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Abstract

A number of important scientific and engineer-
ing applications, such as fluid dynamics simulation
and aircraft design, require analysis of spatially-
distributed data from expensive experiments and
complex simulations. In such data-scarce appli-
cations, it is advantageous to use models of given
sparse data to identify promising regions for addi-
tional data collection. This paper presents a prin-
cipled mechanism for applying domain-specific
knowledge to design focused sampling strategies.
In particular, our approach uses ambiguities identi-
fied in a multi-level qualitative analysis of sparse
data to guide iterative data collection. Two case
studies demonstrate that this approach leads to
highly effective sampling decisions that are also ex-
plainable in terms of problem structures and do-
main knowledge.

1 Introduction
A number of important scientific and engineering applica-
tions, such as fluid dynamics simulation and aircraft design,
require qualitative analysis of spatially-distributed data from
expensive experiments and/or complex simulations demand-
ing days, weeks, or even years on petaflops-class computing
systems. For example, Fig. 1 shows a cross-section of the
design space for a multidisciplinary aircraft design problem
involving 29 design variables with 68 constraints in a highly
non-convex design space[Knill et al., 1999]. Frequently, the
designer will change some aspect of a nominal design point,
and run a simulation to see how the change affects the ob-
jective function and various constraints dealing with aircraft
geometry and performance/aerodynamics. This approach is
inadequate for exploring such large high-dimensional design
spaces, even at low fidelity. Ideally, the design engineer
would like a high-level mining system to identify thepockets
that contain good designs and which merit further consider-
ation; traditional tools from optimization and approximation
theory can then be applied to fine-tune such preliminary anal-
yses.

Two important characteristics distinguish these applica-
tions. First, they must deal not with an abundance of data,
but rather with a scarcity of data, owing to the cost and time
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Figure 1: A pocket in an aircraft design space viewed as a
slice through three design points (courtesy Layne T. Watson).

involved in conducting simulations. Second, and more impor-
tantly, the computational scientist has complete control over
the data acquisition process (e.g. regions of the design space
where data can be collected), especially via computer simu-
lations. It is natural therefore to focus data collection so as
to maximize information content, minimize the number and
expense of samples, and so forth.

This paper presents a principled mechanism for applying
domain-specific knowledge to focus sampling strategies for
data-scarce applications. In particular,ambiguitiesidenti-
fied by a multi-level qualitative analysis of data collected in
one iteration guide succeeding iterations of data collection so
as to improve the qualitative analysis. This approach leads
to highly effective sampling decisions that areexplainable
in terms of problem structures and domain knowledge. We
demonstrate the effectiveness of our approach by two case
studies: (1) identification of pockets inn-dimensional space,
and (2) decomposition of a field based on control influences.

2 Qualitative Analysis of
Spatially-Distributed Physical Systems

The mechanism we develop for ambiguity-directed sampling
is based on the Spatial Aggregation Language (SAL)[Bailey-
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Figure 2: SAL multi-layer spatial aggregates, uncovered by a
uniform vocabulary of operators utilizing domain knowledge.

Kellogg et al., 1996; Yip and Zhao, 1996], which supports
construction of data interpretation and control design ap-
plications for spatially-distributed physical systems. SAL
programs uncover and manipulate multi-layer geometric and
topological structures in spatially distributed data by using a
small number of uniform operators and data types, parameter-
ized by domain-specific knowledge. These operators and data
types mediate increasingly abstract descriptions of the input
data, as shown in Fig. 2. They utilize knowledge of physical
properties such as continuity and locality, based on specified
metrics, adjacency relations, and equivalence predicates, to
uncover regions of uniformity in spatially distributed data.

As an example (see Fig. 3), consider a SAL program for
bundling the vectors in a given vector field (e.g. wind veloc-
ity or temperature gradient) into a set of streamlines (paths
through the field following the vector directions):

1. Aggregatevectors into a neighborhood graph (say 8-
adjacency), localizing computation.

2. Filter edges in the graph, ensuring edge direction is sim-
ilar enough to vector direction.

3. Cluster into equivalence classesneighboring vectors
whose directions match best.

4. Redescribeequivalence classes of vectors into more ab-
stract streamline curves.

In a second level of abstraction, streamlines are aggre-
gated and classified into groups with similar flow behavior

(a) (b)

(c) (d)

Figure 3: Example steps in SAL vector field analysis. (a) In-
put vector field. (b) Filtered neighborhood graph. (c) Equiv-
alence classes (make a choice at each fork edge) redescribed
as streamline curves. (d) Higher-level aggregation and classi-
fication of curves whose flows converge.

