
A Practical Guide To Building OWL Ontologies Using Protégé 4

and CO-ODE Tools

Edition 1.2

Matthew Horridge
Contributors

v 1.0 - Holger Knublauch , Alan Rector , Robert Stevens , Chris Wroe
v 1.1 - Simon Jupp, Georgina Moulton, Robert Stevens
v 1.2 - Nick Drummond, Simon Jupp, Georgina Moulton, Robert Stevens

The University Of Manchester

Copyright c© The University Of Manchester

March 13, 2009

Contents

1 Introduction 7

1.1 Conventions . 7

2 Requirements 9

3 What are OWL Ontologies? 10

3.1 Components of OWL Ontologies . 10

3.1.1 Individuals . 10

3.1.2 Properties . 11

3.1.3 Classes . 12

4 Building An OWL Ontology 13

4.1 Named Classes . 15

4.2 Disjoint Classes . 18

4.3 Using Create Class Hierarchy To Create Classes . 19

4.4 OWL Properties . 23

4.5 Inverse Properties . 27

4.6 OWL Object Property Characteristics . 29

4.6.1 Functional Properties . 29

4.6.2 Inverse Functional Properties . 29

4.6.3 Transitive Properties . 29

4.6.4 Symmetric Properties . 30

1

4.6.5 Antisymmetric properties . 32

4.6.6 Reflexive properties . 32

4.6.7 Irreflexive properties . 33

4.7 Property Domains and Ranges . 33

4.8 Describing And Defining Classes . 37

4.8.1 Property Restrictions . 37

4.8.2 Existential Restrictions . 39

4.9 Using A Reasoner . 49

4.9.1 Invoking The Reasoner . 49

4.9.2 Inconsistent Classes . 50

4.10 Necessary And Sufficient Conditions (Primitive and Defined Classes) 54

4.10.1 Primitive And Defined Classes . 58

4.11 Automated Classification . 58

4.12 Universal Restrictions . 60

4.13 Automated Classification and Open World Reasoning . 63

4.13.1 Closure Axioms . 64

4.14 Value Partitions . 68

4.14.1 Covering Axioms . 70

4.15 Adding Spiciness to Pizza Toppings . 71

4.16 Cardinality Restrictions . 73

4.17 Qualified Cardinality Restrictions . 75

5 Datatype Properties 77

6 More On Open World Reasoning 84

7 Creating Other OWL Constructs In Protégé 4 90

7.1 Creating Individuals . 90

7.2 hasValue Restrictions . 92

2

7.3 Enumerated Classes . 94

7.4 Annotation Properties . 95

7.5 Multiple Sets Of Necessary & Sufficient Conditions . 96

A Restriction Types 99

A.1 Quantifier Restrictions . 99

A.1.1 someValuesFrom – Existential Restrictions . 100

A.1.2 allValuesFrom – Universal Restrictions . 100

A.1.3 Combining Existential And Universal Restrictions in Class Descriptions 101

A.2 hasValue Restrictions . 101

A.3 Cardinality Restrictions . 102

A.3.1 Minimum Cardinality Restrictions . 102

A.3.2 Maximum Cardinality Restrictions . 102

A.3.3 Cardinality Restrictions . 102

A.3.4 The Unique Name Assumption And Cardinality Restrictions 103

B Complex Class Descriptions 104

B.1 Intersection Classes (u) . 104

B.2 Union Classes (t) . 104

C Plugins 106

C.1 Installing Plugins . 106

C.2 Useful Plugins . 106

C.2.1 Matrix Plugin . 106

3

Copyright

Copyright The University Of Manchester 2007

4

Acknowledgements

I would like to acknowledge and thank my colleagues at the University Of Manchester and also Stanford
Univeristy for proof reading this tutorial/guide and making helpful comments and suggestions as to how
it could be improved. In particular I would like to thank my immediate colleagues: Alan Rector, Nick
Drummond, Hai Wang and Julian Seidenberg at the Univeristy Of Manchester, who suggested changes
to early drafts of the tutorial in order to make things clearer and also ensure the technical correctness of
the material. Alan was notably helpful in suggesting changes that made the tutorial flow more easily. I
am grateful to Chris Wroe and Robert Stevens who conceived the original idea of basing the tutorial on
an ontology about pizzas. Finally, I would also like to thank Natasha Noy from Stanford University for
using her valuable experience in teaching, creating and giving tutorials about Protégé to provide detailed
and useful comments about how initial drafts of the tutorial/guide could be made better.

This work was supported in part by the CO-ODE project funded by the UK Joint Information Services
Committee and the HyOntUse Project (GR/S44686) funded by the UK Engineering and Physical Science
Research Council and by 21XS067A from the National Cancer Institute.

http://www.co-ode.org

5

6

Chapter 1

Introduction

This guide introduces Protégé 4 for creating OWL ontologies. Chapter 3 gives a brief overview of the
OWL ontology language. Chapter 4 focuses on building an OWL-DL ontology and using a Description
Logic Reasoner to check the consistency of the ontology and automatically compute the ontology class
hierarchy. Chapter 7 describes some OWL constructs such as hasValue Restrictions and Enumerated
classes, which aren’t directly used in the main tutorial.

1.1 Conventions

Class, property and individual names are written in a sans serif font like this.

Names for user interface views are presented in a style ‘like this’.

Where exercises require information to be typed into Protégé 4 a type writer font is used like this.

Exercises and required tutorial steps are presented like this:

Exercise 1: Accomplish this

1. Do this.

2. Then do this.

3. Then do this.

7

Tips and suggestions related to using Protégé 4 and building ontologies are pre-
sented like this.

Explanation as to what things mean are presented like this.

Potential pitfalls and warnings are presented like this.

General notes are presented like this.

Vocabulary explanations and alternative names are presented like this.

8

Chapter 2

Requirements

In order to follow this tutorial you must have Protégé 4, which is available from the Protégé website 1,
and the Protégé Plugins which are available via the CO-ODE web site 2. It is also recommended (but not
necessary) to use the OWLViz plugin, which allows the asserted and inferred classification hierarchies to
be visualised, and is available from the CO-ODE web site, or can be installed when Protégé 4 is installed.
For installation steps, please see the documentation for each component.

1http://protege.stanford.edu
2http://www.co-ode.org

9

Chapter 3

What are OWL Ontologies?

Ontologies are used to capture knowledge about some domain of interest. An ontology describes the
concepts in the domain and also the relationships that hold between those concepts. Different ontology
languages provide different facilities. The most recent development in standard ontology languages is
OWL from the World Wide Web Consortium (W3C)1. Like Protégé , OWL makes it possible to describe
concepts but it also provides new facilities. It has a richer set of operators - e.g. intersection, union and
negation. It is based on a different logical model which makes it possible for concepts to be defined as
well as described. Complex concepts can therefore be built up in definitions out of simpler concepts.
Furthermore, the logical model allows the use of a reasoner which can check whether or not all of the
statements and definitions in the ontology are mutually consistent and can also recognise which concepts
fit under which definitions. The reasoner can therefore help to maintain the hierarchy correctly. This is
particularly useful when dealing with cases where classes can have more than one parent.

3.1 Components of OWL Ontologies

OWL ontologies have similar components to Protégé frame based ontologies. However, the terminology
used to describe these components is slightly different from that used in Protégé . An OWL ontology
consists of Individuals, Properties, and Classes, which roughly correspond to Protégé frames Instances,
Slots and Classes.

3.1.1 Individuals

Individuals, represent objects in the domain in which we are interested 2. An important difference between
Protégé and OWL is that OWL does not use the Unique Name Assumption (UNA). This means that
two different names could actually refer to the same individual. For example, “Queen Elizabeth”, “The
Queen” and “Elizabeth Windsor” might all refer to the same individual. In OWL, it must be explicitly
stated that individuals are the same as each other, or different to each other — otherwise they might be
the same as each other, or they might be different to each other. Figure 3.1 shows a representation of
some individuals in some domain—in this tutorial we represent individuals as diamonds in diagrams.

1http://www.w3.org/TR/owl-guide/
2Also known as the domain of discourse.

10

Matthew Gemma

England
Italy

USA

Fluffy

Fido

Figure 3.1: Representation Of Individuals

Matthew Gemma

England
liv

esIn

hasSibling

Figure 3.2: Representation Of Properties

Individuals are also known as instances. Individuals can be referred to as being
‘instances of classes’.

3.1.2 Properties

Properties are binary relations3 on individuals - i.e. properties link two individuals together4. For
example, the property hasSibling might link the individual Matthew to the individual Gemma, or the
property hasChild might link the individual Peter to the individual Matthew. Properties can have inverses.
For example, the inverse of hasOwner is isOwnedBy. Properties can be limited to having a single value –
i.e. to being functional. They can also be either transitive or symmetric. These ‘property characteristics’
are explained in detail in Section 4.8. Figure 3.2 shows a representation of some properties linking some
individuals together.

Properties are roughly equivalent to slots in Protégé . They are also known as
roles in description logics and relations in UML and other object oriented notions.
In GRAIL and some other formalisms they are called attributes.

3A binary relation is a relation between two things.
4Strictly speaking we should speak of ‘instances of properties’ linking individuals, but for the sake of brevity we will

keep it simple.

11

Matthew

Gemma England

Italy

USA

Fluffy

Fido

livesInCountry

hasPet

h
asSibling

Pet

Country

Person

Figure 3.3: Representation Of Classes (Containing Individuals)

3.1.3 Classes

OWL classes are interpreted as sets that contain individuals. They are described using formal (math-
ematical) descriptions that state precisely the requirements for membership of the class. For example,
the class Cat would contain all the individuals that are cats in our domain of interest.5 Classes may be
organised into a superclass-subclass hierarchy, which is also known as a taxonomy. Subclasses specialise
(‘are subsumed by’) their superclasses. For example consider the classes Animal and Cat – Cat might
be a subclass of Animal (so Animal is the superclass of Cat). This says that, ‘All cats are animals’, ‘All
members of the class Cat are members of the class Animal’, ‘Being a Cat implies that you’re an Animal’,
and ‘Cat is subsumed by Animal’. One of the key features of OWL-DL is that these superclass-subclass
relationships (subsumption relationships) can be computed automatically by a reasoner – more on this
later. Figure 3.3 shows a representation of some classes containing individuals – classes are represented
as circles or ovals, rather like sets in Venn diagrams.

The word concept is sometimes used in place of class. Classes are a concrete
representation of concepts.

In OWL classes are built up of descriptions that specify the conditions that must be satisfied by an
individual for it to be a member of the class. How to formulate these descriptions will be explained as
the tutorial progresses.

5Individuals may belong to more than one class.

12

Chapter 4

Building An OWL Ontology

This chapter describes how to create an ontology of Pizzas. We use Pizzas because we have found them
to provide many useful examples.1

Exercise 2: Create a new OWL Ontology

1. Start Protégé

2. When the Welcome To Protégé dialog box appears, press the ‘Create New OWL
Ontology’.

3. A ‘Create Ontology URI Wizard will appear’. Every ontology is named using a Unique
Resource Identifier (URI). Replace the default URI with http://www.pizza.com/
ontologies/pizza.owl and press ‘Next’.

4. You will also want to save your Ontology to a file on your PC. You can browse your
hard disk and save your ontology to a new file, you might want to name your file
‘pizza.owl’. Once you choose a file press ‘Finish’.

After a short amount of time, a new empty Protégé file will have been created and the ‘Active Ontology
Tab’ shown in Figure 4.1 will be visible. As can be seen from Figure 4.1, the ‘Active Ontology Tab’
allows information about the ontology to be specified. For example, the ontology URI can be changed,
annotations on the ontology such as comments may be added and edited, and namespaces and imports
can be set up via this tab.

1The Ontology that we will create is based upon a Pizza Ontology that has been used as the basis for a course on editing
DAML+OIL ontologies in OilEd (http://oiled.man.ac.uk), which was taught at the University Of Manchester.

13

Figure 4.1: The Active Ontology Tab

14

Figure 4.2: The Ontology Annotations View – The ontology has a comment as indicated by the comment anno-
tation

Exercise 3: Add a comment to the ontology

1. Ensure that the ‘Active Ontology Tab’ is selected.

2. In the ‘Ontology Annotations’ view, click the add icon (+) next to Annotations.
An editing window will appear in the table. Select ’comment’ from the list of built in
annotation URIs and type your comment in the text box in the right hand pane.

3. Enter a comment such as A pizza ontology that describes various pizzas
based on their toppings. and press OK to assign the comment. The annotations
view on the ‘Active Ontology Tab’ should look like the picture shown in Figure 4.2

4.1 Named Classes

As mentioned previously, an ontology contains classes – indeed, the main building blocks of an OWL
ontology are classes. In Protégé 4 , editing of classes is carried out using the ‘Classes Tab’ shown in
Figure 4.3. The initial class hierarchy tree view should resemble the picture shown in Figure 4.4. The
empty ontology contains one class called Thing. As mentioned previously, OWL classes are interpreted
as sets of individuals (or sets of objects). The class Thing is the class that represents the set containing
all individuals. Because of this all classes are subclasses of Thing.2

Let’s add some classes to the ontology in order to define what we believe a pizza to be.
2Thing is part of the OWL Vocabulary, which is defined by the ontology located at http://www.w3.org/2002/07/owl/\#

15

Figure 4.3: The Classes Tab

Add Subclass

Add Sibling Class

Show Usage

Delete Class

Figure 4.4: The Class Hierarchy Pane

16

Exercise 4: Create classes Pizza, PizzaTopping and PizzaBase

1. Ensure that the ‘Classes Tab’ is selected.

2. Press the ‘Add subclass’ button shown in Figure 4.4. This button creates a new
class as a subclass of the selected class (in this case we want to create a subclass of
Thing).

3. A dialog will appear for you to name your class, enter Pizza (as shown in Figure 4.5)
and hit return.

4. Repeat the previous steps to add the classes PizzaTopping and also PizzaBase, en-
suring that Thing is selected before the ‘Add subclass’ button is pressed so that the
classes are created as subclasses of Thing.

The class hierarchy should now resemble the hierarchy shown in Figure 4.6.

After creating Pizza, instead of re-selecting Thing and using the ‘Create sub-
class’ button to create PizzaTopping and PizzaBase as further subclasses of
Thing, the ‘Add sibling class’ button (shown in Figure 4.4) can be used. While
Pizza is selected, use the ‘Create sibling class’ button to create PizzaTopping
and then use this button again (while PizzaTopping is selected) to create Piz-
zaBase as sibling classes of PizzaTopping – these classes will of course still be
created as subclasses of Thing, since Pizza is a subclass of Thing.

A class hierarchy may also be called a taxonomy.

Although there are no mandatory naming conventions for OWL classes, we recom-
mend that all class names should start with a capital letter and should not contain
spaces. (This kind of notation is known as CamelBack notation and is the nota-
tion used in this tutorial). For example Pizza, PizzaTopping, MargheritaPizza.
Alternatively, you can use underscores to join words. For example Pizza Topping.
Which ever convention you use, it is important to be consistent.

17

Figure 4.5: Class Name Dialog

Figure 4.6: The Initial Class Hierarchy

4.2 Disjoint Classes

Having added the classes Pizza, PizzaTopping and PizzaBase to the ontology, we now need to say these
classes are disjoint, so that an individual (or object) cannot be an instance of more than one of these
three classes. To specify classes that are disjoint from the selected class click the ‘Disjoints classes’
button which is located at the bottom of the ‘Class Description’ view.

Exercise 5: Make Pizza, PizzaTopping and PizzaBase disjoint from each other

1. Select the class Pizza in the class hierarchy.

2. Press the ‘Disjoint classes’ button in the ‘class description’ view, this will bring up
a dialog where you can select multiple classes to be disjoint. This will make PizzaBase
and PizzaTopping (the sibling classes of Pizza) disjoint from Pizza.

Notice that the disjoint classes view now displays PizzaTopping and PizzaBase. Select the class Piz-
zaBase. Notice that the disjoint classes view displays the classes that are now disjoint to PizzaBase,
namely Pizza and PizzaTopping.

18

Figure 4.7: Create Class Hierarchy: Select class page

OWL Classes are assumed to ‘overlap’. We therefore cannot assume that an
individual is not a member of a particular class simply because it has not been
asserted to be a member of that class. In order to ‘separate’ a group of classes
we must make them disjoint from one another. This ensures that an individual
which has been asserted to be a member of one of the classes in the group cannot
be a member of any other classes in that group. In our above example Pizza,
PizzaTopping and PizzaBase have been made disjoint from one another. This
means that it is not possible for an individual to be a member of a combination
of these classes – it would not make sense for an individual to be a Pizza and a
PizzaBase!

