
153

Chapter 7
Publishing Paradigms for X3D

Nicholas F. Polys

7.1 Introduction: Publishing Paradigms

As the demands of data and user tasks evolve and expand, the field of Information
Visualization presents many challenges for designers and systems developers. Of
primary concern is the mapping of data records and attributes to a visual presen-
tation that enables the user to detect patterns and relationships within the data.
The goal of this mapping is to minimize the user’s cognitive requirements for
understanding and insight into the nature of the data that may not be apparent
from viewing it in its raw form. The mapping of data to a visualization must take
into account the data’s volume and types and this chapter will discuss some
approaches to this display problem. However, static presentations are limiting in
their power to inform because the data and mappings cannot be interactively
explored or rearranged. Computer-based visualizations can address this problem
because users can now have control over the selection of data records, the encod-
ing of those records as visual markers and the presentation of those markers in a
2D screen or a 3D world. In this chapter, we will examine how data may be mapped
to interactive 3D worlds that may be published and distributed over the World
Wide Web (WWW).

In the early days of Web publishing, repurposing data content for multiple for-
mats and platforms was expensive and, as a result, a majority of useful information
was locked into technology “silos” for a particular delivery format, method and
platform. International standards organizations serve the computing community
by developing and specifying open platforms for digital data exchange. By adher-
ing to industry standards, organizations can lower their software and data integra-
tion costs and maximize their data re-use while guaranteeing reliability and user
access beyond market and political vagaries. Extensible Markup Language (XML)
and Extensible 3D (X3D) are two examples of such standards and are covered in
this volume. This chapter provides an overview of issues, strategies and technolo-
gies used for publishing information visualizations with XML and X3D.

7.1.1 File Formats and the Identity Paradigm

Initially, the majority of published information on the World Wide Web was in a
format called HyperText Markup Language (HTML). HTML was revolutionary in

07 01/05/04 09:56 Page 153

154 Visualizing Information Using SVG and X3D

that it specified a declarative language for sharing documents (Web pages) across
a network. The resulting boom to now multiple millions of Web pages is largely due
to the simplicity and portability of this language. Information and images can be
easily layed out, linked and accessed from all over the globe. If the author knows
the HTML content header and tags, a basic document can be produced with a text
editor and an image editing program. A document’s headings, layouts, images,
links, colours and fonts are all described with HTML tags. More complex or innova-
tive layouts require the use of <table> tags, which are difficult to manage without
authoring software.

One major drawback of HTML is that its tags are strictly specified and over-
loaded. Tags in an HTML document represent both the informational content and
the presentation of that content, that is, the data and the display information are
included in the same file, often in the same tags. This limitation makes HTML tags
less attractive as a data storage medium since it is difficult to repurpose data to
other formats and applications. For example, if a customer’s name and order num-
ber are enclosed by separate header tags, such as <h1>, there is no way to distin-
guish which information is the name and which information is the number from
the tags in the file alone. Cascading Stylesheets (CSS) attempts to separate con-
tent and presentation in HTML by allowing the author to specify classes of tags
with defined display attributes such as font, colour, fill and border. CSS provides
flexibility by allowing definitions to reside within document files or as remote
resources. CSS is useful for presenting the same page with different styles. However,
this flexibility is not really a qualitative improvement in the language because the
tagset is mostly unchanged and still finite in its descriptive power for data.

Virtual Reality Modelling Language (VRML) is an international standard
(ISO/IEC 14772-1:1997 and ISO/IEC 14772-2:2002), but was designed as a portable
format for describing and delivering interactive 3D worlds. The VRML standard
is similar to HTML in that it is declarative, strictly specified and carries both data
and display information. In contrast to an HTML page, the VRML scene contains
spatial viewpoint and navigation information, 3D geometry with colours, trans-
parency and textures, text, fonts, links, backgrounds and temporal information
such as object animations and behaviours (defined in Interpolators, Sensors and
Scripts). Also, in contrast to HTML, VRML authors have the ability to define their
own node types through the PROTO(type) node. The PROTO definitions can reside
within the document file or as remote resources.

In VRML and X3D, nodes are analogous to element tags and fields are analogous
to element attributes. Nodes are instantiated in a directed, acyclic graph called the
scenegraph. A VRML file describes a scenegraph of interactive objects in space
which the user can see and navigate through. Coloured and textured objects are
manifested in the world (the scene), animated and visualized from a viewpoint
or camera. When discussing Web3D media, the “viewpoint” will be referred to as
the Viewpoint node itself and the “camera” as the rendered result of the
Viewpoint via any superseding transformations. Similarly, “navigation” refers
to the scale and nature of the user’s control over their Viewpoint (by way of the
values bound in the active NavigationInfo node).

Early ease of authoring was complicated by lack of browser compliance with the
standards and scripting support for JavaScript (now officially “ECMAScript”)
varied widely. In some cases, Web publishers were forced to maintain multiple,
browser-specific copies of their content in order to guarantee the widest possible

07 01/05/04 09:56 Page 154

accessibility. This amount of redundancy is expensive, even to percolate a small
change across multiple Web site versions. Yet as the standards, client software and
server technologies have matured, HTML, VRML or ECMAScript compliance is
less the reason for maintaining multiple Web sites. Now, the motivation for per-
mutable content is founded on the goal of customizing information for an audi-
ence or partner with a range of capabilities and interests.Although HTML enabled
the exponential growth of the Web, it also required organizations to grapple with
content management and personalization issues. The result was the design and
deployment of Web “application servers” and Web “portals”.We shall examine how
these architectures currently apply to Web publishing and then to Web3D content,
specifically X3D and VRML.

Hypertext Markup Language was originally designed to describe and deliver
hypertext documents over the Web.Virtual Reality Modelling Language was origi-
nally designed to describe and deliver interactive 3D worlds over the Web. They are
consequently unable to describe much else. Each is really only suitable as a Web
publishing format, not as the formats for content storage, archiving and exchange.
If pages are authored and maintained in a specific format (such as HTML or
VRML) and the content is also delivered in that format (HTML or VRML), we can
characterize the architecture as conforming to the “Identity Paradigm” – the
source is identical with the deliverable. As mentioned above, this presents some
problems both with maintaining a large set of documents and with re-using the
documents’ information in other contexts. Due to the limitations and expenses of
this methodology, there was an immediate demand for other solutions. XML and
X3D were designed to meet this demand.

7.1.2 Server Technologies and the Composition Paradigm

In recent years, a number of alternatives have been provided by Web server tech-
nologies and scripting languages to address these issues of maintaining static Iden-
tity Paradigm archives. Some well-known technologies include Server Side Includes
(SSI), Perl, Hypertext Preprocessor (PHP) and Java Server Pages (JSP). These tech-
nologies do have significant differences, but the common denominator is that they
permit the composition and delivery of a document “on-the-fly” in response to a
user request. For example, when a user requests a page through the Hypertext
Transfer Protocol (HTTP), SSI can get the current date and time from the Web server
and display it in the delivered page. SSI can also insert markup fragments into a
document. This allows different documents to include consistent display objects
[such as headers, menus, tables and footers in 2D HTML and Heads-Up-Displays
(HUDs) in 3D], reducing redundant content across multiple documents.

Scripting languages add another level of capability since they can connect and
query online databases to recover information for display. For example, the user
requests an online data set and the server script queries a database and writes it
into the delivered (result) document. These solutions can all be classified as sup-
porting the “Composition Paradigm”, where documents are dynamically gener-
ated from one or more data sources. The Composition Paradigm brings more
flexibility to Web publishing as developers can define common elements in a single
location, pull data from multiple sources and combine them according to a user’s
request. As a result, dynamic Web sites are now commonplace.

