

Symphony – A Java-based Composition and Manipulation Framework
 for Computational Grids

Markus Lorch, Dennis Kafura
Department of Computer Science

Virginia Polytechnic Institute and State University
Contact e-mail: mlorch@vt.edu

Abstract

We introduce the Symphony framework, a software

abstraction layer that can sit on top of grid systems.
Symphony provides a unified API for grid application
developers and offers a graphical user interface for rapid
collaborative development and deployment of grid
applications and problem solving environments through
compositional modelling following the data-flow
paradigm. Symphony meta-programs and program
components can be distributed, reused and modified.
Together with Symphony a new security model is
developed that extends existing security architectures to
allow for collaboration of grid developers and users in
permanent as well as ad-hoc working groups.

1 Introduction

Evolving meta-computing systems like Globus [1],

Legion [2] and UNICORE [3] provide for the creation of
computational grids that can incorporate widely
distributed resources. The services these new technologies
provide are mainly accessible to the user by command-
line utilities or through application-specific user interfaces
of grid applications. Such interfaces differ in usage and
appearance depending on the problem domain and the
underlying grid architecture. For computational grids to
become versatile and easy to use a unified abstraction
layer is needed.

The description of a sequence of operations to be
performed on a computational grid can be viewed as a
meta-program. The term “meta” is used because the
individual operations (e.g. execute a program, move a
file) are of a higher order when compared to the
operations in normal programming. A meta-program can
be represented by a directed graph whose nodes denote
executable programs and data resources and whose arcs

represent data flow connections. Such a graph is shown in
Figure 1.

Symphony is a Java-based composition and
manipulation framework for computational grids. Meta-
programs spanning multiple resources on possibly
differing grid architectures and grid software can be
composed, manipulated and executed using Symphony
components. The Symphony framework abstracts grid
architectures and their middleware. It can be used either
as a component based graphical user interface or as an
application programming interface (API) to standardize
access to underlying grid services.

The next section gives an overview of the Symphony
framework, how it has been implemented and what
services it offers. Section 3 looks at the security
architecture required to support collaboration of users in
static and ad-hoc working groups. In Section 4 we present
the Site-Specific Systems Simulator for Wireless
Communications (S4W). S4W is a problem solving
environment (PSE) for wireless system design. We used
Symphony as a high level cohesive layer to tie together
S4W components and provide a GUI to the PSE. Section 5
refers to related work and Section 6 concludes with a
summary and an outlook to future work.

2 The Symphony framework

Symphony is a component-based framework for

composing, saving, sharing, and executing meta-programs
[4]. The framework has two principle elements: a
composition and control environment in which a meta-
program is constructed and a back-end execution
environment in which the described computation is
performed. The composition and control environment can
be a graphical user interface within which components are
instantiated and customized to describe specific programs
and files. These individual components can then be
connected by links denoting dataflow relationships.
Individual components and complete meta-programs can
be saved, restored for later use and shared with other

users. During exe cution, the components initiate and
monitor the operations performed in the back-end
execution environment. The operations are performed so
as to respect the defined dataflow relationships. The back-
end execution environment can use a proprietary server to
access remote resources or use Globus toolkit [1]
services. Symphony’s architecture allows for the support
of other back-end environments as well.

The Symphony Framework is based on Sun's
JavaBeansTM component architecture [5]. The
composition and control environment supplied with
Symphony is a modified version of Sun's BeanBox. The
BeanBox interface is shown in Figures 1 and 4; it allows
generic Symphony components to be selected from a
palette (shown at the left in Figure 4) and dropped into the
BeanBox workspace. The properties of components in the
workspace can be changed through customization. A
Symphony bean can be customized to contain information
about a resource for which the bean is a surrogate.
Connections between Symphony beans allow the beans to
synchronize the execution of the remote resources they
represent.

Symphony is based on a small number of core beans, a
protocol for the beans to communicate and synchronize,
and a number of special purpose helper beans. The core
beans are useful across all applications. Additional beans

can be developed and added on an as-needed basis to
provide for more specialized requirements. The
Symphony framework provides base classes for such
extensions.
The core beans in Symphony are:

- The Program Bean, represents a program to be
executed at a local or remote resource.

