
Project Management for the 21st Century:
Supporting Collaborative Design through Risk Analysis

Jamie L. Smith Shawn A. Bohner D. Scott McCrickard
Center for Human-Computer Interaction and Department of Computer Science

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0106 USA
540-231-7409

jls05@vt.edu sbohner@vt.edu mccricks@cs.vt.edu

ABSTRACT
Managing software project teams is a complex task further
complicated by a continued increase in the size and complexity of
software-intensive systems and the distribution of project teams.
Given limited project resources, distributed teams require
appropriate team processes and adequate tool support to help them
remain focused on the most critical design tasks, thereby
structuring the design process and improving team coordination.
However, existing project management tools typically fall short.
Software project management as a discipline is not unlike human-
computer interaction (HCI) in that both combine technical
concerns with human psychological concerns. Both could benefit
from a more systematic approach to applying theory to practice.
One proposed approach to the science of design involves
constructing a record of design rationale by leveraging design
knowledge from previous projects. Extending the reuse paradigm
from product-related knowledge to process-related knowledge
could improve software project management by helping teams to
externalize and maintain a physical record of their design process.
A risk management model could help teams to prioritize design
knowledge, allowing them to focus their effort on key design
tasks.

Categories and Subject Descriptors
K.6.1 [Management of Computing and Information Systems]:
Project and People Management

General Terms
Management, Design, Human Factors

Keywords
Project management, distributed teams, collaboration, risk
analysis, risk management, notification systems, design
knowledge reuse

1. INTRODUCTION
As the size and complexity of software-intensive systems
continues to increase, it has become difficult for one individual to

achieve a full understanding of all aspects of a system design. The
knowledge and expertise necessary for successful design is
typically distributed among a group of individuals who must share
their knowledge, coordinate their efforts, and resolve conflicting
perspectives to solve a given problem. Consequently, individuals
rely on effective teamwork, sound management, and adequate tool
support in the design of complex, interactive systems.

Software development teams are plagued by management
problems that result in missed deadlines, budget overruns, and
canceled projects, and effective management remains an open
problem as development teams struggle to keep pace with
changing technology [14]. An increase in the use of distributed
teams, which, unlike traditional, co-located project teams, have the
added difficulty of collaborating across the boundaries of space
and time, has further complicated the issue of project
management. Expected to compete with traditional teams in terms
of quality and efficiency, distributed teams rely heavily on
information technology to support many of the communicative
and collaborative processes that traditional teams take for granted
[15]. However, most existing collaborative tools do not adequately
support the needs of distributed project teams.

Each member of a team adds a distinct set of knowledge and
experience to the design process. As the project evolves, each
member will develop distinct ideas and opinions concerning
project goals, task priority, and other key decisions. Poorly
coordinated teams do not communicate or make team decisions
effectively. The members of a poorly coordinated team focus on
individual tasks and have little awareness of the activities and
perspectives of their teammates or of how the pieces of the project
fit together. Unable to work as a cohesive unit, these teams find it
difficult to focus on overall project goals.

In contrast, a well-coordinated team remains focused on the
project as a whole. All members of a well-coordinated team not
only share the same knowledge, but also know that they share the
same knowledge [13]. Consequently, this team spends less time
discussing process-related issues of how goals should be
accomplished and more time discussing product-related issues of
what goals should be accomplished [9]. By maintaining a “big
picture” view of the project, this team can focus on the tasks that
will help them to accomplish key project goals.

One key (and often overlooked) aspect of a design project is risk
management. All projects have risks; some are more probable,
influential, or costly than others. Risk management involves
identifying and prioritizing potential problems and monitoring,
mitigating, and controlling those risks throughout the life of the
project. To accomplish these goals, the members of a team must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA,
USA. Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

maintain a shared understanding of all project-related knowledge,
which should include knowledge about the past (what happened in
previous projects), the present (what is happening in the current
project), and the future (what could go wrong as the project
progresses).