4.3 Using Create Class Hierarchy To Create Classes

In this section we will use the ‘Create Class Hierarchy’ tool to add some subclasses of the class
PizzaBase.

19

Figure 4.8: Create Class Hierarchy: Enter classes page

Exercise 6: Use the ‘Create Class Hierarchy’ Tool to create ThinAndCrispy and DeepPan as sub-
classes of PizzaBase

1. Select the class PizzaBase in the class hierarchy.

2. From the Tools menu on the Protégé menu bar select ‘Create Class Hierarchy...’.

3. The tools shown in Figure 4.7 will appear. Since we preselected the PizzaBase class,
the first radio button at the top of the tool should be prompting us to create the classes
under the class PizzaBase. If we had not preselected PizzaBase before starting the
tool, then the tree could be used to select the class.

4. Press the ‘Next’ button on the tool—The page shown in Figure 4.8 will be displayed.
We now need to tell the tool the subclasses of PizzaBase that we want to create. In
the large text area, type in the class name ThinAndCrispyBase (for a thin based pizza)
and hit return. Also enter the class name DeepPanBase so that the page resembles
that shown in Figure 4.8 .

5. Hit the ‘Next’ button on the tool. The tool checks that the names entered adhere
to the naming styles that have previously been mentioned (No spaces etc.). It also
checks for uniqueness – no two class names may be the same. If there are any errors
in the class names, they will be presented on this page, along with suggestions for
corrections.

6. Hit the ‘Next’ button on the tool. Ensure the tick box ‘Make all new classes
disjoint’ is ticked — instead of having to use the disjoint classes view, the tool will
automatically make the new classes disjoint for us.

After the ‘Next’ button has been pressed, the tool creates the classes, makes them disjoint. Click
‘Finish’ to dismiss the tool. The ontology should now have ThinAndCrispyBase and also DeepPanBase

20

as subclasses of PizzaBase. These new classes should be disjoint to each other. Hence, a pizza base
cannot be both thin and crispy and deep pan. It isn’t difficult to see that if we had a lot of classes to
add to the ontology, the tool would dramatically speed up the process of adding them.

On page one of the ‘Create class hierarchy wizard’ the classes to be created
are entered. If we had a lot of classes to create that had the same prefix or suffix
we could use the options to auto prepend and auto append text to the class names
that we entered.

Creating Some Pizza Toppings

Now that we have some basic classes, let’s create some pizza toppings. In order to be useful later on the
toppings will be grouped into various categories — meat toppings, vegetable toppings, cheese toppings
and seafood toppings.

Exercise 7: Create some subclasses of PizzaTopping

1. Select the class PizzaTopping in the class hierarchy.

2. Invoke the ‘Create class hierarchy...’ tool in the same way as the tool was started
in the previous exercise.

3. Ensure PizzaTopping is selected and press the ‘Next’ button.

4. We want all out topping classes to end in topping, so in the ‘Suffix all in list with’
field, enter Topping. The tool will save us some typing by automatically appending
Topping to all of our class names.

5. The tool allows a hierarchy of classes to be entered using a tab indented tree. Using
the text area in the tool, enter the class names as shown in Figure 4.9. Note that class
names must be indented using tabs, so for example SpicyBeef, which we want to be a
subclass of Meat is entered under Meat and indented with a tab. Likewise, Pepperoni
is also entered under Meat below SpicyBeef and also indented with a tab.

6. Having entered a tab indented list of classes, press the ‘Next’ button and then make
sure that ‘Make all primitive siblings disjoint’ check box is ticked so that new
sibling classes are made disjoint with each other.

7. Press the ‘Finish’ button to create the classes. Press ‘Finish’ again to close the tool.

The class hierarchy should now look similar to that shown in Figure 4.10 (the ordering of classes may be
slightly different).

21

Figure 4.9: Topping Hierarchy

Figure 4.10: Class Hierarchy

22

PizzaTopping

VegetableTopping

TomatoTopping

Figure 4.11: The Meaning Of Subclass — All individuals that are members of the class TomatoTopping are
members of the class VegetableTopping and members of the class PizzaTopping as we have stated
that TomatoTopping is a subclass of VegetableTopping which is a subclass of PizzaTopping

Up to this point, we have created some simple named classes, some of which
are subclasses of other classes. The construction of the class hierarchy may have
seemed rather intuitive so far. However, what does it actually mean to be a sub-
class of something in OWL? For example, what does it mean for VegetableTopping
to be a subclass of PizzaTopping, or for TomatoTopping to be a subclass of Veg-
etableTopping? In OWL subclass means necessary implication. In other words,
if VegetableTopping is a subclass of PizzaTopping then ALL instances of Veg-
etableTopping are instances of PizzaTopping, without exception — if something is
a VegetableTopping then this implies that it is also a PizzaTopping as shown in
Figure 4.11.a

aIt is for this reason that we seemingly pedantically named all of our toppings with the suffix
of ‘Topping’, for example, HamTopping. Despite the fact that class names themselves carry no
formal semantics in OWL (and in other ontology languages), if we had named HamTopping Ham,
then this could have implied to human eyes that anything that is a kind of ham is also a kind of
MeatTopping and also a PizzaTopping.

4.4 OWL Properties

OWL Properties represent relationships. There are two main types of properties, Object properties and
Datatype properties. Object properties are relationships between two individuals. In this chapter we
will focus on Object properties; datatype properties are described in Chapter 5. Object properties link an
individual to an individual. OWL also has a third type of property – Annotation properties3. Annotation
properties can be used to add information (metadata — data about data) to classes, individuals and
object/datatype properties. Figure 4.12 depicts an example of each type of property.

Properties may be created using the ‘Object Properties’ tab shown in Figure 4.13. Figure 4.14 shows
the buttons located in the top left hand corner of the ‘Object Properties’ tab that are used for creating
OWL properties. As can be seen from Figure 4.14, there are buttons for creating Datatype properties,

3Object properties and Datatype properties may be marked as Annotation properties

23

hasSister

Matthew Gemma

An object property linking the individual
Matthew to the individual Gemma

A datatype property linking the individual
Matthew to the data literal ‘25’, which has a type
of an xsd:integer.

An annotation property, linking the class ‘JetEngine’
to the data literal (string) ‘’Matthew Horridge’’.

hasAge

Matthew “25”^^xsd:integer

dc:creator

JetEngine ‘‘Matthew Horridge’’

Figure 4.12: The Different types of OWL Properties

24

Figure 4.13: The PropertiesTab

Object properties and Annotation properties. Most properties created in this tutorial will be Object
properties.

Exercise 8: Create an object property called hasIngredient

1. Switch to the ‘Object Properties’ tab. Use the ‘Add Object Property’ button
(see Figure 4.14) to create a new Object property.

2. Name the property to hasIngredient using the ‘Property Name Dialog’ that pops
up, as shown in Figure 4.15 (The ‘Property Name Dialog’).

25

Add object property

Add sub property

Add sibling

Find usage

Delete property

Figure 4.14: Property Creation Buttons — located on the Properties Tab above the property list/tree

Figure 4.15: Property Name Dialog

Although there is no strict naming convention for properties, we recommend that
property names start with a lower case letter, have no spaces and have the re-
maining words capitalised. We also recommend that properties are prefixed with
the word ‘has’, or the word ‘is’, for example hasPart, isPartOf, hasManufacturer,
isProducerOf. Not only does this convention help make the intent of the property
clearer to humans, it is also taken advantage of by the ‘English Prose Tooltip
Generator’a, which uses this naming convention where possible to generate more
human readable expressions for class descriptions.

aThe English Prose Tooltip Generator displays the description of classes etc. in a more natural
form of English, making is easy to understand a class description. The tooltips pop up when the
mouse pointer is made to hover over a class description in the user interface.

Having added the hasIngredient property, we will now add two more properties — hasTopping, and
hasBase. In OWL, properties may have sub properties, so that it is possible to form hierarchies of
properties. Sub properties specialise their super properties (in the same way that subclasses specialise
their superclasses). For example, the property hasMother might specialise the more general property of

26

hasParent

Matthew JeanhasChild

Figure 4.16: An Example Of An Inverse Property: hasParent has an inverse property that is hasChild

hasParent. In the case of our pizza ontology the properties hasTopping and hasBase should be created
as sub properties of hasIngredient. If the hasTopping property (or the hasBase property) links two
individuals this implies that the two individuals are related by the hasIngredient property.

Exercise 9: Create hasTopping and hasBase as sub-properties of hasIngredient

1. To create the hasTopping property as a sub property of the hasIngredient property, se-
lect the hasIngredient property in the property hierarchy on the ‘Object Properties’
tab.

2. Press the ‘Add subproperty’ button. A new object property will be created as a
sub property of the hasIngredient property.

3. Name the new property to hasTopping.

4. Repeat the above steps but name the property hasBase.

Note that it is also possible to create sub properties of datatype properties. However, it is not possible to
mix and match object properties and datatype properties with regards to sub properties. For example, it
is not possible to create an object property that is the sub property of a datatype property and vice-versa.

4.5 Inverse Properties

Each object property may have a corresponding inverse property. If some property links individual a to
individual b then its inverse property will link individual b to individual a. For example, Figure 4.16
shows the property hasParent and its inverse property hasChild — if Matthew hasParent Jean, then
because of the inverse property we can infer that Jean hasChild Matthew.

Inverse properties can be created/specified using the inverse property view shown in Figure 4.17. For

27

Figure 4.17: The Inv erse Property View

completeness we will specify inverse properties for our existing properties in the Pizza Ontology.

Exercise 10: Create some inverse properties

1. Use the ‘Add object property’ button on the ‘Object Properties’ tab to create
a new Object property called isIngredientOf (this will become the inverse property of
hasIngredient).

2. Press the add icon (+) next to ‘Inverse properties’ button on the ‘Property De-
scription’ view shown in Figure 4.17. This will display a dialog from which properties
may be selected. Select the hasIngredient property and press ‘OK’. The property has-
Ingredient should now be displayed in the ‘Inverse Property’ view.

3. Select the hasBase property.

4. Press add icon (+) next to ‘Inverse properties’ on the ‘Property Description’
view. Create a new property in this dialog called isBaseOf. Select this property
and click ‘OK’. Notice that hasBase now has a inverse property assigned called is-
BaseOf. You can optionally place the new isBaseOf property as a sub-property of
isIngredientOf (N.B This will get inferred later anyway when you use the reasoner).

5. Select the hasTopping property.

6. Press add icon (+) next to ‘Inverse properties’ on the ‘Property Description’
view. Use the property dialog that pops up to create the property isToppingOf and
press ‘OK’.

28

4.6 OWL Object Property Characteristics

OWL allows the meaning of properties to be enriched through the use of property characteristics. The
following sections discuss the various characteristics that properties may have:

4.6.1 Functional Properties

If a property is functional, for a given individual, there can be at most one individual that is related to
the individual via the property. Figure 4.18 shows an example of a functional property hasBirthMother
— something can only have one birth mother. If we say that the individual Jean hasBirthMother Peggy
and we also say that the individual Jean hasBirthMother Margaret4, then because hasBirthMother is a
functional property, we can infer that Peggy and Margaret must be the same individual. It should be
noted however, that if Peggy and Margaret were explicitly stated to be two different individuals then the
above statements would lead to an inconsistency.

Margaret

Peggy

Jean

hasBirthMother

hasBirthMother

Implies Peggy and Margaret
are the same individual

Figure 4.18: An Example Of A Functional Property: hasBirthMother

Functional properties are also known as single valued properties and also features.

4.6.2 Inverse Functional Properties

If a property is inverse functional then it means that the inverse property is functional. For a given
individual, there can be at most one individual related to that individual via the property. Figure 4.19
shows an example of an inverse functional property isBirthMotherOf. This is the inverse property of
hasBirthMother — since hasBirthMother is functional, isBirthMotherOf is inverse functional. If we state
that Peggy is the birth mother of Jean, and we also state that Margaret is the birth mother of Jean,
then we can infer that Peggy and Margaret are the same individual.

4.6.3 Transitive Properties

If a property is transitive, and the property relates individual a to individual b, and also individual b to
individual c, then we can infer that individual a is related to individual c via property P. For example,
Figure 4.20 shows an example of the transitive property hasAncestor. If the individual Matthew has an
ancestor that is Peter, and Peter has an ancestor that is William, then we can infer that Matthew has an
ancestor that is William – this is indicated by the dashed line in Figure 4.20.

4The name Peggy is a diminutive form for the name Margaret

29

Margaret

Peggy

JeanImplies same individual

isBirthMotherOf

isBirthMotherOf

Figure 4.19: An Example Of An Inverse Functional Property: isBirthMotherOf

Matthew

Peter

William
ha

sA

ncestor

has

Ancestor

hasAncestor

Figure 4.20: An Example Of A Transitive Property: hasAncestor

4.6.4 Symmetric Properties

If a property P is symmetric, and the property relates individual a to individual b then individual b is
also related to individual a via property P. Figure 4.21 shows an example of a symmetric property. If the
individual Matthew is related to the individual Gemma via the hasSibling property, then we can infer
that Gemma must also be related to Matthew via the hasSibling property. In other words, if Matthew
has a sibling that is Gemma, then Gemma must have a sibling that is Matthew. Put another way, the
property is its own inverse property.

hasSibling

Matthew GemmahasSibling

Figure 4.21: An Example Of A Symmetric Property: hasSibling

We want to make the hasIngredient property transitive, so that for example if a pizza topping has an
ingredient, then the pizza itself also has that ingredient. To set the property characteristics of a property
the property characteristics view shown in Figure 4.22 which is located in the lower right hand corner of

30

Figure 4.22: Property Characteristics Views

the properties tab is used.

Exercise 11: Make the hasIngredient property transitive

1. Select the hasIngredient property in the property hierarchy on the ‘Object Proper-
ties’ tab.

2. Tick the ‘Transitive’ tick box on the ‘Property Characteristics View’.

3. Select the isIngredientOf property, which is the inverse of hasIngredient. Ensure that
the transitive tick box is ticked.

If a property is transitive then its inverse property should also be transitive.a

aAt the time of writing this must be done manually in Protégé 4 . However, the reasoner will
assume that if a property is transitive, its inverse property is also a transitive.

Note that if a property is transitive then it cannot be functional.a

aThe reason for this is that transitive properties, by their nature, may form ‘chains’ of indi-
viduals. Making a transitive property functional would therefore not make sense.

We now want to say that our pizza can only have one base. There are numerous ways that this could be
accomplished. However, to do this we will make the hasBase property functional, so that it may have

31

Figure 4.23: An example of the antisymmetric property hasChildOf

only one value for a given individual.

Exercise 12: Make the hasBase property functional

1. Select the hasBase property.

2. Click the ‘Functional’ tick box on the ‘Property Characteristics View’ so that it
is ticked.

If a datatype property is selected, the property characteristics view will be reduced
so that only options for ‘Allows multiple values’ and ‘Inverse Functional’ will
be displayed. This is because OWL-DL does not allow datatype properties to be
transitive, symmetric or have inverse properties.

4.6.5 Antisymmetric properties

If a property P is antisymmetric, and the property relates individual a to individual b then individual
b cannot be related to individual a via property P. Figure 4.23 shows an example of a antisymmetric
property. If the individual Robert is related to the individual David via the isChildOf property, then it
can be inferred that David is not related to Robert via the isChildOf property. It is, however, reasonable
to state that David could be related to another individual Bill via the isChildOf property. In other words,
if Robert is a child of David, then David cannot be a child of Robert, but David can be a child of Bill.

4.6.6 Reflexive properties

A property P is said to be reflexive when the property must relate individual a to itself. In Figure 4.24
we can see an example of this: using the property knows, an individual George must have a relationship
to itself using the property knows. In other words, George must know herself. However, in addition,
it is possible for George to know other people; therefore the individual George can have a relationship
with individual Simon along the property knows.

32

Figure 4.24: An example of a Reflexive Property: knows

Figure 4.25: An example of a Irreflexive Property: isMotherOf

4.6.7 Irreflexive properties

If a property P is irreflexive, it can be described as a property that relates an individual a to individualb,
where individual a and individualb are not the same. An example of this would be the property motherOf:
an individual Alice can be related to individual Bob along the property motherOf, but Alice cannot be
motherOf herself (Figure 4.25).

