 

speed 1.45 N 400 

pause 2 hrs d 2 

λcom 1/18hrs   ∆𝑡 0.2 hr 

λselfish 1/36hrs     𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡

 U[0, 0.2] 



5.1 P2P Trust Accuracy and Convergence Behavior  

We examine peer-to-peer trust convergence behavior of our trust protocol design. Figure 3 plots 

𝑇𝐵𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) defined by Equation 4, i.e., the difference between subjective 𝑇𝑖𝑗

ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) (from Equation 1) 

and objective 𝑇𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) (ground truth) over time for a trustor node (i.e., node i) and a trustee node (i.e., 

node j) randomly picked. The solid lines are analytical results and the dashed lines are ns-3 simulation 

results.  

The subjective trust is obtained from COIHiTrust operating at the identified optimal (𝛼ℎ𝑜𝑛𝑒𝑠𝑡𝑦, 𝛽ℎ𝑜𝑛𝑒𝑠𝑡𝑦) 

settings as shown in Table 2. We observe that a very distinct set of (𝛼ℎ𝑜𝑛𝑒𝑠𝑡𝑦, 𝛽ℎ𝑜𝑛𝑒𝑠𝑡𝑦) is being used by the 

trustor node in response to the attacker strength detected at runtime. Specifically, when the attacker strength 

is strong, the trustor node would rather trust its own assessment and hence it uses a high 𝛼ℎ𝑜𝑛𝑒𝑠𝑡𝑦(in the 

range of [0, 1]) and a low 𝛽ℎ𝑜𝑛𝑒𝑠𝑡𝑦 (in the range of [1, 10]) at the expense of slow trust convergence. 

Conversely, when the environment condition is benign, the trustor node would rather take in more trust 

recommendations and hence it uses a low  𝛼ℎ𝑜𝑛𝑒𝑠𝑡𝑦 and a high 𝛽ℎ𝑜𝑛𝑒𝑠𝑡𝑦  so it can quickly achieve trust 

convergence without risking trust inaccuracy. There are several curves in Figure 3, each with a different 

compromise rate λcom representing the attacker strength. We see that trust bias 𝑇𝐵𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) is higher as the 

compromise rate λcom increases because there are more compromised nodes in the system performing trust-

related attacks to disrupt the trust system. Nevertheless, we see a stable convergence behavior of our trust 

protocol with trust bias limited to 0.07 even for a high compromise rate. The mean square error (MSE) 

between 𝑇𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) and 𝑇𝑗

ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) is small as shown in Table 2.  

 

Figure 3: 𝑻𝑩𝒊𝒋
𝒉𝒐𝒏𝒆𝒔𝒕𝒚(𝒕) over time. 
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Table 2: (𝜶𝒉𝒐𝒏𝒆𝒔𝒕𝒚, 𝜷𝒉𝒐𝒏𝒆𝒔𝒕𝒚) setting to minimize trust bias. 

λcom (αhonesty, βhonesty) MSE of trust bias 

1/(10hrs) (0.9, 1) 0.0123 

1/(14hrs) (0.9, 1) 0.0131 

1/(18hrs) (0.7, 2) 0.0083 

1/(22hrs) (0.6, 4) 0.0076 

1/(26hrs) (0.65, 5 ) 0.00053 

 

We observe a remarkable match between the analytical results (solid lines) and the simulation results 

(dashed lines). The close match validates our analytical model and verifies the validity of our trust protocol 

design against trust-related attacks (self-promoting, bad-mouthing, and ballot-stuffing attacks) by malicious 

nodes. 

 

Figure 4: Trust bias of COIHiTrust over time. 
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obtained from Equation 6 after collecting 𝑇𝑖𝑗(𝑡)′s  from nodes in the same subtask groups at time t, 

assuming 𝑤𝑠𝑜𝑐𝑖𝑎𝑙/𝑤𝑄𝑜𝑆 = 0.5/0.5.  Figure 4 plots trust bias  (the difference between 𝑇𝑗
 𝑂𝐵𝐽(𝑡)  and 

𝑇𝑗
𝐶𝑂𝐼−𝐻𝑖𝑇𝑟𝑢𝑠𝑡(𝑡)) over time for a trustee node (node j) randomly picked. There are several curves in Figure 

4, each corresponding to a different compromise rate λcom. Again the solid lines are analytical results and the 

dashed lines are ns-3 simulation results. Figure 4 confirms trust accuracy and convergence behavior of 

COIHiTrust. We observe that the trust bias is well under control, i.e., it is less than 0.02 for low compromise 

rates and less than 0.08 for high compromise rates. 