(Fig. 3(d)), using the exact same operators but with differ-
ent metrics. As this example illustrates, SAL provides a vo-
cabulary for expressing the knowledge required — distance
metrics, similarity metrics, etc. — for uncovering multi-level
structures in spatial data sets. It has been applied to appli-
cations ranging from decentralized control design[Bailey-
Kellogg and Zhao, 1999; 2001] to analysis of diffusion-
reaction morphogenesis[Ordóñez and Zhao, 2000].

3 Ambiguity-Directed Sampling
We extend SAL for data-scarce, rather than data-rich, applica-
tions, by focusing data collection in areas that will yield infor-
mation most useful in discriminating among possible models.
Given a set of possible SAL modelsM = {m1,m2, . . . ,mn}
for the data, we want to choose a new samples to help
discriminate among posterior probabilitiesP (mi | s). For
instance, in the vector-bundling example (Fig. 3), models
would represent different choices of how to group vectors into
streamlines. By Bayes rule, we need to evaluateP (s |mi)
andP (mi). The domain knowledge used to enumerate the
possible SAL structures also places priorsP (mi) on the iden-
tified models. In the vector-bundling example, a possible
streamline can be scored based on how well its curvature
matches the directions of the vectors it aggregates. Addi-
tional domain knowledge then characterizes the dependence
of potential sample values on different models, thus helping
to optimize the next sample location. As we will show later
in this section, one useful form of such dependence relates to
addressingambiguity. For example, the best aggregation for
ambiguous streamlines can be determined by sampling the



interpolate : field× new objects× surrogate→ new values
Determine values for new objects based on values for nearby
objects in field, according to surrogate function.

classify : objects× equiv predicate→ classes× ambiguities
Apply predicate to neighboring objects, partitioning them
into equivalence classes and left-over ambiguous objects.
Predicate is a function taking a pair of neighbors and re-
turning one of{true, false, ambiguous}.

sample : objects× ambiguities× objectivefn→ new objects
Determine new objects to be sampled based on optimization
of an objective function indicating information gain with re-
spect to the ambiguities.

Table 1: Ambiguity-directed sampling operators.

flow near streamline “branch points.”
Tab. 1 summarizes the incorporation of domain knowledge

in new SAL operators by our ambiguity-directed sampling
framework. The data interpretation and sampling process
proceeds as follows, starting from some initial sparse data.
(1) Derive qualitative SAL structures from either the sparse
data, or a dense dataset interpolated with a surrogate func-
tion. (2) Identify ambiguities arising in the structure forma-
tion process. (3) Target a sample point that will optimize the
information gain with respect to these ambiguities. (4) Up-
date the data set and repeat, as long as information gain is
substantial enough. The following subsections describe the
key parts of this approach in more detail.

3.1 Interpolation with a Surrogate Function
In some cases it is advantageous to generate a dense dataset
and find structures in it, rather than to work directly from
sparse data. For example, when possible models have a
known, common structure (e.g. they can be treated as lo-
cally smooth quadratic functions), then interpolating dense
data can simplify structure and ambiguity identification. The
interpolateoperator in Tab. 1 generates such dense data, ac-
cording to a given surrogate representation.

The choice of surrogate representation is constrained by
the local nature of SAL computations. For example, global,
least-squares type approximations are inappropriate since
measurements at all locations are equally considered to un-
cover trends and patterns in a particular region. We advo-
cate the use of kriging-type interpolators[Sackset al., 1989],
which are local modeling methods with roots in Bayesian
statistics. Kriging can handle situations with multiple local
extrema (for example, in weather data, remote sensing data,
etc.) and can easily exploit anisotropies and trends. Givenk
observations, the interpolated model gives exact responses at
thesek sites and estimates values at other sites by minimiz-
ing the mean squared error (MSE), assuming a random data
process of known functional form.

