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A number of important scientific and engineer-
ing applications, such as fluid dynamics simulation range constraint

. . . . . ———— landing C ., and tip scrape
and aircraft design, require analysis of spatially- - = =~ tipspike constraint
distributed data from expensive experiments and
complex simulations. In such data-scarce appli-
cations, it is advantageous to use models of given >
sparse data to identify promising regions for addi-
tional data collection. This paper presents a prin-
cipled mechanism for applying domain-specific o
knowledge to design focused sampling strategies
In particular, our approach uses ambiguities identi-
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fied in a multi-level qualitative analysis of sparse ‘ 4000
data to guide iterative data collection. Two case

studies demonstrate that this approach leads to

highly effective sampling decisions that are also ex-
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plainable in terms of problem structures and do-  Figure 1: A pocket in an aircraft design space viewed as a
main knowledge. slice through three design points (courtesy Layne T. Watson).
1 Introduction involved in conducting simulations. Second, and more impor-

A number of important scientific and engineering applica-tantly- the corr_]pqtatlonal scientist has_ complete confcrol over
tions, such as fluid dynamics simulation and aircraft designth® data acquisition process (e.g. regions of the design space
require qualitative analysis of spatially-distributed data fromhere data can be collected), especially via computer simu-
expensive experiments and/or complex simulations demand@tions. It is natural therefore to focus data collection so as
ing days, weeks, or even years on petaflops-class computiﬁ maximize information content, minimize the number and
systems. For example, Fig. 1 shows a cross-section of the<Pense of samples, and so forth. _ _
design space for a multidisciplinary aircraft design problem This paper presents a principled mechanism for applying
involving 29 design variables with 68 constraints in a highly domain-specific knowledge to focus sampling strategies for
non-convex design spaéknill et al, 1999. Frequently, the = data-scarce applications. In particulambiguitiesidenti-
designer will change some aspect of a nominal design poinfied by a multi-level qualitative analysis of data collected in
and run a simulation to see how the change affects the olf2n€ iteration guide succ_;ee_dlng iterations of_data collection so
jective function and various constraints dealing with aircraftds to improve the qualitative analysis. This approach leads
geometry and performance/aerodynamics. This approach @ highly effective sampling decisions that agrplainable
inadequate for exploring such large high-dimensional desigil terms of problem structures and domain knowledge. We
spaces, even at low fidelity. Ideally, the design engineeflémonstrate the effectiveness of our approach by two case
would like a high-level mining system to identify tip@ckets studies: (1) |dent|f[c_at|on of pockets mdlmensmna_l space,
that contain good designs and which merit further considerand (2) decomposition of a field based on control influences.
ation; traditional tools from optimization and approximation
theory can then be applied to fine-tune such preliminary anal2  Qualitative Analysis of
yses . _ - . .

Two important characteristics distinguish these applica- Spatially-Distributed Physical Systems
tions. First, they must deal not with an abundance of dataThe mechanism we develop for ambiguity-directed sampling
but rather with a scarcity of data, owing to the cost and times based on the Spatial Aggregation Language (I8ajley-
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* Figure 3: Example steps in SAL vector field analysis. (a) In-
put vector field. (b) Filtered neighborhood graph. (c) Equiv-
Input Field alence classes (make a choice at each fork edge) redescribed
as streamline curves. (d) Higher-level aggregation and classi-

fication of curves whose flows converge.

Figure 2: SAL multi-layer spatial aggregates, uncovered by a

uniform vocabulary of operators utilizing domain knowledge. (Fig. 3(d)), using the exact same operators but with differ-
ent metrics As this example illustrates, SAL provides a vo-

