Data Structure Visualization for VC++

Sumithra Bhakthavatsalam
Luhui Hu

Shumei Chen

Dept of Computer Science
Dept of Computer Science

Dept of Civil Engineering
Virginia Tech
Virginia Tech

Virginia Tech

Blacksburg VA-24061
Blacksburg VA-24061

Blacksburg VA-24061

Ph: (540)-961-5333
Ph: (540)-552-5193

Ph: (540)- 951-1703
sbhaktha@vt.edu

luhui@vt.edu

cshumei@vt.edu
ABSTRACT

The objective behind this project is to produce a visualization of data in a VC++ program by extracting information from the VC++ debugger. As is known, the debugger provides runtime information of in-memory data to facilitate debugging a program. A visualization of this information got from the VC++ debugger would allow the user to track changes and relationships of the data in a better way. Our data structure visualization tool takes user’s input of information about the data variables to be visualized and provides visualization to:

· Trace variables’ values, addresses and status changes

· Trace relationships between data objects.

Thus it helps in simplifying the process of debugging a VC++ program. Other potential applications of this tool include educational demonstration for object oriented programming with VC++, and data structure demonstrations.

Keywords

Stack, Heap, Data Variable, Data Object, Data Structure, Visualization

INTRODUCTION

The VC++ debugger provides 6 types of windows to support displaying run-time data. Among them, Variables Window and Watch Window are used to trace names and values of variables and expressions. These windows display data in the format of spreadsheet fields, which have an interface similar to that of Microsoft Excel. These Spreadsheet fields contain controls for viewing of object, structure, and pointer variables. If the variable is a pointer, the branch immediately below the pointer contains the value pointed to. If the variable is an object or structure, the branch below the variable contains the component elements or members.

An expandable variable is marked with a box containing a plus sign in the Name column. Users can expand the variable by clicking the + box, which opens into a tree that may contain additional boxes and when expanded, the box in the Name column contains a minus sign (–) so that it can be collapsed back [1].

The spreadsheet format does not provide a good visualization of data structures, their changes and the relationships between data objects. This is because it is not possible to see links between related objects, say when a pointer from one data object points to another object. Also, expansion of the tree-like structure to see the fields in an object can become too huge and visually distracting if the number of fields is very huge. Faced with the need to understand huge data structures, visualization is useful and efficient to help a programmer trace, watch and digest large amounts of information. Bearing in mind the limitation of the spreadsheet format, our project group came up with the idea of developing a tool that provides graphical display of data structures.

The goal of the data structure visualization project is to facilitate easy understanding of runtime data structures. Users can also move objects to rearrange them on the layout, for better comprehension of the relationships.

APPROACH
The tool connects to Visual Studio and extracts information about required data at breakpoints. This is done by API calls to the debugger. If more than one instance of Visual Studio are open, it connects to the earliest opened session.

During the process of deciding on the approach to be taken for user interface to the tool, we went through the techniques adopted by a few existing data structure visualization tools. Most tools are primarily meant for educational purposes, and are restricted to visualization of a single data structure, to enable students to learn data structures.

We found that SWAN [2], a tool that provides visualization for various data structures like graphs, arrays, lists and trees for C++ programs, uses a process termed “Annotation” of the source program. This involves embedding of certain macro statements into the source program. Compared to this approach, we figured that it would be much easier if the user could have a tool that could be used similar to the way one would use a debugger. This motivation came from the need to develop a tool mainly to aid debugging process rather than appreciation of data structures.

DESCRIPTION
Input Interface
[image: image1.png]Visualizer- Connected To Visual Studio ELES
Fie Edt View Took Window Help

=l 8| yiglel=]+]+ || B

Variables to Trace

Vaiiable ToWatch Type List Curently Traced Variables
(Desleraton Statemert]

Eromples boal @t

o ObA L ita |3 o et

i

org

Contet Of Vaisle e
{unctontledinl unsoned oro
oa

donble

o Suuctue long double
Data st g

ore |
Nuber 0F st
RSO o (SO 2y 6.id Class Info

ClassName [DataMember Name

AddEnum
Add Class/Type BEEE S Data Member Varibles

boal elemert.char
char name sting
short et atom”
it

ong

unsigned short

unsigned nt

unsigned ong

fioat

doutle

long double

void

st

Stas

St | A € B B »|) Bpocumen.| B | gy viiee.|[Fvimaah .y, | Sumiedr. | oo vemeli.|

(57601 [10:174M

|[E37 58 2D 10174m

Fig. 1

Above is the variable tracing dialog. A user is required to first connect to Visual Studio and then input the names of data variables that he / she wants to watch, along with their types. Their contexts can optionally be entered. If the context is not specified, it defaults to the “Main” function of the VC++ program. The window contains a list of all the basic data types that the user can choose from. A user-defined type / class can also be added, after which objects of that class can be entered to keep a watch on them. Similarly, Enumerated data types can also be added by the user.