A risky action or event involves an associated loss, an element of
uncertainty or chance, and a choice to be made [6]. Each member
of a group of project stakeholders may hold a different opinion
concerning the loss associated with a certain risk, the level of
uncertainty involved, or the choice that should be made. To
manage risk effectively, teams must discuss potential problems,
agree on the priority of key risks, assign responsibility for risk
mitigation, and monitor progress throughout the project. Although
some traditional, co-located teams can manage risks with written
documentation or the use of a risk database, distributed teams
require adequate collaborative tools to support communication and
to aid in the identification and management of project risks.

As system complexity and team distribution continue to increase,
the task of developing tools to support effective collaboration is
becoming more important and more difficult to accomplish. This
paper examines the strengths and weaknesses of several existing
project management tools and proposes a strategy for improving
collaboration by facilitating risk management.

2. RELATED WORK
Techniques for managing distributed teams have not been fully
explored; however, it is generally accepted that distributed teams
cannot be managed using traditional paradigms [3]. Regardless of
the management techniques applied, tools used by distributed
teams must support effective collaboration without adding
excessive overhead. An effective collaborative environment must
inject elements of project management, including activity
awareness, task allocation, and risk management, directly into the
design process.

Existing collaborative systems support activity awareness to
varying degrees through the use of notification systems, which
display information in the users’ periphery without unwanted
interruptions to their primary tasks [12]. Notification systems
typically support awareness by signaling isolated events, such as
the arrival of an email. However, notification systems are also
useful in monitoring the evolution of long-term collaborative
activities. Notification systems can provide a plethora of
awareness data to the members of a distributed team without
distracting them from their primary tasks; however, most
collaborative systems do not take full advantage of these benefits.

SOPPTS [18], for example, is a task-oriented project management
system for student software engineering teams. At the start of a
project, teams produce a list of project tasks and assign subsets of
those tasks to each team member. Team members are then
responsible for updating the system as progress is made on each
task. Consequently, all team members and the project manager can
see which tasks have been completed, whether each task was
completed on time, and if certain tasks, or team members, have
fallen behind schedule.

Public task assignments reduce misunderstandings about who is
responsible for completing which tasks and can also add an
element of peer pressure. Team members are rewarded for
completing their assigned tasks on time and pressured by their
teammates when progress is slacking. The web-based nature of the

system facilitates geographic distribution; however, the system is
only beneficial when used regularly by everyone on the team. The
amount of overhead it adds to a project in terms of consistently
updating progress on individually assigned tasks can distract team
members from other project tasks and actually hinder progress.
Consequently, use of the system typically diminishes as a project
progresses.

TeamSCOPE [15] provides teams with a shared file repository,
dedicated message boards for each shared file, and a detailed
activity history, thus improving both communication and
awareness among the members of a distributed team. At login,
team members are presented with an overview of awareness data,
including a summary of recent activity. The activity summary lists
activities in reverse chronological order and allows team members
to filter activities based on the type of event (e.g. posted messages
and file or calendar updates) or the context of the event (e.g.
activities related to files in a specific folder). As a result, users can
monitor their teammates’ recent, relevant activities, i.e. those
activities that relate to their own current tasks, without being
inundated with information about all recent activities.

Although general system features expand TeamSCOPE’s
application to a broad range of teams, they also limit the tool’s
usefulness for teams within any specific domain. The system can
monitor changes to any shared document; however, no real insight
can be gained with respect to how those changes affect the project
as a whole. Furthermore, the organization of the activity history
into a list of recent events hinders a team’s ability to see the
project as a whole and allows team members to get lost in the
details of current tasks.

TeamSpace [10], which supports the synchronization and
documentation of team meetings, organizes information presented
during a meeting into a timeline. Key events, such as a team
member arriving, leaving, presenting important information, or
making a decision, are recorded using descriptive icons. These
icons can then be filtered by type or selected to access further
details. Team meetings are only one type of event that can then be
included on a full project timeline along with deadlines and other
project milestones. Structuring process-related knowledge
according to the common dimension of time exploits our ability to
organize past experiences into a sequence of episodes. Organizing
information into a timeline aids team members in maintaining an
overall view of the project and retrieving more detailed
information as needed.