5.3 Effect of Uncertainty and Noise 

Noise and uncertainty is modeled by 𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) defined by Equation 3. Figure 5 plots 

𝑇𝐵𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) over time for a node randomly picked. However, instead of setting 𝑇𝐸𝑖𝑗

ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) = 0, 

𝑇𝐸𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is a random variable following uniform distribution U[0, 0.2] so that the trust error of 

direct honesty trust assessment to go as high as 0.2. We see that the trend exhibited in Figure 5 is 

remarkably similar to that of Figure 3. 𝑇𝐵𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦(𝑡) in Figure 5 is about  0.1 higher than its counterpart in 

Figure 3 because the average value of 𝑇𝐸𝑖𝑗
ℎ𝑜𝑛𝑒𝑠𝑡𝑦,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) is 0.1, given that it follows U[0, 0.2] distribution. 

This verifies that our trust propagation and aggregation protocol design (Equations 1 and 2) is resilient to 

𝑇𝐸𝑖𝑗
𝑋,𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) since there is no extra trust error being introduced during trust propagation and aggregation. 

Our protocol’s resiliency is attributed to its ability to adjust the best set of (𝛼ℎ𝑜𝑛𝑒𝑠𝑡𝑦 , 𝛽ℎ𝑜𝑛𝑒𝑠𝑡𝑦) values 

dynamically in response to noise detected at runtime. 



 

Figure 5: 𝑻𝑩𝒊𝒋
𝒉𝒐𝒏𝒆𝒔𝒕𝒚(𝒕) vs. t with noise in U[0, 0.2]. 

 

VI. APPLICATION: MISBEHAVING NODE DETECTION 

We propose a novel scheme to utilize COI-HiTrust for IDS functionality for the misbehaving node 

detection application. The basic idea is to have the SGL (or the commander) make a decision periodically 

whether a node (or a SGL) is considered untrustworthy or compromised based on the peer-to-peer trust 

evaluation results sent to it. The IDS strategy we investigate is as follows: when a node’s trust level falls 

below the system minimum trust threshold, say, 𝑇𝑡ℎ, the node is diagnosed as completely untrustworthy and 

thus compromised. The IDS formed is characterized by its false positive probability,  𝑃𝑓𝑝
𝐼𝐷𝑆 , i.e., the 

probability of misdiagnosing a good node as a bad node, and false negative probability, 𝑃𝑓𝑛
𝐼𝐷𝑆 , i.e., the 

probability of misdiagnosing a bad node as a good node. With the help of the semi-Markov stochastic 

processes developed, we can fairly accurately predict 𝑃𝑓𝑝
𝐼𝐷𝑆 and 𝑃𝑓𝑛

𝐼𝐷𝑆. More specifically, we leverage the 

knowledge of whether a node is compromised or not at time t from the semi-Markov stochastic process 

model to predict 𝑃𝑓𝑝
𝐼𝐷𝑆(𝑡) and 𝑃𝑓𝑛

𝐼𝐷𝑆(𝑡) obtainable. Suppose that in a subtask group with n + 1 nodes, each 

node, say i (i ≠ j), reports its peer-to-peer trust evaluation result 𝑇𝑖,𝑗(𝑡) to the SGL. Based on our IDS strategy 

if the expected trust value of node j at time t, 𝜇𝑗(𝑡), is below 𝑇𝑡ℎ, the SGL will consider node j as totally 

untrustworthy and thus compromised. Suppose that the peer-to-peer trust value toward node j is a random 
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variable following t-distribution and thus the SGL has n𝑇𝑖,𝑗(𝑡) sample values collected from n nodes in the 

same subtask group. Then, we will have a random variable 𝑋𝑗(𝑡) with n-1 degree of freedom, i.e., 