- The File Bean, represents a local or remote file
that may be pre-existing or may be created
dynamically during execution of the meta-program.

- The Standard Stream Beans, provide for
redirection of the standard-in, standard-out and
standard-error streams.

An example of a simple meta-program is depicted in
Figure 1. The meta-program consists of a remote program
(Program 1) which takes a parameter stream and a data
file as input and then generates an intermediate result file.
This file is moved to a different resource where it is used
by another program (Program 2) to generate the final
result which is permanently stored in a file. A summary of
the computation results is sent to the standard output
which is redirected to the standard input of a local
visualization bean (a helper bean). A more complex
example of a Symphony meta-program is provided in
Figure 4.

Remote programs and files can be accessed using a
number of different protocols and services. For job
submission and control Globus GRAM services as well as
Symphony’s proprietary services based on Java RMI [6]
are currently used. Files can be accessed through HTTP,
HTTPS, FTP, GSIFTP and local services. Whenever
possible Symphony uses third-party data transfer
mechanisms for efficient data routing. The Globus
Commodity Toolkit for Java (CoG) [7] provides access to
Globus specific services. Other protocols and services can
be added easily by providing adapter classes.

When customizing the beans a resource browser elicits
resource specific data from grid information services
(e.g., the Globus MDS) and XML based resource
configuration files to aid in the manual selection of
resources. A programming interface provides for the use
of resource brokers as described in [9], [10] and [11] to
make dynamic resource decisions.

In Symphony a remote program component is
customized by supplying the following information to the
Symphony program bean either through its customizer
GUI (Figure 2) or by calling the bean’s customization
functions from a controlling program:

- a URL for the computational resource used
- a URL for the software resource used
- a job specification containing various parameters
- authentication and authorization information

The first entity, the computational resource URL, is a
standard resource locator that contains the protocol to be
used to access the remote resource, the host name of the

Figure 1: An example meta-program in Symphony

remote resource, if necessary the port number where the
resource proxy can be reached and also the service that is
desired at the resource. A sample URL for a Globus
resource allocation manager (a.k.a. a Globus gatekeeper)
is: “gram://gatekeeper.cs.vt.edu:2119/jobmanager”. This
syntax satisfies the requirements of many architectures. If
the definition of a specific compute resource is not
desired or necessary, due to the use of a resource broker,
the URL contains a subset of the parameters, such as the
protocol to be used, or the URL points to the resource
broker engine.

The second entity is a URL that points to the software
component to be used. In most cases this is just a location
in the file system of the selected computational resource.
If the executable has to be staged from another location
separate from to the computational resource, then a full
URL is used, e.g., “file:///home/mlorch/apps/myapp” for
an executable located on the users workstation.

The third entity, the job description, may contain a set
of name – value pairs which define the software resource
that is to be executed and the environment requirements.
This includes the values of environment variables, the
working directory and location of the program if it has to
be staged, as well as memory, CPU, architectural and
software requirements. The job description also specifies
whether or not the program’s output streams should be
displayed or discarded, if they are not redirected.

The fourth entity contains authentication and
authorization information required to access the specified
remote compute resource. It is not limited to one specific
format. Currently support for X.509 certificates for
authentication is provided and authorization is performed
at the back end. Future extensions as described in Section
3 will also provide for authorization components.

Two operations can be performed on a constructed
meta-program: verify and execute. Each operation can be
initiated at any one program bean. During the verify
operation the bean checks if the resource it represents is
available and proper authorization exists to utilize the
remote resource. A program bean uses its resource
locations and job specification to dynamically generate a
target-system dependent job specification, e.g., a Globus
RSL string. The bean may, depending on the underlying
architecture, allocate the remote resource to perform this
verification. After successful verification of one bean’s
properties the verify signal is propagated to the bean's
predecessors and successors, which in turn will propagate
a verify signal after successful verification of their own
properties. The execute operation applied to any selected
program bean starts the execution of the entire meta-
program. The execution operation is similar to the verify
operation. The component on which the execution is
initiated by the user informs its predecessors, if any, about
its intent to start execution of the remote component it
represents. If a component does not rely on any previous

components to finish execution or data transfer it will
start the execution of the remote component immediately.
If a component in turn relies on other components to
finish it will suspend itself until it receives clearance to
proceed from these components.