Kellogg et al, 1996; Yip and Zhao, 1996which supports cabu_lary f_or_ex_pressm_g the knowledge reqw_red — cﬂstance

construction of data interpretation and control design apMetrics, similarity metrics, etc. — for uncovering multi-level

plications for spatially-distributed physical systems. SAL SUUctures in spatial data sets. It has been applied to appli-

programs uncover and manipulate multi-layer geometric angatlons ranging from decgntrallzed contr_ol des[g}alle_zy-

topological structures in spatially distributed data by using 9"099 and Zhao, 1999',%003]10 analysis of diffusion-

small number of uniform operators and data types, parametef€action morphogenesi®rdofiez and Zhao, 2000

ized by domain-specific knowledge. These operators and data .. ) )

types mediate increasingly abstract descriptions of the inpu8 Ambiguity-Directed Sampling

data, as shown in Fig. 2. They utilize knowledge of physicalwe extend SAL for data-scarce, rather than data-rich, applica-

properties such as continuity and locality, based on specifieflons, by focusing data collection in areas that will yield infor-
metrics, adjacency relations, and equivalence predicates, taation most useful in discriminating among possible models.
uncover regions of uniformity in spatially distributed data. ~ Given a set of possible SAL modelg = {m, ma, ..., m,}

As an example (see Fig. 3), consider a SAL program forfor the data, we want to choose a new sample® help
bundling the vectors in a given vector field (e.g. wind veloc-discriminate among posterior probabilitid¥(m; | s). For
ity or temperature gradient) into a set of streamlines (pathghstance, in the vector-bundling example (Fig. 3), models

through the field following the vector directions): would represent different choices of how to group vectors into
1. Aggregatevectors into a neighborhood graph (say 8-Streamlines. By Bayes rule, we need to evaludfe | m;)
ggreg g graph (say and P(m;). The domain knowledge used to enumerate the

adjacency), localizing computation. i . ;

) ) y) ) 9 P . .. . . possible SAL structures also places prif¥sn;) on the iden-
2. Filter edges in the graph, ensuring edge direction is simyified models. In the vector-bundling example, a possible
ilar enough to vector direction. streamline can be scored based on how well its curvature

Cluster into equivalence classeseighboring vectors matches the directions of the vectors it aggregates. Addi-
whose directions match best. tional domain knowledge then characterizes the dependence
4. Redescribequivalence classes of vectors into more ab-Of pot_en_tlal sample values on d|ff¢rent models,_ thus helping
' stract streamline curves to optimize the next sample location. As we will show later
' in this section, one useful form of such dependence relates to

In a second level of abstraction, streamlines are aggreaddressingmbiguity For example, the best aggregation for
gated and classified into groups with similar flow behaviorambiguous streamlines can be determined by sampling the



interpolate : field x new.objectsx surrogate— new.values function with zero mean and known variance. Kriging then
Determine values for new objects based on values for nearby estimates a model of the same form, based on thebser-
objects in field, according to surrogate function. vations:

classify : objectsx equipredicate . dlasses: ambiguites V(@) = B | plany). - plee) @)
Apply predicate to neighboring objects, partitioning them
into equivalence classes and left-over ambiguous objgcts. and minimizing mean squared error betweéandp:
Predicate is a function taking a pair of neighbors and|re- , 9
turning one of{true, false, ambiguoys MSE = E(p'(z,y) — p(z,y)) 3)

sample : objectsx ambiguitiesx objectivefn — new_objects A typical choice forZ in p’ is 2R, where scalas? is the
Determine new objects to be sampled based on optimization estimatedvariance, and the symmetric correlation mathx
of an objective function indicating information gain with re-  can encode domain-specific constraints and factors reflecting
spect to the ambiguities. the current fidelity of data. We use an exponential function
for entries inR, with two parameterg§’; andCs:

Table 1: Ambiguity-directed sampling operators. 2 ,
Rij = e~ Crlzi—z;|"=C2lyi—y;| (4)

flow near streamline “branch points.” Intuitively, function estimation at a given point is influenced
Tab. 1 summarizes the incorporation of domain knowledgamore by observations nearby than by those farther away.

in new SAL operators by our ambiguity-directed sampling The estimator minimizing mean squared error is then ob-

framework. The data interpretation and sampling processained by multi-dimensional optimization:

proceeds as follows, starting from some initial sparse data. 1

(1) Derive qualitative SAL structures from either the sparse max __(1n o? +n|R|) (5)

data, or a dense dataset interpolated with a surrogate func- c 2

tion. (2) Identify ambiguities arising in the structure forma- This expression can be derived from the conditions that there
tion process. (3) Target a sample point that will optimize theis no error between the model and the true values at the cho-
information gain with respect to these ambiguities. (4) Up-senf sites, and that all variability in the model arises from
date the data set and repeat, as long as information gain ife design ofZ (the derivation is beyond the scope of this pa-
substantial enough. The following subsections describe thger). The multi-dimensional optimization is often performed
key parts of this approach in more detail. by gradient descent or pattern search methods. More details
. . . are available ifSackset al,, 1989, which demonstrates this
3.1 Interpolation with a Surrogate Function methodology in the context of the design and analysis of com-
In some cases it is advantageous to generate a dense datgagfer experiments.

