
The FCS1: A Language Independent Assessment of CS1
Knowledge

Allison Elliott Tew
Department of Computer Science

University of British Columbia
Vancouver, BC V6T 1Z4
aetew@cs.ubc.ca

Mark Guzdial
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30332-0760
guzdial@cc.gatech.edu

ABSTRACT
A primary goal of many CS education projects is to de-
termine the extent to which a given intervention has had an
impact on student learning. However, computing lacks valid
assessments for pedagogical or research purposes. Without
such valid assessments, it is difficult to accurately measure
student learning or establish a relationship between the in-
structional setting and learning outcomes.

We developed the Foundational CS1 (FCS1) Assessment
instrument, the first assessment instrument for introductory
computer science concepts that is applicable across a vari-
ety of current pedagogies and programming languages. We
applied methods from educational and psychological test
development, adapting them as necessary to fit the disci-
plinary context. We conducted a large scale empirical study
to demonstrate that pseudo-code was an appropriate mech-
anism for achieving programming language independence.
Finally, we established the validity of the assessment using
a multi-faceted argument, combining interview data, statis-
tical analysis of results on the assessment, and CS1 exam
scores.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education,
curriculum

General Terms
Experimentation, measurement

Keywords
Assessment, CS1, programming, validity

1. INTRODUCTION
Measuring student learning is fundamental to any educa-

tional endeavor. A primary goal of many computer science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03 ...$10.00.

education projects is to determine the extent to which a
given instructional intervention has had an impact on stu-
dent learning. However, the field of computing lacks valid
and reliable assessment instruments for pedagogical or re-
search purposes. Without such valid assessments, it is dif-
ficult to accurately measure student learning or establish a
relationship between the instructional setting and learning
outcomes. The goal of assessment research in computer sci-
ence is to have valid ways of measuring student conceptions
of fundamental topics, which will enable both research into
how understanding of knowledge in the domain develops as
well as enable curricular innovation and reform grounded in
this knowledge.

Many science, technology, engineering and mathematics
(STEM) disciplines have standard validated assessment tools
that allow educators and researchers to accurately measure
student learning and evaluate curricular innovations (e.g.,
[6, 9]). However, computer science does not have a similar
set of validated assessment tools. There are four existing
validated exams of computer science conceptual knowledge.
Two, the CS Advanced Placement (AP) exam and the Ad-
vanced Level General Certificate of Education (A-level) in
Computing, focus on the introductory sequence in comput-
ing. These exams, written in the Java programming lan-
guage, are controlled and administered by specific educa-
tional testing boards and thus are not widely applicable and
available to educators and researchers for general use. The
remaining two exams, the Major Field Test for Computer
Science and the GRE Computer Science Subject Test, cover
a wide range of material as they are designed to evaluate
end of degree program learning objectives.

The CS education community has shown growing interest
in assessment research, and two related projects are under-
way. In dissertation work, Decker [3] designed an assessment
for an introductory sequence of programming courses (CS1
and CS2) in Java. The instrument was developed and tested
at a single institution, and therefore its validity claims can-
not be generalized beyond that context. Craig Zilles and
colleagues have received funding to develop a set of concept
inventories for computing, in discrete math, digital logic de-
sign, and programming fundamentals. The researchers have
elicited a set of troublesome concepts from educational ex-
perts [4] and are conducting think-aloud interviews to cap-
ture student misconceptions [7]. The work is preliminary
and instruments are still being developed.

Our work differs from these efforts in that we created a
rigorously validated exam that could be widely adopted and
used in any introductory CS course. The goal was to create

111

an exam to measure understanding of fundamental comput-
ing concepts, independent of programming language, that
would not be overly biased by any particular pedagogical
paradigm. We focused on three questions regarding assess-
ment of introductory concepts in computer science. How can
existing test development methods be applied and adapted
to create a valid assessment instrument for CS1 conceptual
knowledge? To what extent can pseudo-code be used as
the mechanism for achieving programming language inde-
pendence in an assessment instrument? And to what extent
does the language independent instrument provide a valid
measure of CS1 conceptual knowledge?

This paper begins with an overview of the method used
to develop the first assessment instrument for introductory
computer science concepts that is applicable across a variety
of current pedagogies and programming languages.