4.7 Property Domains and Ranges

Properties may have a domain and a range specified. Properties link individuals from the domain to
individuals from the range. For example, in our pizza ontology, the property hasTopping would probably
link individuals belonging to the class Pizza to individuals belonging to the class of PizzaTopping. In this
case the domain of the hasTopping property is Pizza and the range is PizzaTopping — this is depicted
in Figure 4.26.

33

hasTopping

isToppingOf

hasTopping

isToppingOf

hasTopping

isToppingOf

Pizza PizzaTopping

Figure 4.26: The domain and range for the hasTopping property and its inverse property isToppingOf. The
domain of hasTopping is Pizza the range of hasTopping is PizzaTopping — the domain and range
for isToppingOf are the domain and range for hasTopping swapped over

Property Domains And Ranges In OWL — It is important to realise that in
OWL domains and ranges should not be viewed as constraints to be checked. They
are used as ‘axioms’ in reasoning. For example if the property hasTopping has the
domain set as Pizza and we then applied the hasTopping property to IceCream
(individuals that are members of the class IceCream), this would generally not
result in an error. It would be used to infer that the class IceCream must be a
subclass of Pizza! a.

aAn error will only be generated (by a reasoner) if Pizza is disjoint to IceCream

We now want to specify that the hasTopping property has a range of PizzaTopping. To do this the range
view shown in Figure 4.27 is used.

Exercise 13: Specify the range of hasTopping

1. Make sure that the hasTopping property is selected in the property hierarchy on the
‘Object Properties’ tab.

2. Press the ‘add’ icon (+) next to ‘Ranges’ on the ‘Property Description’ view
(Figure 4.27). A dialog will appear that allows a class to be selected from the ontology
class hierarchy.

3. Select PizzaTopping and press the ‘OK’ button. PizzaTopping should now be dis-
played in the range list.

34

Figure 4.27: Property Range View (For Object Properties)

It is possible to specify multiple classes as the range for a property. If multiple
classes are specified in Protégé 4 the range of the property is interpreted to be
the intersection of the classes. For example, if the range of a property has the
classes Man and Woman listed in the range view, the range of the property will
be interpreted as Man union Woman.

To specify the domain of a property the domain view shown in Figure 4.28 is used.

Exercise 14: Specify Pizza as the domain of the hasTopping property

1. Make sure that the hasTopping property is selected in the property hierarchy on the
‘Object Properties’ tab.

2. Press the ‘add’ icon (+) next to ‘Domains’ on the ‘Propert Description’ view . A
dialog will appear that allows a class to be selected from the ontology class hierarchy.

3. Select Pizza and press the OK button. Pizza should now be displayed in the domain
list.

This means that individuals that are used ‘on the left hand side’ of the hasTopping
property will be inferred to be members of the class Pizza. Any individuals that
are used ‘on the right hand side’ of the hasTopping property will be inferred to
be members of the class PizzaTopping. For example, if we have individuals a and
b and an assertion of the form a hasTopping b then it will be inferred that a is a
member of the class Pizza and that b is a member of the class PizzaToppinga.

aThis will be the case even if a has not been asserted to be a member of the class Pizza and/or
b has not been asserted to be a member of the class PizzaTopping.

35

Figure 4.28: Property Domain View

Take a look at the isToppingOf property, which is the inverse property of hasTop-
ping. Notice that Protégé has automatically filled in domain and range of the
isToppingOf property because the domain and range of the inverse property were
specified. The range of isToppingOf is the domain of the inverse property hasTop-
ping, and the domain of isToppingOf is the range of the inverse property hasTop-
ping. This is depicted in Figure 4.26.

Exercise 15: Specify the domain and range for the hasBase property and its inverse property is-
BaseOf

1. Select the hasBase property.

2. Specify the domain of the hasBase property as Pizza.

3. Specify the range of the hasBase property as PizzaBase.

4. Select the isBaseOf property. Notice that the domain of isBaseOf is the range of the
inverse property hasBase and that the range of isBaseOf is the domain of the inverse
property hasBase.

5. Make the domain of the isBaseOf property PizzaBase.

6. Make the range of the isBaseOf property Pizza.

36

In the previous steps we have ensured that the domains and ranges for properties
are also set up for inverse properties in a correct manner. In general, domain for
a property is the range for its inverse, and the range for a property is the domain
for its inverse — Figure 4.26 illustrates this for the hasTopping and isToppingOf.

Although we have specified the domains and ranges of various properties for the
purposes of this tutorial, we generally advise against doing this. The fact that
domain and range conditions do not behave as constraints and the fact that they
can cause ‘unexpected’ classification results can lead problems and unexpected
side effects. These problems and side effects can be particularly difficult to track
down in a large ontology.

4.8 Describing And Defining Classes

Having created some properties we can now use these properties to describe and define our Pizza Ontology
classes.

4.8.1 Property Restrictions

Recall that in OWL, properties describe binary relationships. Datatype properties describe relationships
between individuals and data values. Object properties describe relationships between two individuals.
For example, in Figure 3.2 the individual Matthew is related to the individual Gemma via the hasSibling
property. Now consider all of the individuals that have a hasSibling relationship to some other individ-
ual. We can think of these individuals as belonging the class of individuals that have some hasSibling
relationship. The key idea is that a class of individuals is described or defined by the relationships that
these individuals participate in. In OWL we can define such classes by using restrictions.

A restriction describes a class of individuals based on the relationships that mem-
bers of the class participate in. In other words a restriction is a kind of class, in
the same way that a named class is a kind of class.

Restriction Examples

Let’s take a look at some examples to help clarify the kinds of classes of individuals that we might want
to describe based on their properties.

• The class of individuals that have at least one hasSibling relationship.

37

• The class of individuals that have at least one hasSibling relationship to members of Man – i.e.
things that have at least one sibling that is a man.

• The class of individuals that only have hasSibling relationships to individuals that are Women –
i.e. things that only have siblings that are women (sisters).

• The class of individuals that have more that three hasSibling relationships.

• The class of individuals that have at least one hasTopping relationship to individuals that are
members of MozzarellaTopping – i.e. the class of things that have at least one kind of mozzarella
topping.

• The class of individuals that only have hasTopping relationships to members of VegetableTopping
– i.e. the class of individuals that only have toppings that are vegetable toppings.

In OWL we can describe all of the above classes of individuals using restrictions. OWL restrictions in
OWL fall into three main categories:

• Quantifier Restrictions

• Cardinality Restrictions

• hasValue Restrictions.

We will initially use quantifier restrictions, which can be further categorised into existential restrictions
and universal restrictions. Both types of restrictions will be illustrated with examples throughout the
tutorial.

Existential and Universal Restrictions

• Existential restrictions describe classes of individuals that participate in at least one relationship
along a specified property to individuals that are members of a specified class. For example,
“the class of individuals that have at least one (some) hasTopping relationship to members of
MozzarellaTopping”. In Protégé 4 the keyword ‘some’ is used to denote existential restrictions.5.

• Universal restrictions describe classes of individuals that for a given property only have relationships
along this property to individuals that are members of a specified class. For example, “the class of
individuals that only have hasTopping relationships to members of VegetableTopping”. In Protégé
4 the keyword ‘only’ is used. 6.

Let’s take a closer look at the example of an existential restriction. The restriction hasTopping some Moz-
zarellaTopping is an existential restriction (as indicated by the some keyword), which acts along the
hasTopping property, and has a filler MozzarellaTopping. This restriction describes the class of indi-
viduals that have at least one hasTopping relationship to an individual that is a member of the class
MozzarellaTopping. This restriction is depicted in Figure 4.29 — The diamonds in the Figure represent
individuals. As can be seen from Figure 4.29, the restriction is a class which contains the individuals
that satisfy the restriction.

5Existential restrictions may be denoted by the existential quantifier (∃). They are also knows as ‘someValuesFrom’
restrictions in OWL speak.

6Universal restrictions may be denoted by the universal quantifier (∀), which can be read as only. They are also known
as ‘allValuesFrom’ restrictions in OWL speak.

38

hasTopping

hasTopping

hasTopping

hasTopping

MozzarellaTopping

Things that have at least one
MozzarellaTopping
(hasTopping some MozzarellaTopping)

Figure 4.29: The Restriction hasTopping some Mozzarella. This restriction describes the class of individuals
that have at least one topping that is Mozzarella

A restriction describes an anonymous class (an unnamed class). The anonymous
class contains all of the individuals that satisfy the restriction – i.e. all of the
individuals that have the relationships required to be a member of the class.

The restrictions for a class are displayed and edited using the ‘Class Description View’ shown in Figure
4.30. The ‘Class Description View’ is the ‘heart of’ the ‘Classes’ tab in protege, and holds virtually
all of the information used to describe a class. At first glance, the ‘Class Description View’ may seem
complicated, however, it will become apparent that it is an incredibly powerful way of describing and
defining classes.

Restrictions are used in OWL class descriptions to specify anonymous superclasses of the class being
described.

4.8.2 Existential Restrictions

Existential restrictions are by far the most common type of restrictions in OWL ontologies. An existential
restriction describes a class of individuals that have at least one (some) relationship along a specified
property to an individual that is a member of a specified class. For example, hasBase some PizzaBase
describes all of the individuals that have at least one relationship along the hasBase property to an
individual that is a member of the class PizzaBase — in more natural English, all of the individuals that
have at least one pizza base.

39

Create restriction

“Equivalent class header” A list of equivalent classes
appear here. The classes are sometimes reffered to
as a Necessary& sufficient criteria.

“Suclass of header” A list of
subclasses appear here. These
classes are sometimes referred to
as Necessary criteria.

“Inferred/Inherited header” A list of
conditions that have been inherited
from superclasses will be displayed
here.

Delete

Edit

Figure 4.30: The Class Description View

40

Existential restrictions are also known as Some Restrictions, or as some values
from restrictions.

Other tools, papers and presentations might write the restriction hasBase some
PizzaBase as ∃ hasBase PizzaBase — this alternative notation is known as DL
Syntax (Description Logics Syntax), which is a more formal syntax.

Exercise 16: Add a restriction to Pizza that specifies a Pizza must have a PizzaBase

1. Select Pizza from the class hierarchy on the ‘Classes’ tab.

2. Select the ‘Add’ icon (+) next to “Superclasses” header in the ‘Class Description
View’ shown in Figure 4.31 in order to create a necessary condition.

3. Press the ‘Add Class’ button shown in Figure 4.31. This will open a text box in the
Class Description view where we can enter our restrictions as shown in Figure 4.32

The create restriction text box allows you construct restrictions using class, property and individual
names. You can drag and drop classes, properties and individuals into the text box or type them in, the
text box with check all the values you enter and alert you to any errors. To create a restriction we have
to do three things:

• Enter the property to be restricted from the property list.

• Enter a type of restriction from the restriction types e.g. ‘some’ for an existential restriction.

• Specify a filler for the restriction

41

Figure 4.31: Creating a Necessary Restriction

Exercise 17: Add a restriction to Pizza that specifies a Pizza must have a PizzaBase (Continued...)

1. You can either drag and drop hasBase from the property list into the create restriction
text box, or type it in.

2. Now add the type or restriction, we will use an existential restriction so type ‘some’.

3. Specify that the filler is PizzaBase — to do this either: type PizzaBase into the filler
edit box, or drag and drop PizzaBase into the text box as show in Figure 4.32

4. Press ‘Enter’ to create the restriction and close the create restriction text box. If
all information was entered correctly the dialog will close and the restriction will
be displayed in the ‘Class Description View’. If there were errors they will be
underlined in red in the text box, o popup will give some hints to the cause of the
error — if this is the case, recheck that the type of restriction, the property and filler
have been specified correctly.

A very useful feature of the expression builder is the ability to ‘auto complete’
class names, property names and individual names. Auto completion is activated
by pressing ‘alt tab’ or ‘Ctrl-Space’ on the keyboard. In the above example if
we had typed Pi into the expression editor and pressed the tab key, the choices
to complete the word Pi would have poped up in a list as shown in Figure 4.32.
The up and down arrow keys could then have been used to select PizzaBase and
pressing the Enter key would complete the word for us.

The class description view should now look similar to the picture shown in Figure 4.33.

42

Figure 4.32: Creating a restriction in the text box, with auto-complete

Figure 4.33: class description view: Description of a Pizza

43

Things that have at least
one PizzaBase
(hasBase some PizzaBase)

Pizza

PizzaBase

hasBase

hasBase

hasBase

hasBase

Figure 4.34: A Schematic Description of a Pizza — In order for something to be a Pizza it is necessary for it
to have a (at least one) PizzaBase — A Pizza is a subclass of the things that have at least one
PizzaBase

We have described the class Pizza to be a subclass of Thing and a subclass of the
things that have a base which is some kind of PizzaBase.
Notice that these are necessary conditions — if something is a Pizza it is necessary
for it to be a member of the class Thing (in OWL, everything is a member of the
class Thing) and necessary for it to have a kind of PizzaBase.
More formally, for something to be a Pizza it is necessary for it to be in a relation-
ship with an individual that is a member of the class PizzaBase via the property
hasBase — This is depicted in Figure 4.34.

When restrictions are used to describe classes, they actually specify anonymous
superclasses of the class being described. For example, we could say that Margher-
itaPizza is a subclass of, amongst other things, Pizza and also a subclass of the
things that have at least one topping that is MozzarellaTopping.

Creating Some Different Kinds Of Pizzas

It’s now time to add some different kinds of pizzas to our ontology. We will start off by adding a
‘MargheritaPizza’, which is a pizza that has toppings of mozzarella and tomato. In order to keep our

44

ontology tidy, we will group our different pizzas under the class ‘NamedPizza’:

Exercise 18: Create a subclass of Pizza called NamedPizza, and a subclass of NamedPizza called
MargheritaPizza

1. Select the class Pizza from the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add subclass’ button to create a new subclass of Pizza, and name it
NamedPizza.

3. Create a new subclass of NamedPizza, and name it MargheritaPizza.

4. Add a comment to the class MargheritaPizza using the ‘Annotations’ view that is
located next to the class hierarchy view: A pizza that only has Mozarella and
Tomato toppings – it’s always a good idea to document classes, properties etc. dur-
ing ontology editing sessions in order to communicate intentions to other ontology
builders.

Having created the class MargheritaPizza we now need to specify the toppings that it has. To do this
we will add two restrictions to say that a MargheritaPizza has the toppings MozzarellaTopping and
TomatoTopping.

Exercise 19: Create an existential (some) restriction on MargheritaPizza that acts along the prop-
erty hasTopping with a filler of MozzarellaTopping to specify that a MargheritaPizza has
at least one MozzarellaTopping

1. Make sure that MargheritaPizza is selected in the class hierarchy.

2. Use the ‘Add’ button on the ‘Subclasses’ section of the ‘Class Description view’
(Figure 4.30) to open a text box.

3. Type hasTopping as the property to be restricted in the text box.

4. Type ‘some’ to create the existential restriction.

5. Type the class MozzarellaTopping as the filler for the restriction — remember that
this can be achieved by typing the class name MozzarellaTopping into the filler edit
box, or by using drag and drop from the class hierarchy.

6. Press ‘Enter’ to create the restriction — if there are any errors, the restriction will
not be created, and the error will be highlighted in red.

45

Figure 4.35: The Class Description View Showing A Description Of A MargheritaPizza

Now specify that MargheritaPizzas also have TomatoTopping.

Exercise 20: Create a existential restriction (some) on MargheritaPizza that acts along the property
hasTopping with a filler of TomatoTopping to specify that a MargheritaPizza has at least
one TomatoTopping

1. Ensure that MargheritaPizza is selected in the class hierarchy.

2. Use the ‘Add’ button on the ‘Subclasses’ section of the ‘Class Description View’
(Figure 4.30) to display open the text box.

3. Type hasTopping as the property to be restricted.

4. Type ‘some’ to create the existential restriction.

5. Type the class TomatoTopping as the filler for the restriction.

6. Click ‘Enter’ to create restriction dialog to create the restriction.

The ‘Class Description View’ should now look similar to the picture shown in Figure 4.35.

We have added restrictions to MargeritaPizza to say that a MargheritaPizza is
a NamedPizza that has at least one kind of MozzarellaTopping and at least one
kind of TomatoTopping.
More formally (reading the class description view line by line), if something is a
member of the class MargheritaPizza it is necessary for it to be a member of the
class NamedPizza and it is necessary for it to be a member of the anonymous class
of things that are linked to at least one member of the class MozzarellaTopping
via the property hasTopping, and it is necessary for it to be a member of the
anonymous class of things that are linked to at least one member of the class
TomatoTopping via the property hasTopping.