None of the tools discussed here explicitly incorporate risk
management, either exclusively or in conjunction with other
project management capabilities. However, a few tools, such as
SoftRisk [11], are making strides toward risk automation. SoftRisk
aids software developers in risk identification, prioritization, and
monitoring throughout an iterative project lifecycle. Based on
responses from a set of checklists and questionnaires, potential
risks are identified and assigned a risk exposure value. Risk
exposure is determined by both the probability that the risk will
become a problem during the life of the project and the impact that
the risk will have on the project if it does become a problem. Risks
are then prioritized according to their risk exposure values. The
tool visually monitors changes in risk priority throughout the life
of the project.

SoftRisk was developed for use with any size or type of software
project; thus, the specific benefit for any single domain is limited.

Elements of the checklists and questionnaires used in identifying
and estimating risks are necessarily general. However, despite
these limitations, the underlying concepts that drive SoftRisk are
fundamentally important. Applied to a more specific domain and
integrated within a collaborative design environment, a risk
management tool such as SoftRisk could provide significant
benefit in terms of project management.

Most project management tools, like those discussed here, support
team coordination to varying degrees through activity awareness.
However, these tools do not fully support team members in
maintaining a “big picture” view of project goals and in focusing
their efforts on the key tasks that will help them to achieve those
goals. Consequently, teams often take an ad hoc approach to
design. Integrating key elements from each of the tools discussed
here – specifically, task allocation, activity history, and timeline
visualization, along with risk management capabilities similar to
those found in SoftRisk, could significantly improve the
collaborative design process and further efforts to transform
design into a scientific discipline.

3. TOWARD A SCIENCE OF DESIGN
Human-computer interaction (HCI) as a discipline is concerned
with designing interfaces to interactive systems that allow users to
accomplish their goals. A key aim of HCI is to inject knowledge
from psychology, sociology, and other relevant disciplines into the
design process so that usability problems can be detected and
diagnosed early. As system complexity increases, so too does the
complexity of system interfaces. Successful design increasingly
requires a well-constructed, well-trained, and well-managed team
that follows a systematic approach to applying scientific
knowledge to design practice. This “engineering approach” to HCI
must complement current software engineering paradigms yet
involve the analysis of design rationale to ensure that socio-
technical systems are designed with the user in mind [5, 17].

To gain acceptance into current software engineering practices, the
science of design must facilitate reuse. Within the software
domain, reuse has seen considerable success in the form of
reusable code modules and object-oriented pattern libraries.
However, it is generally accepted that system developers can
reduce development time and cut costs on a larger scale by
incorporating reuse at an earlier stage of the development process
[8, 17]. Consequently, new problems do not have to be solved
from scratch. In the context of a design project, knowledge can be
related to the product being designed or to the process by which
the design team accomplishes its goals. Archiving and reusing
knowledge about a design product and a design process can help
to ensure that effective ideas are remembered and that mistakes
are made only once.

3.1 Design product knowledge
Carroll’s method for claims analysis [4] outlines a systematic
approach to design. Claims summarize particular aspects of design
rationale, explicitly stating the positive and negative tradeoffs of a
design feature. Delivered in informal, natural language, claims
encourage designers and other system stakeholders to debate
design tradeoffs, with the goal of mitigating the downsides of each
claim while maintaining or strengthening the upsides. In this way,
the compilation of a sufficient set of claims exemplifies the
rationale behind a system design [5].

Claims represent design rationale grounded in scientific theory or
experimental evidence. Although claims are tied to a specific
context of use, the underlying design knowledge can be reused in
subsequent projects. To facilitate design knowledge reuse, claims
must be abstracted, classified, and stored in a knowledge
repository for future application within a new design context [16].

3.2 Design process knowledge
If teams can leverage knowledge from previous projects to
improve their design product, they should also be able to leverage
knowledge from previous projects to improve their design process.
Basili’s Experience Factory [2] attempts to facilitate process
improvement in software development by structuring, classifying,
and storing packaged experiences from previous projects for reuse.
Experiences, which include both product and process-related
knowledge, are input into a repository in various forms, including
as artifacts, models, and lessons learned. Experiences are then
tailored to meet the needs of a specific project and supplied on
demand in the form of models, tools, or baselines.