The user is notified by Symphony of the progress of the
validate and execute operations through different colors
of the components. Possible component states are:
created, verified, running, completed and aborted. A fully
configurable logging mechanism provides for detailed
information on the course of a program execution.

The standardized architecture of JavaBeans provides
for a large range of possible containers and operating
systems that Symphony can work with. One such bean
container is Sieve [8], which adds the ability for several
users to remotely collaborate on the same meta-program.
The Sieve container is a Java-applet which allows for
simple access to the Symphony framework and thus to
grid resources from web browsers. The small size and
computational requirements of the Symphony beans and
the portability of Java code enable Symphony to run on
low-end workstations with a large variety of operating
systems. Furthermore, the Symphony component
framework is easily extended using a standardized,
portable interface.

Grid applications can be developed independent of the
underlying grid architecture by using Symphony beans as
a grid application programming interface (API). Such an
application can use the Symphony beans to access
underlying grid services while providing a specialized
user interface. The advantage of using Symphony as an
API for grid applications is not only the independence

Figure 2: The program bean customization GUI

from the deployed grid architecture but also the flow
control features that Symphony provides. An application
program can simply query the user for program
parameters, instantiate and customize the corresponding
Symphony beans and let Symphony take care of
controlling and managing program exe cution and required
data transfers.

The Symphony GUI can be used to construct and save a
meta-program which can later be executed using the
programming API. If little or no user interaction is
required during program execution a simple application
program can be used to load the saved meta-program and
execute it without a graphical user interface. Information
on the status of the program can be acquired by attaching
a graphical component to visualize the program state, by
using notification mechanisms such as system messages,
or monitoring created log entries.

Symphony meta-program representations can be stored,
shared and retrieved at a later time for execution or
modification. Components that have been customized
may be distributed to other users so that they can use
them in other meta-programs with little or no additional
modifications. Symphony uses inherited means for object
serialization to achieve this. These persistence
mechanisms are necessary to support the two groups of
users in grid environments: Group One are those users
who model meta-programs by combining single software
and compute resources together to solve a complex
problem. Group Two contains users who run such
predefined meta-programs, alter the input data and
parameters, and evaluate the created results. Symphony
allows the two groups to easily trade meta-programs.

3 The Symphony security architecture

The Symphony framework requires a security

architecture that provides finer grained and more flexible
control of rights than is currently available on
computational grids. The requirement for finer grained
control arises from Symphony’s ability to exchange meta-
program components and whole meta-programs between
users as part of their collaborative work. The creator of
components or meta-programs can equip them with a
minimal set of access rights to perform their computation
when executed by another user. These rights are
implicitly transferred to the user who receives and
executes the components. Revocation of rights contained
in the components becomes, of course, problematic and
has to be dealt with through revocation lists at the
resources. Greater flexibility is required because a given
user may receive and combine components from many
different sources. Current grid security infrastructures do
not support these requirements.

In its current state, Symphony’s security mechanism is
based on the Grid Security Infrastructure (GSI) [12].

Every component in a Symphony meta-program can be
equipped with a GSI proxy certificate (PC) that delegates
the creators rights to the component. This enables
Symphony components to access the resources that they
are a surrogate for by impersonating the user that
customized the component. If no designated GSI proxy
certificate has been assigned to a component a default
proxy is used which impersonates the user who is
executing the meta-program.

This approach allows us to combine rights from
collaborating users into one meta-program while still
being layered on top of the security mechanisms put in
place by the underlying grid middleware and grid
resources. However, our approach also implies security
issues that need to be solved before collaboration between
non-trusting users can be supported securely. In their
current implementation, the GSI proxy certificates cannot
be limited except for their validity period and thus
delegate all rights associated with the issuing entity,
violating the least privilege principle [13]. This has been
recognized by the GSI team and improvements are being
developed [14, 15]. Future versions of the GSI will
support the instantiation of very limited proxy certificates
that can be tailored to only provide the rights necessary
for a specific task through the inclusion of usage policies.
With these mechanisms in place a Symphony component
can be outfitted with a minimal set of necessary rights. If
such a proxy certificate is extracted from a Symphony
component by a malicious user it is of little use when
applied in ways other than intended. Another drawback of
the use of GSI proxies is that only one proxy credential
can be submitted to access a resource. For accounting and
security reasons a request should be accompanied by
credentials that identify the current user as well as
credentials that authorize the access.

