
IRVE-Serve: A Visualization Framework for
Spatially-Registered Time Series Data

Nicholas F. Polys1 Michael Shapiro2 Karen Duca3

npolys@vt.edu michael.shapiro@tufts.edu karen.duca@gmail.com
 1 Virginia Polytechnic Institute and State University

2 Department of Pathology, Tufts University School of Medicine
3 Kwame Nkrumah University for Science and Technology; Kumasi, GH.

ABSTRACT

Scientists regularly confront situations where they are trying to
understand large quantities of information, that vary over time and
space. Analyzing such systems where structure and function are
related is still a challenge despite the continued improvement of
visualization tools and techniques. Given the spatial basis of many
simulations, Information Rich Virtual Environments (IRVEs) can
be a successful way of presenting heterogeneous information in an
intuitively comprehensible form.

In this paper we describe the evolution of a web-based IRVE
delivery system for simulation data. Our framework decouples
geometry, the underlying data set, and the expressive repertory for
information display. This allows us to incorporate domain-specific
information while providing for easy retargeting of the
information displayed in that domain. As a result of these
abstractions, we are able to continually expand and improve our
visual mappings and components and finally apply our framework
in a completely unrelated domain.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Artificial, augmented, and virtual
realities,

General Terms
Design, Standardization.

Keywords
3D Interaction, Visual Design, Information-Rich Virtual
Environments.

1. INTRODUCTION
In this paper, we describe the evolution of a visualization
framework driven by the need to structure and represent large-
quantities of multidimensional data in a comprehensible form.
Spatially-registered time series data is a common type of data in
simulation where an object or point in space has some set of
properties or attributes that change over time. To provide a real-

time integrated information space for this data, we developed an
Information-Rich Virtual Environment (IRVE) [Bowman et al
2003] system geared towards a centralized simulation with
distributed access and visualization capabilities.

Because scientists are attempting to extend existing knowledge,
they do not always know what they are looking for. As a
consequence, the necessary ingredients for analysis and discovery
may not be known a priori. Visualization tools must be flexible
enough to support opportunistic questions and hypotheses with
little specialized modification.

The origin of this framework we call ‘IRVE-Serve’ begins with a
visualization front end for Pathsim, an agent-based pathogen
simulation of Epstein-Barr virus infection [Polys et al. 2004]. The
most recent incarnation of this framework delivers an IRVE
adapted to an entirely different simulation engine - that of the
energetic behavior of large space structures. The evolution of this
framework illustrates the benefits of abstraction and encapsulation
for spatially-registered simulations; we present a flexible tool for
composing and delivering IRVEs across simulation domains.

In Pathsim, seven biological species (virus, plus T-cells and B-
cells in various states) interact in the tonsils, lymph and blood.
The tonsils were modeled as a three dimensional anatomical
structure, while the blood and lymph were represented as abstract
‘compartments’. The populations of the agent species vary both
over time and how they are spatially distributed. By displaying
these data in an IRVE, we intend to make these virtual biological
processes intelligible to the biomedical researchers who were the
primary clients of the simulation.

Some requirements were easy to identify:

• The service must be available over the web to serve
working groups in different locations.

• The system must give the bio-medical researchers
sufficient control over the working simulation to be able to
launch and monitor the runs which will help them generate
and test hypotheses.

• It must simultaneously insulate them from the mundane
details of run management.

• It must display the results of runs in a multitude of
intuitively comprehensible manners.

• It must give researchers direct access to the underlying
information in order to enable further analysis in other
formats.

In the first version of Pathsim Visualizer (see [Polys et al. 2004]),
we attempted to meet these requirements through user-centered
design and usability engineering methods. We learned that neither
the developers nor the end users know in advance what they will
want to look at or how the will want to look at it. For example,
how should the data be normalized? Should the per-tonsil data for
a given species (e.g., free virus) be normalized as a fraction of
current total free virus? As a fraction of the maximum total free
virus? As a fraction of the maximum free virus for that tonsil?