2. METHOD FOR DEVELOPING A VALI-
DATED CS1 ASSESSMENT

The fields of education and psychology have developed a
rich history in developing and validating measurement in-
struments for a variety of purposes [1]. We applied these
established methods and practices for developing valid mea-
sures, summarized below, adapting them where necessary
for the field of computer science.

The first step in test development is to establish the pur-
pose and definition of the test — what is to be measured
and what the scores mean. The test specification includes
the definition of the conceptual content, or constructs, that
is to be measured, the format of the questions, and the scor-
ing procedures. The test specification should be reviewed by
a panel of experts to provide content validity evidence and
ensure that all constructs are adequately represented and
extraneous constructs are not included.

After the test specification has been developed and veri-
fied, a test bank of questions should be developed to cover
all constructs identified in the specification. Piloting of the
questions then takes place. Pilot tests examine the suit-
ability of the questions, allowing necessary revisions to be
made prior to the selection of the final candidate questions.
The last stages of test development are empirical studies
of individual responses to establish validity and reliability.
Validity testing ensures that the test is measuring the in-
tended constructs, and reliability testing verifies that the
results are consistent over repeated examinations, and thus
are dependable.

To create the FCS1 Assessment, two adaptations were re-
quired. The first methodological change centered around
creating an exam focused on concepts not programming lan-
guage syntax, so the assessment can be as widely applicable
as possible. The method required the addition of a step to
verify the programming language independence of the exam.
To achieve language independence for a CS1 exam, we uti-
lized a verbose pseudo-code as the exam programming lan-
guage. We evaluated the effectiveness of this approach us-
ing a combination of think aloud and empirical studies1.
These studies were required to ensure students are able to
appropriately transfer understanding from their program-
ming language of instruction to pseudo-code and to ensure

1Due to space constraints, we limit our discussion here to
the empirical study. See [12] for more details.

that students are able to demonstrate their understanding
adequately in the new language independent exam.

The second change is required because the standard meth-
ods for validating the instrument against existing valid mea-
sures did not apply to this exam, which is the first of its kind
in the field of computing. So a validity argument was crafted
using a combination of think aloud interviews and statistical
analysis techniques.

The first three steps in this process have previously been
described in [13]. Section 3 contains the results of our empir-
ical study investigating the use of pseudo-code as the mech-
anism to achieve language independence, and the process
used to validate the exam is explained in Section 4. The
data collected will allow preliminary analysis of the internal
reliability of the exam. However, full-scale reliability testing
is left for future work.

3. FCS1 ASSESSMENT STUDY
We conducted a large scale empirical study comparing stu-

dent performance on the FCS1 Assessment2 to a comparable
version of the assessment instrument written in the students’
CS1 programming language. Participants were selected at
the end of CS1 courses taught in Java, Matlab, or Python,
and statistical analysis was used to look for correlations in
student performance between the two exams.

3.1 Study Design
We recruited participants from four different introductory

courses taught at two universities by four separate faculty
members, so that the definition and understanding of CS1
knowledge was not tied to a particular faculty member or
institution. There were a total of 952 participants who were
enrolled in a CS1 course in Java (n = 80), Matlab (n = 520),
or Python (n = 352).

The study consisted of two assessment exams given, one
week apart, under testing conditions — no questions were
permitted and collaboration was not allowed. Participants
completed the FCS1 Assessment and a comparable version
of the FCS1 rewritten in the programming language used in
their introductory CS course. The comparable version was
created using the alternate questions for each concept in the
test bank. A counterbalanced quasi-experimental design was
used to reduce bias from ordering effect.

3.2 Data Analysis Results
Before data analysis could begin, outliers from the data

set that would bias or skew the results were removed. An
external researcher verified the rules for exclusion and in-
dependently reviewed all of the exams that were removed
from the data set to confirm that they met one or more of
the exclusionary criteria.

3.2.1 Scoring the FCS1
The pseudo-code and CS1 language versions of the FCS1

were graded, awarding a 1 for a correct answer and a 0 for an
incorrect answer. (Any question left blank was not scored.)
Student participants answered an average of 8.82 (33.78%,
σ = 3.649) questions correctly on the pseudo-code version

2Unfortunately for the validity and reliability of the assess-
ment instrument, exam questions must remain private and
cannot be published. This prevents potentially biasing par-
ticipants involved in validation studies.