Now create the class to represent an Americana Pizza, which has toppings of pepperoni, mozzarella

46

Figure 4.36: The Class Description View displaying the description for AmericanaPizza

and tomato. Because the class AmericanaPizza is very similar to the class MargheritaPizza (i.e. an
Americana pizza is almost the same as a Margherita pizza but with an extra topping of pepperoni) we
will make a clone of the MargheritaPizza class and then add an extra restriction to say that it has a
topping of pepperoni.

Exercise 21: Create AmericanaPizza by cloning and modifying the description of MargheritaPizza

1. Select the class MargheritaPizza in the class hierarchy on the Classes tab.

2. Select ‘’’Duplicate selected class from the ‘Edit’ menu. A dialog will appear for you to
name the new class, this will be created a with exactly the same conditions (restrictions
etc.) as MargheritaPizza.

3. Ensuring that AmericanaPizza is still selected, select the ‘Add’ icon (+) next to the
“Superclasses” header in the class description view, as we want to add a new restriction
to the necessary conditions for AmericanaPizza.

4. Type the property hasTopping as the property to be restricted.

5. Type ‘some’ to create the existential restriction.

6. Specify the restriction filler as the class PepperoniTopping by either typing
PepperoniTopping into the text box, or by using drag and drop from the class hier-
archy.

7. Press OK to create the restriction.

47

Figure 4.37: The Class Description View displaying the description for AmericanHotPizza

The ‘Class Description View’ should now look like the picture shown in Figure 4.36.

Exercise 22: Create an AmericanHotPizza and a SohoPizza

1. An AmericanHotPizza is almost the same as an AmericanaPizza, but has Jalapeno
peppers on it — create this by cloning the class AmericanaPizza and adding an exis-
tential restriction along the hasTopping property with a filler of JalapenoPepperTop-
ping.

2. A SohoPizza is almost the same as a MargheritaPizza but has additional toppings
of olives and and parmezan cheese — create this by cloning MargheritaPizza and
adding two existential restrictions along the property hasTopping, one with a filler of
OliveTopping, and one with a filler of ParmezanTopping.

For AmericanHot pizza the class description view should now look like the picture shown in Figure 4.37.
For SohoPizza the class description view should now look like the picture shown in 4.38.

Having created these pizzas we now need to make them disjoint from one another:

Exercise 23: Make subclasses of NamedPizza disjoint from each other

1. Select the class MargheritaPizza in the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add all siblings’ button on the ‘Disjoints view’ to make the pizzas
disjoint from each other.

48

Figure 4.38: The Class Description View displaying the description for SohoPizza

4.9 Using A Reasoner

One of the key features of ontologies that are described using OWL-DL is that they can be processed by
a reasoner. One of the main services offered by a reasoner is to test whether or not one class is a subclass
of another class7. By performing such tests on the classes in an ontology it is possible for a reasoner to
compute the inferred ontology class hierarchy. Another standard service that is offered by reasoners is
consistency checking. Based on the description (conditions) of a class the reasoner can check whether or
not it is possible for the class to have any instances. A class is deemed to be inconsistent if it cannot
possibly have any instances.

Reasoners are also known as classifiers.

4.9.1 Invoking The Reasoner

Protégé 4 allows different OWL reasoners to be plugged in, the reasoner shipped with Protégé is called
Fact++. The ontology can be ‘sent to the reasoner’ to automatically compute the classification hierarchy,
and also to check the logical consistency of the ontology. In Protégé 4 the ‘manually constructed’ class
hierarchy is called the asserted hierarchy. The class hierarchy that is automatically computed by the
reasoner is called the inferred hierarchy. To automatically classify the ontology (and check for incon-
sistencies) the ‘Classify...’ action should be used. This can be invoked via the ‘Classify...’ button in
the Reasoner drop down menu shown in Figure 4.39. When the inferred hierarchy has been computed,
an inferred hierarchy window will pop open on top the existing asserted hierarchy window as shown in
Figure 4.40. If a class has been reclassified (i.e. if it’s superclasses have changed) then the class name
will appear in a blue colour in the inferred hierarchy. If a class has been found to be inconsistent it’s icon
will be highlighted in red.

7Known as subsumption testing — the descriptions of the classes (conditions) are used to determine if a super-
class/subclass relationship exists between them.

49

Figure 4.39: Classify the ontology from the reasoner menu

Figure 4.40: The Inferred Hierarchy Pane alongside the Asserted Hierarchy Pane after classification has taken
place. Note the inferred subclasses of CheesyPizza

The task of computing the inferred class hierarchy is also know as classifying the
ontology.

4.9.2 Inconsistent Classes

In order to demonstrate the use of the reasoner in detecting inconsistencies in the ontology we will create
a class that is a subclass of both CheeseTopping and also VegetableTopping. This strategy is often used
as a check so that we can see that we have built our ontology correctly. Classes that are added in order

50

Figure 4.41: The Class Description View Displaying ProbeInconsistentTopping

to test the integrity of the ontology are sometimes known as Probe Classes.

Exercise 24: Add a Probe Class called ProbeInconsistentTopping which is a subclass of both
CheeseTopping and VegetableTopping

1. Select the class CheeseTopping from the class hierarchy on the Classes tab.

2. Create a subclass of CheeseTopping named ProbeInconsistentTopping.

3. Add a comment to the ProbeInconsistentTopping class that is something along the
lines of, “This class should be inconsistent when the ontology is classified.”. This will
enable anyone who looks at our pizza ontology to see that we deliberately meant the
class to be inconsistent.

4. Ensure that the ProbeInconsistentTopping class is selected in the class hierarchy, and
then select the “Subclass Of” header in the ‘Class Description View’.

5. Click on the ‘superclasses’ button on the ‘Class Description View’. This will dis-
play a dialog containing the class hierarchy from which a class may be selected. Select
the class VegetableTopping and then press the OK button. The class VegetableTop-
ping will be added as a superclass, so that the class description view should look like
the picture in Figure 4.41.

51

Figure 4.42: The Class ProbeInconsistentTopping found to be inconsistent by the reasoner

If we study the class hierarchy, ProbeInconsistentTopping should appear as a
subclass of CheeseTopping and as a subclass of VegetableTopping. This means
that ProbeInconsistentTopping is a CheeseTopping and a VegetableTopping.
More formally, all individuals that are members of the class ProbeInconsistentTop-
ping are also (necessarily) members of the class CheeseTopping and (necessarily)
members of the class VegetableTopping. Intuitively this is incorrect since some-
thing can not simultaneously be both cheese and a vegetable!

Exercise 25: Classify the ontology to make sure ProbeInconsistentTopping is inconsistent

1. Press the ‘Classify...’ button on the Reasoner drop down menu to classify the ontol-
ogy.

After a few seconds the inferred hierarchy will have been computed and the inferred hierarchy window
will pop open (if it was previously closed). The hierarchy should resemble that shown in Figure 4.42
— notice that the class ProbeInconsistentTopping is highlighted in red, indicating that the reasoner has
found this class to be inconsistent (i.e. it cannot possibly have any individuals as memebers).

52

Why did this happen? Intuitively we know something cannot at the same time
be both cheese and a vegetable. Something should not be both an instance of
CheeseTopping and an instance of VegetableTopping. However, it must be re-
membered that we have chosen the names for our classes. As far as the reasoner is
concerned names have no meaning. The reasoner cannot determine that something
is inconsistent based on names. The actual reason that ProbeInconsistentTopping
has been detected to be inconsistent is because its superclasses VegetableTopping
and CheeseTopping are disjoint from each other — remember that earlier on we
specified that the four categories of topping were disjoint from each other. There-
fore, individuals that are members of the class CheeseTopping cannot be members
of the class VegetableTopping and vice-versa.

To close the inferred hierarchy use the small white cross on a red background
button on the top right of the inferred hierarchy window.

Exercise 26: Remove the disjoint statement between CheeseTopping and VegetableTopping to see
what happens

1. Select the class CheeseTopping using the class hierarchy.

2. The ‘Disjoints view’ should contain CheeseTopping’s sibling classes: VegetableTop-
ping, SeafoodTopping and MeatTopping. Select VegetableTopping in the Disjoints
view.

3. Press the ‘Delete selected row’ button on the Disjoints view to remove the disjoint
axiom that states CheeseTopping and VegetableTopping are disjoint.

4. Press ‘Classify...’ on the Reasoner drop down menu to send the ontology to the
reasoner. After a few seconds the ontology should have been classified and the results
displayed.

53

It should be noticeable that ProbeInconsistentTopping is no longer inconsistent!
This means that individuals which are members of the class ProbeInconsistent-
Topping are also members of the class CheeseTopping and VegetableTopping —
something can be both cheese and a vegetable!
This clearly illustrates the importance of the careful use of disjoint axioms in
OWL. OWL classes ‘overlap’ until they have been stated to be disjoint from each
other. If certain classes are not disjoint from each other then unexpected results
can arise. Accordingly, if certain classes have been incorrectly made disjoint from
each other then this can also give rise to unexpected results.

Exercise 27: Fix the ontology by making CheeseTopping and Vegetable disjoint from each other

1. Select the class CheeseTopping using the class hierarchy.

2. The ‘Disjoints view’ should contain MeatTopping and SeafoodTopping.

3. Press the ‘Add disjoint class’ button on the disjoint classes view to display a dialog
which classes may be picked from. Select the class VegetableTopping and press the
OK button. CheeseTopping should once again be disjoint from VegetableTopping.

4. Test that the disjoint axiom has been added correctly — Press ‘Classify...’ on the
Reasoner drop down menu to send the ontology to the reasoner. After a few seconds
the ontology should have been classified, and ProbeInconsistentTopping should be
highlighted in red indicating that it is once again inconsistent.

4.10 Necessary And Sufficient Conditions (Primitive and De-
fined Classes)

All of the classes that we have created so far have only used necessary conditions to describe them.
Necessary conditions can be read as, “If something is a member of this class then it is necessary to
fulfil these conditions”. With necessary conditions alone, we cannot say that, “If something fulfils these
conditions then it must be a member of this class”.

A class that only has necessary conditions is known as a Primitive Class.

Let’s illustrate this with an example. We will create a subclass of Pizza called CheesyPizza, which will

54

Figure 4.43: The Description of CheesyPizza (Using Necessary Conditions)

be a Pizza that has at least one kind of CheeseTopping.

Exercise 28: Create a subclass of Pizza called CheesyPizza and specify that it has at least one
topping that is a kind of CheeseTopping

1. Select Pizza in the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add subclass’ button to create a subclass of Pizza. Name it CheesyPizza.

3. Make sure that CheesyPizza is selected in the class hierarchy. Select the ‘Add’ icon
(+) next to the “Superclasses” header in the class description view.

4. Type hasTopping as the property to be restricted.

5. Type ‘some’ to create the existential restriction.

6. Finally type CheeseTopping and press ‘Enter’ to close the dialog and create the
restriction.

The ‘Class Description View’ should now look like the picture shown in Figure 4.43.

Our description of CheesyPizza states that if something is a member of the class
CheesyPizza it is necessary for it to be a member of the class Pizza and it is
necessary for it to have at least one topping that is a member of the class Cheese-
Topping.

Our current description of CheesyPizza says that if something is a CheesyPizza it is necessarily a Pizza
and it is necessary for it to have at least one topping that is a kind of CheeseTopping. We have used
necessary conditions to say this. Now consider some (random) individual. Suppose that we know that
this individual is a member of the class Pizza. We also know that this individual has at least one kind of
CheeseTopping. However, given our current description of CheesyPizza this knowledge is not sufficient
to determine that the individual is a member of the class CheesyPizza. To make this possible we need to
change the conditions for CheesyPizza from necessary conditions to necessary AND sufficient conditions.
This means that not only are the conditions necessary for membership of the class CheesyPizza, they

55

Figure 4.44: The Description of CheesyPizza (Using Necessary AND Sufficient Conditions)

are also sufficient to determine that any (random) individual that satisfies them must be a member of
the class CheesyPizza.

A class that has at least one set of necessary and sufficient conditions is known as
a Defined Class.

Necessary conditions are simply called Superclasses in Protégé 4. Necessary and
sufficient condition are called Equivalent classes.

In order to convert necessary conditions to necessary and sufficient conditions, the conditions must be
moved from under the “Superclasses” header in the class description view to be under the “Equivalent
classes” header. This can be done with the ‘Convert to defined class’ option in the ‘Edit’ menu.

Exercise 29: Convert the necessary conditions for CheesyPizza into necessary & sufficient condi-
tions

1. Ensure that CheesyPizza is selected in the class hierarchy.

2. In the ‘Edit’ menu select ‘Convert to defined class’.

The ‘Class Description View’ should now look like the picture shown in Figure 4.44.

56

NECESSARY CONDITIONS

NamedClass

Condition

Condition

Condition

Condition

NECESSARY & SUFFICIENT CONDITIONS

NamedClass

Condition

Condition

Condition

Condition

If an individual is a member of ‘NamedClass’ then it must satisfy the conditions.
However if some individual satisfies these necessary conditions, we cannot say
that it is a member of ‘Named Class’ (the conditions are not ‘sufficient’ to be able
to say this) - this is indicated by the direction of the arrow.

If an individual is a memeber of ‘NamedClass’ then it must satisfy the conditions.
If some individual satisfies the condtions then the individual must be a member
of ‘NamedClass’ - this is indicated by the double arrow.

implies

implies

Figure 4.45: Necessary And Sufficient Conditions

We have converted our description of CheesyPizza into a definition. If something
is a CheesyPizza then it is necessary that it is a Pizza and it is also necessary
that at least one topping that is a member of the class CheeseTopping. Moreover,
if an individual is a member of the class Pizza and it has at least one topping that
is a member of the class CheeseTopping then these conditions are sufficient to
determine that the individual must be a member of the class CheesyPizza. The
notion of necessary and sufficient conditions is illustrated in Figure 4.45.

To summarise: If class A is described using necessary conditions, then we can say that if an individual
is a member of class A it must satisfy the conditions. We cannot say that any (random) individual that
satisfies these conditions must be a member of class A. However, if class A is now defined using necessary
and sufficient conditions, we can say that if an individual is a member of the class A it must satisfy the
conditions and we can now say that if any (random) individual satisfies these conditions then it must be
a member of class A. The conditions are not only necessary for membership of A but also sufficient to
determine that something satisfying these conditions is a member of A.

How is this useful in practice? Suppose we have another class B, and we know that any individuals that
are members of class B also satisfy the conditions that define class A. We can determine that class B is
subsumed by class A — in other words, B is a subclass of A. Checking for class subsumption is a key
task of a description logic reasoner and we will use the reasoner to automatically compute a classification
hierarchy in this way.

In OWL it is possible to have multiple sets of necessary & sufficient conditions.
This is discussed later in section 7.5

57

4.10.1 Primitive And Defined Classes

Classes that have at least one set of necessary and sufficient conditions are known as defined classes —
they have a definition, and any individual that satisfies the definition will belong to the class. Classes
that do not have any sets of necessary and sufficient conditions (only have necessary conditions) are know
as primitive classes. In Protégé 4 defined classes have a class icon with three horizontal white lines in
them. Primitive classes have a class icon that has a plain yellow background. It is also important to
understand that the reasoner can only automatically classify classes under defined classes - i.e. classes
with at least one set of necessary and sufficient conditions.

4.11 Automated Classification

Being able to use a reasoner to automatically compute the class hierarchy is one of the major benefits of
building an ontology using the OWL-DL sub-language. Indeed, when constructing very large ontologies
(with upwards of several thousand classes in them) the use of a reasoner to compute subclass-superclass
relationships between classes becomes almost vital. Without a reasoner it is very difficult to keep large
ontologies in a maintainable and logically correct state. In cases where ontologies can have classes that
have many superclasses (multiple inheritance) it is nearly always a good idea to construct the class
hierarchy as a simple tree. Classes in the asserted hierarchy (manually constructed hierarchy) therefore
have no more than one superclass. Computing and maintaining multiple inheritance is the job of the
reasoner. This technique8 helps to keep the ontology in a maintainable and modular state. Not only
does this promote the reuse of the ontology by other ontologies and applications, it also minimises human
errors that are inherent in maintaining a multiple inheritance hierarchy.

Having created a definition of a CheesyPizza we can use the reasoner to automatically compute the
subclasses of CheesyPizza.