After entering this information the user needs to add breakpoints to the VC++ program and then click on the button provided as part of the above interface to “Step into” the program. This button has to be clicked each time to move from one breakpoint to the next; in other words, it produces a snap shot of the data structures at the current breakpoint.

Data Structure Visualization Interface

[image: image2.png]sualization of Data Structures

~Stack

~Heap

T Teenedr ey
nd3=NULL Treenode@Funcy
undd=NULL Treenode@func3
ULL: Sting@Func3

! e @lunctd

- Integer@Func3

: foat@getchar
 in@puinto

" in@lunctont

UL class@readsosket
lstnc1=NULL; Listnods@Func3
ULL: newDbject@hunctionl
ULL: ri@function
pt=NULL; nd@Func3
 in@lunctont

* sbo@lunctont
 in@setvalue
 double@lunciont

" in@dsletealue

" foat@hunctiont
 int@goBack

* double@lunciont

" in@lunctont

" double@lunctont

" in@lunciont

I Siop Updating, Soriedby
€ Name Order

€ Data Type
€ Context

fig. 2(a).

[image: image3.png]sualization of Data Structures

=181x]

~Stack

Und2=NULL; Treenode@Func3
nd3=NULL Treenode@Func3
undd=NULL Treenode@func3
ULL: Sting@Func3

! e @lunctd

- Integer@Func3

: foat@getchar
 in@puinto

" in@lunctont

UL class@readsosket
lstnc1=NULL; Listnods@Func3
ULL: newDbject@hunctionl
ULL: ri@function
pt=NULL; nd@Func3
 in@lunctont

* sbo@lunctont
 in@setvalue
 double@lunciont

" in@dsletealue

" foat@hunctiont
 int@goBack

* double@lunciont

" in@lunctont

" double@lunctont

" in@lunciont

I Siop Updating, Soriedby
€ Name Order

€ Data Type
€ Context

~Heap

fig. 2 (b)

The above screenshots show the visualization screen (two screenshots to cover all data objects drawn).

The screen is divided into two areas – Stack and Heap, and data variables are shown in the two regions depending on how they are stored in memory during the execution of the VC++ program. Data variables that are in stack appear to the left, and dynamically allocated data that reside in the memory heap are shown in the right.

In the “Heap” window, each data object is represented by a box containing the address of the data object, its fields and their corresponding values. Pointer relationships are visualized as lines.

Thick lines are used to indicate two- way connections; (i.e., when one object contains a pointer to another, and the other object in turn points back to the first). “Dead nodes”, indicating memory leaks, and deleted nodes are shown distinctly with different color-coding.

In the “Stack” window, the names, values, data types and contexts of data variables selected by the user are displayed. There are three sorting functions to classify the stack variables, based on: name, data type and context. This feature helps users locate the desirable variables quickly and conveniently.
At Next Breakpoint

At every breakpoint, all data objects are checked for their status. Those that have not undergone any change (classified as “persisted”) are not redrawn, and therefore, remain in the same position in the window. This prevents rapid changes in the visualization and makes it convenient for the user to keep track of a data object. If nodes are updated, their values change for the corresponding fields. Pointer links are also changed if updated at that breakpoint. Deleted nodes are retained for one cycle to help a user trace the changes in the data structure. They are shown in a different color.

[image: image4.wmf]

fig. 3 (a)

[image: image5.wmf]

fig. 3 (b)

Newly allocated nodes have been visualized – some more boxes.

Mouse Operations
· Right-clicking a pointer field of an object highlights the corresponding pointers.

· Since there are relationships between the stack variables and heap variables, when a stack variable is clicked, the box containing the same variable in the “Heap” window is highlighted. Also, if a pointer pointing to a particular object is selected from the stack, the horizontal line running from the box corresponding to that object to the “Stack” window is highlighted.

· The tool provides a “Drag and drop” feature that enables a user to rearrange objects on the Heap layout as he / she desires. When a box is dragged, the pointers from that object are highlighted. Following is a screenshot of the same visualization of fig. 2 rearranged by dragging:

[image: image6.png]sualization of Data Structures

~Stack

~Heap

Und2=NULL; Treenode@Func3
nd3=NULL Treenode@Func3
undd=NULL Treenode@func3
ULL: Sting@Func3

! e @lunctd

- Integer@Func3

: foat@getchar
 in@puinto

" in@lunctont

UL class@readsosket
lstnc1=NULL; Listnods@Func3
ULL: newDbject@hunctionl
ULL: ri@function
pt=NULL; nd@Func3
 in@lunctont

* sbo@lunctont
 in@setvalue
 double@lunciont

" in@dsletealue

" foat@hunctiont
 int@goBack

* double@lunciont

" in@lunctont

" double@lunctont

" in@lunciont

I Siop Updating, Soriedby
€ Name Order

€ Data Type
€ Context

fig. 4

Color Scheme
Color encoding in this application is pretty simple, yet using it can convey a good amount of information on the limited space.