Future collaboration in comp utational grids will
partially consist of ad-hoc working groups that form
through direct interaction between users from separate
administrative domains. The administrative overhead of
user creation and group membership association on the
resource level prevents such collaboration. Mechanisms
that allow for the delegation of rights from one user to
another and the combination of rights from several
sources are needed. The use of proxy certificates and
similar approaches is a preliminary step that allows the
incorporation of existing security infrastructures.

Distributed access mechanisms that allow resource
owners to delegate rights to users without the intervention
of a centralized administrative entity are a promising
approach. The Akenti project [16] introduces two security
components: use-conditions and attribute-certificates
(AC). The owner of a resource, i.e. the owner of a
computational, software, or data resource, generates use-
conditions that are signed documents stating the ways in
which the resource can be used. They also generate

attribute certificates that assign capabilities to other users.
The users can then present their attribute certificates
together with their identity certificates to resources which
then make authorization decisions based on the presented
certificates and their stored use-conditions.

The combination of the GSI with authorization
elements from Akenti appears to be a good choice to
provide delegation among users in Symphony. In such a
scheme attribute certificates (AC) can be used to delegate
specific access rights to a distinct user. GSI proxy
certificates (PC) in turn impersonate the user and provide
for authentication, accounting and coarse grained
authorization. Figure 3 illustrates this mechanism: a user
who owns a resource can create a Symphony surrogate for
his resource and distribute this component. When another
user requests to use the resource, the resource owner will
issue an attribute certificate to that user. The AC certifies
that a set of rights has been assigned to the specific user.
The requesting user can then equip the Symphony
component with this attribute certificate as well as with
his identity proxy to use the resource. In our scheme
revocation of issued attribute certificates is possible by
simply adding specific attribute certificates to a
revocation list at the resources.

The need for fine grained delegation of rights by the
grid middleware and the enforcement of the resulting
access policy by the grid resources poses another
problem. Grid middleware systems that implement their
own authorization mechanisms (e.g., Legion) can enforce
fine grained policies. The GSI in contrast does not
provide the granularity needed to support such
enforcement as it depends on the underlying operating
system for fine-grained authorization of resource access.
The GSI and UNICORE provide for authentication of
global users and their mapping to local user accounts at
grid resources and are constrained by the expressiveness
limitations of the resource operating systems. Extensions
to the authorization mechanisms of the resource operating
systems need to be in place to enforce complex usage

policies stated in restricted proxy certificates and to grant
rights that are conveyed through attribute certificates.

Most often grid resources run flavours of Unix which
only provide static and coarse grained authorization
mechanisms based on user and group IDs. User level
sandboxes [17] can provide the necessary control over
processes but place considerable overhead on the compute
intensive applications often found in grid environments.
Sandboxes are very much dependent on the system
architecture and operating system and thus limit
portability. A sandbox approach also would still require
administrator intervention to modify group membership
for collaboration among users of the same domain and
lack mechanisms that allow for simple intra-domain
collaboration. A more promising approach is the use of
security extensions as defined in POSIX.1E [18], notably
file system access control lists (FACLs). These operating
system extensions are available for a fair number of
leading operating systems used on grid resources such as
Linux [19], Solaris [20], IRIX [21] and FreeBSD [22].
FACLs can be modified dynamically and provide the
necessary means to only assign a set of minimal rights for
many types of resource access.

Another approach to circumvent the expressiveness
limitation is to perform authorization in the application
code that serves a user request as done in the Community
Authorization Service CAS [32]. CAS implemented the
Generic Authorization and Access-Control API [31]
which enables an application (e.g. a ftp server) to make
fine-grained authorization decisions for resource access
based on the applicable policy. This approach has the
disadvantage that legacy services can no longer be used
securely.

We currently prototype a security architecture that uses
attribute and proxy certificates as explained above
together with FACLs to support secure collaboration in
ad-hoc working groups through the Symphony framework
which will be described in more detail in a future paper.