Exercise 30: Use the reasoner to automatically compute the subclasses of CheesyPizza

1. Press the ‘Classify...’ button on the Reasoner drop down menu (See Figure 4.39).

After a few seconds the inferred hierarchy should have been computed and the inferred hierarchy window
will pop open (if it was previously closed). The inferred hierarchy should appear similar to the picture
shown in Figure 4.46. Figures 4.47 and 4.48 show the OWLViz display of the asserted and inferred
hierarchies respectively. Notice that classes which have had their superclasses changed by the reasoner
are shown in blue.

8Sometimes know as ontology normalisation.

58

Figure 4.46: The Asserted and Inferred Hierarchies Displaying The Classification Results For CheesyPizza

NamePizza

Pizza

CheesyPizza

MargheritaPizza AmericanHotPizza AmericanaPizza SohoPizza

is-a is-a

is-ais-ais-a is-a

Figure 4.47: OWLViz Displaying the Asserted Hierarchy for CheesyPizza

CheesyPizza

MargheritaPizzaSohoPizza

NamePizza

Pizza

AmericanHotPizza AmericanaPizza

is-a is-a

is-a is-a

is-a is-a is-ais-a is-ais-a

Figure 4.48: OWLViz Displaying the Inferred Hierarchy for CheesyPizza

59

The reasoner has determined that MargheritaPizza, AmericanaPizza, American-
HotPizza and SohoPizza are subclasses of CheesyPizza. This is because we
defined CheesyPizza using necessary and sufficient conditions. Any individual
that is a Pizza and has at least one topping that is a CheeseTopping is a member
of the class CheesyPizza. Due to the fact that all of the individuals that are
described by the classes MargheritaPizza, AmericanaPizza, AmericanHotPizza
and SohoPizza are Pizzas and they have at least one topping that is a Cheese-
Toppinga the reasoner has determined that these classes must be subclasses of
CheeseTopping.

aOr toppings that belong to the subclasses of CheeseTopping

It is important to realise that, in general, classes will never be placed as sub-
classes of primitive classes (i.e. classes that only have necessary conditions) by the
reasonera.

aThe exception to this is when a property has a domain that is a primitive class. This can
coerce classes to be reclassified under the primitive class that is the domain of the property —
the use of property domains to cause such effects is strongly discouraged.

4.12 Universal Restrictions

All of the restrictions we have created so far have been existential restrictions (some). Existential restric-
tions specify the existence of at least one relationship along a given property to an individual that is a
member of a specific class (specified by the filler). However, existential restrictions do not mandate that
the only relationships for the given property that can exist must be to individuals that are members of
the specified filler class.

For example, we could use an existential restriction hasTopping some MozzarellaTopping to describe the
individuals that have at least one relationship along the property hasTopping to an individual that is
a member of the class MozzarellaTopping. This restriction does not imply that all of the hasTopping
relationships must be to a member of the class MozzarellaTopping. To restrict the relationships for a
given property to individuals that are members of a specific class we must use a universal restriction.

Universal restrictions are given the symbol ∀. They constrain the relationships along a given property
to individuals that are members of a specific class. For example the universal restriction ∀ hasTopping
MozzarellaTopping describes the individuals all of whose hasTopping relationships are to members of the
class MozzarellaTopping — the individuals do not have a hasTopping relationships to individuals that
aren’t members of the class MozzarellaTopping.

60

Universal restrictions are also know as AllValuesFrom Restrictions.

The above universal restriction ∀ hasTopping MozzarellaTopping also describes
the individuals that do not participate in any hasTopping relationships. An indi-
vidual that does not participate in any hasTopping relationships what so ever, by
definition does not have any hasTopping relationships to individuals that aren’t
members of the class MozzarellaTopping and the restriction is therefore satisfied.

For a given property, universal restrictions do not specify the existence of a rela-
tionship. They merely state that if a relationship exists for the property then it
must be to individuals that are members of a specific class.

Suppose we want to create a class called VegetarianPizza. Individuals that are members of this class
can only have toppings that are CheeseTopping or VegetableTopping. To do this we can use a universal
restriction.

Exercise 31: Create a class to describe a VegetarianPizza

1. Create a subclass of Pizza, and name it VegetarianPizza.

2. Making sure that VegetarianPizza is selected, click on the ‘Add’ icon (+) next to the
“Superclasses” header in the ‘Class Description View’.

3. Type hasTopping as the property to be restricted.

4. Type ‘only’ in order to create a universally quantified restriction.

5. For the filler we want to say CheeseTopping or VegetableTopping. We place this
inside brackets so write a open bracket followed by the class CheeseTopping either by
typing CheeseTopping into the filler box. We now need to use the unionOf operator
between the class names. We can add this operator by simply typing or. Next in-
sert the class VegetableTopping by typing it. You should now have hasTopping only
(CheeseTopping or VegetableTopping) in the text box.

6. Press ‘OK’ to close the dialog and create the restriction — if there are any errors (due
to typing errors etc.) they will be underlined in red.

At this point the class description view should look like the picture shown in Figure 4.49.

61

Figure 4.49: The Description of VegetarianPizza (Using Necessary Conditions)

This means that if something is a member of the class VegetarianPizza it is nec-
essary for it to be a kind of Pizza and it is necessary for it to only (∀ universal
quantifier) have toppings that are kinds of CheeseTopping or kinds of Vegetable-
Topping.
In other words, all hasTopping relationships that individuals which are members
of the class VegetarianPizza participate in must be to individuals that are either
members of the class CheeseTopping or VegetableTopping.
The class VegetarianPizza also contains individuals that are Pizzas and do not
participate in any hasTopping relationships.

In situations like the above example, a common mistake is to use an intersec-
tion instead of a union. For example, CheeseTopping u VegetableTopping. This
reads, CheeseTopping and VegetableTopping. Although “CheeseTopping and
Vegetable” might be a natural thing to say in English, this logically means some-
thing that is simultaneously a kind of CheeseTopping and VegetableTopping. This
is obviously incorrect as demonstrated in section 4.9.2. If the classes CheeseTop-
ping and VegetableTopping were not disjoint, this would have been a logically
legitimate thing to say – it would not be inconsistent and therefore would not be
‘spotted’ by the reasoner.

In the above example it might have been tempting to create two universal re-
strictions — one for CheeseTopping (∀ hasTopping CheeseTopping) and one for
VegetableTopping (∀ hasTopping VegetableTopping). However, when multiple
restrictions are used (for any type of restriction) the total description is taken
to be the intersection of the individual restrictions. This would have therefore
been equivalent to one restriction with a filler that is the intersection of Moz-
zarellaTopping and TomatoTopping — as explained above this would have been
logically incorrect.

Currently VegetarianPizza is described using necessary conditions. However, our description of a Veg-
etarianPizza could be considered to be complete. We know that any individual that satisfies these
conditions must be a VegetarianPizza. We can therefore convert the necessary conditions for Vegetari-

62

Figure 4.50: The Class Description View Displaying the Definition of VegetarianPizza (Using Necessary and
Sufficient Conditions)

anPizza into necessary and sufficient conditions. This will also enable us to use the reasoner to determine
the subclasses of VegetarianPizza.

Exercise 32: Convert the necessary conditions for VegetarianPizza into necessary & sufficient
conditions

1. Ensure that VegetarianPizza is selected in the class hierarchy.

2. In the ‘Edit’ menu select ‘Convert to defined class’.

The ‘Class Description View’ should now look like the picture shown in Figure 4.50.

We have converted our description of VegetarianPizza into a definition. If some-
thing is a VegetarianPizza, then it is necessary that it is a Pizza and it is also
necessary that all toppings belong to the class CheeseTopping or VegetableTop-
ping. Moreover, if something is a member of the class Pizza and all of it’s toppings
are members of the class CheeseTopping or the class VegetableTopping then these
conditions are sufficient to recognise that it must be a member of the class Veg-
etarianPizza. The notion of necessary and sufficient conditions is illustrated in
Figure 4.45.

4.13 Automated Classification and Open World Reasoning

We want to use the reasoner to automatically compute the superclass-subclass relationship (subsumption
relationship) between MargheritaPizza and VegetarianPizza and also, SohoPizza and VegetarianPizza.
Recall that we believe that MargheritaPizza and SohoPizza should be vegetarian pizzas (they should
be subclasses of VegetarianPizza). This is because they have toppings that are essentially vegetarian
toppings — by our definition, vegetarian toppings are members of the classes CheeseTopping or Veg-
etableTopping and their subclasses. Having previously created a definition for VegetarianPizza (using a
set of necessary and sufficient conditions) we can use the reasoner to perform automated classification

63

and determine the vegetarian pizzas in our ontology.

Exercise 33: Use the reasoner to classify the ontology

1. Press the ‘Classify...’ button in the Reasoner Drop Down menu.

You will notice that MargheritaPizza and also SohoPizza have not been classified as subclasses of Veg-
etarianPizza. This may seem a little strange, as it appears that both MargheritaPizza and SohoPizza
have ingredients that are vegetarian ingredients, i.e. ingredients that are kinds of CheeseTopping or
kinds of VegetableTopping. However, as we will see, MargheritaPizza and SohoPizza have something
missing from their definition that means they cannot be classified as subclasses of VegetarianPizza.

Reasoning in OWL (Description Logics) is based on what is known as the open world assumption (OWA).
It is frequently referred to as open world reasoning (OWR). The open world assumption means that we
cannot assume something doesn’t exist until it is explicitly stated that it does not exist. In other words,
because something hasn’t been stated to be true, it cannot be assumed to be false — it is assumed that
‘the knowledge just hasn’t been added to the knowledge base’. In the case of our pizza ontology, we
have stated that MargheritaPizza has toppings that are kinds of MozzarellaTopping and also kinds of
TomatoTopping. Because of the open world assumption, until we explicitly say that a MargheritaPizza
only has these kinds of toppings, it is assumed (by the reasoner) that a MargheritaPizza could have other
toppings. To specify explicitly that a MargheritaPizza has toppings that are kinds of MozzarellaTopping
or kinds of MargheritaTopping and only kinds of MozzarellaTopping or MargheritaTopping, we must add
what is known as a closure axiom9 on the hasTopping property.

4.13.1 Closure Axioms

A closure axiom on a property consists of a universal restriction that acts along the property to say that
it can only be filled by the specified fillers. The restriction has a filler that is the union of the fillers that
occur in the existential restrictions for the property10. For example, the closure axiom on the hasTopping
property for MargheritaPizza is a universal restriction that acts along the hasTopping property, with a
filler that is the union of MozzarellaTopping and also TomatoTopping. i.e. ∀ hasTopping (Mozzarel-

9Also referred to as a closure restriction.
10And technically speaking the classes for the values used in any hasValue restrictions (see later).

64

Figure 4.51: Class Description View: Margherita Pizza With a Closure Axiom for the hasTopping property

laTopping t TomatoTopping).

Exercise 34: Add a closure axiom on the hasTopping property for MargheritaPizza

1. Make sure that MargheritaPizza is selected in the class hierarchy on the ‘Classes’
tab.

2. Press the ‘Add’ icon (+) on the ‘Class Description’ view to open the edit text box.

3. Type hasTopping as the property to be restricted.

4. Type ‘only’ to create the universal restriction.

5. Open brackets and type MozzarellaTopping or TomatoTopping close bracket.

6. Press ‘OK’ to create the restriction and add it to the class MargheritaPizza.

The class description view should now appear as shown in Figure 4.51.

65

This now says that if an individual is a member of the class MargeritaPizza then
it must be a member of the class Pizza, and it must have at least one topping
that is a kind of MozzarellaTopping and it must have at least one topping that
is a member of the class TomatoTopping and the toppings must only be kinds of
MozzarellaTopping or TomatoTopping.

A common error in situations such as above is to only use universal restrictions in
descriptions. For example, describing a MargheritaPizza by making it a subclass of
Pizza and then only using ∀ hasTopping (MozzarellaTopping t TomatoTopping)
without any existential restrictions. However, because of the semantics of the
universal restriction, this actually means either: things that are Pizzas and only
have toppings that are MozzarellaTopping or TomatoTopping, OR, things that are
Pizzas and do not have any toppings at all.

Exercise 35: Add a closure axiom on the hasTopping property for SohoPizza

1. Make sure that SohoPizza is selected in the class hierarchy on the ‘Classes’ tab.

2. Press the ‘Add’ icon (+) on the ‘Class Description’ view to open the edit text box.

3. Type hasTopping as the property to be restricted.

4. Type ‘only’ to create the universal restriction.

5. Open brackets and type MozzarellaTopping or TomatoTopping or ParmezanTopping
or OliveTopping close bracket.

6. Press ‘OK’ to create the restriction and add it to the class SohoPizza.

For completeness, we will add closure axioms for the hasTopping property to AmericanaPizza and also
AmericanHotPizza. At this point it may seem like tedious work to enter these closure axioms by hand.
Fortunately Protégé 4 has the capability of creating closure axioms for us.

Exercise 36: Automatically create a closure axiom on the hasTopping property for AmericanaPizza

1. Select AmericanaPizza in the class hierarchy on the Classes tab.

2. Select ‘Add covering axiom’ from the ‘Edit’ menu

66

Exercise 37: Automatically create a closure axiom on the hasTopping property for AmericanHot-
Pizza

1. Select AmericanHotPizza in the class hierarchy on the Classes tab.

2. Select ‘Add covering axiom’ from the ‘Edit’ menu

Having added closure axioms on the hasTopping property for our pizzas, we can now used the reasoner
to automatically compute classifications for them.

Exercise 38: Use the reasoner to classify the ontology

1. Press the ‘Classify...’ button on the reasoner drop down menu. to invoke the rea-
soner.

After a short amount of time the ontology will have been classified and the ‘Inferred Hierarchy’ pane
will pop open (if it is not already open). This time, MargheritaPizza and also SohoPizza will have
been classified as subclasses of VegetarianPizza. This has happened because we specifically ‘closed’ the
hasTopping property on our pizzas to say exactly what toppings they have and VegetarianPizza was
defined to be a Pizza with only kinds of CheeseTopping and only kinds of VegetableTopping. Figure
4.52 shows the current asserted and inferred hierarchies. It is clear to see that the asserted hierarchy is
simpler and ‘cleaner’ than the ‘tangled’ inferred hierarchy. Although the ontology is only very simple at
this stage, it should be becoming clear that the use of a reasoner can help (especially in the case of large
ontologies) to maintain a multiple inheritance hierarchy for us.

67

Pizza

MargheritaPizza

VegetarianPizza CheesyPizza

SohoPizza AmericanaPizza

NamedPizza

AmericanHotPizza

is-a

is-a is-a

is-a is-a

is-a

is-a

CheesyPizzaVegetarianPizza

SohoPizza MargheritaPizza

NamedPizza

AmericanaPizzaAmericanHotPizza

Pizza

is-ais-a

is-a

is-ais-a is-a

is-a

is-ais-ais-a

is-a

is-a is-a

Asserted Hierarchy

Inferred Hierarchy

Figure 4.52: The asserted and inferred hierarchies showing the “before and after” classification of Pizzas into
CheesyPizzas and VegetarianPizzas.

4.14 Value Partitions

In this section we create some Value Partitions, which we will use to refine our descriptions of various
classes. Value Partitions are not part of OWL, or any other ontology language, they are a ‘design pattern’.
Design patterns in ontology design are analogous to design patterns in object oriented programming —
they are solutions to modelling problems that have occurred over and over again. These design patterns
have been developed by experts and are now recognised as proven solutions for solving common modelling
problems. As mentioned previously, Value Partitions can be created to refine our class descriptions, for
example, we will create a Value Partition called ‘SpicinessValuePartition’ to describe the ‘spiciness’ of
PizzaToppings. Value Partitions restrict the range of possible values to an exhaustive list, for example, our
‘SpicinessValuePartition’ will restrict the range to ‘Mild’, ‘Medium’, and ‘Hot’. Creating a ValuePartition
in OWL consists of several steps:

1. Create a class to represent the ValuePartition. For example to represent a ‘spiciness’ ValuePartition
we might create the class SpicinessValuePartition.

2. Create subclasses of the ValuePartition to represent the possible options for the ValuePartition.
For example we might create the classes Mild, Medium and Hot as subclasses of the SpicynessVal-
uePartition class.

3. Make the subclasses of the ValuePartition class disjoint.

4. Provide a covering axiom to make the list of value types exhaustive (see below).

5. Create an object property for the ValuePartition. For example, for our spiciness ValuePartition,
we might create the property hasSpiciness.