· Objects, in general, are shown as dark gray boxes with the text (field information) shown in light green. However, to make status changes of objects pre-attentive, deleted nodes are colored black. Dead nodes are shown red, to draw the attention of the user to a memory leak.

· Pointers are represented by lines colored light green, which change to bright blue upon selection with a right-click or drag of the corresponding object.

· A dark green horizontal lines from a box (node) to the “Stack” window, is highlighted to florescent green when a pointer pointing to that node emerge is selected from stack.

· When a data variable in stack is selected, the node containing this variable is highlighted in fluorescent green.
CONCLUSIONS AND FUTURE WORK

· The tool gives a fairly good idea of the data variables in a program. It shows the most important attributes such as value, address, and status changes. A deleted node can be immediately perceived. However updates of individual fields within a node are not highlighted and this could be done.

· It can be inferred that this tool provides a good data flow visualization, but not a very good data structure visualization. This is because all nodes are treated uniformly, laid out and connected, and the layout is independent of the type of data structure the node is a part of. In future, if the program that interfaces with the VC++ debugger to extract values of variables, can be modified to supply hints about the type of data structure, then we can have special layouts for every type of data structure. Alternatively, these hints could be taken from the user.

· Currently, the tool would scale up to about 100 nodes. We wish to augment this, perhaps by using better visualization techniques. For instance, nodes could be depicted really small and information pertaining to a node can be supplied in a reserved portion of the screen only on the user’s selecting a particular node. This way, the tool can be made to scale up to even 1000 nodes.

· The tool also does not show pointers with directed lines (arrows) and this could be confusing to the user. Although the user could look up the pointer value and then check the address of the node that the line links to, to find out the pointer relationship between nodes, this is not pre-attentive. We were not able to incorporate this due to VB limitations, which could have been overcome if we’d had more time. One potential improvement for future would be on this feature.

 ACKNOWLEDGEMENTS

We would like to thank Dr. Chris North who was the instructor for our course in Information Visualization, for his ideas and immense support throughout the project. Our thanks to Sam Stone and Matt Sample, undergraduate students from the Department of Electrical and Computer Engineering, Virginia Tech, who implemented the first phase of the project to interface with the VC++ debugger to get data information at breakpoints.

REFERENCES

[1] http://www.msdn.microsoft.com
[2] http://simon.cs.vt.edu/Swan/Swan.html
[3]Mastering Microsoft Visual Basic 6 Development,1999

[4] Stephen G.Eick, Joseph L. Stephen, Eric E. Sumner Seesoft-A Tool For Visualizing Line Oriented

Deleted node shown in different color

Memory leak – shown in different color

Thick line shows 2-way connection

Data Object

Pointer

1

_1050748054.doc
[image: image1.png]sualization of Data Structures

Stack

Und2=NULL; Treenode@Func3
nd3=NULL Treenode@Func3

: foat@getchar
 in@puinto
" in@lunctont
UL class@readsosket
lstnc1=NULL; Listnods@Func3
ULL: newDbject@hunctionl
ULL: ri@function
pt=NULL; nd@Func3

UL r@function
* sbo@lunctont
 in@setvalue
 double@lunciont
" in@dsletealue
" foat@hunctiont
 int@goBack
* double@lunciont
" in@lunctont
" double@lunctont
" in@lunciont

I Siop Updating, Soriedby
€ Name Order
1 Data Type.
€ Context

_1050748024.doc
[image: image1.png]ualization of Data Structures. =18 x|
Stack Heap

Und2=NULL; Treenode@Func3
nd3=NULL Treenode@Func3
undd=NULL Treenode@func3
ULL: Sting@Func3
UL nd@hunctd
- Integer@Func3
: foat@getchar
 in@puinto
" in@lunctont
UL class@readsosket
lstnc1=NULL; Listnods@Func3

ULL: newDbject@hunctionl
ULL: ri@function
pt=NULL; nd@Func3
UL r@function
* sbo@lunctont
 in@setvalue
 double@lunciont
" in@dsletealue
" foat@hunctiont
 int@goBack
* double@lunciont
" in@lunctont
" double@lunctont
" in@lunciont

I Siop Updating, Soriedby
€ Name Order
1 Data Type.

€ Context . q J_l