User Resource
Owner

Resource

Request Component (PC)

Customized Comp. (AC)

Resource Request (PC, AC)

Resource Reply

(2) The resource verifies if proxy restrictions
 and local policies allow the request based
 on the presented identity in the PC.

(3) The resource verifies the AC validity and grants
 specified rights for the duration of the access.

(1) The resource owner verifies user credentials,
 issues an attribute certificate and submits a
 Symphony component together with an AC.

(1)

(2)

(3)

Figure 3: Envisioned delegation scenario using Symphony components

4 Application of Symphony to a PSE for
wireless system design

The Site-Specific Systems Simulator for Wireless

Communications (S4W) [23] is a simulator for wireless
system design developed at Virginia Tech. S4W uses a
ray-tracing approach to model wireless systems and to
predict coverage and bit-error rates. The system takes
parameters such as environment obstacles, building
materials, transmitter and receiver number and location,
and movement of mobile equipment into account. S4W
can be used to optimize the locations of base stations in a
cellular phone or wireless network system.

The Symphony framework allows for rapid
collaborative development and modification of S4W
simulation meta-programs. Figure 4 shows a Symphony
meta-program composed of S4W components to optimize
the location of base stations in a wireless network.

The illustrated example uses an environment map as
input which it converts into a XML representation of
polygons. A triangulation and space partitioning step
transform this representation into an XML environment
description suitable for the ray-tracer component. These
pre-processing programs are typically run on a regular
Unix workstation. The resulting XML file is then copied
to a Linux cluster on which the ray-tracer component, a
parallel MPI application, is executed. The ray-tracer takes
transmitter and receiver locations as well as the
environment description as input and saves a power-
delay-profile as a result of the ray tracing. The file
containing the results it then moved to a workstation with
a visualization component that shows the predicted
coverage.

5 Related Work

The Symphony framework can be viewed as layered on

top of grid systems like Globus [1], Legion [2] and
UNICORE [3]. Symphony’s architecture allows for the
incorporation of higher layer services offered for example
by resource brokers such as Nimrod [10], AppLes [9] and
EZ-Grid [11] as well as for the use of resource services
directly when a grid infrastructure is not present. The
following projects also allow the user to model grid
applications using the workflow paradigm.

TENT [24] is a component-based framework that
allows for the creation of complex grid applications using
the graphical programming paradigm. TENT is mainly
targeted at large scale computationally intensive
simulations in the field of aircraft and turbine design.
TENT is also based on the JavaBeans component
architecture but uses CORBA [25] as its communication
middleware. It provides for computational steering and
can incorporate modules for the visualization of results.
TENT is a vertically integrated solution, however, current
work is aimed at using the Java CoG Kit for Globus to
layer TENT on top of the Globus middleware.

WebFlow [26] is also a Java-based framework to
develop high-performance meta-applications that run on
distributed resources but is no longer an active project. A
three tier architecture employed Globus services at the
lower end. WebFlow object servers provided component
interoperability using CORBA in the middle tier and at
the top a WebFlow front-end together with powerful
visual authoring tools were used to create and control
meta applications and to provide for collaboration among
users.

Figure 4: Application of Symphony to a Wireless System Simulation

The Task Mapping Editor (TME) [27] is an integrated
solution to provide access to remote supercomputers
through its own server daemon. It provides a GUI in the
form of a Java applet. TME represents remote resources
as icons on a canvas. The icons can be interconnected to
form a data-flow diagram following the same visual
programming principles as used in Symphony, TENT and
WebFlow. Execution and control of remote components,
staging of data and the transport of data from one
component to the next is handled by TME proprietary
functions. TME is not yet released to the public. Current
plans are to extend the system to use secure connections
and to make improvements to the way data transfers are
handled.

UNICORE [3] and its current successor UNICORE
Plus aim at developing a grid infrastructure that facilitates
access to distributed supercomputers for engineers and
scientists through a graphical user interface. UNICORE
lets the user define a task as a set of interdependent
programs and data transfers to be executed on the remote
resources and visualizes this in a data- and control-flow-
graph. These task descriptions can be stored, modified
and reused. Changes to legacy program components are
not necessary. The user can view the state of the meta-
program and download output data through a unified
interface. Public key certificates are used to authenticate
users at remote resources via credential mapping.