This dictated a search for a framework in which these data
transformations and representations can be easily changed. Our
solution was to decouple the problem into geometry, expressive
repertory, the information to be displayed via this repertory, and
the underlying data which is being studied. The data being studied
is the output of a given run; the geometry includes the three
dimensional layout where that simulation took place (e.g. the
tonsils and their subdivisions).

The information to be displayed includes such choices as the
normalizations mentioned above, but can be far more general. For
example, one might wish to display the log of the number of
infected B-cells, or the ratio between the number of infected B-
cells and the number of free virus. The expressive repertory
includes such things as the ability to map information to geometry
color over space and time, the ability to display numbers or
graphs of time series, etc.

In the following sections, we describe how the original
biomedical visualization system was extended and applied more
generally for the transformation and instantiation of spatially-
registered time series visualizations. We begin by covering the
background related to the original system including a brief
explanation of the biology, the simulation, and the framework. In
Section 3 we detail the implementation of the PathsSim Visualizer
from its initial version to its Object-Oriented version. Section 4
demonstrates our application of the framework to an entirely
different domain – the energetics of space structures. Section 5
summarized technical problems encountered and Section 6
contains our conclusions and prospects for future work.

2. BACKGROUND
2.1 Biomedical Background
Epstein-Barr Virus (EBV) infects greater than 90% of all people
and is usually benign, though it is also responsible for acute
infectious mononucleosis and can result in some cancers,
particularly in transplant patients whose immune systems have
been suppressed. The main biological systems of infection are the
circulation and the ring of tonsilar tissue at the top of the throat -
the Waldeyer’s ring. This ring of tissue consists of four tonsils
and two adenoids.

The Epstein-Barr virus is transmitted in saliva and infects naïve
B-cells. These infected B-cells migrate to the follicles of the
tonsil (also known as ‘germinal centers’) where they enter a latent
state. They can then enter the circulation. When they return from
the circulation to the tonsilar ring, they can become lytic and die,
producing a burst of fresh virus. The host immune system’s
response involves the activation of naïve T-cells to regulate the
infected B-cells.

2.2 Pathsim Simulation
Pathsim is a large agent-based simulation of the dynamics of
Epstein-Barr virus infection and our immune responses to it.
Pathsim provides a three-dimensional graph representing
Waldeyer’s ring, i.e., the oropharynx - tonsils, the adenoids and
their connecting tissue. In addition, two abstract compartments
represent the lymph and the circulation. These constitute an arena
in which seven different agent types interact. These agent types
include free virus, the cells which become infected by the virus,
and those cells of the immune system responsible for regulating
the resulting infection (more detailed descriptions can be found in
[Shapiro et al. submitted; Thorley-Lawson et al. submitted]). As
the sizes and locations of these agent populations shift over time,
the visualization engine attempts to tell their story.

Pathsim is a C++ application that runs under Linux. It consists of
an environment engine and a rule set. On launch, Pathsim reads a
configuration file specifying the simulation parameters; these
include things like the size of the tonsils, initial agent
demographics, and the probability values governing agent
interaction. Typical simulation environments involve over
160,000 mesh points, 800,000-plus time steps, and seven different
agent species whose populations sum to upwards of 7 million
agents. The number of time steps is reduced for display purposes.

The simulation first generates a hierarchical anatomical mesh
according to the dimensions of the virtual patient. This ‘agent
transportation network’ through the tonsils and adenoids are
described in combinations of hexagonal units (Figure 1). Based
on clinical averages, there are defaults for each tonsil’s surface
area. Once the tissue is built in memory, it is output as a VRML
file where each recorded tissue volume is DEF-ed with a unique
ID corresponding to its ID in the simulation and located in 3D
space [Web3D Consortium 2007].

Figure 1: A generated simulation environment from Pathsim
(VRML)

As the simulation time advances, agents move through the tissue
network and interact. The smallest simulation time interval is 6
minutes and time step output may be written at any multiple of
this simulation time basis. At each output, the system appends the
population values for each agent to the output files for each tonsil
and each basic tissue unit.