The concept of reusing process-related knowledge is a natural
extension of the reuse paradigm; however, the packaging of
reusable experiences is too coarse. Reusing an experience is
analogous to reusing a generic software process model that has
been adapted for a specific project. In this way, attempting to
reuse an experience is like attempting to reuse an entire claim set.
Although this level of reuse might be possible, it is not a suitable
starting point. Experiences must first be broken down into
structured chunks of process knowledge, for example, as claims,
which can then be stored, retrieved, and reused in a variety of
projects across domains.

3.3 Extending the reuse paradigm
Successful knowledge reuse relies on the appropriate definition of
both product and process-related knowledge as well as an analysis
of how the two types of knowledge can be juxtaposed to improve
the design process. One possible strategy is to decompose design
projects into a set of product-related claims and a set of process-
related claims and to treat the downsides of these claims as project
risks. In this way, the claims analysis process adds structure to the
design process and incorporates an element of risk management at
no additional cost. Moreover, both types of claims can be archived
for reuse.

Figure 1. Comparison of product and process-related claims.

Consider, for example, the two claims in Figure 1. Claim A relates
to the design product – a notification system. The two downsides
of the claim represent potential problems that directly affect the
quality of the product. Claim B, on the other hand, relates to the
process by which the notification system is designed. The two
downsides of this claim might also affect the quality of the
resulting product, but in a more indirect manner. For example, if
additional project resources were required but unattainable, then
postponing a deadline could result in the cancellation of the
project.

A third claim, about accelerating the project schedule to stay on
schedule for the next deadline, could be added to the set to
mitigate the Claim B downside about the project falling behind
schedule. However, the accelerated schedule might still require
additional resources; therefore, a fourth claim would be needed to
mitigate that risk.

3.4 Managing design risks
A system design might involve dozens of claims. With limited
time and resources, along with the inherent nature of design, a
team cannot expect to mitigate all of the risks associated with their
project. Consequently, the team must prioritize their claims and, at
any given time, focus on the most critical project risks.

A claim often has multiple downsides, or risks, each of which can
be assigned a specific weight. The priority of a claim can then be
determined by the sum of the weights of its downsides. The
weight of a downside is a combination of the probability that the
given downside will become an actual problem in the design and
the impact that the downside will have on the design if it does
become a problem. Any number of factors could be used to
determine the probability and impact values for a specific risk, and
these factors will differ for process and product-related risks. We
will first focus on a risk model for product-related claims about
notification systems since significant work has been done in
defining claims within this domain.

Claim upsides and downsides are grounded in either scientific
theory or experimental evidence. A claim might initially consist of
only one validating source; however, as the claim is reused and
revalidated within other projects, its reference list might grow to
include multiple sources from different domains. The impact value
for a particular claim downside should take into consideration the
number of validating sources, the similarity of the source domains
to the new, untested domain, and the trustworthiness of each
source. It should also consider the results of any evaluation of the
claim within the context of the current design project, taking into
account problems that have been shown to exist with the current
system when analytically evaluated by HCI experts or empirically
evaluated by potential users. The probability value for a claim
downside should consider the statistical power of any evaluation
the claim has undergone, reflecting a level of confidence that the
evaluation yielded correct results. The probability value should
also reflect the degree to which the downside has been mitigated
in the design since a mitigated risk is less likely to become a
problem.

Project management, like HCI, is a complex discipline in need of a
more systematic approach, and effective risk management could
be a step in furthering both the science of design and the science
of software project management. The success of these proposed
methods for risk management and knowledge reuse relies on the

development of adequate reuse repositories and effective tool
support. Tools are needed first to evaluate the practicability of
these methods and then to facilitate learning and promote practical
acceptance in academia and industry. The ongoing development of
such tools is discussed in the next section.

4. MANAGING TEAMS IN LINK-UP
In support of the science of design, a suite of web-based tools,
called LINK-UP [7], is being developed to guide designers
through a usability engineering process for the design of
notification systems. LINK-UP facilitates the use, validation, and
improvement of the claims analysis method by supporting the
actual construction of a claims analysis record during the design
process. The system is tied to a design knowledge repository,
allowing teams to leverage knowledge from previous design
efforts by searching for reusable claims relevant to their current
project. Throughout the design process, designers also extend this
knowledge repository by updating existing claims and creating
new ones [7].