Publishing Paradigms for X3D 155

07 01/05/04 09:56 Page 155

A crucial issue in Web publishing that relates to the Composition Paradigm is
the notion of content-type headers, or MIME types. MIME stands for Multipart
Internet Mail Extension and was originally designed to distinguish files in Email
attachments. The MIME type tells the client what kind of data is contained in the
file so that the client can decode and handle it appropriately. For files on a local
machine, this delegation can be accomplished simply by the file extension. In a Web
server context, however, the MIME type is sent first as a single line and does not
appear in the document source. Each Web server is configured to associate a docu-
ment MIME type with a file extension and deliver it to the client. Web browsers or
client operating systems also maintain such a list, which determines what plug-in
or application will display the content. Hence every file on the Web has a content
header that declares what kind of file it is.

Table 7.1 shows the relevant content types treated in this chapter. X3D (VRML
V3.0) is a new standard for creating real-time 3D content. The specification of
X3D’s Architecture and API follows ISO/IEC FCD 19775:200x. Using the VRML97
specification as its starting point, X3D is cross-platform and hardware independ-
ent. It adds a number of new features, such as XML integration, multi-texturing,
NURBS and a new scripting API. The X3D “Classic” encoding is a brace-and-
bracket utf8 file encoding that looks like VRML97. The X3D “XML” encoding uses
XML tags and attributes. At the time of writing, the X3D “Binary” encoding is still
under development, but suffice it to say that a given scenegraph may be equiva-
lently expressed in any encoding. The encoding specification for X3D is ISO/IEC
FCD 19776:200x.

In practice, composability is generally accomplished with three ingredients: a
structured template(s) for the delivered document, an accessible data source and a
server technology such as SSI, PHP, JSP or Perl to compose the template with the
appropriate data. Document templates basically structure the delivered document.
As we shall see in Section 7.3.2, they are the skeletal form of the file, either implicit
or explicit. Accessible data sources include both databases (i.e., SQL) and/or docu-
ments or fragments of documents. Server-side scripts manage the data sources
and populate the template before it is sent to the user. The composed content is
then delivered to the user with the appropriate MIME type.

On an Apache Web server, you might want to compose an X3D or VRML scene
with PHP, Perl or some other server-side scripting language, but still have user’s
3D plug-ins recognize it when it is received. In the case of composing VRML

156 Visualizing Information Using SVG and X3D

Table 7.1 Principle filename extensions and MIME content types discussed in this chapter

File format Content type/filename extension

Text text/plain
HTML text/html
VRML V2.0 model/vrml
XML text/xml
VRML V3.0:

X3D (Classic encoding) model/x3d � vrml
.x3dv and .x3dvz

X3D (XML encoding) model/x3d � xml
.x3d and .x3dz

X3D (Binary encoding) model/x3d � binary
.x3db and .x3dbz

07 01/05/04 09:56 Page 156

or X3D Classic files, you could specify MIME types for a given folder by adding
the line

AddType application/x-httpd-php .php .wrl .x3dv

or analogous definition to the .htaccess file in the directory on the Web server. This
line configures the Web server to treat .wrl and .x3dv files and .php file requests as
PHP files. This way, the Hypertext Preprocessor (PHP) engine is invoked when
it serves both types of files and downstream applications such as browser plug-
ins will recognize VRML and X3D content composed from PHP scripts in that
directory.

The Composition Paradigm introduced a new level of capability for publishing
dynamic Web content. In enabled Web “Portals”, which refer to a single site that
links and includes relevant information for a particular audience or domain. Portals
are usually dynamic and customizable per individual user. Users can specify what
information is included in what part of the layout, and what look and feel they pre-
fer. In most cases, this kind of personalization system requires the user either to log
in to the site or grant permission to set a cookie on their machine. Once the user is
identified by the system, personalized content can be dynamically generated and
delivered. This includes delivering customized information content to a user who is
logged in from a workstation, a VR system or a mobile device, such as a PDA.

7.1.3 XML and the Pipeline Paradigm

The World Wide Web Consortium’s (W3C) meta-language codification of XML has
opened new and powerful opportunities for information visualization, as a host of
structured data can now be transformed and/or repurposed for multiple presenta-
tion formats and interaction venues. XML is a textual format for the interchange of
structured data between applications (W3C, 1998–2002; Kay, 2001; White, 2002).
The great advantage of XML is that it provides a structured data representation
built for the purpose of separating content from presentation. This allows the
advantage of manipulating and transforming content independently of its display.
It also dramatically reduces development and maintenance costs by allowing easy
integration of legacy data to a single data representation which can be presented in
multiple contexts or forms, depending on the needs of the viewer (i.e., the client).
Publishers reduce the ratio of maintained source files to presentation venues as
source data tends toward semantic markup (Apache Foundation, 2002).

Data becomes portable as multiple formats may be generated downstream
according to application or user needs. Another important aspect of XML is the
tools that it provides: the DTD and the Schema. The Document Type Definitions
(DTD) define “valid” or “legal” document structure according to the syntax and
hierarchy of the language elements. The Schema specifies data types and allowable
expressions for the language elements and their attributes – it is a primitive ontol-
ogy describing the document language’s semantics. Using any combination of
these,“high-level markup tags” may be defined by application developers and inte-
gration managers. This allows customized and compliant content to be built by
authors and domain specialists. These tags could describe prototyped user-interface
elements, humanoid taxonomies or geospatial representations. Developers describe
the valid datamodel for their application using the DTD and Schema, share it over
the Web and standardize it amongst their community.

Publishing Paradigms for X3D 157

07 01/05/04 09:56 Page 157

XML can be as strict or as open as needed. Content, or fragments of content, can
be “well-formed” and still processed with most XML tools. Typically, data validation
is at author time, but it can be done at serving, loading or runtime if needed.
Publishing advances using XML technologies can be characterized as the “Pipeline
Paradigm” – information is stored in an XML format and transformed into a docu-
ment or parts of a document for delivery. From an XML-compliant source docu-
ment (or fragment), logical transformations [Extensible Style Sheet Transformations
(XSLT)] can be applied to convert the XML data and structure to another XML docu-
ment or fragment. A series of such transformations may be applied ending with a
presentation-layer transformation for a final delivery-target style, content-type
integration and display.

Numerous developer resources exist for the W3C’s XSLT specification (Kay,
2001; White, 2002). However, a review of the typical XSL Transformation process is
in order:

1. An XSLT engine parses the source XML document into a tree structure of
elements.

2. The XSLT engine transforms the XML document using pattern matching and
template rules in the .xsl style-sheet.

3. Template elements and attribute values replace matched element/attribute
patterns in the source document to the result document.

The Web3D Consortium’s next-generation successor to VRML is X3D. Like
XML, which moves beyond just specifying a file format or a language like VRML or
HTML, it is a set of objects and interfaces for interactive 3D Virtual Environments
with defined bindings for multiple profiles and encodings collected under a stan-
dard API (Walsh and Sévenier, 2001; Web3D, 2002). Like VRML, the X3D specifi-
cation describes the abstract performance of a directed, acyclic scenegraph for
interactive 3D worlds. In addition, it takes advantage of recent graphics advance-
ments such as MultiTexturing and information technology advancements such as
XML. X3D can be encoded with an XML binding using DTDs and Schema (Web3D,
2002). The X3D Task Group has provided a DTD, Schema, an interactive editor
and a set of XSLT and conversion tools for working with X3D and VRML97. Using
the XML encoding of X3D, authors can leverage all the benefits of XML and XML
tools such as user-defined markup tags, XSLT, authoring environments and server
systems.