and find structures in it, rather than to work directly from

sparse data. For example, when possible models have &2 Bottom-Up Detection of Ambiguity

known, common structure (e.g. they can be treated as lofhe SAL equivalence class clustering mechanism (operat-
cally smooth quadratic functions), then interpolating denseng on the sparse input data or the dense surrogate model)
data can simplify structure and ambiguity identification. Theexploits continuity, grouping neighboring objects that sat-
interpolateoperator in Tab. 1 generates such dense data, agsfy a domain-specific equivalence predicate (e.g. similar
cording to a given surrogate representation. vector direction). At discontinuities, dissimilar neighboring
The choice of surrogate representation is constrained bybjects are placed in separate classes. However, within a
the local nature of SAL computations. For example, globalweakly-similar class or across a weakly-different discontinu-
least-squares type approximations are inappropriate sinGg, neighboring objects mighalmostsatisfy the predicate.
measurements at all locations are equally considered to urkor example, some vectors in Fig. 3(b) have two possible for-
cover trends and patterns in a particular region. We advoward neighbors; in some cases, a vector might equally well
cate the use of kriging-type interpolatd@ackset al, 1989,  belong to either of two flows. We call such unclear classifica-
which are local modeling methods with roots in Bayesiantion choice pointembiguous
statistics. Kriging can handle situations with multiple local The bottom-up SAL operators introduced in Sec. 2 can be
extrema (for example, in weather data, remote sensing dat@sed to detect ambiguities if the equivalence class clustering
etc.) and can easily exploit anisotropies and trends. Gliven operatorclassifyis extended as in Tab. 1. In particular, a
observations, the interpolated model gives exact responses @ main-specific equivalence predicate indicates when neigh-
thesek sites and estimates values at other sites by minimizhors are equivalent, not equivalent, or ambiguous, allowing

ing the mean squared error (MSE), assuming a random datglassifyto delay ambiguous classification decisions.
process of known functional form.

Formally (for two dimensions), the true functignis as- 3.3 Top-Down Utilization of Ambiguity

sumed to be the realization of a random process such as:  ampiguity can reflect the desirability of acquiring data at

_ 7 1 or near a specified point, to cla_nfy th_e correct cIaSS|f|(_:a-

(@,y) =B+ 2Z(@.y) @) tion and to serve as a mathematical criterion of information

where (3 is typically a uniform random variate, estimated content. Thesampleoperator specified in Tab. 1 addresses

based on the knowi values ofp, and Z is a correlation this opportunity by generating samples to optimize a given
pp y by ¢ g p p