Two key goals of the LINK-UP system are to promote practical
acceptance of the claims analysis method and to facilitate learning
through applied project work in undergraduate and graduate HCI
courses. However, to achieve industrial and academic acceptance,
LINK-UP must adequately support collaborative design efforts.
Computer-aided design tools, like LINK-UP, typically guide the
design process and facilitate management of product-related
knowledge; however, few tools support users in documenting and
reflecting on process-related knowledge [17]. Given the growing
complexity of system design, the increased distribution of project
teams, and the push to complete projects in less time with fewer
resources, collaborative design tools must aid teams in focusing
their effort on the key design tasks to achieve project goals.

Incorporating a risk management model within LINK-UP has the
potential to improve performance in design teams by helping them
to focus their efforts on key design tasks, thereby structuring the
design process and improving team coordination. The tool should
improve the system’s overall usability for distributed teams by
better supporting collaborative team processes. Additionally, the
tool should encourage the evolution of project management
techniques for distributed teams and the extension of the reuse
paradigm as the risk management model is applied to product-
related knowledge and later extended to include process-related
claims.

An effective risk management tool should benefit distributed
project teams by helping them to focus their design efforts on key
project issues, thereby:

1. Structuring the design process with key steps for
multiple design iterations

2. Supporting team coordination by maintaining an
external, collective team memory

4.1 Structuring the design process
LINK-UP guides design teams through the design process, from
defining user requirements to performing an analytic or empirical
evaluation of an initial design prototype. However, given the
results of an evaluation, designers are left to navigate subsequent
design iterations on their own. Designers are aware of certain
inadequacies in the current design of their system; however, they
are given little guidance in terms of how to resolve those issues.

The integration of a risk management model within LINK-UP
could give teams the guidance they need during the redesign
process. The results of an analytic or empirical evaluation show
that a subset of the project claims are performing inadequately.
Following an evaluation, LINK-UP could prioritize the claim set,
based on a combination of stored data and team input, with higher
priority given to those claims that need to be “repaired.” Upon
examining the prioritized list, teams will immediately know which
risks are most critical for the current design iteration and the order
in which claims should be addressed to resolve key design issues.
Team members can then choose or assign specific claims that they
will be responsible for mitigating. Mitigation might involve
finding new claims to reuse or creating new claims to mitigate the
most critical downsides of the highest priority claims.

The priority list will initially include only product-related claims;
however, it could eventually be extended to include process-
related claims as well, allowing teams to identify and manage
problems with their design process in addition to their design
product with minimal overhead. Once process-related claims are
created and stored in the reuse library, it will become easier for
teams to identify recurring risks in subsequent projects.

4.2 Maintaining a team memory
With an increase in system complexity comes the need for
effective knowledge management to promote efficiency and
coordination in project teams. Information technology plays a key
role in organizing, storing, and retrieving large amounts of
knowledge and in allowing organizations to take advantage of the
knowledge reuse paradigm [8]. However, knowledge management
is more than simply storing documents in a searchable repository.
It involves acquiring, sharing, and integrating knowledge from
multiple perspectives into a shared understanding of a given
problem and its intended solution [1].

To facilitate shared knowledge and synthesis of competing
perspectives, distributed knowledge must be externalized and
recorded, creating a physical record of the team’s mental efforts in
the form of a collective team memory [1]. A team memory should
contain all knowledge related not only to the design product, such
as design rationale, but also to the design process, such as team
roles, responsibilities, contributions, and progress. This knowledge
can be collected and maintained through the use of adequate
communication and awareness mechanisms.

Team members need to maintain a “big picture” view of their
project while ensuring that all members of the team have access to
the same project-related knowledge. They need not only to
remember how the design has evolved throughout the life of a
project, but also to notice and understand recent changes that
teammates have made to the design. With this knowledge, team
members should possess a better understanding of project tasks,
dependencies, and risks as the design progresses and evolves.

If a physical team memory is to be beneficial to project teams, it
must be easy to maintain and use. The collection, organization,
and archiving of project-related knowledge should be a natural by-
product of the design process that adds minimal overhead to the
project. Additionally, a team memory must be organized and
presented to the team in such a way that team members can
quickly notice and understand changes and potential problems and
easily retrieve further details when necessary.