Additionally, rather than defining a monolithic standard, the X3D specification
is modularized into components which make up “Profiles”. Profiles are specific sets
of functionality designed to address different applications – from simple geometry
interchange or interaction for mobile devices and thin clients to the more full-
blown capabilities of graphical workstations and immersive computing platforms.
The notion of X3D Profiles is important for publishing visualizations and we will
examine them in more detail in subsequent sections. X3D may be presented in a
native X3D browser such as Xj3D (Web3D, 2002), or transformed again and deliv-
ered to a VRML97 viewer.

7.1.4 Hybrid Paradigm

The last publishing paradigm we will describe is the “Hybrid Paradigm”. The
Hybrid Paradigm combines the Pipeline and Composition paradigms. Data from

158 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 158

various sources and transformational pipelines can be dynamically composed into
a scene and delivered to the client machine. Apache Cocoon and Perl with the
Gnome XML libraries are two well-known examples of technologies that permit
such a flexible scheme. Figure 7.1 shows the principal differences between the para-
digms described in this section.

7.2 Visualizing Information

Card et al. (1999) have defined Information Visualization as “The use of computer-
supported, interactive, visual representations of abstract data to amplify cogni-
tion” (p. 7). This definition provides us with a clear starting point to describe
visualization techniques for X3D as it distinguishes abstract data from other types
of data that directly describe physical reality or are inherently spatial (e.g.,
anatomy or molecular structure). Abstract data includes things such as financial
reports, collections of documents and Web traffic records. Abstract data does not
have obvious spatial mappings or visible forms, hence the challenge is to determine
effective visual representations and interaction schemes for human analysis,decision-
making and discovery. Therefore, information visualization concerns presenting
the user with the perceptual substrates for comprehension and insight. It must
account for the nature, scope and amount of data and also human cognitive factors
in the building of mental models.

7.2.1 Graphical Information Design

The nature of visual perception is obviously a crucial factor in the design of effective
graphics. The challenge is to understand human perceptual dimensions and map

Publishing Paradigms for X3D 159

Figure 7.1 Publishing paradigms summarized: S � source; V � view; T � transformation.

07 01/05/04 09:56 Page 159

data to its display in order that dependent variables can be instantly perceived and
processed preconsciously and in parallel (Friedhoff and Peercy, 2000). Such prop-
erties of the visual system have been described (i.e., sensitivity to texture, colour,
motion, depth) and graphical presentation models have been formulated to exploit
these properties, such as preattentive processing (Pickett et al., 1996) and visual
cues and perception (Keller, 1993).

Primary factors in visualization design concern both the data (its dimensional-
ity, type, scale, range and attributes of interest) and human factors (the user’s pur-
pose and expertise). Different data types and tasks require different representation
and interaction techniques. How users construct knowledge about what a graphic
“means” is also of inherent interest to visualization applications. For users to
understand and interpret images, higher level cognitive processes are usually
needed. A number of authors have enumerated design strategies and representa-
tion parameters for rendering signifieds in graphics (Bertin, 1981; Tufte, 1990) and
there are effects from both the kind of data and the kind of task (Schneiderman,
1996). Card et al. (1999) examined a variety of graphical forms and critically com-
pared visual cues in scatter-plots, cone-trees, hyperbolic trees, tree maps, points-
of-interest and perspective wall renderings.As we shall see, their work is important
since any of these 2D visualizations may be embedded inside, or manifested as, a
virtual environment.

Interactive computer graphics present another level of complication for deter-
mining meaning as they are responsive, dynamic and may take diverse forms.
There are challenges both on the input medium for the user and the action
medium for the user. These are known as the Gulf of Evaluation and the Gulf of
Execution, respectively (Norman, 1986). Typically in the literature, visualizations
are described and categorized per user task such as exploring, finding, comparing,
and recognizing (patterns). These tasks are also common in interactive 3D worlds.
Information objects may need to be depicted with affordances for such actions.
Here we shall examine how interactive visual markers can be designed and deliv-
ered with X3D.

7.2.2 Visual Markers

General types of data can be described as quantitative (numerical), ordinal
and nominal (or categorical). Visualization design requires the mapping of data
attributes to “visual markers” (the graphical representations of those attributes).
Mappings must be computable (they must be able to be generated by a computer)
and they must be comprehensible by the user (the user must understand the rules
that govern the mapping in order to interpret the visualization). The employment
of various visual markers can be defined by the visualization designer or defined
by the user. Tools such as Spotfire (Ahlberg and Wistrand, 1995) and Snap (North
and Schneiderman, 2000) are good examples of this interactive user control over
the display process. This functionality can also be accomplished with X3D. In addi-
tion, a set of “modes” of interaction have been proposed for exploratory data visu-
alizations which attempt to account for user feedback and control in a runtime
display (Hibbard et al., 1995a). Table 7.2 summarizes the ordering of visual mark-
ers by accuracy for the general data types. These rankings lay a foundation for
identifying parameters that increase the information bandwidth between visual
stimuli and user.

160 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 160

Schneiderman (1996) outlined a task and data type taxonomy for information
visualizations which is also useful for our description of techniques for X3D. Top-
level tasks are enumerated as Overview, Zoom, Filter, Detail-on-demand, Relate,
History and Extract. Overview refers to a top-level or global view of the informa-
tion space. Zoom, Filter and Details-on-demand refer to the capability to “drill
down”to items of interest and inspect more details (of their attributes). History refers
to the “undo” capability (i.e., returning to a previous state or view) and Extract is
visualizing sub-sets of the data. Enumerated data types are One-dimensional, Two-
dimensional, Three-dimensional, Multidimensional, Temporal, Tree and Network.
Since each of these can be implemented with X3D, these distinctions will be
referred to throughout the remainder of the chapter.

Card et al. (1999) and Hibbard et al. (1995b) have described a reference model
for mapping data to visual forms that we can apply to our discussion. Beginning
with raw data, which may be highly dimensional and heterogeneous, data transfor-
mations are applied to produce a “Data Table” that encapsulates the records and
attributes of interest. The data table also includes metadata which describes the
respective axis of the data values.Visual mappings such as those shown in Table 7.2
are then applied to the data table to produce the visual structures of the visualiza-
tion. The final transformation stage involves defining the user views and naviga-
tional mechanisms to these visual structures. As the user interactively explores the
data, this process is repeated. Ideally, the user has interactive control (feedback) on
any step in the process (the data transformation, visual mappings and view trans-
formations).

7.3 Design Principles and Interactive Strategies

Many challenges exist in the design of interactive 3D worlds and interfaces when
integrating symbolic and perceptual information (Bolter et al., 1995). Similarly to
efforts for 2D Visualization, researchers have experimented with the mapping of
attributes to various visualization metaphors including the cone-tree, the city and
the building metaphor (Dos Santos et al., 2000). They have shown that accurate

Publishing Paradigms for X3D 161

Table 7.2 Accuracy rankings for visual markers by general data type

Data type Quantitative Ordinal Nominal

Graphical Position Position Position
representation Length Density Colour

Angle/slope Colour Texture
Area Texture Connection
Volume Connection Containment
Colour/density Containment Density
(Cleveland Length Shape
and McGill, 1984) Angle Length

Slope Angle
Area Slope
Volume Area
(Mackinlay, 1986) Volume

(Mackinlay, 1986)

07 01/05/04 09:56 Page 161

characterization of the data is crucial to a successful 3D visualization, especially
when the scenegraph is auto-generated. Bowman et al. (1998, 1999, 2003) have
implemented and evaluated “Information-Rich Virtual Environments” (IRVEs)
with a number of features that are common to most Web3D information spaces.
Information-rich virtual environments “… consist not only of three-dimensional
graphics and other spatial data, but also include information of an abstract or sym-
bolic nature that is related to the space”, and IRVEs “embed symbolic information
within a realistic 3D environment” (Bowman et al., 1999). This symbolic informa-
tion could be attributes such as text and numbers, images, audio clips and hyper-
links that are related to the space or the objects in the space. In this section, we will
attempt to formalize an approach that is consistent with the capabilities of X3D.