112

Figure 1: Scatterplot of Scores for Correlation of
Pseudo-code and Language Versions of FCS1

of the FCS1. The maximum score was a 23, and the mini-
mum score was a 1. Students were more successful answering
questions on the CS1 language specific exam. An average
of 13.13 (48.61%, σ = 4.195) questions were answered cor-
rectly, and the minimum and maximum score both increased
by two points to 3 and 25, respectively. While the over-
all scores were higher on this version of this exam, similar
concepts appear among those identified as least and most
difficult across the populations.

Questions about math operators and if statements were
among the most commonly answered correctly. The pro-
gramming constructs related to function parameters, func-
tion return values, and recursion were the most difficult
questions on both the pseudo-code and the language spe-
cific version of the FCS1.

3.2.2 Correlation with CS1 Language Version
We investigated the effectiveness of pseudo-code as the

mechanism to achieve programming language independence
by examining whether students were able to transfer their
understanding of fundamental computing concepts from their
CS1 programming language to pseudo-code. A correlation
analysis was conducted to look for evidence of a positive
correlation between the overall scores, i.e. the number of
questions answered correctly, for each participant on both
versions of the FCS1 Assessment.

A Pearson product-moment correlation coefficient was com-
puted to assess the relationship between the score on the
pseudo-code version and the score on the language specific
version of the assessment instrument. There was a strong,
positive correlation between the two variables, Pearson’s
r(850) = .572, p <= 0.001. A scatterplot summarizes the
results in Figure 1.

Having found a positive correlation, which meets the guide-
lines for large effect size (r >= .37) in the social sciences [2],
subsequent analyses focused on correlating exam scores for
each CS1 programming language sub-population. Were stu-
dents from each of the CS1 programming languages exam-
ined – Java, Matlab, and Python – able to transfer their un-
derstanding to pseudo-code? Or is the syntax of the pseudo-

code too distinct from what the participants have learned
to facilitate the expression of conceptual understanding in a
new programming language?

Pearson product-moment correlation coefficients were com-
puted to assess the relationship between the score on the
pseudo-code version and the score on the language specific
version of the assessment for each programming language
participant group (see Table 1). There was a strong, posi-
tive correlation between the scores on the pseudo-code and
language versions of the assessment for each of the program-
ming languages studied. Participants from the CS1 taught
in Java had the strongest correlation, Pearson’s r(74) = .665,
p <= 0.001. Although the pseudo-code syntax had more
elements in common with Python than the other program-
ming languages studied, the Python participant group had
the lowest correlation coefficient, Pearson’s r(285) = .415,
p <= 0.001. The Python population was comprised of stu-
dents, normally students from STEM majors, enrolled in
an introductory computing course as well as students who
were enrolled in a non-traditional media computation course
designed for liberal arts students. A Pearson’s correlation
coefficient was also computed for each of these subpopula-
tions of the Python participant group. There was a strong
positive correlation, (Pearson’s r(43) = .615, p <= 0.001),
for students enrolled in the CS-based python CS1 course
that was similar to the strength of the correlation found in
the Java and Matlab populations. While the effect size for
the media-based Python course was smaller, r = .372, it met
guidelines to be classified as a strong, positive correlation.

Overall the results demonstrate that there was a strong,
positive correlation between the scores on the pseudo-code
and CS1 language versions of the FCS1 for both traditional
and non-traditional pedagogical approaches to CS1.

4. ESTABLISHING VALIDITY
After the FCS1 Assessment was piloted, the final step in

the development process was to establish the validity of the
exam. In general, there are two classes of evidence used to
support validity claims. Content related evidence ensures
that the assessment’s content appropriately operationalizes
the constructs it is intended to measure. Content validity
for the FCS1 was previously established by expert panel re-
view. Construct related evidence provides the second set of
support for validity and is the focus of the discussion here.
Together, content and construct validity enable a test devel-
oper to provide evidence that the instrument is measuring
student knowledge as intended.

Given the position of this exam as the first of its kind in
the field, the standard correlation methods for establishing
validity do not apply. Since construct validation is depen-
dent on inferences drawn from a variety of data [8, 10], we
proposed a three-pronged approach to establishing the va-
lidity of the assessment instrument. The validity evidence
is three-fold: think aloud interview data, student responses
to the FCS1, and student CS1 exam scores.