68

Figure 4.53: Classes Added by the ‘Create ValuePartition’ Wizard

6. Make the property functional.

7. Set the range of the property as the ValuePartition class. For example for the hasSpiciness property
the range would be set to SpicinessValuePartition.

Let’s create a ValuePartition that can be used to describe the spiciness of our pizza toppings. We will
then be able to classify our pizzas into spicy pizzas and non-spicy pizzas. We want to be able to say
that our pizza toppings have a spiciness of either ‘mild’, ‘medium’ or ‘hot’. Note that these choices are
mutually exclusive – something cannot be both ‘mild’ and ‘hot’, or a combination of the choices.

Exercise 39: Create a ValuePartition to represent the spiciness of pizza toppings

1. Create a new class as a sub class of Thing called ValuePartition.

2. Create a sub class of ValuePartition called SpicinessValuePartition.

3. Create three new classes as subclasses of SpicinessValuePartition. Name these classes
Hot, Medium, and Mild.

4. Make the classes Hot, Medium, and Mild disjoint from each other. You can do this by
selecting the class Hot, and selecting ‘Make all primitive siblings disjoint’ from
the ‘Edit’ menu.

5. In the ‘Object Property Tab’ create a new Object Property called hasSpiciness.
Set the range of this property to SpicinessValuePartition. Make this new property
functional by ticking the functional box.

6. Add a covering axiom to the SpicinessValuePartition. Highlight SpicinessValueParti-
tion in the class hierarchy, in the class description view select the add equivalent class
icon (+) and type Hot or Medium or Mild in the dialog box.

Let’s look at the SpicinessValuePartitionClass (refer to Figure 4.53 and Figure 4.54):

69

Figure 4.54: The Class Description View Displaying the Description of the SpicinessValuePartition Class

4.14.1 Covering Axioms

As part of the ValuePartition pattern we use a covering axiom. A covering axiom consists of two parts:
The class that is being ‘covered’, and the classes that form the covering. For example, suppose we have
three classes A, B and C. Classes B and C are subclasses of class A. Now suppose that we have a covering
axiom that specifies class A is covered by class B and also class C. This means that a member of class A
must be a member of B and/or C. If classes B and C are disjoint then a member of class A must be a
member of either class B or class C. Remember that ordinarily, although B and C are subclasses if A an
individual may be a member of A without being a member of either B or C.

In Protégé 4 a covering axiom manifests itself as a class that is the union of the classes being covered,
which forms a superclass of the class that is being covered. In the case of classes A, B and C, class A
would have a superclass of B t C. The effect of a covering axiom is depicted in Figure 4.55.

A
B

C

A

B

C

Without a covering axiom
(B and C are subclasses of A)

With a covering axiom
(B and C are subclasses of A
and A is a subclass of B union C)

Figure 4.55: A schematic diagram that shows the effect of using a Covering Axiom to cover class A with classes
B and C

Our SpicinessValuePartition has a covering axiom to state that SpicinessValuePartition is covered by the
classes Mild, Medium and Hot — Mild, Medium and Hot are disjoint from each other so that an individual
cannot be a member of more than one of them. The class SpicinessValuePartition has a superclass that
is Mild t Medium t Hot. This covering axiom means that a member of SpicinessValuePartition must be
a member of either Mild or Medium or Hot.

The difference between not using a covering axiom, and using a covering axiom is depicted in Figure 4.56.
In both cases the classes Mild, Medium and Hot are disjoint — they do not overlap. It can be seen that in
the case without a covering axiom an individual may be a member of the class SpicinessValuePartition

70

and still not be a member of Mild, Medium or Hot — SpicynessValuePartition is not covered by Mild,
Medium and Hot. Contrast this with the case when a covering axiom is used. It can be seen that if an
individual is a member of the class SpicinessValuePartition, it must be a member of one of the three
subclasses Mild, Medium or Hot — SpicinessValuePartition is covered by Mild, Medium and Hot.

SpicinessValuePartition

Mild

Medium

Hot

SpicinessValuePartition

Mild

Medium

Hot

Without a covering axiom With a covering axiom
(SpicinessValuePartition is covered by
Mild, Medium, Hot)

Figure 4.56: The effect of using a covering axiom on the SpicinessValuePartition

4.15 Adding Spiciness to Pizza Toppings

We can now use the SpicinessValuePartition to describe the spiciness of our pizza toppings. To do this
we will add an existential restriction to each kind of PizzaTopping to state it’s spiciness. Restrictions
will take the form, hasSpiciness some SpicynessValuePartition, where SpicinessValuePartition will be
one of Mild, Medium or Hot.

We can do this for each topping as we have already done when describing pizzas or we can use the Matrix
Plugin (see ??) to speed up the process.

Exercise 40: Specify hasSpiciness restrictions on PizzaToppings

1. Make sure that JalapenoPepperTopping is selected in the class hierarchy.

2. Use the ‘Add’ button on the “Superclasses” section of the ‘Class Description view’
which opens a dialog.

3. Select the ‘Class expression editor’ tab.

4. Type hasSpiciness some Hot to create the existential restriction. Remember you can
use autocomplete to speed up the process.

5. Press ‘OK’ to create the restriction — if there are any errors, the restriction will not
be created, and the error will be highlighted in red.

6. Repeat this for each of the bottom level PizzaToppings (those that have no subclasses).

To complete this section, we will create a new class SpicyPizza, which should have pizzas that have spicy
toppings as its subclasses. In order to do this we want to define the class SpicyPizza to be a Pizza

71

Figure 4.57: The definition of SpicyPizza

that has at least one topping (hasTopping) that has a spiciness (hasSpiciness) that is Hot. This can be
accomplished in more than one way, but we will create a restriction on the hasTopping property, that
has a restriction on the hasSpiciness property as its filler.

Exercise 41: Create a SpicyPizza as a subclass of Pizza

1. Create a subclass of Pizza called SpicyPizza.

2. With SpicyPizza selected in the class hierarchy, select the “Equivalent Class” header
in the class description view.

3. Press the ‘Add class’ button on the class description view to open a text box.

4. Type hasTopping as the property to be restricted.

5. Type ‘some’ as the type of restriction.

6. The filler should be: PizzaTopping and hasSpiciness some Hot. This filler describes
an anonymous class, which contains the individuals that are members of the class
PizzaTopping and also members of the class of individuals that are related to the
members of class Hot via the hasSpiciness property. In other words, the things that
are PizzaToppings and have a spiciness that is Hot. To create this restriction in the text
box type,‘ (PizzaTopping and (hasSpiciness some Hot)), including the brackets.

7. Finally, select the ‘Convert to defined class’ option in the ‘Edit’ menu.

The class description view should now look like the picture shown in Figure 4.57

72

Our description of a SpicyPizza above says that all members of SpicyPizza are
Pizzas and have at least one topping that has a Spiciness of Hot. It also says that
anything that is a Pizza and has at least one topping that has a spiciness of Hot
is a SpicyPizza.

In the final step of Exercise 41 we created a restriction that had the class ex-
pression (PizzaTopping and hasSpiciness some Hot) rather than a named class
as its filler. This filler was made up of an intersection between the named class
PizzaTopping and the restriction hasSpiciness some Hot. Another way to do
this would have been to create a subclass of PizzaTopping called HotPizzaTopping
and define it to be a hot topping by having a necessary condition of hasSpiciness
some Hot. We could have then used hasTopping some HotPizzaTopping in our
definition of SpicyPizza. Although this alternative way is simpler, it is more ver-
bose. OWL allows us to essentially shorten class descriptions and definitions by
using class expressions in place of named classes as in the above example.

We should now be able to invoke the reasoner and determine the spicy pizzas in our ontology.

Exercise 42: Use the reasoner to classify the ontology

1. Press ‘Classifiy...’ in the Reasoner drop down menu to invoke the reasoner and classify
the ontology.

After the reasoner has finished, the ‘Inferred Hierarchy’ class pane will pop open, and you should find
that AmericanHotPizza has been classified as a subclass of SpicyPizza — the reasoner has automatically
computed that any individual that is a member of AmericanHotPizza is also a member of SpicyPizza.

4.16 Cardinality Restrictions

In OWL we can describe the class of individuals that have at least, at most or exactly a specified number
of relationships with other individuals or datatype values. The restrictions that describe these classes are
known as Cardinality Restrictions. For a given property P, a Minimum Cardinality Restriction specifies
the minimum number of P relationships that an individual must participate in. A Maximum Cardinality
Restriction specifies the maximum number of P relationships that an individual can participate in. A
Cardinality Restriction specifies the exact number of P relationships that an individual must participate
in.

Relationships (for example between two individuals) are only counted as separate relationships if it can
be determined that the individuals that are the fillers for the relationships are different to each other. For
example, Figure 4.58 depicts the individual Matthew related to the individuals Nick and the individual
Hai via the worksWith property. The individual Matthew satisfies a minimum cardianlity restriction of

73

worksWith

Matthew
Nick

worksWith
Hai

Figure 4.58: Cardinality Restrictions: Counting Relationships

2 along the worksWith property if the individuals Nick and Hai are distinct individuals i.e. they are
different individuals.

Let’s add a cardinality restriction to our Pizza Ontology. We will create a new subclass of Pizza called
InterestingPizza, which will be defined to have three or more toppings.

Exercise 43: Create an InterestingPizza that has at least three toppings

1. Switch to the Classes tab and make sure that the Pizza class is selected.

2. Create a subclass of Pizza called InterestingPizza.

3. Select the “Equivalent class” header in the class description view.

4. Press the ‘Add class’ button to open a text box.

5. Type hasTopping as a property to be restricted.

6. Type ‘min’ to create a minimum cardinality restriction.

7. Specify a minimum cardinality of three by typing 3 into the text box.

8. Press the ‘Enter’ to close the dialog and create the restriction.

9. The class description view should now have a “Subclass of” condition of Pizza, and a
“Equivalent class” condition of hasTopping min 3. We need to make Pizza part of the
necessary and sufficient conditions. Select the ‘Convert to defined class’ option in
the ‘Edit’ menu.

The class description view should now appear like the picture shown in Figure 4.59.

74

Figure 4.59: The Class Description View Displaying the Description of an InterestingPizza

What does this mean? Our definition of an InterestingPizza describes the set
of individuals that are members of the class Pizza and that have at least three
hasTopping relationships with other (distinct) individuals.

Exercise 44: Use the reasoner to classify the ontology

1. Press ‘Classify...’ in the Reasoner drop down menu.

After the reasoner has classified the ontology, the ‘Inferred Hierarchy’ window will pop open. Expand
the hierarchy so that InterestingPizza is visible. Notice that InterestingPizza now has subclasses Ameri-
canaPizza, AmericanHotPizza and SohoPizza — notice MargheritaPizza has not been classified under
InterestingPizza because it only has two distinct kinds of topping.

4.17 Qualified Cardinality Restrictions

In the previous section we described cardinality restrictions - specifies the exact number of P relationships
that an individual must participate in. In this section we focus on Qualified Cardinality Restrictions
(QCR), which are more specific than cardinality restrictions in that they state the class of objects within
the restriction. Let’s add a Qualified Cardinality Restriction to our pizza ontology. To do this, we will
create a subclass of NamedPizza, called Four Cheese Pizza, which will be defined as having exactly four

75

Figure 4.60: Describing a FourCheesePizza using a Qualified Cardinality Restriction

cheese toppings.

Exercise 45: Create a Four Cheese Pizza that has exactly four cheese toppings (Figure 4.60)

1. Switch to the Classes tab and make sure the NamedPizza class is selected

2. Create a subclass of Pizza called FourCheesePizza

3. Select the ’Superclasses’ header in the class description view

4. Press the ’+’ button to open a text box

5. Type hasTopping for the property

6. Type exactly to create an exact cardinality restriction

7. Specify a QCR of four by typing 4 into the text box

8. Type CheeseTopping to specify the type of topping

9. Click OK and create the restriction

Our definition of a FourCheesePizza describes the set of individuals that are members of the class Named-
Pizza and that have exactly four hasTopping relationships with individuals of the CheeseTopping class.
With this description a FourCheesePizza can still also have other relationships to other kinds of toppings.
In order for us to say that we just want it to have four cheese toppings and no other toppings we must
add the keyword ’only’ (the universal quantifier). This means that the only kinds of topping allowed are
cheese toppings.

An unqualified cardinality restriction is exactly the same as a qualified cardinality
restriction with a filler of Thing.
eg. hasTopping min 3 is the same as hasTopping min 3 Thing.

76

Chapter 5

Datatype Properties

In Section 4.4 of Chapter 4 we introduced properties in OWL, but only described object properties—that
is, relationships between individuals. In this chapter we will discuss and show examples of Datatype
properties. Datatype properties link an individual to an XML Schema Datatype value or an rdf literal.
In other words, they describe relationships between an individual and data values. Most of the property
characteristics described in Chapter 4 cannot be used with datatype properties. We will describe those
characteristics of properties that are applicable to data properties later in this chapter.

Datatype properties can be created using the ‘Datatype Properties view’ in either the ‘Entities’ or
‘Datatype Properties tab’ shown in Figure 5.1.

We will use datatype properties to describe the calorie content of pizzas. We will then use some numeric
ranges to broadly classify particular pizzas as high or low calorie. In order to do this we need to complete
the following steps:

• Create a datatype property hasCalorificContentValue, which will be used to state the calorie content
of particular pizzas.

• Create several example pizza individuals with specific calorie contents.

• Create two classes broadly categorising pizzas as low or high calorie.

Now let us do this in Protégé .

A datatype property can be used to relate an individual to a concrete data value that may be typed or
untyped.

Exercise 46: Create a datatype property called hasCalorificContentValue

1. Switch to the ‘Datatype Properties’ tab. Use the ‘Add Datatype Property’
button to create a new Datatype property called hasCalorificContentValue.

There is nothing intrinsic to data properties to prevent us from performing class-level classification, but

77

Figure 5.1: A snapshot of the Datatype Properties tab in Protégé

we will create some individuals as examples for classification as it is probably too strong to say that all
MargheritaPizzas have exactly 263 calories.

Exercise 47: Create example pizza individuals

1. Ensure the ‘Entities Tab’ or ‘Individuals Tab’ is selected and that the ‘Individuals
view’ is visible (by default in the entities tab it will be one of the views stacked at
the bottom left of the tab).

2. Press the ‘Add individual’ button and create an individual called Example-
Margherita

3. In the ‘Individual Description view’ add a type of Margherita. In the dialog that
appears you can do this with either the ‘Class hierarchy’ or the ‘Class expression
editor’.

4. In the ‘Property assertions view’ add a ‘Data property assertion’ and in the
dialog shown in Figure 5.2 ensure hasCalorificContentValue is selected as the property,
integer is selected as the type and a value of 263 is entered.

5. Create several more example pizza individuals with different calorie contents including
an instance of QuattroFormaggio with 723 calories.

78

Figure 5.2: Creating a data property assertion

A datatype property can also be used in a restriction to relate individuals to members of a given datatype.
Built in datatypes are specified in the XML schema vocabulary and include integers, floats, strings,
booleans etc.

Exercise 48: Create a datatype restriction to state that all Pizzas have a calorific value

1. Ensure the ‘Entities’ or ‘Classes’ Tab is selected

2. Select Pizza and in the ‘Class Description view’ and add a superclass. This brings
up the editor dialog.

3. In the dialog select the ‘Data restriction creator’ shown in Figure 5.3. This operates
in the same way as the object restriction creator, but the filler is a named datatype.

4. Make sure the type of restriction is set to ‘some’.

5. select hasCalorificContentValue as the property being restricted.

6. Finally, choose the datatype integer

7. press ‘OK’. The restriction hasCalorificContentValue some integer is now shown in
the superclasses.

We have now stated that all pizzas have at least one calorific value (and that value
must be an integer).

79

Figure 5.3: Creating a some restriction using a data property

80

Figure 5.4: Using datatype restrictions to define ranges for HighCaloriePizza

In addition to using the predefined set of datatypes we can further specialise the use of a datatype by
specifying restrictions on the possible values. For example, it is easy to specify a range of values for a
number.

Using the datatype property we have created, we will now create defined classes that specify a range of
interesting values. We will create definitions that use the minInclusive and maxExclusive facets that can
be applied to numeric datatypes. HighCaloriePizza will be defined to be any pizza that has a calorific
value equal to or higher than 400.