Delivering arbitrary XML data to information visualizations with the Pipeline
Paradigm requires both design and implementation considerations. As mentioned
above, the generation of a data table is the first step in the delivery of a visualiza-
tion. The transformation of raw data to the data table may be accomplished by
XSLT or extracted by an XPath query or a query to a database. For the second phase
of mapping – the data table to visual structures – we should remember from our
definition that the abstract data in the table does not contain any inherently spatial
information; have it requires that the author determine the visual markers that will
be employed. We shall examine this step in more detail in Section 7.4 especially as
it relates to XSLT and X3D.

When designing 3D scenes for any purpose, a crucial step is that of “Story-
boarding”, which helps authors specify what objects the scene contains and their
appearance, from what points of view it can be perceived and what kinds of inter-
action are appropriate at various points in time and space. When designing a
usable visualization, Schneiderman’s (1996) mantra of information design should
ring in your head: “Overview first, zoom and filter, then details-on-demand”.

7.3.1 Scene Production Process

Beginning with user requirements, a typical scene production process will follow
these steps:

1. Define environment and locations.
2. Define user interface and viewpoints.
3. Define interactions.
4. Organize declarative scenegraph.
5. Model objects.
6. Build prototypes.
7. Transform data and compose visual markers.
8. Deliver to user.

Steps 1–4 can be accomplished from the storyboard. Step 5 is typically done with a
3D modelling package that can export X3D or VRML. Steps 4 and 6 require at min-
imum a text editor and a developer familiar with the scenegraph capabilities of
X3D or VRML. Steps 7 and 8 use server technologies and scripts to manifest the
scene and deliver its final presentation form to the user.

162 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 162

7.3.2 Scene Structure

Structured design in the case of X3D means dividing a scene into blocks which
account for the various functional parts of the world. Using a modular structure to
build a scene means that it may be built (composed) and managed from any num-
ber of applications or databases to the final target presentation. The result of this
approach should be an implicitly structured X3D document template describing
scenes in the form of:

Served Content type

1. Header.
2. Scenegraph root:

• Custom node declarations: PROTO definitions and/or EXTERNPROTO
references.

• Universe set (Backgrounds, global ProximitySensors).

• HUD and User Interface.

• Scripts.

• World and Inhabitants set (lighting, geometry and objects).

• ROUTEs.

The X3D specification defines a set of standard nodes that can be instantiated in
the scenegraph, what kinds of events they can send and receive and where they can
live in the scenegraph. The “transformation hierarchy” of a scenegraph describes
the spatial relationship of rendering objects. The “behaviour graph” of a scene-
graph describes the connections between fields and the flow of events through
the system. Events in the X3D scenegraph are called ROUTEs and exist between
nodes. If nodes are uniquely named (DEFed), data events can be programmatically
addressed and routed to that node. Custom logic and behaviours can be built into
a scene with Script nodes which use ECMAScipt and/or Java to execute data
type conversion, computation and logic with events.

Designing scenes in modular blocks has additional benefits. For example, if the
universe and HUD are kept consistent while the user navigates an information
space, this helps to maintain the notion of presence when the world and its inhab-
itants change. Such runtime swapping of scenegraph branches (blocks) is possible
with BrowserAPI method calls in a Script node (see Section 7.4.4).

A primary consideration in mapping data to a visual form is the range of values
in the data. For quantitative and ordinal data, designers should examine the high-
est and lowest values in order to scale coordinates properly. For categorical data,
the number of categories will determine the colours that can be employed. Since
visual mappings must be comprehensible, axes, labels and colour legends should
be instantiated. Designers may choose to put axes and labels in the universe block
or the world block, depending on the design and compositional resources of their
visualization application.

7.3.2.1 Custom Nodes

Authors can aggregate nodes and field interfaces into “Prototype” nodes
(PROTOs), which can be easily instantiated and reused in other scenegraphs and

Publishing Paradigms for X3D 163

07 01/05/04 09:56 Page 163

scenegraph locations. Prototypes allow the efficient definition, encapsulation and
re-use of interactive 3D objects. As we shall see, Prototypes are especially suited to
designing visual markers and interactive widgets. In the interest of promoting the
re-use of code without redundancy, Prototypes can also be defined in external files
(EXTERNPROTOs). This prototype definition is a separate, singular resource that
can be instantiated into multiple scenes.

One caveat to this abstract document structure is important: the ability to use
Prototypes (e.g.,PROTOs and EXTERNPROTOs) to create user-defined objects and
to use Scripts to define special behaviours (e.g., world or interaction logic) exist
only in the “Immersive Profile” (and higher) of X3D, which is analogous to (but not
identical with) the functionality enabled by VRML97. As we mentioned above,
Profiles are specific sets of functionality designed to address different application
domains (Web3D, 2003). The “Interchange Profile” contains a node-set to describe
simple geometries, materials and textures for sharing between applications such as
modelling tools. The “Interactive Profile” adds interpolator nodes for animation,
sensors and event utilities for interactive behaviours and a more capable lighting
model.Additionally, on top of the Immersive Profile, other software components may
be defined and implemented. Currently specified components include Humanoid
Animation (H-Anim), Geospatial 3D graphics (Geo-VRML) and Distributed
Interactive Simulation (DIS). The “Full Profile” refers to full support for all com-
ponents currently defined in the X3D specification. Authors should design to
Profiles as they define what capabilities the client has – what nodes it can read
and render.

7.3.2.2 Viewpoints and Navigation

An X3D scene defines objects in Euclidean coordinates, and animation interpol-
ators generally proceed along linear time (although programmatic generation and
manipulation of time values are possible with the Script node). Virtual environ-
ment X3D scenes would not be visible or explorable without a way to describe user
viewpoints and navigation. A key to understanding how this is accomplished with
X3D (or VRML) is the idea of a runtime “binding stack”. A binding stack is basic-
ally a list of “bindable” children nodes in the scene where the top node is active or
“bound”. The first Viewpoint and NavigationInfo nodes defined in a file
are the first to be actively bound. Other Viewpoint and NavigationInfo
nodes are made active by ROUTEing a Boolean event of TRUE to their set_bind
field. When this happens, the user’s view and navigation function according to
the field values of the newly bound node. Alternatively, events routed to the active
node change the observed behaviour of that node. For example, the Viewpoint
node has fields for position, orientation, fieldOfView and jump. The
fieldOfView defines the user’s viewing frustum and can therefore be modulated
to create fish-eye or telescoping effects. It is recommended that a FALSE value be
used for the jump field, as the user’s view is then smoothly animated to that
Viewpoint when it is bound, reducing disorientation (Bowman et al., 1997).

Similarly, the NavigationInfo node carries fields that have a direct impact
on the user’s perception, including avatarSize,speed and type. For example,
as a user navigates into smaller and smaller scales the avatarSize and speed
fields should also be proportionally scaled down. Specified X3D navigation types
are “WALK”, “FLY”, “EXAMINE”, “LOOKAT”, “ANY”, and “NONE”. While the

164 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 164

first five types give the user different ways of controlling their movement within
the scene, in some cases it may be preferrable to use “NONE” in order to constrain
their movement. Such a value would be desirable in the case of a “guided tour”. If
developers have access to mouse or want data in their runtime engine, they can
build their own navigation types using prototypes, scripts and other scenegraph
nodes.