Formally (for two dimensions), the true functionp is as-
sumed to be the realization of a random process such as:

p(x, y) = β + Z(x, y) (1)

where β is typically a uniform random variate, estimated
based on the knownk values ofp, andZ is a correlation

function with zero mean and known variance. Kriging then
estimates a modelp′ of the same form, based on thek obser-
vations:

p′(xi, yi) = E(p(xi, yi) | p(x1, y1), · · · , p(xk, yk)) (2)

and minimizing mean squared error betweenp′ andp:

MSE = E(p′(x, y)− p(x, y))2 (3)

A typical choice forZ in p′ is σ2R, where scalarσ2 is the
estimatedvariance, and the symmetric correlation matrixR
can encode domain-specific constraints and factors reflecting
the current fidelity of data. We use an exponential function
for entries inR, with two parametersC1 andC2:

Rij = e−C1|xi−xj |2−C2|yi−yj |2 (4)

Intuitively, function estimation at a given point is influenced
more by observations nearby than by those farther away.

The estimator minimizing mean squared error is then ob-
tained by multi-dimensional optimization:

max
C

−k
2

(lnσ2 + ln |R|) (5)

This expression can be derived from the conditions that there
is no error between the model and the true values at the cho-
senk sites, and that all variability in the model arises from
the design ofZ (the derivation is beyond the scope of this pa-
per). The multi-dimensional optimization is often performed
by gradient descent or pattern search methods. More details
are available in[Sackset al., 1989], which demonstrates this
methodology in the context of the design and analysis of com-
puter experiments.

3.2 Bottom-Up Detection of Ambiguity
The SAL equivalence class clustering mechanism (operat-
ing on the sparse input data or the dense surrogate model)
exploits continuity, grouping neighboring objects that sat-
isfy a domain-specific equivalence predicate (e.g. similar
vector direction). At discontinuities, dissimilar neighboring
objects are placed in separate classes. However, within a
weakly-similar class or across a weakly-different discontinu-
ity, neighboring objects mightalmostsatisfy the predicate.
For example, some vectors in Fig. 3(b) have two possible for-
ward neighbors; in some cases, a vector might equally well
belong to either of two flows. We call such unclear classifica-
tion choice pointsambiguous.

The bottom-up SAL operators introduced in Sec. 2 can be
used to detect ambiguities if the equivalence class clustering
operatorclassify is extended as in Tab. 1. In particular, a
domain-specific equivalence predicate indicates when neigh-
bors are equivalent, not equivalent, or ambiguous, allowing
classifyto delay ambiguous classification decisions.

3.3 Top-Down Utilization of Ambiguity
Ambiguity can reflect the desirability of acquiring data at
or near a specified point, to clarify the correct classifica-
tion and to serve as a mathematical criterion of information
content. Thesampleoperator specified in Tab. 1 addresses
this opportunity by generating samples to optimize a given



domain-specific objective function, given a set of ambiguous
objects. For example, in response to a vector with an ambigu-
ous neighbor, it might suggest nearby locations to sample. In
other applications, it might pick the midpoint between a pair
of ambiguous points, or even (see the influence-based model
decomposition application below) apply SAL recursively to
qualitatively analyze a set of ambiguous points. In conjunc-
tion with a surrogate function, some functional of the MSE
(Eq. 3) can be used to focus sampling, by a suitable statistical
design.1 Section 4.2 describes the use of such an objective
function.

When using a surrogate function, the correlation matrixR
(Eq. 4) can be modified to emphasize the desirability of fo-
cusing the fitting effort on ambiguous regions. In particu-
lar, indicator covariance termsmodulateR when the stan-
dard uniformly parameterized model (C1 andC2 in our case)
does not adequately capture the observed variability. Our ap-
proach is reminiscent of incorporating “Type C soft data” into
variogram estimation[Journel, 1986]: “soft” data have non-
negligible uncertainty and “Type C” data are obtained with-
out additional experimentation (in our case, via SAL analy-
sis). By using the pcdf of ambiguous objects as an indicator
covariance term, we can improve covariance estimates, and
also help suggest data locations that will clarify the correct
classification. The exact equations are beyond the scope of
this article, but we refer the reader to[Journel, 1986] for an
account of this “soft kriging” approach.

3.4 Iteration
Data are collected for the indicated sample points, by exper-
iment or simulation. When a surrogate function is used, the
fitted model is refined with real data at the indicated points,
via interpolate. We note that efficient implementations of
some data structures (e.g. Delaunay triangulation neighbor-
hood graphs) can be incrementally updated with the addi-
tional samples[Ordóñez and Zhao, 2000]. The aggregation
process can then be repeated with the extended data set, ter-
minating when the information-theoretic metric used bysam-
pledrops below some specified level.

4 Applications
This section discusses how the computational framework
of two existing applications can be redescribed in terms of
ambiguity-directed sampling, and then illustrates the effec-
tiveness of our approach with two new case studies.