Figure 2: Service Architecture for Pathsim Web Interface

Pathsim uses a naming convention of unique RunIDs for each
execution. These RunIDs are also the names of folders inside the
‘Results Directory’ (e.g. ../Results/RunID/) where parameters and
output for each execution are organized and stored. Parameter
files are tab-delimited text files that can be edited by hand or
through a web-based form; output files are tab-delimited text.

2.3 Pathsim Simulation Server
This project involved the cooperation of clinicians, bio-medical
researchers, software developers and mathematicians. These
people were located at multiple sites. Accordingly, Pathsim was
configured to run from a central server. Through a CGI + HTML
front-end, remote collaborators can setup, initiate, cancel, and
analyze a simulation on this dedicated computing resource over
the web. Figure 2 shows the overall service architecture for the
system. For example, researchers need to:

• Setup and invoke a new run
• Process output for visualization / analysis
• Manage results (delete, zip, download)
• View results
• Manage server threads
• View documentation

The web interface insulated our collaborators from the details of
run management. In general, significant processing of
visualization mappings such as re-tabulation, normalization, or
scaling of the time points is run on the server. From the client
perspective, processed simulation data is structured and available
through the website directory structure. An HTML frameset
allows the user to navigate the /Results directory to examine
existing runs and parameter files.

To launch a run, users login and open the parameters page.
Through web forms (with default values), users can enter and
modify a host of simulation parameters covering:

• Simulation and output: time span and time interval
• Agent properties
• Agent interaction parameters
• Initialization parameters

After the user has submitted the parameters via the web form, they
are printed out again for confirmation. Once the parameters are
confirmed by the user, the simulation is initiated.

For each run, a folder is created to store all information related to
that run including the parameters file used, the simulation
geometry generated for the simulation, and the time series output
files. The time series output files are updated after every time step
so during runtime, the latest data point is visible outside the
simulation itself. File naming conventions are crucial to maintain
organization of multiple runs as well as the environment and
agent data for each unit scale. For each run, the global and macro
scale data is written into the /Results/thisRunID folder. For the
smaller scales of each simulated tissue region, named folders are
added beneath /Results/thisRunID.

3. PATHSIM VISUALIZER
When a user wants to examine simulation output, there are a
number of options. From the web interface (or a local command
line) users can invoke scripts to process the data for common and
research tools such as Excel, TimeSearcher [Hochheiser &
Shneiderman 2004], and VRML IRVE output. The Excel and
TimeSearcher scripts simply transform the output data into a
tabular format that each application can read. These tools are
useful for a number of analytic and visualization tasks. However
they do not represent the spatial relationships of the anatomy well.
The VRML IRVE allows us to represent much more information
in a single integrated information space.

The first version of the processing scripts required numerous
scene fragments to be managed and merged and soon became a
maintenance nightmare. The second Object-Oriented version

composes scene files using lexical substitution in otherwise legal
VRML files.

3.1 Visualizer Version 1
PathSim Visualizer version 1 [Polys et al. 2004] was an early
prototype of the application server concept and consisted of a set
of Perl scripts that would read the simulation data and process it
in such a way as to write various fields of VRML PROTO
instances. This publication process could be characterized as a
‘Composition Paradigm’ where data and scene resources are
collected and merged into complete files [Polys 2005].

Once the VRML files exist in the /Results directory of the web
server, they can be viewed or downloaded. In addition, Perl
processing routines were added to generate Excel spreadsheets
and TimeSearcher files for each run. The processing scripts can
run on any currently available output, even if the run in question
has not completed. This feature is important since wall-time runs
of a week or more are common. Since the original system, we
have made significant improvements to both the visualization
processing scripts and the target VRML nodes.

The first version of the processing scripts required numerous
scene fragments to be managed and merged and soon became very
difficult to extend and maintain. In addition, we found that some
of the choices we had made concerning normalization of data
were not those that the biomedical researchers wanted to see.