7.3.2.3 Example Scenegraph: a Heads-Up-Display

ProximitySensor nodes output events called position_changed and
orientation_changed. By placing a ProximitySensor at the origin, we
have access to constant updates of the user’s location and direction in the 3D
world. If appropriate, we can then place a Heads-Up-Display (HUD) in front of the
user and within their field-of-view.ROUTEing the output of the ProximitySensor
to the HUD’s parent transform allows the HUD to travel continually with the user.
The following code fragments illustrated this basic design:

<Scene>
<ProtoDeclare name=“markerP”>
<ProtoInterface> ...
</ProtoInterface>
<ProtoBody> ...
</ProtoBody>

</ProtoDeclare>
...

<Group DEF=“universe_context”>
<ProximitySensor DEF=“universe_origin” centre=
“0 0 0” size=“1000 1000 1000”/>

<NavigationInfo type=“EXAMINE ANY”/>
<Background/>
</Group>
<Group DEF=“HUD_UI”>
<Transform DEF=“HUD”>
<Transform translation=“-0.05 0.03 -0.2”>
<!-- some hud scenegraph translated by an offset
to user’s point of view -->

<Shape DEF=“hud_geometry”>
<Box size=“.1 .1 .1”/>
<Appearance>
<Material diffuseColor=“1 1 1”/>

</Appearance>
</Shape>

</Transform>
</Transform>

</Group>
...
<Group DEF=“worldGroup”>...
</Group>
...

Publishing Paradigms for X3D 165

07 01/05/04 09:56 Page 165

<ROUTE fromField=“position_changed” fromNode=
“universe_origin” toField=“set_translation”
toNode=“HUD”/>

<ROUTE fromField=“orientation_changed” fromNode=
“universe_origin” toField=“set_rotation”
toNode=“HUD”/>

</Scene>

7.4 X3D and XSLT Techniques

Kim and Fishwick (2002) demonstrated the power of the content/presentation dis-
tinction when they used XML, Schemas and XSLT to render their XML descrip-
tions of dynamic, physical systems to different 3D visual and system metaphors
that they call “rubes”. Dachselt et al. (2002) have demonstrated an abstracted,
declarative XML and Schema to model Web3D scene components and especially
interfaces. More recently, Dachselt et al. (2003) leveraged object-oriented concepts
and XML Schema to componentize scenegraph node sets in the definition of user
interface “Behaviour Graphs”, which can be applied to arbitrary geometries or
widgets. Finally, XSLT data transformations for audience-specific interactive visu-
alizations have been shown for the delivery of Chemical Markup Language (CML)
using X3D and VRML (Polys, 2003).

Applying the power of XSLT to the delivery of interactive 3D scenes is relatively
new, and much more research is required in this area. As mentioned in Section
7.1.3, the representation of an XML document is by a tree data model. The nodes of
the source graph can be selected and their attributes operated on in XSLT by the
definition of <xsl:templates match=“”/> that use XPath expressions and
the <xsl:variable name=“”/> element. XPath provides 13 axes by which the
data tree may be navigated: child, descendant, parent, ancestor, following-sibling,
preceding-sibling, following, preceding, attribute, namespace, self, descendant-
or-self and ancestor-or-self. The target X3D tree (scenegraph) can be composed
with the DOCTYPE

<!DOCTYPE X3D PUBLIC “ISO//Web3D//DTD X3D 3.0//EN”
“http://www.web3d.org/specifications/x3d-3.0.dtd”>

There is a content model in X3D (expressed in the DTD and Schema) that con-
strains the target output and lets tools validate scene. While more formal theories
including graph transformation principles are still forthcoming, we can begin to
describe techniques for mapping data to visual structures (X3D nodes) for inform-
ation visualization.

Including the X3D and VRML specifications, a number of resources exist (Ames
et al.,1997; Walsh and Sévenier,2001) that describe the syntax and behaviour of nodes
in the scenegraph. Therefore, we will not cover all nodes in detail in this chapter,
but rather show how particular nodes may be used to manifest visual markers for
information visualizations.We will consider the X3D Immersive Profile as the target
platform, although position, orientation, size, colour and shape can be mapped
to the Interchange and Interactive profiles. All that is required to deliver content to
these platforms is an alternative set of XSLT stylesheets that map the data to the
supported target nodes and fields (attributes).

166 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 166

7.4.1 Target Nodes – Geometry

The Transform node manifests its children in the scene and provides fields such as
translation, rotation and scale that account for position, orientation
and size respectively. The Transform node’s translation field takes an
SFVec3f (a 3 float tuple) to define coordinates in 3-space where the children are
located.Rotation is an SFRotation field where the first three values define a vec-
tor which serves as the rotational axis and the last value is an angle in radians
which is the amount of rotation around that axis. The scale field is also a SFVec3f
which defines a scaling factor for the node’s children between 0 and 1 along each
dimension (x, y and z).
Shape is obviously a crucial X3DChildNode. The Shape node describes both

geometry and its appearance, such as colour and texture. The X3D colour
model is defined in RGB space and specified in the Material node. In X3D, colour
is specified by RGB values. The specularColor and emissiveColors
modulate the diffuse colour by lighting, shape and point-of-view. In the literature
on information visualization, there is a distinction between hue and saturation as
visual markers in display mappings (Mackinlay, 1986). When colours are interpo-
lated, the VRML Sourcebook (Ames et al., 1997) notes that colours are converted to
HSV space (which does have a saturation factor) and then converted back to RGB.
For readers interested in specifying saturation factors or converting between these
colour spaces, the book by Foley et al. (1995) can be recommended.When mapping
data to colour as a visual marker, it is important to use distinctive or contrasting
colour scales so that users can differentiate the rendered values.

Three-dimensional geometry in an X3D scene may be built with any number of
nodes, including the geometric “primitives” (Box,Cylinder,Sphere) and oth-
ers such as PointSet, IndexedLineSet, IndexedFaceSet, Extrusion,
the Triangle* family and Text. Each of these nodes has its own field signature
and, depending on the designer’s goal or user’s task, the same data may be mapped
to these different markers. Some brief notes about these shapes are in order.
The PointSet node may be used for a scatter-plot, for example, but as a point
does not have any volume, their specific values may be difficult to perceive in
the rendering. Owing to the way in which some primitives’ dimensions (e.g., the
Cylinder’s height and the Box’s size) are defined, they usually need to
be Transformed (offset) by half of this dimension. IndexedFaceSet and
IndexedLineSet geometries require a coordIndex field to specify the order
in which the Coordinate points are connected.

In addition, X3D has extended VRML geometries by adding the Geometry2D
component. Arc2D, ArcClose2D, Circle2D, Disk2D, Polyline2D,
Polypoint2D and Triangleset2D are defined with this component. Similar
2D primitives are defined in SVG (W3C, 2002; this volume). The shapes in this
component are new to Web3D worlds, and we expect them to be very useful in
future visualization and interface designs. Currently, the Geometry2D component
is only supported in the Immersive Profile.

7.4.2 Target Nodes – Hyperlinks and Direct Manipulation

The Anchor node is a grouping node that provides the ability for the user to click on
its children and load an external resource. This is analogous to the hyperlinking

Publishing Paradigms for X3D 167

07 01/05/04 09:56 Page 167

<a> tag in HTML and the default behaviour is for the resource to replace totally
the currently loaded scene. The url field is of MFString type that lists the location
of one or more resources. The browser attempts to find the first resource and load
it; if it is not accessible, it tries the next one. Similarly to the HTML hyperlink, the
Anchor’s parameterfield can specify a frame or window target where the resource
is to be loaded. When X3D or VRML files are specified as the resource, the link may
also include a Viewpointwhich is to be bound. This is done simply by appending
#DEFedViewpointName to the url. The specified resource may also be a CGI
script on the server and variable values may be passed to it, for example:

url
http://www.somedomain.org/sample/vistransformer.pl?
marker=markerP&data=autos

In this case, the CGI script is responsible for delivering the content header and
composing the scene.