4.1 Existing Applications
KAM [Yip, 1991] interprets the behaviors of Hamiltonian dy-
namical systems by phase-space analysis. Geometric points
represent states of the system for a given set of parameters.
KAM works directly with these samples — it does notin-
terpolatea dense representation. KAM groups points into
orbits describing the system’s temporal evolution; it groups
orbits into phase portraits describing evolution of all states
for a given set of parameters; and it groups phase portraits
into bifurcation maps describing variations in portraits due to

1Sample selection optimization is different from kriging interpo-
lation optimization (Eq. 5), used to generate a dense data field.

variations in parameters. At each stage, KAM adds samples
when it detects an inadequate description. In our vocabulary,
the classifypredicate clustering orbits into a phase portrait
notices when two neighboring orbits cannot physically be ad-
jacent;samplethen starts orbit integration from the mid-point
of an ambiguous pair of neighboring points. Similarly, in a
bifurcation map additional phase portraits are generated for
parameter values between those of ambiguous neighboring
phase portraits.

STA [Ordóñez and Zhao, 2000] has been applied to
build high-level descriptions of morphogenesis in diffusion-
reaction systems by tracking aggregates of sample “floaters”
that react to changes in the underlying field. In particular,
floaters attempt to ensure an adequate sampling of the field
(no interpolation is required), especially in high-gradient ar-
eas. They do this in a manner similar to the particle system
of Witkin and Heckbert[1994], by repelling each other, split-
ting, and merging. In our vocabulary, theclassifypredicate
bundling floaters in a region tests whether or not neighbor-
ing floaters are near enough relative to an energy metric mea-
suring adequate representation of the region;samplesimply
splits one ambiguous floater into two adjacent floaters.

4.2 Pocket Identification
Our first application domain is motivated by research in spa-
tial statistics[Journel, 1986; Sackset al., 1989] and multidis-
ciplinary system design[Knill et al., 1999]. Visualize then-
dimensional hypercube defined byxi ∈ [−1, 1], i = 1 · · ·n,
with then-sphere of radius1 centered at the origin (Σxi2 ≤
1) embedded inside it. Notice that the ratio of the volume
of the cube (2n) to that of the sphere (πn/2/(n/2)!) grows
unboundedly withn. In other words, the volume of a high-
dimensional cube is concentrated in its corners (a counter-
intuitive notion at first). Carl de Boor exploited this prop-
erty to design a difficult-to-optimize function which assumes
apocketin each corner of the cube (Fig. 4), that is just outside
the sphere[Rice, 1992]. Formally, it can be defined as:

α(X) = cos

(
n∑
i=1

2i
(

1 +
xi
| xi |

))
− 2 (6)

δ(X) = ‖X− 0.5I‖ (7)

p(X) = α(X)(1− δ2(X)(3− 2δ(X))) + 1 (8)

whereX is the n-dimensional point(x1, x2, · · · , xn) at which
the pocket functionp is evaluated,I is the identity n-vector,
and‖ · ‖ is theL2 norm.

It is easily seen thatp has2n local minima; ifn is large
(say, 30, which means it will take more than half a million
points to just represent the corners of then-cube!), naive
global optimization algorithms will require an unreasonable
number of function evaluations. However, in real-world do-
mains, significant structure exists and can often be exploited.
A good example is the STAGE algorithm[Boyan and Moore,
2000], which intelligently selects starting points for local
search algorithms. Our goals here are very different from
global optimization: we wish to obtain a qualitative indica-
tion of the existence, number, and locations of pockets, using
low-fidelity models and/or as few data points as possible. The
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Figure 4: A 2D pocket function.

results can then be used to seed higher-fidelity calculations.
This is also fundamentally different from DACE[Sackset al.,
1989], polynomial response surface approximations[Knill
et al., 1999], and other approaches in geo-statistics where
the goal is accuracy of functional prediction at untested data
points. Here, accuracy of estimation is traded for the ability
to mine pockets.