domain-specific objective function, given a set of ambiguousvariations in parameters. At each stage, KAM adds samples
objects. For example, in response to a vector with an ambiguwhen it detects an inadequate description. In our vocabulary,
ous neighbor, it might suggest nearby locations to sample. Ithe classify predicate clustering orbits into a phase portrait
other applications, it might pick the midpoint between a pairnotices when two neighboring orbits cannot physically be ad-
of ambiguous points, or even (see the influence-based modglcent;samplethen starts orbit integration from the mid-point
decomposition application below) apply SAL recursively to of an ambiguous pair of neighboring points. Similarly, in a
gualitatively analyze a set of ambiguous points. In conjuncbifurcation map additional phase portraits are generated for
tion with a surrogate function, some functional of the MSE parameter values between those of ambiguous neighboring
(Eqg. 3) can be used to focus sampling, by a suitable statisticgdhase portraits.
design' Section 4.2 describes the use of such an objective STA [Ordofiez and Zhao, 20Q0has been applied to
function. build high-level descriptions of morphogenesis in diffusion-
When using a surrogate function, the correlation maix reaction systems by tracking aggregates of sample “floaters”
(Eq. 4) can be modified to emphasize the desirability of fo-that react to changes in the underlying field. In particular,
cusing the fitting effort on ambiguous regions. In particu-floaters attempt to ensure an adequate sampling of the field
lar, indicator covariance termsnodulate R when the stan- (no interpolation is required), especially in high-gradient ar-
dard uniformly parameterized modél{ andC> in our case) eas. They do this in a manner similar to the particle system
does not adequately capture the observed variability. Our amf Witkin and Heckberf1994, by repelling each other, split-
proach is reminiscent of incorporating “Type C soft data” intoting, and merging. In our vocabulary, tickassifypredicate
variogram estimatiofJournel, 1988 “soft” data have non-  bundling floaters in a region tests whether or not neighbor-
negligible uncertainty and “Type C” data are obtained with-ing floaters are near enough relative to an energy metric mea-
out additional experimentation (in our case, via SAL analy-suring adequate representation of the reggamplesimply
sis). By using the pcdf of ambiguous objects as an indicatosplits one ambiguous floater into two adjacent floaters.
covariance term, we can improve covariance estimates, and
also help suggest data locations that will clarify the correc.2 Pocket Identification

classification. The exact equations are beyond the scope @ first application domain is motivated by research in spa-
this article, but we refer the reader tiournel, 198Bfor an g statisticg Journel, 1986; Saclet al, 1989 and multidis-
account of this “soft kriging” approach. ciplinary system desigEKnill et al, 1999. Visualize then-

. dimensional hypercube defined by € [—-1,1],: = 1---n,
3.4 lteration o ] with the n-sphere of radiug centered at the origindz;? <
Data are collected for the indicated sample points, by expert) embedded inside it. Notice that the ratio of the volume
iment or simulation. When a surrogate function is used, the)f the cube #") to that of the spherer(*/2/(n/2)!) grows
fitted model is refined with real data at the indicated pOintSunboundedly withe. In other words, the volume of a high-
via interpolate  We note that efficient implementations of gimensional cube is concentrated in its corners (a counter-
some data structures (e.g. Delaunay triangulation neighbojntyitive notion at first). Carl de Boor exploited this prop-
hood graphs) can be incrementally updated with the addierty to design a difficult-to-optimize function which assumes
tional samplegOrdbfiiez and Zhao, 2090 The aggregation gpocketin each corner of the cube (Fig. 4), that is just outside

process can then be repeated with the extended data set, tf{e spher¢Rice, 1992. Formally, it can be defined as:
minating when the information-theoretic metric usedshyn-

le drops below some specified level. L )
P P P a(X) cos (Z 2° <1 i >> -2 (6)
i=1

4 Applications ]

This section discusses how the computational framework 0X) = ||X_0'5I”2 (7)
of two existing applications can be redescribed in terms of p(X) = aX)(1-0(X)(3-26(X)))+1 (8)
ambiguity-directed sampling, and then illustrates the effec-

: . . whereX is the n-dimensional poirftry, xo, - - -, x,,) at which
tiveness of our approach with two new case studies. the pocket functiorp is evaluated] is the identity n-vector,
4.1 Existing Applications and|| - [| is the L, norm.

It is easily seen thgh has2™ local minima; ifn is large
say, 30, which means it will take more than half a million
Bints to just represent the corners of theube!), naive

5I'obal optimization algorithms will require an unreasonable

t'é’?'\glgvtgr;s dggggtlyevﬁggetzf;ﬁ)ﬁariﬂﬁ _ro:} ioeziggimonumber of function evaluations. However, in real-world do-
P P ) groups p mains, significant structure exists and can often be exploited.

orbits describing the system’s temporal evolution; it groups, good example is the STAGE algorithiBoyan and Moore,

orbits i_nto phase portraits describing evolution of all state.smoq which intelligently selects starting points for local
for a given set of parameters; and it groups phase portraits, o .

into bifurcation maps describing variations in portraits due to earch algorithms. -Our goals here are very different from
P 9 P global optimization: we wish to obtain a qualitative indica-

'Sample selection optimization is different from kriging interpo- tion of the existence, number, and locations of pockets, using
lation optimization (Eg. 5), used to generate a dense data field.  low-fidelity models and/or as few data points as possible. The

KAM [Yip, 1991] interprets the behaviors of Hamiltonian dy-
namical systems by phase-space analysis. Geometric poi
represent states of the system for a given set of paramete



Surrogate model J
Use kriging interpolator with indicator covariance term
(modeling number of similar-enough neighbors from predi-
cate below) to estimateat unknown points.