5. MANAGEMENT SUPPORT STRATEGY
Effective project management requires a systematic process and
supporting tools that add structure to the design process and
facilitate team coordination. To the greatest extent possible,
project management tasks must be incorporated into the design
process with minimal added overhead.

To accomplish these goals, tools to support project management in
distributed design teams should adhere to the following
guidelines:

• Guide the design process with a risk management
model
Guiding design teams through the steps of a redesign process
will promote iterative design. Prioritizing project risks draws
attention to the key problems in the current design that should
be addressed in the next iteration. Teams can quickly
determine and allocate key tasks for redesign. Consequently,
teams can remain focused on the most critical aspects of the
project.

• Support team coordination through activity
awareness
Aiding distributed teams in the externalization and
maintenance of a collective team memory will help team
members to remain aware of the activities and perspectives of
everyone on their team. A team memory should include
knowledge related to progress, individual contributions, task
assignments, decision rationale, and design evolution. The
creation and maintenance of a team memory should be a
natural by-product of the design process, adding minimal
overhead to the project while helping teams to coordinate
tasks and dependencies.

• Organize project-related knowledge using time-
based visualization techniques
Organizing an intuitive team memory will allow teams to
monitor, reflect on, and improve their processes throughout
the course of a project, while visualizing project-related
knowledge according to time takes advantage of episodic
memory. An effective activity timeline should allow team
members to quickly understand design changes, notice
potential problems, and retrieve more detailed information on
demand. The activity timeline should help team members to
maintain a “big picture” view of the project as it evolves over
time.

• Archive product and process-related knowledge for
reuse
Maintaining a team memory throughout the life of a project
and archiving product and process-related knowledge for
reuse will allow future teams to find valuable knowledge and
identify common mistakes early in the design process. A
growing repository of both product and process-related
knowledge contributes to the science of design.

6. CONCLUSIONS AND FUTURE WORK
Software project management is an immature, but increasingly
important discipline. As system complexity and team size and
distribution continue to increase, we rely more and more on our
ability to share knowledge, coordinate efforts, and synthesize
diverse and conflicting perspectives in the design of software-

intensive systems. Appropriate team processes and adequate tool
support are critical to the success of software design. Furthermore,
the knowledge gained through team collaboration should not be
forfeited at the end of a project, but instead, archived for reuse.

Motivated by the goals of supporting project management,
furthering the science of design, and expanding knowledge reuse
in LINK-UP, we plan to incorporate a project management tool
into the system, leveraging relevant ideas from the tools discussed
in Section 2 and following the guidelines outlined above. The first
step in this process is to fully define and evaluate an appropriate
risk management model for product-related claims. This model
should help design teams to focus on the key avenues for
improvement within their project, thereby adding structure to the
design process and improving team coordination.

Another critical task is to compare and contrast product and
process-related knowledge and to define the structure of a process-
related claim that compliments the existing product-related claim
composition. A risk management model can then be developed for
prioritizing process-related claims. Finally, the reuse paradigm and
the LINK-UP system can be extended to include process-related
knowledge. These improvements, in turn, should have a positive
effect on team performance.

Supporting project management in LINK-UP is an important step
toward improving project management for distributed teams and
toward extending the reuse paradigm to include not only project-
related knowledge, but also process-related knowledge. The result
could help to bridge the gap between software engineering and
HCI by contributing to the state-of-the-art in collaborative
teamwork, software project management, and reuse in the design
of interactive software-intensive systems.

7. ACKNOWLEDGEMENTS
We thank Ali Ndiwalana, Shahtab Wahid, and Jason Lee for their
careful review and constructive comments on this work. We also
thank the Virginia Tech ASPIRES program, in part, for funding
this research.

8. REFERENCES
[1] Arias, Ernesto, Eden, Hal, Fischer, Gerhard, Gorman,

Andrew, and Scharff, Eric. “Transcending the individual
human mind – creating shared understanding through
collaborative design.” ACM Transactions on Computer-
Human Interaction (TOCHI), Vol. 7, No. 1, March 2000, p.
84 - 113.