Direct manipulation (such as clicking on an object and dragging it) in X3D
can be accomplished through the use of DragSensors such as the PlaneSensor,
CylinderSensor and SphereSensor. These nodes are activated when
the user clicks on any of its sibling nodes and the output values are typically
ROUTEd to a Transform node to effect a translation or rotation.
A TouchSensor generates events such as isOver, and touchTime events
(among others) that can be ROUTEd to other nodes in the scenegraph such as
Scripts to process user actions. Again, depending on the application and inter-
activity requirements, these may also be included in a Prototype definition.

7.4.3 Examples

Using the knowledge we have outlined above, let us have a look at some examples
(Figures 7.2–7.4) of using XSLT to transform some abstract data into X3D scenes.
Here is some sample XML data :

<Vehicles>
<Auto name=“SUV2001” MPG=“8” Cylinders=“8”
Price=“40,000”/>

<Auto name=“SUV2000” MPG=“12” Cylinders=“8”
Price=“35,000”/>

<Auto name=“Van2000” MPG=“16” Cylinders=“6”
Price=“30,000”/>

<Auto name=“Pickup1990” MPG=“23” Cylinders=“4”
Price=“21,000”/>

<Auto name=“Sedan1999” MPG=“30” Cylinders=“4”
Price=“18,000”/>

<Auto name=“Compact2002” MPG=“38” Cylinders=“4”
Price=“14,000”/>
</Vehicles>

In order to transform this data to an X3D visualization with XSLT, we define a tem-
plate (or set of templates) that extract the source elements and attribute values in
which we are interested. The templates in an XSLT stylesheet provide a mapping

168 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 168

Publishing Paradigms for X3D 169

Figure 7.2 X3D scatter-plot geometry using positioned, colour-coded Spheres as the visual markers.

Figure 7.3 X3D bar graph (or histogram) geometry using positioned, colour-coded Cylinders and
markers. Box primitives could also be used in this way.

from XML data to X3D informational objects. Common XSLT design patterns have
been described, such as fill-in-the-blank, navigational, rule-based and computa-
tional (Kay, 2001). Based on this mapping, the XSL Transformation engine writes
the data values into the template X3D tags and writes the result to the network or to

07 01/05/04 09:56 Page 169

a file (as in Section 7.5). For this example source data, we might write our XSLT as
follows:

<?xml version=“1.0”?>
<xsl:stylesheet version=“1.0”
xmlns:xsl=“http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=“xml” encoding=“UTF-8” media-type=
“model/x3d+xml” indent=“yes” cdata-section-elements=
“Script” doctype-system=“http://www.web3D.org/
TaskGroups/x3d/translation/x3d-compact.dtd”/>

<xsl:template match=“/”>
<X3D profile=“Immersive”>
 <head>

<meta content=“translatedVehicleData.x3d”
name=“filename”/>

<meta content=“XSLT translation 1”
name=“description”/>

<meta content=“n_polys” name=“author”/>
</head>
<Scene>
<!-- Insert EXTERN / PROTO declarations,
universe set, UI,

and Scripts as needed -->
<xsl:apply-templates/>

</Scene>
</X3D>

</xsl:template>
<xsl:template match=“Vehicles”>

170 Visualizing Information Using SVG and X3D

Figure 7.4 A zoomed-in view of Prototyped visual markers encapsulating perceptual and abstract
information. The user has navigated into the higher price range.

07 01/05/04 09:56 Page 170

<Group DEF=“worldGroup”>
<xsl:for-each select=“Auto”>

<xsl:variable name=“name” select=“@name”/>
<xsl:variable name=“mpg” select=“@MPG”/>
<xsl:variable name=“cyl” select=“@Cylinders”/>
<xsl:variable name=“price” select=“@Price”/>

<Transform>
<!-- Manipulate the variables as
necessary and nstantiate X3D visual
markers (target geometry) -->

</Transform>
</xsl:for-each>

</Group>
</xsl:template>

</xsl:stylesheet>

Let us take a look at how some visual markers may be instantiated in an X3D
scene. The following code fragment (shown in Figure 7.2) generates a scatter-plot
view of the automobile dataset using an XSLT stylesheet to map quantitative data to
a Transform node’s translation field and categorical values to Material:

<Group DEF=“worldGroup”>
<Transform translation=“.8 4 1”>
<Shape DEF=“marker1”>
<Appearance>
<Material diffuseColor=“1.0 1.0 1.0”/>

</Appearance>
<Sphere radius=“.15”/>
</Shape>

</Transform>
<Transform translation=“1.2 3.5 1”>
<Shape>
<Appearance>
<Material diffuseColor=“1.0 1.0 1.0”/>

</Appearance>
<Sphere radius=“.15”/>
</Shape>

</Transform>
<Transform translation=“1.6 3 2”>
<Shape>
<Appearance>
<Material diffuseColor=“0.31 0.3 0.61” />

</Appearance>
<Sphere radius=“.15”/>

</Shape>
</Transform>
<Transform translation=“2.3 2.1 3”>
<Shape>
<Appearance>
<Material diffuseColor=“0.89 0.44 0.89” />

Publishing Paradigms for X3D 171

07 01/05/04 09:56 Page 171

</Appearance>
<Sphere radius=“.15”/>
</Shape>

</Transform>
...
</Group>

The second example (Figure 7.3) implements quantitative values mapped to
Cylinder height (which are Transformed vertically by half their height
value) and categorical values mapped to Material. The target X3D code for this
example would be as follows:

<Group DEF=“worldGroup”>
<Transform translation=“.8 2 1”>
<Shape DEF=“marker2”>
<Appearance>
<Material diffuseColor=“1.0 1.0 1.0”/>

</Appearance>
<Cylinder height=“4” radius=“.15”/>
</Shape>

</Transform>
<Transform translation=“1.2 1.75 1”>
<Shape>
<Appearance>
<Material diffuseColor=“1.0 1.0 1.0”/>

</Appearance>
<Cylinder height=“3.5” radius=“.15”/>
</Shape>

</Transform>
<Transform translation=“1.6 1.5 2”>
<Shape>
<Appearance>
<Material diffuseColor=“0.31 0.3 0.61” />

</Apearance>
<Cylinder height=“3” radius=“.15”/>

</Shape>
</Transform>
<Transform translation=“2.3 1.05 3”>
<Shape>
<Appearance>
<Material diffuseColor=“0.89 0.44 0.89” />

</Appearance>
<Cylinder height=“2.1” radius=“.15”/>
</Shape>

</Transform>
...
</Group>

Prototypes’ definitions can add another level of efficiency to the definition of
data objects where multiple nodes can be encapsulated and re-used. In the first
two examples, the initial overview Viewpoint gives us a rough idea about the

172 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 172

distribution of automobiles across the three variables. However, we would probably
want to find out more detailed information about an automobile that met our crite-
ria. To accomplish this without cluttering the visual space, we can define our visual
markers with an LOD (Level-of-Detail) functionality, which renders different chil-
dren based on the user’s proximity. One such design would show the detailed view
(a Text node reading the name, miles per gallon and price) when the user zooms
in closer to an item of interest. In addition, Text could be placed on a Billboard
node that rotates its children around their y-axis to always face the user.