4.1 Qualitative Analysis of Student Interviews
Qualitative analysis of transcripts from think aloud in-

terviews with students provides evidence whether students
were answering questions based on their knowledge of the
conceptual content. The goal of the analysis was to de-
termine whether students were using knowledge about the
intended construct to answer the question. Alternatively,

113

Table 1: Significant Pearson Correlations of FCS1 Assessment‡

Population Version Language Midterm 1 Midterm 2 Midterm 3 Final

Total
Pseudo .572 .111 .149 .309 .499

Language * .120 .128 .491 .542

Java
Pseudo .665 .408 .446 — .511

Language * .406 .582 — .680

Matlab
Pseudo .547 .500 .527 .443 .438

Language * .531 .536 .488 .505

Python
Pseudo .415 .200 .216 n.s. .453

Language * .424 .429 .392 .539

CS-Python
Pseudo .615 .719 .685 .625 .679

Language * .525 .445† .429† .437†

Media-Python
Pseudo .372 .246 .220 .305 .262

Language * .456 .453 .542 .601
‡ All correlations, unless otherwise noted, are significant at the p <= 0.001 level.
† Correlation is significant at the p <= 0.01 level.
* Language-Language self comparison omitted.
— No midterm 3 measure was analyzed because only two midterms were administered in the

course.

additional information could be required to correctly an-
swer the question or other cues could be enabling correct
responses without knowledge of the concept.

Thirteen student participants, of varying ability levels,
were recruited from introductory courses taught in three dif-
ferent programming languages (Java, Matlab, and Python).
Students were asked to participate in a think aloud inter-
view conducted while they were completing the pseudo-code
version of the FCS1. The interview data was transcribed
and content analysis was used to analyze the participant
responses. Specifically, responses were coded for correct-
ness, errors made, and evidence of reasoning using the new
pseudo-code language syntax.

Valid responses demonstrated evidence of student reason-
ing about the question’s intended construct and reaching a
correct or incorrect response based upon the level of under-
standing. That is, if a student held misconceptions about
a topic, they selected an incorrect answer. Otherwise, they
answered correctly. A majority (83.07%) of the responses
analyzed were categorized as valid. The multiple-choice test-
ing format allowed a few correct responses (5.92%) despite
students’ misunderstanding about the questions conceptual
content. Further, there were a small number of responses
(4.44%) where student misconceptions about another topic
prevented them from answering the question correctly. How-
ever, there were no instances where students reasoning about
another construct enabled a correct response to a question
without knowledge of the concept.

Overall, the interview evidence provides a qualitative ar-
gument that students are able to read and reason with the
pseudo-code syntax. Further, they are using their knowledge
about the intended construct to answer the question.

4.2 Quantitative Analysis using IRT
The FCS1 Assessment study data and analysis provides a

quantitative argument towards construct validity. The Pear-
son correlation analysis demonstrated that students have a
comparable knowledge to that measured in a language spe-
cific version of the exam. If the questions are representa-

tive measures of knowledge in students’ CS1 programming
language, then validity of the exam is contingent upon the
questions themselves. Item response theory (IRT) is the
statistical analysis technique employed to make this validity
claim. If the questions are shown to be“good”questions (i.e.,
of appropriate difficulty and discrimination) and students
demonstrate comparable knowledge to a language specific
exam, then the argument is made that this is an accurate
representation of students’ understanding of the topics.

Using a three-parameter logistic model (3PL) [5], IRT was
used to analyze the FCS1 participant responses to discern
the strength and weakness of each item in the test. Overall,
most (24 of 27) questions displayed strong item discrimina-
tion, adequate difficulty, and low guessing probability. Two
questions, Q12 and Q13, were too difficult. That is bi > 3.0,
which implies that less than 10% of the examinees had a 50%
probability of answering the question correctly. Overall, the
items on the exam showed adequate levels of discrimination.
However due to the overall high level of difficulty of the
exam, the test shows better discrimination among student
participants of higher ability than those with lower ability.

Question 2 displayed a guessing probability that ex-
ceeded recommended limits. The guessing item parameter,
ci = 0.442, a probability of a low ability participant guess-
ing the question correctly over 40% of the time. Two other
questions, Q21 and Q25, had guessing parameter values that
were elevated but were within one standard deviation of the
expected value of ci =0.20 for a 5 item multiple-choice ques-
tion.

Overall, IRT analysis identified only four questions, Q2,
Q12, Q13, and, Q25 that need to be revised or dropped
from the exam. Question 2 has a high guessing probability,
questions 12 and 13 are too difficult, and question 25 has a
relatively high guessing probability and provides relatively
little additional information about an examinees’s ability
level.