In a dense field of data, it is straightforward to iden-
tify pockets by applying the vector field bundling imple-
mentation discussed in the introduction (see Fig. 3) to the
gradient field. In the data-scarce setting, we follow the
ambiguity-directed sampling framework, incorporating the
domain-specific knowledge summarized in Tab. 2. Given a
surrogate model, vector bundling identifies vectors which can
participate in multiple good streamlines. The surrogate model
incorporates these ambiguities with an indicator covariance
term counting the number of possible good neighbors. This
“ambiguity distribution” provides a novel mechanism to in-
clude qualitative information — streamlines that agree will
generally contribute less to data mining, just as samples that
are far apart are weighted less in the originalR matrix. Thus,
this framework can be viewed as a natural generalization of
the assumptions of sample clustering that underlie kriging.

The sampleobjective function described in Tab. 2 mini-
mizes the expected posterior entropy on theunsampledde-
sign space, which by a reduction argument, can be shown
to be maximizing the prior entropy over theentire design
space[Sackset al., 1989]. In turn, this means that the amount
of information obtained from an experiment is maximized.
For our purposes, the objective function thus provides a basis
to choose sample points that will improve our modeling ofp.

We applied the ambiguity-driven mechanism to determin-
ing pockets in both 2D and 3D. We used a variation of the
pocket function with a pseudorandom perturbation that shifts
the pockets away from the corners in a somewhat unpre-
dictable way. This twist precludes many forms of analyses,
such as symbolic parsing, by imposing a highly nonlinear
global map of pocket locations. In the traditional pocket
function, the dips can be viewed as being influenced by lit-
tle spheres at the corners, with known radii and centers. The
new pocket design uses an additional parameter to impose
non-symmetric perturbations which randomize both the radii
and centers. As a result, local modeling must be carried out
at each corner to determine the exact location of the pocket.
More detail about this function can be found in[Rice, 1992,

Surrogate model
Use kriging interpolator with indicator covariance term
(modeling number of similar-enough neighbors from predi-
cate below) to estimatep at unknown points.

Vector equivalence predicate
Return true if vector directions are similar enough, false if
they aren’t, and ambiguous if a vector has multiple neigh-
bors with similar-enough directions.

Sample objective function
Minimize the entropyE(− log d), whered is the condi-
tional density ofp over the design spacenot coveredby the
current data values.

Table 2: Domain knowledge for ambiguity-directed sampling
in pocket identification.

pp. 113-114].
The initial experimental configuration used a face-centered

design (4 points in the 2D case). The surrogate model then
generated a41n-point grid. The ambiguity-directed mech-
anism selected new design points, using the vector field
bundling approach discussed above. Standard parameter set-
tings were applied: required similarity of0.8 for dot product
of adjacency direction and vector field direction, and factor
of 0.01∗distance penalizing the grouping of far-apart vectors.

Fig. 5 shows a design involving only7 total data points
that is able to mine the four pockets. As previously dis-
cussed, our sampling decisions result in highly sub-optimal
designs according to traditional metrics of variance in pre-
dicted values and D-optimality, but are sufficient to determine
pockets. In particular, the ambiguity-driven framework com-
pletely skips one of the quadrants in selecting new points.
This indicates that neighborhood calculations involving the
other three quadrants are enough to uncover the pocket in
the fourth quadrant. Since the kriging interpolator uses lo-
cal modeling and since pockets in 2D effectively occupy the
quadrants, obtaining measurements at ambiguous locations
serves to capture the relatively narrow regime of each dip,
which in turn helps to distinguish the pocket in the neighbor-
ing quadrant. This effect is hard to achieve without qualitative
feedback. For higher dimensions (including 3D), the pockets
move further away from the center of the design space, ne-
cessitating the sampling of points in all corners.

Fig. 6 shows the distributions of number of design points
required for ambiguity-directed and kriging-based pocket
identification over100 perturbed variations of the 2D pocket
function. Ambiguity-directed sampling required3 to 11 addi-
tional samples, with the latter figure in the pathological case
where the random perturbations cause a nearly quintic dip,
rendering the initial adjacency calculations misleading. In
comparison, conventional incremental kriging techniques (of
the form described in Section 3.1 without qualitative analysis)
required13 to 19 additional data points. While pockets in the
bigger dips are discovered quickly, the quintic and shallow
dips require more function evaluations. Tests with pockets
in 3D yielded even more significant results: up to151 addi-
tional points for regular kriging, but at most42 for ambiguity-
directed sampling. With the use of block kriging, reductions
in both values could be enjoyed, but these figures illustrate
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Figure 5: Mining pockets from only7 sample points (2D).
(top) The chosen sample locations:4 initial face-centered
samples (marked as blue circles) plus3 ambiguity-directed
samples (marked as red diamonds). Note that no additional
sample is required in the lower-left quadrant. (middle) Com-
puted variogram for resulting surrogate model: color repre-
sents estimatedp and isocontours join points of equal es-
timated MSE. (bottom) SAL structures in surrogate model
data, confirming the existence of four pockets.
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Figure 6: Pocket-finding results (2D) show that ambiguity-
directed sampling always requires fewer total samples (7-15)
than conventional kriging (17-23).