Our third example populates a PrototypeInstance with values and has the high
LOD containing Billboarded Text and the low level containing the geometry
from the first example. The PrototypeDeclaration is named “markerP”. The code
for these visual markers using the automobile dataset is as follows:

<Group DEF=“worldGroup”>
<ProtoInstance name=“markerP”>
<fieldValue name=“position” value=“.8 4 1”/>
<fieldValue name=“cost” value=“40,000”/>
<fieldValue name=“name” value=“SUV2001”/>
<fieldValue name=“numcyl” value=“8”/>
<fieldValue name=“miles” value=“8”/>
<fieldValue name=“color” value=“1.0 1.0 1.0”/>

</ProtoInstance>
<ProtoInstance name=“markerP”>
<fieldValue name=“position” value=“1.2 3.5 1”/>
<fieldValue name=“cost” value=“35,000”/>
<fieldValue name=“name” value=“SUV2000”/>
<fieldValue name=“numcyl” value=“8”/>
<fieldValue name=“miles” value=“12”/>
<fieldValue name=“color” value=“1.0 1.0 1.0”/>

</ProtoInstance>
<ProtoInstance name=“markerP”>
<fieldValue name=“position” value=“1.6 3 2”/>
<fieldValue name=“cost” value=“30,000”/>
<fieldValue name=“name” value=“Van2000”/>
<fieldValue name=“numcyl” value=“6”/>
<fieldValue name=“miles” value=“16”/>
<fieldValue name=“color” value=“0.31 0.3
0.61”/>

</ProtoInstance>
<ProtoInstance name=“markerP”>
<fieldValue name=“position” value=“2.3 2.1 3”/>
<fieldValue name=“cost” value=“21,000”/>
<fieldValue name=“name” value=“Pickup1990”/>
<fieldValue name=“numcyl” value=“4”/>
<fieldValue name=“miles” value=“23”/>
<fieldValue name=“color” value=“0.89 0.44
0.89”/>

</ProtoInstance>
...
</Group>

Publishing Paradigms for X3D 173

07 01/05/04 09:56 Page 173

Figures 7.4 and 7.5 show a sample visual marker PROTO that includes LOD,
Billboard and Text features. From outside the detail LOD range, the scene
would look exactly as in Figure 7.2.

XSLT can, of course, also be used to transform and compose X3D from data that
has inherent spatial meaning such as locations, sizes and connectivity. For example,
Figures 7.6 and 7.7 show the results of two different stylesheets that process a
Chemical Markup Language (CML) file of the cholesterol molecule to X3D. The
first version (Figure 7.6) builds geometry from atom and bond elements and text
from abstract attributes and other meta-information.

The second transformed version (Figure 7.7) shows that the XSLT can add con-
trol widgets to the resulting X3D scene; in this case, a slider controls the trans-
parency of every atom. In addition, the transformation in Figure 7.7 shows a new
text style and also movable measuring axis instantiated in the “universe block” of
the scene.

Figures 7.8 and 7.9 illustrate the XML to X3D transformation results of a finite-
difference mesh of tissue used for in silico biological simulation.

7.4.4 Scene Management and Runtimes

Another important consideration in the composition and maintenance of world
content is the use of the Inline node. In VRML, Inlines were opaque in that
events could not be ROUTEd between the inlined and the inlining scenes. This event
opacity is also a limitation of the Browser.createX3DFromURLmethod since
nodes in the new world are not programmatically addressable. If authors wanted
dynamically to replace a world block and connect it with event ROUTEs, the

174 Visualizing Information Using SVG and X3D

Figure 7.5 A zoomed-in view of Prototyped markers encapsulating perceptual and abstract informa-
tion. The user has navigated into the lower price range.

07 01/05/04 09:56 Page 174

not-so-obvious solution in VRML has been to define the entire replacement scene
as Prototypes and then use the Browser.createX3DfromString method to
add the new node and the Browser.addRoute method to connect events to it.
The new X3D API is called the Scene Access Interface (SAI) and unifies the object

Publishing Paradigms for X3D 175

Figure 7.6 The results of an XSLT transformations of a CML file for cholesterol.

Figure 7.7 The results of an XSLT transformation of a CML file for cholesterol.A new FontStyle has been
used and a slider widget has been added during the transformation and ROUTEd to visual markers in
the scene.

07 01/05/04 09:56 Page 175

definitions for both internal and external scripting. The SAI is a much more rich
and rigorous programming specification than VRML supported and it introduces
a number of new objects and functions. The bindings for the Java and ECMAScript
languages are described in ISO/IEC FCD 19777 : 200x.

176 Visualizing Information Using SVG and X3D

Figure 7.9 A front view of the XML finite-difference mesh.

Figure 7.8 Underside view of an XML finite-difference mesh description generated via XSLT to X3D in
order to visualize the spatial locations and connectivity of mesh points.

07 01/05/04 09:56 Page 176

The Browser object interface, for example, has a number of useful methods
for managing content dynamically, such the Browser.createX3DFromURL
or Browser.createX3DFromString methods that can be invoked from a
Script. These methods (whose analogues were specified in VRML97) allow
scene content to be swapped during runtime. The content is added to a specific
part of the scenegraph by specifying a DEFed node which the new content
replaces. If the world has been designed in a modular way as we described above,
this can be a very powerful technique.

Other important functionality newly introduced in X3D is the use of IMPORT
and EXPORT keywords with Inlines. The IMPORT statement provides
ROUTEing access to all the fields of an externally defined node with a single state-
ment and without a PROTO interface wrapper and Scripts building String
objects. The EXPORT statement is used within an X3D file to specify nodes that
may be imported into other scenes when inlining the file. Only names exported
with an EXPORT statement are eligible to be imported into another file (Web3D,
2002). In this way, entire X3D files can declare event communication routes for
embedding and embedded files. This is a significant improvement in the compos-
ability and re-use of X3D worlds themelves.

7.5 Publishing Technologies

We have examined some techniques for transforming XML data to X3D with the
use of XSLT stylesheets. The X3D Task Group has provided a number of XSLT
stylesheets for the transformation of X3D to VRML97 and also X3D to HTML.
Also, courtesy of the National Institute of Standards and Technology, a translator
application for VRML97 → X3D data migration has been made freely available and
been integrated into a number of Web3D editing tools including the structured
editor X3D Edit (Web3D, 2003) and others. Within the Pipeline and Hybrid para-
digms, there are two general ways we shall consider in publishing XML content
to X3D (or other): the back-end production of a file archive, and the serving of
a transformed and presented source document in response to a “live” (networked)
visualization request. Thus we distinguish between the auto-generation of content
archives and the serving of dynamic content for on-the-fly service.

Given server overhead, bandwidth and delivery constraints, periodically auto-
generating content archives may be appropriate. These approaches use X3D source
files and directories with naming conventions with scripted XSLT to produce
framed HTML, VRML and X3D document trees complete with linked with chap-
ters, titles and embedded views of the source file. The generated document trees
can be organized and hyperlinked for navigation with a Web browser, for example.
The X3D Task Group’s Web collection of X3D content examples is an ideal show-
case of this technique (Web3D, 2002). The auto-generation can be done with
straightforward batched XSLT Java (Kay, 2001; McLaughlin, 2001; White, 2002) or
Perl (Brown, 2002; Polys, 2003) scripts. These content publications can then be
served over the Web or distributed on CD or DVD as in the Identity Paradigm.

The second approach is to use XSL Transformations “on-the-fly” using common
Web server software such as Apache Cocoon, Perl and the XML Gnome libraries, or
PHP (Brown, 2002). This approach can provide custom presentations of the source
data with a proportionate server and network overhead. Either of these delivery

Publishing Paradigms for X3D 177

07 01/05/04 09:56 Page 177

approaches may be classified as conforming to the Pipeline, Composition or
Hybrid paradigms depending on how the data is transformed and composed.