Exercise 49: Create a HighCaloriePizza that has a calorific value higher than or equal to 400

1. Ensure the ‘Classes Tab’ or ‘Entities Tab’ is selected.

2. Create a subclass of Pizza called HighCaloriePizza.

3. In the ‘Class Description view’ click the ‘+’ button in the ‘Superclasses section’
to add a new restriction

4. In the ‘Class expression editor’, type ‘Pizza that hasCalorificContentValue
some integer[>= 400]’ and click ‘OK’

5. Convert the class to a defined class (‘Ctrl-D’ or ‘Command-D’ on a mac). You
should now have a class defined as in Figure 5.4.

6. Create a LowCaloriePizza in the same way, but define it as being equivalent to Pizza
and hasCalorificContentValue some integer[< 400] (any pizza that has a calorific
value less than 400). Notice that the definition does not overlap with HighCaloriePizza.

You now have two categories of pizza that should cover any individual that has had its calorie content
specified. We should now be able to test if the classification holds for the example individuals we created.

81

Figure 5.5: Individuals classified as being members of HighCaloriePizza

We will use the reasoner to perform instance classification.

Exercise 50: Classify pizza individuals based on their hasCalorificContentValue

1. Select a reasoner from the ‘Reasoner menu’ or press ‘Classify’ if one is already
selected. The reasoner should classify and show the inferred class hierarchy.

2. Select HighCaloriePizza. You should be able to see inferences shown in the ‘Class
Description view’ in yellow with a dashed border.

3. Check the ‘Members’ section (see Figure 5.5). It should include your instance of
‘QuattroFormaggio’ and perhaps other individuals which you specified as having a
calorie value equal to or over 400.

4. Select LowCaloriePizza. Check the ‘Members’ section. It should include your in-
stance of ‘ExampleMargherita’ and perhaps other individuals which you specified
as having a calorie value lower than 400.

Finally, think about how many different calorie values can be held by an individual pizza. Of course, the
answer is only one. Remember that there is a property characteristic that states that a property with
that characteristic can only be held by an individual once. By describing an object property as functional
we state that any given individual can be related to at most one other individual along that property.
We can also use the functional characteristic on data properties (This is currently the only characteristic

82

it is possible to use on data properties) By making hasCalorificContentValue functional we are saying
that any one pizza can only ever have one calorie value.

Exercise 51: Making the hasCalorificContentValue datatype property functional

1. Go to the ‘Datatype Properties’ tab and select hasCalorificContentValue

2. In the ‘Data Type Characteristics’ pane, click the ‘functional’ radio button.

3. Test that this works by creating a pizza individual that has two calorie values. This
should cause the ontology to become inconsistent.

There are several ways to model units in OWL, but we will not be reasoning about
them so have chosen to keep the example simple. In this example the units are
implicit in the name of the property (calories) and are used universally throughout
our ontology.

83

Chapter 6

More On Open World Reasoning

The examples in this chapter demonstrate the nuances of Open World Reasoning.

We will create a NonVegetarianPizza to complement our categorisation of pizzas into VegetarianPizzas.
The NonVegetarianPizza should contain all of the Pizzas that are not VegetarianPizzas. To do this
we will create a class that is the complement of VegetarianPizza. A complement class contains all of
the individuals that are not contained in the class that it is the complement to. Therefore, if we create
NonVegetarianPizza as a subclass of Pizza and make it the complement of VegetarianPizza it should
contain all of the Pizzas that are not members of VegetarianPizza.

Exercise 52: Create NonVegetarianPizza as a subclass of Pizza and make it disjoint to Vegetarian-
Pizza

1. Select Pizza in the class hierarchy on the ‘Classes’ tab. Press the ‘Add subclass’
button to create a new class as the subclass of Pizza.

2. Name the new class NonVegetarianPizza.

3. Make NonVegetarianPizza disjoint with VegetarianPizza — while NonVegetarian-
Pizza is selected, press the ‘Add disjoint class’ button on the disjoint classes view.

84

We now want to define a NonVegetarianPizza to be a Pizza that is not a VegetarianPizza.

Exercise 53: Make VegetarianPizza the complement of VegetarianPizza

1. Make sure that NonVegetarianPizza is selected in the class hierarchy on the ‘Classes
tab’.

2. Double click on Pizza in the ‘Superclasses’ section of the ‘Class Description View’,
and edit to create Pizza and not VegetarianPizza.

3. Press OK to create and assign the expression. If everything was entered correctly then
the expression editor will close and the expression will have been created. (If there are
errors, check the spelling of “VegetarianPizza”).

A very useful feature of the expression editor is the ability to ‘auto complete’ class
names, property names and individual names. The auto completion for the inline
expression editor is activated using the tab key. In the above example if we had
typed Vege into the inline expresion editor and pressed the tab key, the choices
to complete the word Vege would have poped up in a list as shown in Figure 6.1.
The up and down arrow keys could then have been used to select VegetarianPizza
and pressing the Enter key would complete the word for us.

The class description view should now resemble the picture shown in 6.2. However, we need to add Pizza
to the necessary and sufficient conditions as at the moment our definition of NonVegetarianPizza says
that an individual that is not a member of the class VegetarianPizza (everything else!) is a NonVege-
tarianPizza.

Exercise 54: Add Pizza to the necessary and sufficient conditions for NonVegetarianPizza

1. Make sure NonVegetarianPizza is selected in the class hierarchy on the ‘Clases’ tab.

2. Convert the superclass to an equivalent class. Either select ‘Edit — Convert to
defined class’ or copy and paste the superclass you just edited from the super-
classes to the equivalent classes section. Note that before pasting you should select
the ‘Equivalent classes’ header.

The ‘Class Description View’ should now look like the picture shown in Figure 6.3.

85

Figure 6.1: Class Description View: Expression Editor Auto Completion

Figure 6.2: The Class Description View Displaying NonVegetarianPizza as a primitive class

86

Figure 6.3: The Class Description View Displaying the Definition forNonVegetarianPizza

The complement of a class includes all of the individuals that are not members of
the class. By making NonVegetarianPizza a subclass of Pizza and the comple-
ment of VegetarianPizza we have stated that individuals that are Pizzas and are
not members of VegetarianPizza must be members of NonVegetarianPizza. Note
that we also made VegetarianPizza and NonVegetarianPizza disjoint so that if an
individual is a member of VegetarianPizza it cannot be a member of NonVege-
tarianPizza.

Exercise 55: Use the reasoner to classify the ontology

1. Press the ‘Classify...’ button in the Reasoner toolbar. After a short time the reasoner
will have computed the inferred class hierarchy, and the inferred class hierarchy pane
will pop open.

The inferred class hierarchy should resemble the picture shown in Figure 6.4. As can be seen, Margher-
itaPizza and SohoPizza have been classified as subclasses of VegetarianPizza. AmericanaPizza and
AmericanHotPizza have been classified as NonVegetarianPizza. Things seemed to have worked. How-

87

ever, let’s add a pizza that does not have a closure axiom on the hasTopping property.

Exercise 56: Create a subclass of NamedPizza with a topping of Mozzarella

1. Create a subclass of NamedPizza called UnclosedPizza.

2. Making sure that UnclosedPizza is selected in the ‘Class Description View’ select
the “Superclasses” header.

3. Press the ‘Add class’ button to display restriction text box.

4. Type hasTopping as the property to be restricted.

5. Type ‘some’ in order to create an existential restriction.

6. Type MozzarellaTopping into text box to specify that the toppings must be individ-
uals that are members of the class MozzarellaTopping.

7. Press ‘Enter’ to close the dialog and create the restriction.

If an individual is a member of UnclosedPizza it is necessary for it to be a Named-
Pizza and have at least one hasTopping relationship to an individual that is a
member of the class MozzarellaTopping. Remember that because of the Open
World Assumption and the fact that we have not added a closure axiom on the
hasTopping property, an UnclosedPizza might have additional toppings that are
not kinds of MozzarellaTopping.

Exercise 57: Use the reasoner to classify the ontology

1. Press ‘Classify...’ in the Reasoner drop down menu.

Examine the class hierarchy. Notice that UnclosedPizza is neither a VegetarianPizza or NonVegetari-
anPizza.

88

Figure 6.4: The Inferred Class Hierarchy Showing Inferred Subclasses of VegetarianPizza and NonVegetarian-
Pizza

As expected (because of Open World Reasoning) UnclosedPizza has not been
classified as a VegetarianPizza. The reasoner cannot determine UnclosedPizza is
a VegetarianPizza because there is no closure axiom on the hasTopping and the
pizza might have other toppings. We therefore might have expected Unclosed-
Pizza to be classified as a NonVegetarianPizza since it has not been classified
as a VegetarianPizza. However, Open World Reasoning does not dictate that
because UnclosedPizza cannot be determined to be a VegetarianPizza it is not
a VegetarianPizza — it might be a VegetarianPizza and also it might not be a
VegetarianPizza! Hence, UnclosePizza cannot be classified as a NonVegetarian-
Pizza.

89

Chapter 7

Creating Other OWL Constructs In
Protégé 4

This chapter discusses how to create some other owl constructs using Protégé 4 . These constructs are
not part of the main tutorial and may be created in a new Protégé 4 project if desired.

7.1 Creating Individuals

OWL allows us to define individuals and to assert properties about them. Individuals can also be used
in class descriptions, namely in hasValue restrictions and enumerated classes which will be explained in
section 7.2 and section 7.3 respectively. To create individuals in Protégé 4 the ‘Individuals Tab’ is used.

Suppose we wanted to describe the country of origin of various pizza toppings. We would first need to
add various ‘countries’ to our ontology. Countries, for example, ‘England’, ‘Italy’, ‘America’, are typically
thought of as being individuals (it would be incorrect to have a class England for example, as it’s members
would be deemed to be, ‘things that are instances of England’). To create this in our Pizza Ontology we

90

Figure 7.1: The Individuals Tab

will create a class Country and then ‘populate’ it with individuals:

Exercise 58: Create a class called Country and populate it with some individuals

1. Create Country as a subclass of Thing.

2. Switch to the ‘Individuals Tab’ shown in Figure 7.1.

3. Press the ‘Add individual’ button shown in Figure 7.2. (Remember that ‘Individual’
is another name for ‘Instance’ in ontology terminology).

4. Name the new Individual Italy.

5. Select the ‘Add’ icon (+) next to the ‘Types’ header from the ‘Individual Types
View’ located in the centre of the Individual tab. Choose Country from the class
hierarchy, this will make Italy an individual of the class Country.

6. Use the above steps to create some more individuals that are members of the class
Country called America, England, France, and Germany.

Recall from section 3.1.1 that OWL does not use the Unique Name Assumption (UNA). Individuals can
therefore be asserted to be the ‘Same As’ or ‘Different From’ other individuals. In Protégé 4 these asser-
tions can be made using the ‘SameAs’ and ‘DifferentFrom’ sections of the ‘Individual Description

91

Add individual

Delete individual

Show usages

Figure 7.2: Instances Manipulation Buttons

view’.

Having created some individuals we can now use these individuals in class descriptions as described in
section 7.2 and section 7.3.

7.2 hasValue Restrictions

A hasValue restriction, denoted by the symbol 3, describes the set of individuals that have at least one
relationship along a specified property to a specific individual. For example, the hasValue restriction
hasCountryOfOrigin 3 Italy (where Italy is an individual) describes the set of individuals (the anonymous
class of individuals) that have at least one relationship along the hasCountryOfOrigin property to the
specific individual Italy. For more information about hasValue restrictions please see Appendix A.2.

Suppose that we wanted to specify the origin of ingredients in our pizza ontology. For example, we might
want to say that mozzarella cheese (MozzarellaTopping) is from Italy. We already have some countries
in our pizza ontology (including Italy), which are represented as individuals. We can use a hasValue

92

Figure 7.3: The Class Description View Displaying The hasValue Restriction for MozzarellaTopping

restriction along with these individuals to specify the county of origin of MozzarellaTopping as Italy.

Exercise 59: Create a hasValue restriction to specify that MozzarellaTopping has Italy as its country
of origin.

1. Switch to the ‘Object Properties’ tab. Create a new object property and name it
hasCountryOfOrigin.

2. Switch to the ‘Classes’ tab and select the class MozzarellaTopping.

3. Press the ‘Add’ button on the ‘Superclasses’ section of the ‘Class Description
View’ to open the editor.

4. Type hasCountryOfOrigin as the property to be restricted.

5. Type value as the type of restriction to be created.

6. Enter Italy as the individual to complete the restriction. You can either type this in
or drag and drop from the individuals window.

7. Press ‘Enter’ to close the dialog and create the restriction.

The ‘Class Description View’ should now look similar to the picture shown in Figure 7.3.

The conditions that we have specified for MozzarellaTopping now say that: in-
dividuals that are members of the class MozzarellaTopping are also members of
the class CheeseTopping and are related to the individual Italy via the hasCoun-
tryOfOrigin property and are related to at least one member of the class Mild
via the hasSpiciness property. In more natural English, things that are kinds of
mozzarella topping are also kinds of cheese topping and come from Italy and are
mildly spicy.

93

With current reasoners the classification is not complete for individuals. Use in-
dividuals in class descriptions with care — unexpected results may be caused by
the reasoner.

7.3 Enumerated Classes

As well as describing classes through named superclasses and anonymous superclasses such as restrictions,
OWL allows classes to be defined by precisely listing the individuals that are the members of the class. For
example, we might define a class DaysOfTheWeek to contain the individuals (and only the individuals)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday and Saturday. Classes such as this are known
as enumerated classes.

In Protégé 4 enumerated classes are defined using the ‘Class Description View’ expression editor – the
individuals that make up the enumerated class are listed (separated by spaces) inside curly brackets. For
example {Sunday Monday Tuesday Wednesday Thursday Friday Saturday}. The individuals must first
have been created in the ontology. Enumerated classes described in this way are anonymous classes – they
are the class of the individuals (and only the individuals) listed in the enumeration. We can attach these
individuals to a named class in Protégé 4 by creating the enumeration as a “Equivalent class” condition.

Exercise 60: Convert the class Country into an enumerated class

1. Switch the ‘Classes’ tab and select the class Country.

2. Select the “Equivalent class” header in the ‘Class Description View’.

3. Press the ‘Add class’ button, a text box will appear.

4. Type {America, England, France, Germany, Italy} into the text box. (Remem-
ber to surround the items with curly brackets). Remember that the auto complete
function is available — to use it type the first few letters of an individual and press
the tab key to get a list of possible choices.

5. Press the enter key to accept the enumeration and close the expression editor.

The ‘Class Description View’ should now look similar to the picture shown in Figure 7.4.

94

Figure 7.4: The Class Description View Displaying An Enumeration Class

This means that an individual that is a member of the Country class must be one
of the listed individuals (i.e one of America England France Germany Italy.a More
formally, the class country is equivalent to (contains the same individuals as) the
anonymous class that is defined by the enumeration — this is depicted in Figure
7.5.

aThis is obviously not a complete list of countries, but for the purposes of this ontology (and
this example!) it meets our needs.

England

Italy

America

France

Germany

Enumerated Class
(dashed line)

Country (solid line)

Figure 7.5: A Schematic Diagram Of The Country Class Being Equivalent to an Enumerated Class

7.4 Annotation Properties

OWL allows classes, properties, individuals and the ontology itself (technically speaking the ontology
header) to be annotated with various pieces of information/meta-data. These pieces of information may
take the form of auditing or editorial information. For example, comments, creation date, author, or,
references to resources such as web pages etc. OWL-Full does not put any constraints on the usage
of annotation properties. However, OWL-DL does put several constraints on the usage of annotation
properties — two of the most important constaints are:

• The filler for annotation properties must either be a data literal1, a URI reference or an individual.

• Annotation properties cannot be used in property axioms — for example they may not be used
in the property hierarchy, so they cannot have sub properties, or be the sub property of another

1A data literal is the character representation of a datatype value, for example,“Matthew”, 25, 3.11.

95

property. The also must not have a domain and a range set for them.

OWL has five pre-defined annotation properties that can be used to annotate classes (including anony-
mous classes such as restrictions), properties and individuals:

1. owl:versionInfo — in general the range of this property is a string.

2. rdfs:label — has a range of a string. This property may be used to add meaningful, human readable
names to ontology elements such as classes, properties and individuals. rdfs:label can also be used
to provide multi-lingual names for ontology elements.

3. rdfs:comment — has a range of a string.

4. rdfs:seeAlso — has a range of a URI which can be used to identify related resources.

5. rdfs:isDefinedBy — has a range of a URI reference which can be used to reference an ontology that
defines ontology elements such as classes, properties and individuals.