3.2 Visualizer Version 2
As the simulation and the research questions matured, it became
less and less feasible to update the giant Perl scripts and integrate
new visualization mappings and widgets. Therefore, we undertook
a redesign that would be more flexible and maintainable by
encapsulating specific visualization processing tasks. The result is
a set of Object-Oriented Perl modules that enable the
transformation of simulation data into results documents
including a VRML Information-Rich Virtual Environment
(IRVE).

The need to retarget our normalization suggested that further
retargeting was likely and that it was likely to be unpredictable.
We did not wish to change the simulation, nor did we want to
engage in extensive recoding of our VRML code base. This meant
that we needed a layer between the data and the expressive
repertoire that would allow for easy retargeting.

We decided that the seven colors (which formerly represented the
seven species) would now represent seven re-targetable data
mappings. Thus, yellow would no longer necessarily represent
normalized viral population, but could be used to represent any
data series supplying a value for a simulation object at each time
step. We chose to maintain the categorical meaning of the color
across data representations. For example, the property designated
as yellow in the HUD and color maps was the same property
rendered in yellow in all other views.

The data mappings needed to be decoupled from the scene graph.
When developers needed to create a new data mapping this should
not require them to change the VRML code base. Rather, they
should check the new mapping into a function library. Associating
any particular data mapping to a color would be carried out by a
function mapping which the user could chose when assembling a
Pathsim run into a scene graph.

3.3 Visualization Runtime Components
Through the user-centered design process we established a
number of requirements:

1. Qualitative and quantitative apprehension of population
dynamics across anatomical space and shapes

2. Qualitative and quantitative apprehension of population
dynamics across scales

3. Qualitative and quantitative apprehension of population
dynamics across time

We built a set of VRML PROTO objects to realize these
requirements. In addition to those custom nodes described for
Pathsim Visualizer 1, such as Semantic Objects and MF String
and Float Sequencers, we require our information visualizations
to also render the time series as a line graph plot. Also, at our
smallest scale of tissue sections, the amount of data is prohibitive
to deliver at once; we need a way to dynamically load data into
the scenegraph. We describe our techniques, which are realized in
VRML, in the following sections.

3.3.1 Information Visualizations
In spatially-registered time series data, time-varying attributes are
registered to points or objects in space. For each spatial item, we
wanted to provide views of the agent population that could
provide multiple insights across time, space, and scale. We built a
custom node called ‘PopView’ that displays population time
series data in three ways, each shown in turn by a mouse click
selection.

Figure 3: Three visual states of a Pathsim Population View

The first PopView view is as a bar graph to represent seven
normalized values for an object at this time step. The second view
is as Text- field-value pairs of agent species in this object at this
time step. The third view is as a line graph of seven attributes for

the object over the entire time course of the simulation. Figure 3
shows agent populations from a Pathsim run; the bar graph values
shown are local populations normalized to global populations per
species, the time plot is local population. The current time step is
highlighted with a cursor. Through Plane and Cylinder Sensor
widgets on the line graph, it can be rotated (around the X and Y
axes), scaled (across X, Y, and Z), or translated (in X and Y).

There are a few notable things about our implementation of the
PopView annotation. First, PopViews have three fields to be
populated with simulation data: one for absolute numbers per
agent per time step written as an MFString, one MFFloat for
regional maxima per agent over the entire time series, and one
MFFloat for normalized values per agent per time step. The
numeric view and the line graph drawing routine use the strings in
the absolute field. This is an important point because client-side
computations in VRML JavaScript (such as the line graph
drawing routine) cannot handle Long Integers such as those
produced with Pathsim populations. Therefore, for drawing the
agent time step value line graph, we truncate population values at
the thousandth place. The bar graph uses the values in the
normalized field. A PopView annotation needs only an SFFloat
timeFraction eventIn to render the data for that particular time
step.