7.6 Summary

In this chapter, we have reviewed the literature on interactive 3D visualizations and
enumerated criteria to design successful and comprehensible visualizations. We
looked at modular approaches to X3D scene design and production and examined
how XSLT can be used to transform and deliver XML data to X3D visualizations
within current publishing paradigms. The separation of content from presentation
in XML gives organizations a great deal of flexibility in how developers re-purpose
and publish their data. The XML encoding of X3D allows developers to leverage the
power of XML to transform the same data to multiple forms and interactive con-
texts. As XML databases and server technologies improve, we can expect further
refinements to the techniques we have outlined.

The investigation of human computer interaction for information-rich 3D
worlds and visualizations is still in its infancy. We expect that by enumerating
effective data mappings, the combinations of coordinated information and media
types and interaction strategies for information-rich virtual environments, we can
work toward advantageous computational, compositional and convivial systems
for real-time exploration, analysis and action. This work will have a direct impact
on the usability and design of such heterogeneous 3D worlds.With such mappings,
coordinations and strategies in hand, effective displays and user interfaces may be
automatically generated or constructed by users depending on the expertise level
and the task. The coming years hold great potential to amplify the bandwidth
between interactive computer graphics technologies and human understanding.

7.7 Acknowledgements

Screenshots are VRML views of the result X3D scenes through the ParallelGraphics
Cortona browser. X3D syntax was validated within X3DEdit 2.4. Thanks are due to
Dr Doug Bowman, Dr Christopher North, Scott Preddy and the Virginia Tech
Visualization and Animation Research (UVAG) Laboratory for their continued
support and review of this chapter.

Most thanks are due to my dear friend, advocate and wife, Kat Mills.

References

Ahlberg C and Wistrand E (1995) IVEE: an Information Visualization and Exploration Environment. In
Proceedings of IEEE InfoVis, 66–73, 142–143. Spotfire: www.spotfire.com

Ames AL, Nadeau DR and Moreland JL (1997) VRML Sourcebook, 2nd edn. New York: Wiley.
Apache Foundation (2002) Apache Web server: http://www.apache.org. Cocoon: http://xml.apache.org /

cocoon/. Hypertext Preprocessor: http://www.php.net. Tomcat: http://jakarta.apache.org/tomcat/
index.html.

Bertin (1981) Graphics and Graphic Information Processing (transl. Berg W and Scott P). Berlin: Walter
de Gruyter.

Bolter J, Hodges LF, Meyer T and Nichols A (1995) Integrating perceptual and symbolic information in
VR. IEEE, July.

178 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 178

Bowman D, Koller D and Hodges L (1997) Travel in immersive virtual environments: an evaluation of
viewpoint motion control techniques. In Proceedings of the Virtual Reality Annual International
Symposium (VRAIS), pp. 45–52.

Bowman D, Hodges L and Bolter J (1998) The virtual venue: user–computer interaction in information-
rich virtual environments. Presence: Teleoperators and Virtual Environments, 7(5)8, 478–493.

Bowman D, Wineman J, Hodges L and Allison D (1999) The educational value of an information-rich
virtual environment. Presence: Teleoperators and Virtual Environments, 8(3), 317–331.

Bowman D, North C, Chen J, Polys N, Pyla P and Yilmaz U (2003) Information-rich virtual environ-
ments: theory, tools, and research agenda. In ACM Symposium on Virtual Reality Software and
Technology (VRST).

Brown M (2002) XML Processing with Perl, Python, and PHP. San Francisco: Sybex.
Card S, Mackinlay J and Schneiderman B (1999) Information Visualization: Using Vision to Think. San

Francisco: Morgan Kaufmann.
Cleveland W (1993) Visualizing Data. Summit, NJ: Hobart Press.
Cleveland WS and McGill R (1994) Graphical perception: theory, experimentation and application to

the development of graphical methods. Journal of the American Statistical Association 79, 387.
Dachselt R and Rukzio E (2003) Behavior3D: an XML-based framework for 3D graphics behavior. In

Proceeding of the Web3D 2003 Symposium, ACM SIGGRAPH.
Dachselt R, Hinz M and Meissner K (2002) CONTIGRA: an XML-based architecture for component-

oriented 3D applications. In Proceedings of the Web3D 2002 Symposium, ACM SIGGRAPH.
Dos Santos CR, Gros P, Abel P, Loisel D, Trichaud N and Paris JP (2000) Mapping information onto 3D

virtual worlds. In Proceedings of IEEE International Conference on Information Visualization,
London, 19–21 July 2000.

Foley JD, van Dam A, Feiner SK and Hughes JF (1995) Computer Graphics: Principles and Practice in C,
2nd edn. Boston: Addison-Wesley.

Friedhoff R and Peercy M (2000) Visual Computing. New York: Scientific American Library.
Gnome XML and XSLT Libraries for Perl. Available: http://www.gnome.org
Hibbard W, Levkowitz H, Haswell J, Rheingans P and Schoeder F (1995a) Interaction in perceptually-

based visualization. In Grinstein G and Levkoitz H (eds), Perceptual Issues in Visualization. New
York: Springer, pp. 23–32.

Hibbard W, Dyer CR, Paul BE (1995b) Interactivity and the dimensionality of data displays. In Grinstein G
and Levkoitz H (eds), Perceptual Issues in Visualization. New York: Springer, pp. 75–82.

Kay M (2001) XSLT, 2nd edn. Birmingham: Wrox Press.
Keller PR (1993) Visual Cues: Practical Data Visualization. Piscataway, NJ: IEEE Computer Society Press.
Kim T and Fishwick P (2002) A 3D XML-based customized framework for dynamic models.

In Proceedings of the Web3D 2002 Symposium, ACM SIGGRAPH.
Mackinlay J (1986) Automating the design of graphical presentations of relational information. ACM

Transactions on Graphics, 5, 111–141.
McLaughlin B (2001) Java and XML, 2nd edn. Cambridge: O’Reilly.
Norman DA (1986) Cognitive engineering. In Norman DA and Draper SD (eds), User Centered System

Design. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 31–61.
North C and Schneiderman B (2000) Snap-together visualization: can users construct and operate coor-

dinated views? International Journal of Human – Computer Studies, 53, 715–739.
Perl Mongers: http://www.perl.org
Pickett RM, Grinstein G, Levkowitz H, Smith S (1995) Harnessing preattentive perceptual processes

in visualization. In Grinstein G and Levkoitz H (eds), Perceptual Issues in Visualization. New York:
Springer.

Polys NF (2003) Stylesheet transformations for interactive visualization: towards a Web3D chemistry
curricula. In Proceedings of the Web3D 2003 Symposium. ACM SIGGRAPH.

Schneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations.
Proceedings of IEEE Visual Languages, 336–343.

Sun Microsystems Java and Java Server Pages. Available: http://java.sun.com/products/jsp/
Tufte E (1990) Envisioning Information. Cheshire, CT: Graphics Press.
Walsh A and Sévenier M (2001) Core Web3D. Upper Saddle River, NJ: Prentice-Hall.
White C (2002) Mastering XSLT. San Francisco: Sybex.

The Web3D Consortium (2002)
Specifications:
Extensible 3D (X3D-ISO/IEC 19775:200x), Virtual Reality Modelling Language (VRML- ISO/IEC

14772:1997): http://www.web3d.org/fs_specifications.htm

Publishing Paradigms for X3D 179

07 01/05/04 09:56 Page 179

X3D TaskGroup and X3DEdit: http://www.web3d.org/x3d.html
Software Development Kit: http://sdk.web3d.org
Xj3D Open Source X3D/VRML toolkit: http://www.web3d.org/TaskGroups/source

The World Wide Web Consortium (2002)
Specifications:
Extensible Markup Language (XML): http://www.w3.org/XML
Extensible Stylesheet Transformations (XSLT): http://www.w3.org/TR/xslt11

180 Visualizing Information Using SVG and X3D

07 01/05/04 09:56 Page 180