[2] Basili V. R.: "The Experience Factory: packaging software
experiences." In Proceedings of the NASA Goddard Space
Flight Center's 14th Annual Software Engineering Workshop,
1989.

[3] Beise, Catherine M. “Employees and impact on work: IT
Project Management and Virtual Teams.” In Proceedings of
the 2004 SIGMIS conference on Computer personnel
research: Careers, culture, and ethics in a networked
environment, April 2004, p. 129-133.

[4] Carroll, J. M. “Making use: a design representation.”
Communications of the ACM, Vol. 37, No. 12, December
1994, p. 29-35.

[5] Carroll, J.M. Making use: scenario-based design of human-
computer interactions. The MIT Press, 2000.

[6] Charette, Robert N. Software Engineering Risk Analysis and
Management. Multiscience Press, Inc., 1989.

[7] Chewar, C. M., Bachetti, Edwin, McCrickard, D, Scott and
Booker, John. "Automating a Design Reuse Facility with
Critical Parameters: Lessons Learned in Developing the
LINK-UP System." In Proceedings of the 2004 International
Conference on Computer-Aided Design of User Interfaces,
January 2004.

[8] Davenport, Thomas H, and Prusak, Laurence. Working
knowledge: how organizations manage what they know.
Harvard Business School Press, 1998.

[9] Fussell, Susan R., Kraut, Robert E., Lerch, F. Javier, Scherlis,
William L., McNally, Matthew M., and Cadiz, Jonathan J.
“Coordination, Overload and Team Performance: Effects of
Team Communication Strategies.” Proceedings of the 1998
ACM conference on Computer supported cooperative work,
November 1998, p. 275 - 284.

[10] Geyer, Werner, Richter, Heather, Fuchs, Ludwin,
Frauenhofer, Tom, Daijavad, Shahrokh, and Poltrock, Steven.
“A Team Collaboration Space Supporting Capture and
Access of Virtual Meetings.” In Proceedings of the 2001
International ACM SIGGROUP Conference on Supporting
Group Work, September 2001, p. 188–196.

[11] Keshlaf, Ayad Ali, and Hashim, Khairuddin. “A Model and
Prototype Tool to Manage Software Risks,” Proceedings of
the First Asia-Pacific Conference on Quality Software,
October 2000, p. 297-305.

[12] McCrickard, D. Scott, Chewar, C. M., Somervell, Jacob P.,
and Ndiwalana, Ali. "A Model for Notification Systems
Evaluation--Assessing User Goals for Multitasking Activity."
ACM Transactions on Computer-Human Interaction
(TOCHI), Vol. 10, No. 4, December 2003, p. 312-338.

[13] Malone, Thomas W., and Crowston, Kevin. “The
interdisciplinary study of coordination.” ACM Computing
Surveys, Vol. 26 No. 1, March 1994, p. 88-119.

[14] Powell, Anne, Piccoli, Gabriele, and Ives, Blake. “Virtual
teams: a review of current literature and directions for future
research.” The DATA BASE for Advances in Information
Systems. Vol. 35, No. 1, Winter 2004, p. 6-36.

[15] Steinfield, Charles, Jang, Chyng-Yang, Pfaff, Ben.
“Supporting virtual team collaboration: the TeamSCOPE
system.” Proceedings of the international ACM SIGGROUP
conference on Supporting group work, November 1999, p.
81-90.

[16] Sutcliffe, Alistair. “On the effective use and reuse of HCI
knowledge.” ACM Transactions on Computer-Human
Interaction, Vol. 7, No. 2, June 2000, p. 197-221.

[17] Walz, Diane B., Elam, Joyce J., and Curtis, Bill. “Inside a
software design team: knowledge acquisition, sharing, and
integration.” Communications of the ACM, Vol.36, No.10,
October 1993, p. 63-77.

[18] Zhang, Jeff, Zage, Dolores, and Zage, Wayne. “Improving
project planning/tracking for student software engineering
projects through SOPPTS.” In Proceedings of the 16th IEEE
Conference on Software Engineering Education and
Training, March 2003, p. 185 – 19.