The second aspect is our use and reuse of another visualization
abstractions implemented as a custom PROTOs: the TextPanel {}
and the DataExtrusion{}. The TextPanel is an abstraction for
labels containing a title and a set of field-values pairs. Because the
strings are dynamic and the system cannot know beforehand how
many digital agents there will be in the simulation, the size of the
background panel of the TextPanel is dynamically estimated
based on the number of characters, style, fontStyle, and
justification of its strings. The DataExtrusion{} draws a colored
line where its MFVec3f data points [] define an Extrusion { spine
[]}. Because there may be many data points in a given line and
many lines in a scene, we use a minimal triangular crossSection
and only expose diffuse and emissive Color.

3.3.2 Multi-scale Management
Due to the large sizes of Pathsim datasets, it is not practical to
deliver them to the client at once in entirety. We needed a way to
provide “overview first, then zoom and filter for details on
demand” [Shneiderman 1996]. This necessitated dividing up the
IRVE visualization along scales that were manageable for real
time frame rates and dynamic content loading. Figure 4 shows the
implemented levels of scale for the Pathsim IRVE.

When users first load the Pathsim IRVE, they are delivered the
global population time series, the HUD and time controller, and
static anatomy such as the body and skull. As they zoom into the
oropharynx, macro-scale data (for the tonsils, blood, and lymph)
is loaded (Figure 5, Colour Plate). As they zoom further into a
specific tonsil, the micro scale visualization is loaded (Figure 6,
Colour Plate). When they select individual tissue sections,
numeric and graphical annotations are delivered (Figure 7, Colour
Plate).

As users explore the simulation, they can travel between two
scales: the micro and the macro. For each nested scale or object,
we wanted to provide awareness of the global or regional
dynamics. As they drill down, appropriate visualizations for the
scales above them are added to the HUD.

At the top level of the scene graph along with the HUD and time
controller is a section of scripts including the SceneManager
Script{}. The SceneManager is responsible for knowing what
agent map is loaded, what anatomical scale is loaded, and
managing ProximitySensors activity. In addition the
SceneManager is responsible for adding and removing ROUTEs
between the time controller and the current agent/anatomy world.
Dynamic scene loading was accomplished through two
techniques: loading files that had been written on the server and
loading content composed by the server by request on-the fly.

Figure 4: Dynamic content loading of multi-scale information
in Pathsim Visualizer

3.3.2.1 VRML File Loading
This method of scene graph management involves generating files
on the server that are later seamlessly instanced into the main
scene as the user zooms into tonsils at the macro and micro scales.
In order to keep animation time of scale synchronized to the time
controller on the HUD, we wrapped each scale of results inside a
PROTO. When the user zooms into a particular region – the
Waldeyer’s Ring or a tonsil for example- the current branch of the
‘world’ scene graph is replaced by a PROTO instance of the
smaller scale; a timeFraction ROUTE is added to connect it’s
animations to the DVD time controller in the HUD.

Currently, all interpolators and sequencers in PathSim share the
same timebasis. To reduce redundancy across many instances, we
‘baked-in’ the key [] time basis into each PROTO definition. The
values for the animation key []s are written into each run’s
PROTO files by the server system (below).

3.3.2.2 Micro-scale Details on Demand
At the micro-scale, the anatomical mesh representing tonsillar
tissue is aggregated into hexagonal units. We defined a VRML
PROTO for these units with fields for: position, name, serverID,
baseColor, keyValue[], and maxValue. The SFFloat maxval field
is used to locate a hexagonal cap above the hex unit that
represents the maximum value achieved for that agent in that
section over the course of the entire simulation. The keyValue []
is an MFFloat of an agent’s time series in that unit. A hexunit
needs only an SFFloat timeFraction eventIn to render the color
data for a timestep.

We used 7 color schemes, mapping to different combinations of
scalar RGB color values. The color scalars did not provide

satisfactory sensitivity over small gradients, so we multiplied the
scalar population value of each hexunit by 10 and mapped that to
each tissue unit’s height. While this was found to be important for
the user to distinguish relative concentrations between tissue
sections, it broke the realism of the tonsil anatomy.