the effectiveness of our technique.
The extension to more than3 dimensions is straightforward

and is not detailed here for ease of presentation. It essentially
entails using the appropriate covariance matrix and SAL data
structures (e.g.8-adjacency in 2D,26-adjacency in 3D, . . . ).
While we believe our ambiguity-directed framework will fare
well compared to traditional kriging, a more careful study
will be needed to characterize the scalability of our approach.

4.3 Influence-Based Model Decomposition
Influence-based model decomposition[Bailey-Kellogg and
Zhao, 1999; 2001] is an approach to designing spatially-
distributed data interpretation and decentralized control ap-
plications, such as thermal regulation for semiconductor
wafer processing and noise control in photocopy machines.
A decentralizedinfluence graph, built by sampling the ef-
fects of controls on a field (either physically or by solving
a partial differential equation), represents influences of con-
trols on distributed physical fields. Given the expense of ob-
taining influence graph values, it is desirable to minimize the
number of samples required. This section demonstrates that
ambiguity-directed sampling can greatly reduce the number
of samples required. Note that we do notinterpolatea dense
representation, following the explicit kriging methodology,
since it sometimes does not result in explainable designs,
by overlooking “nice” properties such as balance, symmetry,
collapsibility, and comparability[Easterling, 1989].

Influence-based model decomposition uses influence
graphs for control placement and parameter design algo-
rithms that exploit physical knowledge of locality, linear
superposability, and continuity for distributed systems with
large numbers of coupled variables (often modeled by partial
differential equations). By leveraging the physical knowl-
edge encapsulated in influence graphs, these control design
algorithms are more efficient than standard techniques, and
produce designs explainable in terms of problem structures.
Influence-based model decomposition decomposes a problem
domain so as to allow relatively independent design of con-
trols for the resulting regions. Fig. 7 overviews the approach:

1. Represent in an influence graph the effects of a few sam-
ple probecontrols on the field — in this example, the
heat flows induced in a piece of material by point heat
sources.



Figure 7: Influence-based model decomposition: sample an
influence graph, and cluster probes and partition field based
on similar control effects. Ambiguity-directed sampling tech-
niques close the loop by suggesting new probe locations.

2. Cluster the probes based on similarities in their effects,
as represented in the influence graph. For example, the
geometric constraint imposed by the narrow channel in
the dumbbell-shaped piece of material results in similar
field responses to the two probes in the left half of the
dumbbell and similar responses to the two probes in the
right half of the dumbbell. Note that influence graphs
encapsulate not only geometry but also material proper-
ties, which can greatly impact heat flows and thus the
proper decomposition.

3. Cluster the field nodes based on the probe clustering, ap-
plying a predicate testing if neighboring field nodes are
well-represented by the same probe nodes. In the exam-
ple, the field nodes in the left half of the dumbbell are
best represented by the probe nodes also in the left half
(which belong to the same probe equivalence class), and
are thus decomposed from the nodes in the right half.
Controls are placed in the regions and optimized by a
separate process not discussed here.

The quality of decompositions from a small number of
randomly-placed probes is competitive with that of a spec-
tral partition of the complete influence graph (computed fol-
lowing an approach developed for image segmentation[Shi
and Malik, 1997]), but with orders of magnitude less com-
putation and in a decentralized model[Bailey-Kellogg and
Zhao, 2001]. We now extend this approach to show that re-
placing random sampling with ambiguity-directed sampling
achieves even better results. Ambiguity-directed sampling ef-
fectively closes the loop between the field decomposition and
influence graph sampling (dashed arrow in Fig. 7). Tab. 3 de-
scribes the the domain-specific knowledge used in ambiguity-
directed sampling for model-based decomposition.

We applied ambiguity-directed sampling to the three prob-
lems presented by[Bailey-Kellogg and Zhao, 2001]: a plus-
shaped piece of material, a P-shaped piece of material, and
an anisotropic bar, illustrating different geometries, topolo-
gies (the P-shaped material has a hole), and material proper-
ties. Results were collected for1000 runs each by random
probing, and using each possible node in the discretization
for the initial probe in ambiguity-directed probing. Results
are relative to a baseline spectral partitioning of the complete
influence graph (computed essentially using probes at every
one of the hundreds of nodes in a discretization).