N7 : Vector equivalence predicate
N . . . — .

. Return true if vector directions are similar enough, false if
they aren’t, and ambiguous if a vector has multiple neigh-
bors with similar-enough directions.

Sample objective function
Minimize the entropyE(— logd), whered is the condi-
tional density ofp over the design spacet covereddy the

Figure 4: A 2D pocket function. current data values.

Table 2: Domain knowledge for ambiguity-directed sampling
results can then be used to seed higher-fidelity calculation$n pocket identification.
This is also fundamentally different from DAJBackset al.,
1989, polynomial response surface approximatidisill
et al, 1999, and other approaches in geo-statistics wherd®: 113'.1.131' : . .
v =T . 2 The initial experimental configuration used a face-centered
the goal is accuracy of functional prediction at untested datza

: T - design ¢ points in the 2D case). The surrogate model then
Foo:?]}ﬁé Iggéié?sccuracy of estimation is traded for the abllltygenerated al”-point grid. The ambiguity-directed mech-

: o ) ) anism selected new design points, using the vector field
_In a dense field of data, it is straightforward to iden- ndling approach discussed above. Standard parameter set-
tify pockets by applying the vector field bundling imple- ings were applied: required similarity 6f8 for dot product
mentation discussed in the introduction (see Fig. 3) to thest adjacency direction and vector field direction, and factor
gradient field. In the data-scarce setting, we follow theyt () 1. distance penalizing the grouping of far-apart vectors.
ambiguity-directed sampling framework, incorporating the Fig. 5 shows a design involving only total data points
domain-specific knowledge summarized in Tab. 2. Given gyt is able to mine the four pockets. As previously dis-
surrogate model, vector bundling |d_ent|f|es vectors which ca ussed, our sampling decisions result in highly sub-optimal
participate in multiple good streamlines. The surrogate modeesigns according to traditional metrics of variance in pre-
incorporates these ambiguities with an indicator covariancgjicted values and D-optimality, but are sufficient to determine
term counting the number of possible good neighbors. Thigyockets. In particular, the ambiguity-driven framework com-
ambiguity distribution” provides a novel mechanism to in- yietely skips one of the quadrants in selecting new points.
clude qualitative information — streamlines that agree will Thjs indicates that neighborhood calculations involving the
generally contribute less to data mining, just as samples thjiner three quadrants are enough to uncover the pocket in
are far apart are weighted less in the origifiahatrix. Thus,  he fourth quadrant. Since the kriging interpolator uses lo-
this framewo_rk can be viewed as a natural gene_rallz_at_lon ofal modeling and since pockets in 2D effectively occupy the
the assumptions of sample clustering that underlie kriging. quadrants, obtaining measurements at ambiguous locations

The sampleobjective function described in Tab. 2 mini- serves to capture the relatively narrow regime of each dip,
mizes the expected posterior entropy on timsampledde-  which in turn helps to distinguish the pocket in the neighbor-
sign space, which by a reduction argument, can be showjng quadrant. This effect is hard to achieve without qualitative
to be maximizing the prior entropy over themtire design  feedback. For higher dimensions (including 3D), the pockets
spacd Sackset al,, 1989. In turn, this means that the amount move further away from the center of the design space, ne-
of information obtained from an experiment is maximized. cessitating the sampling of points in all corners.