The second method of dynamic delivery is used at the smallest
scale represented in PathSim output: the micro-scale unit tissue
section. At this level, users are initially shown the color heat map
and height map for a given agent population. This initial view
provides a qualitative understanding of the infection dynamics
across the tonsil tissue.

For a quantitative view at the individual section level, users must
select a tissue section just like at the larger scales. However in this
case, the data that makes up a numeric/graph annotation is not
written on the server, it is generated and delivered on the fly.
When selected, the tissue calls Browser.createVrmlFromURL()
with a string that points to a CGI script; e.g.

http://./Results/gateway/section_query.pl?ServerID+SectionID .

The ServerID parameter includes both the RunID plus an
identifier for which tonsil region the section is in; the SectionID is
a field of the section as well as the DEF name given to the
instance in the scenegraph.

The section_query.pl script receives the http request and builds a
DataObject from the appropriate results files using the serverID
and sectionID parameters it is given. After processing the data by
way of the IRVE.pm object, VRML code is returned under the
model/vrml content type. The VRML code includes an
EXTERNPROTO definition and instance of the PopView object
(Section 3.3.1), which is then added to the scene.
Section_query.pl uses all modules except the
SceneTemplateProcessor.pm.

3.4 Server Processing Components
To process simulation data for visual display, the web form
invokes the processs_master.pl script with a parameter specifying
which simulation run to process. This is the main script which
marshals all the data and processing resources on the server
machine and collects them into the /Results/thisRunID folder.
First the script copies all configuration and visualization file
resources into the results folder. These resources include a set of
VRML files such as Inlines, scene templates (or ‘skeletons’) that
will be fleshed out with data, and EXTERNPROTO code that will
be modified.

The script then invokes the various Perl Modules making up the
visual processing system (Figure 3):

• The SceneTemplateProcessor.pm object inserts
data into template files via keywords,

• The FunctionMap.pm object uses a text file to
associate keywords to functions and parameters,

• The IRVE.pm object provides the code to implement
mapping functions such as population value to color, log
ot linear scaling etc.,

• The DataObject.pm object reads in the simulation
output file and provides methods to get time series data for
any spatial item, agent population, maxima, minima, etc.

Figure 8: The Object-Oriented System for Pathsim Visualizer

Once the FunctionMap.pm, and DataObject.pm are built
and the IRVE.pm is instantiated, the process_master.pl
script runs through its list of .wrl scene skeletons calling the
SceneTemplateProcessor.pm’s process() method on each.
The process_master.pl script iteratively calls this method
for each scene skeleton file and so simply passes pointers to the
other processing objects.

3.4.1 Scene Templates
To process simulation data for visual display, the web form
invokes the processs_master.pl script with a parameter specifying
which simulation run to process. This is the main script, which
marshals all the data and processing resources on the server
machine and collects them into a single folder. These resources
include a set of VRML files such as Inlines, scene templates (or
‘skeletons’) that will be fleshed out with data, and
EXTERNPROTO fields that will be modified.

The SceneTemplateProcessor.pm module is a general-
purpose file processing script that runs through a file searching for
lines that begin with the #META_INCLUDE keyword. Following
this keyword, the tab-delimited line contains a function name that
specifies what data is to be inserted into the file at that location.
The SceneTemplateProcessor knows nothing of Pathsim or
VRML per se. Keywords in a scene skeleton only signal to the
system that some information is to be inserted in that (lexical)
location and the file saved.

The scene templates in our case are syntactically valid VRML
files. They include #META_INCLUDE statements which will be
processed to insert VRML fields populated with simulation data
as keyValue [] arrays for example. These #META_INCLUDEs
simply mark the location at which to insert some code. For
example, where a TimeSensor’s cycleInterval would be defined
for the run, a scene skeleton may contain the following line:

 #META_INCLUDE TIME_INTERVAL

The keywords following a #META_INCLUDE may signify any
kind of VRML field information to be inserted such as strings,
floats, integers, or arrays. It is important to realize that
#META_INCLUDE keywords have no meaning until they are
resolved according to some visualization function mapping. We
describe the resolution process in subsequent sections.