𝑋𝑗(𝑡) =
𝑇𝑖,𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ − 𝜇𝑗(𝑡)

𝑆𝑗(𝑡)/√𝑛
 (26)  

where 𝑇𝑖𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅  and 𝑆𝑗(𝑡)  are the sample mean and sample standard deviation of node j’s trust value, 

respectively. Thus, the probability that node j is judged as a compromised node at time t is: 

Θ𝑗(𝑡) = Pr(𝜇𝑗(𝑡) < 𝑇𝑡ℎ) 

= Pr (𝑋𝑗(𝑡) >
𝑇𝑖,𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ − 𝑇𝑡ℎ

𝑆𝑗(𝑡)/√𝑛
) 

(27)  

The anticipated false positive probability at time t can be obtained by calculating Θ𝑗(𝑡)  under the 

condition that node j is not compromised. Similarly, the false negative probability at time t can be obtained 

by calculating 1 − Θ𝑗(𝑡) under the condition that node j is compromised. That is, 

𝑃𝑓𝑝,𝑗
𝐼𝐷𝑆(𝑡) = Pr (𝑋𝑗(𝑡) >

𝑇𝑖𝑗
𝑁(𝑡)̅̅ ̅̅ ̅̅ ̅̅ − 𝑇𝑡ℎ

𝑆𝑗
𝑁(𝑡)/√𝑛

) (28)  

𝑃𝑓𝑛,𝑗
𝐼𝐷𝑆(𝑡) = Pr (𝑋𝑗(𝑡) ≤

𝑇𝑖𝑗
𝐶(𝑡)̅̅ ̅̅ ̅̅ ̅ − 𝑇𝑡ℎ

𝑆𝑗
𝐶(𝑡)/√𝑛

) (29)  

Here 𝑇𝑖𝑗
𝑁(𝑡)̅̅ ̅̅ ̅̅ ̅̅  and 𝑆𝑗

𝑁(𝑡) are the mean value and standard deviation of node j’s trust value reported by all 

nodes in the same subtask group, conditioning on node j not having been compromised at time t, while 𝑇𝑖,𝑗
𝐶 (𝑡)̅̅ ̅̅ ̅̅ ̅̅  

and 𝑆𝑗
𝐶(𝑡) are the mean value and standard deviation of node j’s trust value, conditioning on node j having 

been compromised at time t. Note that only Equation 26 will be used by a SGL (or a commander) based on 

n  𝑇𝑖,𝑗(𝑡) values collected at time t to judge if node j is totally untrustworthy or compromised. Equations 28 

and 29 are used to predict the resulting false positive probability 𝑃𝑓𝑝,𝑗
𝐼𝐷𝑆(𝑡) and false negative probability 

𝑃𝑓𝑛,𝑗
𝐼𝐷𝑆(𝑡), given the knowledge whether node j is actually compromised or not at time t, which we can easily 

find out from the mathematical model output.  



 

Figure 6: Effect of T
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For the intrusion detection application, the application-level parameters for application performance 

optimization include (a) the drop-dead minimum trust threshold 𝑇𝑡ℎ and (b) the weights 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 and 𝑤𝑄𝑜𝑆  

associated with social trust and QoS trust, with 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 + 𝑤𝑄𝑜𝑆 = 1. 

6.1 Sensitivity Analysis of the Drop-Dead Minimum Trust Threshold 𝑻𝒕𝒉 

Figure 6 shows max(Pfp, Pfn) vs. the compromise rate λcom and the minimum trust threshold Tth 

as a result of executing the trust-based intrusion detection application, where Pfp and Pfn are the 

time-averaged false positive and false negative probabilities calculated from Equations 28 and 29, 

respectively, over all nodes in the system. Here 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 = 𝑤𝑄𝑜𝑆 = 0.5 to isolate its effect. max(Pfp, 