For our purposes, the objective function thus provides a basis Fig. 6 shows the distributions of number of design points
to choose sample points that will improve our modeling.of  required for ambiguity-directed and kriging-based pocket
We applied the ambiguity-driven mechanism to determin-identification overl00 perturbed variations of the 2D pocket

ing pockets in both 2D and 3D. We used a variation of thefunction. Ambiguity-directed sampling requir8do 11 addi-
pocket function with a pseudorandom perturbation that shiftsional samples, with the latter figure in the pathological case
the pockets away from the corners in a somewhat unprewhere the random perturbations cause a nearly quintic dip,
dictable way. This twist precludes many forms of analysesrendering the initial adjacency calculations misleading. In
such as symbolic parsing, by imposing a highly nonlinearcomparison, conventional incremental kriging techniques (of
global map of pocket locations. In the traditional pocketthe form described in Section 3.1 without qualitative analysis)
function, the dips can be viewed as being influenced by lit+equiredl3 to 19 additional data points. While pockets in the
tle spheres at the corners, with known radii and centers. Thbigger dips are discovered quickly, the quintic and shallow
new pocket design uses an additional parameter to imposdips require more function evaluations. Tests with pockets
non-symmetric perturbations which randomize both the radiin 3D yielded even more significant results: uplfal addi-

and centers. As a result, local modeling must be carried outonal points for regular kriging, but at mog&2 for ambiguity-

at each corner to determine the exact location of the pocketirected sampling. With the use of block kriging, reductions
More detail about this function can be found[Rice, 1992, in both values could be enjoyed, but these figures illustrate
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Figure 5: Mining pockets from only sample points (2D).
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Figure 6: Pocket-finding results (2D) show that ambiguity-
directed sampling always requires fewer total samplteks]
than conventional krigingl(r-23).

the effectiveness of our technique.

The extension to more tha&dimensions is straightforward
and is not detailed here for ease of presentation. It essentially
entails using the appropriate covariance matrix and SAL data
structures (e.g8-adjacency in 2D26-adjacency in 3D, ...).
While we believe our ambiguity-directed framework will fare
well compared to traditional kriging, a more careful study
will be needed to characterize the scalability of our approach.

4.3 Influence-Based Model Decomposition

Influence-based model decompositiBuailey-Kellogg and
Zhao, 1999; 200Lis an approach to designing spatially-
distributed data interpretation and decentralized control ap-
plications, such as thermal regulation for semiconductor
wafer processing and noise control in photocopy machines.
A decentralizednfluence graph built by sampling the ef-
fects of controls on a field (either physically or by solving
a partial differential equation), represents influences of con-
trols on distributed physical fields. Given the expense of ob-
taining influence graph values, it is desirable to minimize the
number of samples required. This section demonstrates that
ambiguity-directed sampling can greatly reduce the number
of samples required. Note that we do naderpolatea dense
representation, following the explicit kriging methodology,
since it sometimes does not result in explainable designs,
by overlooking “nice” properties such as balance, symmetry,
collapsibility, and comparabilitjEasterling, 198P
Influence-based model decomposition uses influence
graphs for control placement and parameter design algo-
rithms that exploit physical knowledge of locality, linear
superposability, and continuity for distributed systems with
large numbers of coupled variables (often modeled by partial
differential equations). By leveraging the physical knowl-
edge encapsulated in influence graphs, these control design
algorithms are more efficient than standard techniques, and
produce designs explainable in terms of problem structures.

samples (marked as red diamonds). Note that no additionghflyence-based model decomposition decomposes a problem
sample is required in the lower-left quadrant. (middie) Com-gomain so as to allow relatively independent design of con-
puted variogram for resulting surrogate model: color repreyyg|s for the resulting regions. Fig. 7 overviews the approach:

sents estimateg@ and isocontours join points of equal es-

timated MSE. (bottom) SAL structures in surrogate model 1. Representin an influence graph the effects of a few sam-

data, confirming the existence of four pockets.

ple probe controls on the field — in this example, the
heat flows induced in a piece of material by point heat
sources.
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| RN Field node equivalence predicate

N RS T S~ Return true if nodes have similar-enough effect to one probe,
@ [ M| A4 hN o o0 false if they don’t, and ambiguous if the magnitude of the
o ra sl T<e . o\yig:\l e_ffe_(l:t is fnfottlarge enough or if two competing probes yield
ﬁ\’_‘\\ “’_‘/ﬁ similar effects.