Given a decomposition, a quality metric compares the
amount of influence that stays within a region to the amount
that leaves it: To be more specific, define the decomposition

Field node equivalence predicate
Return true if nodes have similar-enough effect to one probe,
false if they don’t, and ambiguous if the magnitude of the
effect is not large enough or if two competing probes yield
similar effects.

Sample objective function
Perform secondary aggregation and classification to find re-
gions of ambiguities. For each ambiguous field node, mea-
sure how similar its flows are to other ambiguous field nodes
in its region; choose the node with the best similarity to the
most ambiguous nodes.

Table 3: Domain knowledge for ambiguity-directed sampling
in influence-based model decomposition.
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Figure 8: Comparison of influence-based model decomposi-
tion quality using random and ambiguity-directed probes, for
three different problems: (left) plus; (middle) p; (right) bar.
Results are relative to spectral partitioning.

quality q (0 ≤ q ≤ 1) for a partitionP of a set of nodesS as
follows (i is the influence):

q =
∏
R∈P

∑
c∈R

∑
r∈R i(c, r)∑
s∈S i(c, s)

Fig. 8 summarizes the results. The ambiguity-directed
method generally does much better than random for a given
number of probes, both in mean and standard deviation of
quality, and it generally can do as well with4-8 probes as
random sampling can with16-32. One interesting case is
the taper in the plus-shaped piece of material. This is due to
over-sampling: the samples are clustered in the middle of the
plus, yielding a jagged decomposition that results in a worse
quality score. In fact, with default parameters, the ambiguity-
based metric declines to add samples beyond about10, in-
dicating that the field was adequately sampled. In order to
achieve the desired number of samples, parameters were set
to force sampling for only small information gain.

5 Discussion
The idea of selective sampling to satisfy particular design cri-
teria arises in many contexts, such as Gaussian quadrature,
spline smoothing in geometric design, remote sensing data
acquisition, crystallography[Gopalakrishnanet al., 2000]
and engineering design optimization. In data mining, sam-
pling has been viewed as a methodology to avoid costly disk
accesses (this thread of research, however, doesn’t address the
issue of where to sample)[Kivinen and Mannila, 1994]. All
these approaches (including ours) rely on capturing properties
of a desirable design in terms of a novel objective function.



The distinguishing feature of our work is that it usesspatial
information gleaned from a higher level of abstraction to fo-
cus data collection at the field/simulation code layer. While
flavors of theconsistent labelingproblem in mobile vision
have this feature, they are more attuned to transferring infor-
mation across twosuccessiveabstraction levels. The applica-
tions presented here are novel in that they span and connect
arbitrary levels of abstraction, thus suggesting new ways to
integrate qualitative and quantitative simulation[Berleant and
Kuipers, 1998].

The effectiveness of our approach relies on the trustworthi-
ness of the ambiguity detection mechanism and the ability to
act decisively on new information. In both our applications,
this was easily achieved by relying on fairly specific quali-
tative features whose causes are well understood. However,
in other applications (e.g. phase portrait exploration for sen-
sitivity analysis of highly non-normal matrices), it is difficult
to distinguish between qualitative changes in problem charac-
teristic and numerical error such as roundoff. In such cases,
a more detailed modeling of qualitative behavior should be
exploited for ambiguity-directed sampling to be successful.
In terms of the pocket study, this might require a domain-
specific enumeration of the various ways in which pockets
(and ambiguities in detecting them) can arise, and a proba-
bilistic model of the elements of a SAL hierarchy using, say,
superpositions of Bayesian expectation-maximization terms.

SAL provides a natural framework for exploitingcontinu-
ity to uncover structures in spatial data; ambiguity-directed
sampling focuses SAL’s efforts on clarifying thosedisconti-
nuities that yield multiple, qualitatively-different interpreta-
tions. This effort is leading us to explore a completely prob-
abilistic SAL framework. Such a framework should also be
able to incorporate information from multiple, perhaps con-
flicting, SAL hierarchies. This is an emerging frontier in sev-
eral applications (such as bioinformatics), where diverse ex-
perimental methodologies can cause contradictory results at
the highest levels of abstraction. Our work provides some en-
couraging results addressing such grand-challenge problems.
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