Pfn) is used as the performance metric because there is a tradeoff between Pfp and Pfn. That is, as 

the minimum trust threshold Tth increases, the false negative probability Pfn decreases while the 

false positive probability Pfp increases. We see that given a compromise rate λcom value for trust 

formation, there exists an optimal trust threshold Tth at which max(Pfp, Pfn) is minimized. Further, 

we can visually observe the effect of our proposed application performance maximization design in 

this intrusion detection application. Specifically, Figure 6 identifies that the optimal Tth value is 0.6 

when λcom= 0.05 to minimize Pfp without penalizing Pfn but the optimal Tth  value increases to 0.7 as 

λcom increases to 0.1 so as to minimize Pfn without compromising Pfp, thus minimizing max(Pfp, Pfn) 

as a result.  

0
0.2

0.4
0.6

0.8
1

0.04

0.06

0.08

0.1
0

0.2

0.4

0.6

0.8

1

trust threthhold(Tth)


com

m
a

x
(P

fp
, 
P

fn
)



6.2 Sensitivity Analysis of Trust Formation (𝒘𝒔𝒐𝒄𝒊𝒂𝒍 and 𝒘𝑸𝒐𝑺) 

Figure 7 shows max(Pfp, Pfn) vs. the minimum trust threshold T
th

 and the weight 𝑤𝑠𝑜𝑐𝑖𝑎𝑙  associated with 

social trust (with 𝑤𝑄𝑜𝑆 = 1 − 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 ). Here λcom=0.05 to isolate its effect. Maximizing application 

performance, i.e., minimizing max(Pfp, Pfn), is achieved by adjusting 𝑤𝑠𝑜𝑐𝑖𝑎𝑙  to allow trust to be formed out 

of the best combination of social trust and QoS trust components. We see that the best 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 value is 0.5 

when T
th

 is set at 0.6 to minimize max(Pfp, Pfn). However, max(Pfp, Pfn) is minimized among all when 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 

is 0.9 and T
th

 is 0.5. As the environment conditions change dynamically, e.g., as λcom changes from 0.05 to 

0.1, there exists the best combination of 𝑤𝑠𝑜𝑐𝑖𝑎𝑙  and T
th

 values that will maximize the application 

performance in terms of minimizing max(Pfp, Pfn).  
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VII. APPLICABILITY 

The identification of optimal protocol settings in terms of (𝛼𝑋, 𝛽𝑋) to minimize trust bias, and the best 

application-level trust optimization settings in terms of 𝑤𝑠𝑜𝑐𝑖𝑎𝑙 and T
th

 to maximize application performance, 

i.e., minimizing max(Pfp, Pfn) for the intrusion detection application is performed at static time. One way to 

apply the results for dynamic hierarchical trust management is to build a lookup table at static time listing the 

optimal protocol settings discovered over a perceivable range of parameter values. Then, at runtime, upon 

sensing the environment conditions matching with a set of parameter values, a node can perform a simple 

table lookup operation augmented with extrapolation/interpolation techniques to determine and apply the 



optimal protocol setting to minimize trust bias and maximize application performance dynamically in 

response to environment changes. The complexity is O(1) because of the table lookup technique employed. 

VIII. CONCLUSION 

In this paper, we designed and analyzed a dynamic hierarchical trust management protocol for managing 

community of interest mobile groups in heterogeneous MANET environments. We demonstrated desirable 

resiliency and accuracy properties of our protocol design by means of a novel model-based analysis 

methodology with simulation validation. We also demonstrated its utility with a misbehaving node detection 

application built on top of our protocol based on a new design concept of mission-dependent trust formation 

for achieving application performance maximization. We proposed an efficient table-lookup method for 

applying the analysis results at runtime dynamically in response to changing environment conditions to 

maximize application performance in terms of minimizing the false alarm rate.  

In the future, we plan to consider more sophisticated attacker models such as random, opportunistic, and 

insidious attacks [15, 29, 30] to further test the resiliency of our hierarchical trust management protocol 

design and extend the analysis to the Internet of things systems and cyber physical systems where 

hierarchical control is essential for achieving scalability, reconfigurability, survivability and intrusion 

tolerance.  
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