114

Figure 2: Scatterplot of Scores for Correlation of
FCS1 Assessment Score and CS1 Final Exam Score

4.3 Correlation with External Measures of CS1
Knowledge

Student exam scores, as an external definition and mea-
sure of CS1 knowledge, provide the final piece of evidence for
construct validity. Pearson’s correlation analysis was used
to investigate whether student scores on the FCS1 can be
positively correlated with their scores on CS1 exams.

A Pearson product-moment correlation coefficient was
computed to assess the relationship between the score on
the FCS1 Assessment and the score on the final exam in
CS1. There was a strong, positive correlation between the
two variables, Pearson’s r(931) = .499, p <= 0.001. A scat-
terplot summarizes the results (Figure 2). Further there
were significant, yet weaker, correlations between scores on
the assessment and scores on individual midterm exams (see
Table 1).

Having found a strong positive correlation, subsequent
analyses focused on correlating exam scores with each
CS1 programming language population. Pearson product-
moment correlation coefficients were computed to assess the
relationship between the score on the pseudo-code version of
the assessment and the final exam score for each program-
ming language participant group (see Table 1). There was a
strong, positive correlation between the scores on the assess-
ment and the final exam for each of the programming lan-
guages studied. Participants from the CS1 taught in Java
had the strongest correlation with final exam score, Pear-
son’s r(79) = .511, p <= 0.001. The Python population
was again comprised of students in CS and media computa-
tion versions of CS1. A Pearson’s correlation coefficient was
computed for each of these subpopulations of the Python
participant group. There was the strongest positive corre-
lation, (Pearson’s r(69) = .679, p <= 0.001), for students
enrolled in the CS-based python CS1 course. The effect size
for the media-based Python course was smaller, r = .262, yet
there was still a significant positive correlation with medium
effect size.

Pearson correlation coefficients were also computed for
each midterm score for each programming language par-
ticipant group (see Table 1). There was a strong, posi-

tive correlation between the scores on the assessment and
midterm exam scores for all CS1 courses in Java, Matlab, or
Python except the non-traditional media computation ap-
proach. Participants from the CS-based Python course had
the strongest correlations with each midterm exam score.
The strongest correlation coefficient was for midterm 1, Pear-
son’s r(69) = .719, p <= 0.001. The correlation between as-
sessment score and midterm exam scores for the media-based
Python course showed significant correlations with medium
effect size.

Overall the results demonstrate that there was a strong,
positive correlation between the scores on the FCS1 Assess-
ment and final exam scores for both traditional and non-
traditional pedagogical approaches to CS1. In addition there
was a strong positive correlation with individual midterm
exam scores for traditional approaches to CS1 taught in
Java, Matlab, and Python.

4.4 Validity Argument
Two issues are central to construct validation of an as-

sessment instrument: construct under-representation and
construct-irrelevant variance [10]. These issues are explored
by the following questions: (1) Does the assessment ade-
quately operationalize the intended construct? and (2) Is
performance on the assessment influenced by factors that
are ancillary to the construct?

The matter of construct under-representation was resolved
by the panel of expert reviewers confirming an adequate def-
inition of fundamental CS1 concepts included in the test
specification. Further, item response theory analysis indi-
cated that a majority (24 out of 27) of the items on the as-
sessment provide adequate information about student par-
ticipant ability. Thus, overall the definition and measure-
ment of the constructs specified are appropriate for the FCS1.

A variety of metrics were used to identify potential sources
of construct-irrelevant variance, with almost all measures
providing evidence to the contrary. Think aloud interviews
with participants revealed that students were able to provide
valid answers about the intended construct on over 85% of
the questions. Scores on the pseudo-code version of the as-
sessment had a strong positive correlation with scores on the
CS1 language specific version of the exam. When combined
with IRT results that demonstrate that 85.18% of the ques-
tions were of appropriate difficulty and discrimination, it is
appropriate to infer that the FCS1 is a reasonable measure
of CS1 knowledge.

Overall the validity studies provide evidence that students
are reading and reasoning with the pseudo-code to answer
questions in the manner intended. In addition, there is em-
pirical evidence of the quality of the questions used to mea-
sure understanding that further correlates with external fac-
ulty definitions and measures of CS1 knowledge. Therefore,
the FCS1 does provide a valid measure of introductory com-
puting concepts for procedurally-based introductory com-
puting courses taught in Java, Matlab, or Python at the
university level.