The Directed Acyclic Graph (DAG) Manager
DAGMAN is a scheduler component of the Condor
project [30] that allows specification of job
interdependencies by creating a DAG and manages the
execution of the jobs with respect to those
interdependencies. DAGMAN is a stand-alone command
line utility; an API for interoperability with other
components is planned.

CCAT [28] and its successor XCAT are projects at
Indiana University based on the Common Component
Architecture (CCA) [29]. A sophisticated service
architecture has been developed that provides for the
creation and discovery of instantiated components and
component descriptions as well as for event notification
and connection mechanisms. XCAT components use
Globus services through the Globus Java COG kit for
security and task creation mechanisms and employs Java
RMI for communication between components.

The main difference between the approaches taken in
the Symphony project and the TENT, WebFlow, CCAT
and XCAT architectures is the focus on legacy
applications in Symphony. For TENT existing
applications have to be modified to use the TENT API in
order to communicate with other components. In the case
of WebFlow a great number of the problem solving
modules were specially developed Java components.
CCAT/XCAT are frameworks for CCA components.

Symphony in contrast is a framework for combining
arbitrary codes to meta-programs. Existing programs can
be tied into a meta-program without changes to the code.
Symphony components can be implemented in the
language and on the architecture suited best for the
application and legacy codes do not have to be ported.

Another significant difference is the size, complexity
and extensibility of the solutions – TENT and WebFlow
rely on their own server components being in place in the
distributed environment. CCAT and XCAT are powerful
but rather large and complex frameworks. UNICORE and
TME are vertically integrated solutions that require a
specific infrastructure. Symphony, however, provides a
small-footprint framework that can be used on top of a
computational grid without the need to install remote
components or a service infrastructure. Symphony can
also access resources that lack a grid middleware
installation through its proprietary lean back-end. Local
applications like visualization tools can be incorporated
into a Symphony meta-program without modifications.
Symphony should be seen as a lightweight workflow
abstraction and user interface framework for
computational grids that provides a valuable alternative to
the aforementioned projects.

6 Concluding remarks and future work

Symphony is an abstraction layer for existing grid

middleware and operating systems. It provides support for
collaborative rapid development of meta-programs
through compositional modeling and can serve as a
unified API to grid environments allowing the system
independent application development. The open
architecture of the Symphony framework based on
JavaBeans ensures the portability, interoperability and
extensibility required by high level abstraction software
for computational grids.

Future aims are additional support for other grid
middleware software such as Legion and UNICORE.
Interoperability with the DAGMAN execution manager
and integration of Symphony components into the XCAT
framework will be investigated in more detail.

Our immediate goals are to develop and implement a
new security architecture that supports collaborative work
in ad-hoc as well as more permanent user groups. More
Information on the Symphony project can be found at
http://symphony.cs.vt.edu.

References

[1] I. Foster, C. Kesselman, ”Globus: A Toolkit-Based Grid

Architecture” in “The Grid, Blueprint for a Future
Computing Infrastructure”, Foster, I. and Kesselman, C.
Editors, Morgan Kaufmann, 1999, pp. 259-278

[2] A. Grimshaw et al. “Legion: An Operating System for
Wide-Area Computing” IEEE Computer, 32:5, May 1999:
pp. 29-37.

[3] M. Romberg "UNICORE: Beyond Web-based Job-
Submission" Proceedings of the 42nd Cray User Group
Conference, May 22-26,2000, Noordwijk

[4] Ashish Shah, "Symphony: A Java-based Composition and
Manipulation Framework for Distributed Legacy
Resources", Master Thesis in Computer Science, Virginia
Polytechnic Institute and State University, 1998

[5] Sun Microsystems, "The JavaBeansTM Component

Architecture", http://java.sun.com/products/javabeans/,
2001-11-05

[6] Sun Microsystems, "Java Remote Method Invocation",

http://java.sun.com/products/jdk/rmi/, 2001-11-05

[7] G. von Laszewski et al, “CoG Kits: A Bridge between

Commodity Distributed Computing and High-Performance
Grids”, ACM 2000 Java Grande Conference, 2000

[8] P. L. Isenhour, et al, "Sieve: A Java-based collaborative

visualization environment", Proceedings of the IEEE
Visualization'97, Phoenix, AZ, Oct. 1997, pp. 13-16

[9] F. Berman and R. Wolski ”The AppLeS Project: A Status

Report “, Proceedings of the 8th NEC Research
Symposium, Berlin, Germany, May 1997.