For example the annotation property rdfs:comment is used to store the comment for classes in Protégé
4 . The annotation property rdfs:label could be used to provide alternative names for classes, properties
etc.

There are also several annotation properties which can be used to annotate an ontology. The ontology
annotation properties (listed below) have a range of a URI reference which is used to refer to another
ontology. It is also possible to the use the owl:VersionInfo annotation property to annotate an ontology.

• owl:priorVersion — identifies prior versions of the ontology.

• owl:backwardsCompatibleWith — identifies a prior version of an ontology that the current ontology
is compatible with. This means that all of the identifiers from the prior version have the same
intended meaning in the current version. Hence, any ontologies or applications that reference the
prior version can safely switch to referencing the new version.

• owl:incompatibleWith — identifies a prior version of an ontology that the current ontology is not
compatible with.

To create annotation properties use the appropriate annotation property view in each of the ‘Active
Ontology’, ‘Classes’, ‘Object Property’ and ‘Datatype Property’ Tabs. You can manage your
annotation using the ‘Annotations Properties’ Tab, new annotation properties can be created by
pressing the ‘create Annotation Property’ button on the ‘Annotation Property’ Tab. To use
annotation properties the annotations views shown in Figure 7.6 is used. An annotations view is located on
the Classes, Properties, Individuals and Active Ontology tab for annotation classes, properties, individuals
and the ontology respectively. Annotations can also be added to restrictions and other anonymous classes
by right clicking (ctrl click on a Mac) in the class description view and selecting ‘Edit annotation
properties...’.

7.5 Multiple Sets Of Necessary & Sufficient Conditions

In OWL it is possible to have multiple sets of necessary and sufficient conditions (Equivalent classes)
as depicted in Figure 7.7. In the ‘Class Description View’, multiple sets of necessary and sufficient

96

Figure 7.6: An annotations view

conditions are represented using multiple “Equivalent class” headers with necessary and sufficient con-
ditions listed under each header as shown in Figure 7.7. To create a new set of necessary and sufficient
conditions, use the ‘Add’ icon (+) next to the “Equivalent class” header. The Equivalent classes can
then be written into the ‘Class description’ dialog box that appears.

NECESSARY CONDITIONS

Condition

Condition

NamedClass

NECESSARY & SUFFICIENT CONDITIONS

Condition

Condition

implies

NECESSARY & SUFFICIENT CONDITIONS

Condition

Condition
Implies

Im
plies

Figure 7.7: Necessary Conditions, and Multiple Sets of Necessary And Sufficient Conditions

97

Figure 7.8: The Definition of a Triangle Using Multiple Necessary & Sufficient Conditions

Exercise 61: Create a class to define a Triangle using multiple sets of Necessary & Sufficient con-
ditions

1. Create a subclass of Thing named Polygon.

2. Create a subclass of Polygon named Triangle.

3. Create an object property named hasSide.

4. Create an object property named hasAngle.

5. On the ‘Classes’ tab select the Triangle class. Select the “Equivalent class” header
in the ‘Class Description View’. Press the ‘Add class’ button on the ‘Class
Description View’ to open a text box.

6. Type hasSide for the property.

7. Type exactly to create the restriction.

8. Type 3 and press Enter to exit the text box and create the restriction.

9. Select the “Equivalent class” header in the ‘Class Description View’. Press the
‘Add class’ button on the ‘Class Description View’ to open a text box.

10. Type hasAngle for the property.

11. Type exactly to create the restriction.

12. Type 3 and press Enter to exit the text box and create the restriction.

13. Drag Polygon from under the “Superclasses” header and drop it onto the hasSide
exactly 3 restriction.

14. Select the hasAngle exactly 3 restriction. Click the ‘Add class’ button to display
a dialog containing the class hierarchy. Select the Polygon class and click the ‘OK’
button to close the dialog.

The ‘Class Description View’ should now look like the picture shown in Figure 7.8.

98

Appendix A

Restriction Types

This appendix contains further information about the types of property restrictions in OWL. It is intended
for readers who aren’t too familiar with the notions of logic that OWL is based upon.

All types of restrictions describe an unnamed set that could contain some individuals. This set can be
thought of as an anonymous class. Any individuals that are members of this anonymous class satisfy the
restriction that describes the class (Figure A.1). Restrictions describe the constraints on relationships
that the individuals participate in for a given property.

When we describe a named class using restrictions, what we are effectively doing is describing anonymous
superclasses of the named class.

A.1 Quantifier Restrictions

Quantifier restrictions consist of three parts:

1. A quantifier, which is either the existential quantifier (some), or the universal quantifier (only).

2. A property, along which the restriction acts.

3. A filler that is a class description.

For a given individual, the quantifier effectively puts constraints on the relationships that the individual
participates in. It does this by either specifying that at least one kind of relationship must exist, or by
specifying the only kinds of relationships that can exist (if they exist).

A set of individuals that satisfy
a restriction - the restriction essentially
describes an anonymous (unnamed) class
that contains these individuals.

Figure A.1: Restrictions Describe Anonymous Classes Of Individuals

99

prop

prop

prop

prop

Class A

Anonymous class

prop

prop
pr

op

prop

Figure A.2: A Schematic Of An Existential Restriction (prop some ClassA)

A.1.1 someValuesFrom – Existential Restrictions

Existential restrictions, also known as ‘someValuesFrom’ restrictions, or ‘some’ restrictions are denoted
in DL-syntax using ∃ – a backwards facing E. Existential restrictions describe the set of individuals that
have at least one specific kind of relationship to individuals that are members of a specific class. Figure
A.2 shows an abstracted schematic view of an existential restriction, ∃ prop ClassA – i.e. a restriction
along the property prop with a filler of ClassA. Notice that all the individuals in the anonymous class
that the restriction defines have at least one relationship along the property prop to an individual that
is a member of the class ClassA. The dashed lines in Figure A.2 represent the fact that the individuals
may have other prop relationships with other individuals that are not members of the class ClassA even
though this has not been explicitly stated — The existential restriction does not constrain the prop
relationship to members of the class ClassA, it just states that every individual must have at least one
prop relationship with a member of ClassA — this is the open world assumption (OWA).

For a more concrete example, the existential restriction, ∃ hasTopping MozzarellaTopping, describes the
set of individuals that take place in at least one hasTopping relationship with an other individual that
is a member of the class MozzarellaTopping — in more natural English this restriction could be viewed
as describing the things that ‘have a Mozzarella topping’. The fact that we are using an existential
restriction to describe the group of individuals that have at least one relationship along the hasTopping
property with an individual that is a member of the class MozzarellaTopping does not mean that these
individuals only have a relationship along the hasTopping property with an individual that is a member
of the class MozzarellaTopping (there could be other hasTopping relationships that just haven’t been
explicity specified).

A.1.2 allValuesFrom – Universal Restrictions

Universal restrictions are also known as ‘allValuesFrom’ restrictions, or ‘only’ restrictions since they
constrain the filler for a given property to a specific class. Universal restrictions are given the symbol ∀
– i.e. an upside down A. Universal restrictions describe the set of individuals that, for a given property,
only have relationships to other individuals that are members of a specific class. A feature of universal
restrictions, is that for the given property, the set of individuals that the restriction describes will also
contain the individuals that do not have any relationship along this property to any other individuals. A
universal restriction along the property prop with a filler of ClassA is depicted in Figure A.3. Once again,
an important point to note is that universal restrictions do not ‘guarentee’ the existence of a relationship
for a given property. They merely state that if such a relationship for the given property exists, then it

100

prop

prop

prop

Class A

Anonymous class

prop

Figure A.3: A Schematic View Of The Universal Restriction, prop only ClassA

must be with an individual that is a member of a specified class.

Let’s take a look at an example of a universal restriction. The restriction, ∀ hasTopping TomatoTopping
describes the anonymous class of individuals that only have hasTopping relationships to individuals
that are members of the class TomatoTopping, OR, individuals that definitely do not participate in any
hasTopping relationships at all.

A.1.3 Combining Existential And Universal Restrictions in Class Descrip-
tions

A common ‘pattern’ is to combine existential and universal restrictions in class definitions for a given
property. For example the following two restrictions might be used together, ∃ hasTopping Mozzarel-
laTopping, and also, ∀ hasTopping MozzarellaTopping. This describes the set of individuals that have at
least one hasTopping relationship to an individual from the class MozzarellaTopping, and only hasTop-
ping relationships to individuals from the class MozzarellaTopping.

It is worth noting that is particularly unusual (and probably an error), if when describing a class, a
universal restriction along a given property is used without using a ‘corresponding’ existential restriction
along the same property. In the above example, if we had only used the universal restriction ∀ hasTopping
Mozzarella, then we would have described the set of individuals that only participate in the hasTopping
relationship with members of the class Mozzarella, and also those individuals that do not participate in
any hasTopping relationships – probably a mistake.

A.2 hasValue Restrictions

A hasValue restriction, denoted by the symbol 3, describes an anonymous class of individuals that are
related to another specific individual along a specified property. Contrast this with a quantifier restric-
tion where the individuals that are described by the quantifier restriction are related to any indvidual
from a specified class along a specified property. Figure A.4 shows a schematic view of the hasValue
restriction prop 3 abc. This restriction describes the anonymous class of individuals that have at least
one relationship along the prop property to the specific individual abc. The dashed lines in Figure A.4
represent the fact that for a given individual the hasValue restriction does not constrain the property
used in the restriction to a relationship with the individual used in the restriction i.e. there could be
other relationships along the prop property. It should be noted that hasValue restrictions are semanti-
cally equivalent to an existential restriction along the same property as the hasValue restriction, which
has a filler that is an enumerated class that contains the individual (and only the individual) used in the
hasValue restriction.

101

Anonymous class

prop
pr

op

prop

prop
prop

prop

prop
prop

abc

Figure A.4: A Schematic View Of The hasValue Restriction, prop 3 abc — dashed lines indicate that this
type of restriction does not constrain the property used in the hasValue restriction solely to the
individual used in the hasValue restriction

A.3 Cardinality Restrictions

Cardinality restrictions are used to talk about the number of relationships that an individual may partici-
pate in for a given property. Cardinality restrictions are conceptually easier to understand than quantifier
restrictions, and come in three flavours: Minumum cardinality restrictions, Maximum cardinality restric-
tions, and Cardinality restrictions.

A.3.1 Minimum Cardinality Restrictions

Minimum cardinality restrictions specify the minimum number of relationships that an individual must
participate in for a given property. The symbol for a minimum cardinality restriction is the ‘greater than
or equal to’ symbol (≥). For example the minimum cardinality restriction, ≥ hasTopping 3, describes the
individuals (an anonymous class containing the individuals) that participate in at least three hasTopping
relationships. Minimum cardinality restrictions place no maximum limit on the number of relationships
that an individual can participate in for a given property.

A.3.2 Maximum Cardinality Restrictions

Maximum cardinality restrictions specify the maximum number of relationships that an individual can
participate in for a given property. The symbol for maximum cardinality restrictions is the ‘less than
or equal to’ symbol (≤). For example the maximum cardinality restriction, ≤ hasTopping 2, describes
the class of individuals that participate in at most two hasTopping relationships. Note that maximum
cardinality restrictions place no minimum limit on the number of relationships that an individual must
participate in for a specific property.

A.3.3 Cardinality Restrictions

Cardinality restrictions specify the exact number of relationships that an individual must participate in
for a given property. The symbol for a cardinality restrictions is the ‘equals’ symbol (=). For example,

102

the cardinality restriction, = hasTopping 5, describes the set of individuals (the anonymous class of
individuals) that participate in exactly five hasTopping relationships. Note that a cardinality restriction
is really a syntactic short hand for using a combination of a minimum cardinality restriction and a
maximum cardinality restriction. For example the above cardinality restriction could be represented by
using the intersection of the two restrictions: ≤ hasTopping 5, and, ≥ hasTopping 5.

A.3.4 The Unique Name Assumption And Cardinality Restrictions

OWL does not use the Unique Name Assumption (UNA)1. This means that different names may refer to
the same individual, for example, the names “Matt” and “Matthew” may refer to the same individual (or
they may not). Cardinality restrictions rely on ‘counting’ distinct individuals, therefore it is important
to specify that either “Matt” and “Matthew” are the same individual, or that they are different individ-
uals. Suppose that an individual “Nick” is related to the individuals “Matt”, “Matthew” and “Matthew
Horridge”, via the worksWith property. Imagine that it has also been stated that the individual “Nick” is
a member of the class of individuals that work with at the most two other individuals (people). Because
OWL does not use the Unique Name Assumption, rather than being viewed as an error, it will be inferred
that two of the names refer to the same individual2.

1Confusingly, some reasoners (such as RACER) do use the Unique Name Assumstion!
2If “Matt”, “Matthew” and “Matthew Horridge” have been asserted to be different individuals, then this will make the

knowledge base inconsistent.

103

Appendix B

Complex Class Descriptions

An OWL class is specified in terms of its superclasses. These superclasses are typically named classes
and restrictions that are in fact anonymous classes. Superclasses may also take the form of ‘complex
descriptions’. These complex descriptions can be built up using simpler class descriptions that are
cemented together using logical operators. In particular:

• AND (u) — a class formed by using the AND operator is known as an intersection class. The class
is the intersection of the individual classes.

• OR (t) — A class formed by using the OR operator is known as a union class. The class formed
is the union of the individual classes.

B.1 Intersection Classes (u)

An intersection class is described by combining two or more classes using the AND operator (u). For
example, consider the intersection of Human and Male — depicted in Figure B.1. This describes an
anonymous class that contains the individuals that are members of the class Human and the class Male.
The semantics of an intersection class mean that the anonymous class that is described is a subclass of
Human and a subclass of Male.

The anonymous intersection class above can be used in another class description. For example, suppose
we wanted to build a description of the class Man. We might specify that Man is a subclass of the
anonymous class described by the intersection of Human and Male. In other words, Man is a subclass of
Human and Male.

B.2 Union Classes (t)

A union class is created by combining two or more classes using the OR operator (t). For example,
consider the union of Man and ‘Woman’ — depicted in Figure B.2. This describes an anonymous class
that contains the individuals that belong to either the class Man or the class Woman (or both).

104

MaleHuman

Intersection of Human and Male

Figure B.1: The intersection of Human and Male (Human uMale) — The shaded area represents the intersection

Man
Woman

Figure B.2: The union of Man and Woman (Man t Woman) — The shaded area represents the union

The anonymous class that is described can be used in another class description. For example, the class
Person might be equivalent of the union of Man and Woman.

105

Appendix C

Plugins

C.1 Installing Plugins

Plugins can be found and installed by hand or automatically using auto-update 1

Many Protégé 4 plugins are listed on the Protégé wiki 2

To install a plugin by hand simply download the .jar file (unzip if necessary) and move it to the plugins/
folder in your Protégé installation.

Plugins will be available on a restart (remember to save your work before shutting Protégé).

C.2 Useful Plugins

C.2.1 Matrix Plugin

Adding existential restrictions on many classes can be very time consuming.

Fortunately, the Matrix Plugin can help to speed things up. Once installed (see ??), the matrix plugin
provides several table-style views of the ontology and some default tabs to get you started. One of these
views (the Class Matrix) can be used to add existential restrictions along specified properties to many
classes in a quick and efficient manner.

As an example this is how you would use the Class Matrix to add spiciness to PizzaToppings

1. Show the ‘Matrix’ Tab from the ‘Tabs’ menu.

2. In the Matrix Tab the ‘Class Matrix’ view is shown on the left by default. This is shown in figure
C.1. You should also be able to see a class hierarchy and property view on the right.

1http://protegewiki.stanford.edu/index.php/EnablePluginAutoUpdate
2http://protegewiki.stanford.edu/index.php/Protege-OWL 4.0

106

Figure C.1: Matrix Tab

3. Drag and drop the hasSpiciness property from the ‘properties palette’ into the empty pane
of the ‘Class Matrix’ view. You should see a new column created with the title ‘hasSpiciness
(some)’.

4. For each pizza topping in the class hierarchy enter a spiciness value. You can do this using drag and
drop from the ‘Classes palette’ view or by typing directly into the appropriate cell. Remember
you can use the auto completion to help fill in the values for you. You should end up with values
for your PizzaToppings as shown in Figure C.2.

5. If you return to the ‘EntitiesTab’ or ‘Classes Tab’ you will see each topping now has an existential
superclass filled in.

107

Figure C.2: Matrix Tab: With restrictions entered

108