Sample objective function
Perform secondary aggregation and classification to find re-

Figure 7: Influence-based model decomposition: sample an  gions of ambiguities. For each ambiguous field node, mea-
influence graph, and cluster probes and partition field based  sure how similar its flows are to other ambiguous field noges
on similar control effects. Ambiguity-directed sampling tech- in its region; choose the node with the best similarity to the

niques close the loop by suggesting new probe locations. most ambiguous nodes.

o . Table 3: Domain knowledge for ambiguity-directed sampling
2. Cluster the probes based on similarities in their effects, jnfluence-based model decomposition.

as represented in the influence graph. For example, the
geometric constraint imposed by the narrow channel in | .
the dumbbell-shaped piece of material results in similar -
field responses to the two probes in the left half of the £
dumbbell and similar responses to the two probes in the %
right half of the dumbbell. Note that influence graphs = ‘
encapsulate not only geometry but also material proper- o S .

ties, which can greatly impact heat flows and thus the

proper decomposition. .
e he field nodes based h be clusteri Figure 8: Comparison of influence-based model decomposi-
- Cluster the field nodes based on the probe clustering, agy,, quality using random and ambiguity-directed probes, for

pIy:Ing a predicaéebtesr:ing if neightéoringdfieldl noﬁes A nree different problems: (left) plus; (middle) p; (right) bar.
well-represented by the same probe nodes. In the exa : N ’
ble. th field nodes in the left half of the dumbbell are <CSUItS are relative to spectral partitioning.

best represented by the probe nodes also in the left half
(which belong to the same probe equivalence class), anquality ¢ (0 < ¢ < 1) for a partitionP of a set of node$ as
are thus decomposed from the nodes in the right halffollows (i is the influence):
Controls are placed in the regions and optimized by a )
separate process not discussed here. q= H Z > rert(c;T)
(¢,s)

o
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The quality of decompositions from a small number of RePceR 2ses e
random!y_-placed probes is c_ompetitive with that of a spec- Fig. 8 summarizes the results. The ambiguity-directed
tral partition of the complete influence graph (computed f0l-p,oyh 64 generally does much better than random for a given
lowing an approach developed for image segmentd®n et of probes, both in mean and standard deviation of
and Mahk, 19.97)' but with Qrders of ma_gmtude less com- quality, and it generally can do as well with8 probes as
putation and in a decentralized mod8ailey-Kellogg and 545m sampling can with6-32. One interesting case is
Zhao, 2001 We now extend this approach to show that re-yq 1aer in the plus-shaped piece of material. This is due to

plac_ing random sampling with ambig_uityfdirected Sam_p"ngover-sampling: the samples are clustered in the middle of the
achieves even better results. Ambiguity-directed sampling ef-

fectively closes the loop between the field decomposition anglus, vielding a jagged decomposition that results in a worse
li .Inf ith defaul h iguity-
influence graph sampling (dashed arrow in Fig. 7). Tab. 3 de uality score. In fact, with default parameters, the ambiguity

; ) e ) -~ “*based metric declines to add samples beyond ab@uin-
scribes the the domain-specific knowledge used in ambiguitygicating that the field was adequately sampled. In order to
directed sampling for model-based decomposition.

i S . achieve the desired number of samples, parameters were set
We applied ambiguity-directed sampling to the three proby, f5ce sampling for only small information gain.
lems presented bjBailey-Kellogg and Zhao, 2091 a plus-

shaped piece of material, a P-shaped piece of material, a . .
an anisotropic bar, illustrating different geometries, topolo[]‘gi Discussion
gies (the P-shaped material has a hole), and material properhe idea of selective sampling to satisfy particular design cri-
ties. Results were collected fan00 runs each by random teria arises in many contexts, such as Gaussian quadrature,
probing, and using each possible node in the discretizatiospline smoothing in geometric design, remote sensing data
for the initial probe in ambiguity-directed probing. Results acquisition, crystallographyGopalakrishnaret al, 2004
are relative to a baseline spectral partitioning of the completand engineering design optimization. In data mining, sam-
influence graph (computed essentially using probes at evemling has been viewed as a methodology to avoid costly disk
one of the hundreds of nodes in a discretization). accesses (this thread of research, however, doesn’t address the
Given a decomposition, a quality metric compares thessue of where to sampléKivinen and Mannila, 1994 All
amount of influence that stays within a region to the amounthese approaches (including ours) rely on capturing properties
that leaves it: To be more specific, define the decompositionf a desirable design in terms of a novel objective function.