[10] R. Buyya et al, “Nimrod/G: Resource Management and

Scheduling System in a Global Computational Grid”, The
4th Int. HPC Asia Conference 2000, Beijing, China.
IEEE Computer Society Press, USA, 2000

[11] B. Chapman et al, "EZ-Grid Resource Brokerage System",

http://www.cs.uh.edu/~ezgrid/, 2001-11-05

[12] I. Foster et al, "A Security Architecture for Computational

Grids", Fifth ACM Conference on Computers and
Communications Security, Nov. 1998

[13] J. R. Salzer and M. D. Schroeder, "The Protection of

Information in Computer Systems" Proceedings of the
IEEE, Sept. 1975

[14] B. Sundaram et.al, "Policy Specification and Restricted

Delegation in Globus Proxies", Research Gem,
Supercomputing Conference 2000, Dallas, November 2000

[15] K. Jackson et al. “TLS Delegation Protocol”,

http://www.ietf.org/internet-drafts/draft-ietf-tls-delegation-
01.txt, July 2001

[16] M. Thompson et. al, “Certificate-based Access Control for

Widely Distributed Resources“, Proceedings of the Eighth
Usenix Security Symposium, August 1999

[17] I. Goldberg et al. “A secure environment for untrusted
helper applications: confining the wily hacker”,
Proceedings of the 1996 USENIX Security Symposium

[18] IEEE standard portable operating system interface for

computer environments, IEEE Std 1003.1-1988 , 1988

[19] LIDS Security Extentions for Linux, http://www.lids.org,

2001-11-05

[20] Sun’s Trusted Solaris 8 Operating Environment,

http://www.sun.com/software/solaris/, 2001-11-04

[21] Trusted IRIX, http://www.sgi.com, 2001-11-05

[22] POSIX.1E: Mandatory Access Control Support for

FreeBSD, http://www.watson.org/fbsd-
hardening/posix1e/mac/, 2001-11-05

[23] A. Verstak et. al, “Lightweight Data Management for

Compositional Modeling in Problem Solving
Environments”, in Proceedings of the High Performance
Computing Symposium, Advanced Simulation
Technologies Conference, Apr. 2001, pp. 148-153

[24] T. Forkert, et al, “The Distributed Engineering Framework

TENT”. In Proceedings of Vector and Parallel Processing -
VECPAR 2000, LNCS 1981, 2000, pp. 38-46

[25] CORBA Specifications

http://www.corba.org, 2001-11-05

[26] E. Akarsu, F. Fox, W. Furmanski and T. Haupt “WebFlow

- High-Level Programming Environment and Visual
Authoring Toolkit for High Performance Distributed
Computing”, Proceedings of Supercomputing 1998

[27] The Task Mapping Editor

http://ccse.koma.jaeri.go.jp/projects/Projects_data/data_093
/projects_093.html, 2001-11-05

[28] R. Bramley et al. “A Component-Based Services

Architecture for Building Distributed Applications”, Proc.
of the 10th Int. HPDC Symp. Aug. 7-9, 2000, San Francisco

[29] “The Common Component Architecture Forum”,

http://www.cca-forum.org/, 2002-01-10

[30] J. Basney. and M. Livny, "Deploying a High Throughput

Computing Cluster", High Performance Cluster
Computing, Vol. 1, Chapter 5, Prentice Hall PTR, 1999.

[31] T.V. Ryutov et al.“An Authorization Framework for

Metacomputing Applications”, Cluster Computing Journal,
Vol. 2 Nr. 2, 1999, pp. 15-175

[32] L. Pearlman et al., “A Community Authorization Service

for Group Collaboration”, submitted, 2002 IEEE Workshop
on Policies for Distributed Systems and Networks,
http://www.globus.org/Security/CAS, 2001-01-10