5. CONCLUSION AND FUTURE WORK
Research and development on the FCS1 Assessment is

continuing along a number of paths. This research has fo-
cused on establishing the validity of the exam for a limited
number of constructs with a focused population of univer-
sity students studying common introductory CS1 program-

115

ming languages. Natural extensions of this work include
adding additional concepts, establishing the reliability of the
exam, and implementing the test on-line to reduce the re-
sources required for data collection and test administration.
We are also exploring the applicability and validity of using
the FCS1 for measuring student knowledge across different
pedagogical paradigms and programming languages, such as
graphical or functional approaches.

The availability of a valid assessment instrument to mea-
sure student understanding of CS1 concepts enables a va-
riety of directions for CS education research involving the
FCS1. As an example, a programming language indepen-
dent assessment instrument permits the comparison of ped-
agogical approaches in ways that were not previously avail-
able. In particular, it is now possible to investigate whether
there are identifiable and persistent differences in student
understanding of fundamental computer science concepts
based upon the pedagogical approach or programming lan-
guage used in the first course. When combined with other
research methods, it would be possible to begin to identify
which of the many factors in a CS1 learning environment
(e.g., the instructor, programming language, integrated de-
velopment environment (IDE), pedagogical approach, stu-
dent motivation) are the levers that drive student mastery
of computing concepts.

Assessment is an important piece of the computer sci-
ence education research agenda. But as assessment practices
“shape people’s understanding about what is important to
learn” [11, p. 111] it is vital that the field continues to
expand the scope and availability of validated assessment
tools.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant Nos. 0512213 and
0634629. Any opinions findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

7. REFERENCES
[1] American Educational Research Association,

American Psychological Association, and National
Council on Measurement in Education. Standards for
educational and psychological testing. American
Educational Research Association, Washington, DC,
1999.

[2] J. Cohen. Statistical Power Analysis for the

Behavioral Sciences. Lawrence Erlbaum Associates,
Hillsdale, NJ, 2nd edition, 1988.

[3] A. M. Decker. How Students Measure Up: An
Assessment Instrument for Introductory Computer
Science. PhD thesis, University at Buffalo (SUNY),
Buffalo, NY, 2007.

[4] K. Goldman, P. Gross, C. Heeren, G. Herman,
L. Kaczmarczyk, M. C. Loui, and C. Zilles. Identifying
important and difficult concepts in introductory
computing courses using a Delphi process. In SIGCSE
’08: Proceedings of the 39th ACM Technical
Symposium on Computer Science Education, pages
256–260, 2008.

[5] R. K. Hambleton, H. Swaminathan, and H. J. Rogers.
Fundamentals of item response theory. Sage
Publications, Newbury Park, CA, 1991.

[6] D. Hestenes, M. Wells, and G. Swackhamer. Force
concept inventory. The Physics Teacher, 30:141–158,
March 1992.

[7] L. C. Kaczmarczyk, E. R. Petrick, J. P. East, and
G. L. Herman. Identifying student misconceptions of
programming. In SIGCSE ’10: Proceedings of the 41st
ACM Technical Symposium on Computer Science
Education, pages 107–111, 2010.

[8] M. T. Kane. Validation. In R. L. Brennen, editor,
Educational Measurement, pages 17–64. American
Council on Education/Praeger Publishers, Westport,
CT, 4th edition, 2006.

[9] J. C. Libarkin and S. Anderson. Assessment of
learning in entry-level geoscience courses: Results
from the geoscience concept inventory. Journal of
Geoscience Education, 53:394–401, 2005.

[10] M. D. Miller, R. L. Linn, and N. E. Gronlund.
Validity. In Measurement and assessment in teaching,
pages 80–99. Pearson Education, Upper Saddle River,
NJ, 10th edition, 2009.

[11] P. A. Moss, B. J. Girard, and L. C. Haniford. Validity
in Educational Assessment. Review of Research in
Education, 30(1):109–162, 2006.

[12] A. E. Tew. Assessing fundamental introductory
computing concept knowledge in a language
independent manner. PhD thesis, Georgia Institute of
Technology, Atlanta, GA, 2010.

[13] A. E. Tew and M. Guzdial. Developing a validated
assessment of fundamental CS1 concepts. In SIGCSE
’10: Proceedings of the 41st ACM Technical
Symposium on Computer Science education, pages
97–101, 2010.

116