The distinguishing feature of our work is that it usgmatial ~ [Bailey-Kellogget al, 1996 C. Bailey-Kellogg, F. Zhao,
information gleaned from a higher level of abstraction to fo- and K. Yip. Spatial aggregation: language and applica-
cus data collection at the field/simulation code layer. While tions. InProc. AAA] 1996.

flavors of theconsistent labelingproblem in mobile vision [Berleant and Kuipers, 1998D. Berleant and B. Kuipers.

have this feature, they are more attuned to transferring infor- - 5, 5jitative and quantitative simulation: bridging the gap.
mation across twsuccessivabstraction levels. The applica-  ificial Intelligence 95(2):215-255, 1998.

tions presented here are novel in that they span and connect

arbitrary levels of abstraction, thus suggesting new ways t6Boyan and Moore, 20J0J.A. Boyan and A.W. Moore.

integrate qualitative and quantitative simulati@erleant and Learning evaluation functions to improve optimization by

Kuipers, 1998, local search.J. Machine Learning Research:77-112,
The effectiveness of our approach relies on the trustworthi- 2000.

ness of the ambiguity detection mechanism and the ability tgEasterling, 198P R.G. Easterling. Comment on ‘Design

act decisively on new information. In both our applications, and Analysis of Computer ExperimentsStatistical Sci-

this was easily achieved by relying on fairly specific quali- ence 4(4):425-427, 1989.

tative features whose causes are well understood. Howev%;opalakrishnam al, 2004 V. Gopalakrishnan B.G

in other applications (€.g. phase portrait exploration for sen- Buchanan, and :]M Roéenberg Intelligeﬁt aids 'for

sitivity analysis of highly non-normal matrices), it is difficult parallel ex,perimen.t blanning and. macromolecular crys-

to (;ll;tIHQUISh betwgen qualitative changes in problem charac- tallization. In Proc. ISMB volume 8, pages 171-182,
teristic and numerical error such as roundoff. In such cases, 2000

a more detailed modeling of qualitative behavior should be ] )
exploited for ambiguity-directed sampling to be successful[Journel, 1985 A. Journel. Constrainted Interpolation and
In terms of the pocket study, this might require a domain- Qualitative Information - The Soft Kriging Approach.
specific enumeration of the various ways in which pockets Mathematical Geologyl8(2):269-286, November 1986.

(and ambiguities in detecting them) can arise, and a probgkivinen and Mannila, 1994 J. Kivinen and H. Mannila.

bilistic model of the elements of a SAL hierarchy using, say, The use of sampling in knowledge discovery. Rroc.

superpositions of Bayesian expectation-maximization terms. 13th ACM Symposium on Principles of Database Systems
SAL provides a natural framework for exploitimgntinu- pages 77-85, 1994,

ity to uncover structures in spatial data; ambiguity-directe : . .

sampling focuses SAL's efforts on clarifying thodisconti- d[Kr;" gtrgg,srlngfng V[\)/IIZ| I\K/Ir;llgé)nA.é.TG#tht?(é Céﬁc.j Ea"l'ke\;\,/at-

nuitiesthat yield multiple, qualitatively-different interpreta- S .
tions. This effort is leading us to explore a completely prob- SN Response Surface Models Combining Linear and Eu-
ler Aerodynamics for Supersonic Transport Designof

abilistic SAL framework. Such a framework should also be :

able to incorporate information from multiple, perhaps con- Alrcraft, 36(1):75-86, 1999.
flicting, SAL hierarchies. This is an emerging frontier in sev- [Ordofiez and Zhao, 2000I. Ordofiez and F. Zhao. STA:
eral applications (such as bioinformatics), where diverse ex- Spatio-temporal aggregation with applications to analysis
perimental methodologies can cause contradictory results at of diffusion-reaction phenomena. Rroc. AAA| 2000.

the highest levels of abstraction. Our work provides some enfrjce, 1992 J.R. Rice. Learning, Teaching, Optimization
couraging results addressing such grand-challenge problems. 5nq Approximation. In E.N. Houstis, J.R. Rice, and
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