Scene templates give the high-level architecture for a scene. The
job of marshalling the scene templates, resolving their
#META_INCLUDEs and assembling them into a populated scene
graph is carried out by process_master.pl. The resolution of
the data to be inserted into the templates is best described from
the bottom up.

3.4.2 Encapsulating the Data
Pathsim formats its output as a collection of tab-delimited files.
The first step in providing flexible access to this data is to
encapsulate it as an object with methods that other objects can use
to access it. This is implemented in a Perl module,
DataObject.pm. When the DataObject is created, it reads
in the Pathsim run data and builds a massive array of the spatially-
registered time series data.. It provides multiple low level views of
this data. For example, it has methods for returning:

• The parameters which generated this run

• The time series for all populations in one region

• The time series for a specific agent in one region

• Global maxima for each agent

• Regional maxima for each agent

• Time charger routes

The DataObject is expected to evolve in minor ways, if at all.
It expects to find its input data in a known format. It could evolve
to accommodate population means or some other values, but
would not be expected to provide any sophisticated analysis.

3.4.3 Processing the Data
This is the job of the function library. These functions live in a
Perl module, IRVE.pm. The functions in this module consume
the data provided by the DataObject. When they are invoked
in the course of processing a scene template, they may be
provided with additional parameters. They perform mathematical
transformation of their data, and return the results as strings.
These strings are the VRML field values to be inserted into the
scene template and saved.

Typical functions in IRVE.pm process the time series’

• Total population for a given species in a given region

• Total population for a given species in a given region as a
fraction of total population for that series

• Log of total population for a given species in a given
region

• Other VRML resources such as labels, wrappers for
PROTOs and time charger routes.

Finally, the link between the #META_INCLUDEs of the scene
templates and the functions named in IRVE.pm is encapsulated
in a Perl module FunctionMap.pm which relies on the
mappings contained in a text file called fxn_map.txt. This
file contains tab-delimited data. The first field is the
#META_INCLUDE keyword from the scene template that needs to
be resolved. The second field is the IRVE.pm function to resolve
it to. Additional fields provide parameters to this function such as
agent, region, label, etc. Typical statements are:

• COLOR_1_LABEL MESSAGE EBV – This associates the
label EBV with the heat map color yellow.

• TIME_KEY TIME_KEY – This associates the time key
function provided by IRVE.pm with the TIME_KEY
#META_INCLUDE keyword.

• ADENOID_ABS ABS R1 – Here ADENOID is a
geometrical region of the visualization while R1 is the
corresponding region for Pathsim’s output data. This
associates the IRVE.pm absolute value function applied to
the R1 data with the #META_INCLUDE keyword
ADENOID_ABS.

4. MIGRATING TO A NEW DOMAIN
One of us recently joined a project at Virginia Tech that is
investigating mathematical models of space structure energetics
by way of simulation. Since the dataset was also a spatially-
registered time series, we considered how our IRVE-Serve system
could be applied to the problem. The IRVE visualization service
we developed for Pathsim had evolved into a flexible tool to
process and deliver spatially-registered time series data. Through
a number of modifications and extensions, which we describe in
this section, we were able meet the new researcher’s requirements
for visualizing spatial, abstract, and temporal information.

4.1 Requirements
The first crucial difference between Pathsim and the energetics
simulation is the spatial domain in which the simulation operates.
Instead of using shapes as the basic representation (e.g., the
regions and sections of Pathsim), the simulation evaluates
energies at each mesh point of a shape. This required changes to
our existing framework so that it could address these points and
connect animation data to them. Figure 9 shows the addition of a
new object to the system that is responsible for handling the
geometry of the simulation mesh.

Second, the time series output was formatted differently. In order
to use the new output file for our internal data structures, we had
to adapt our parsing objects to handle the new data. Lastly,
instead of having multiple integer time series (agent population
counts) associated to each location, we had a single real valued
time series (watts/meter2) at each location.

Figure 9: The Object-Oriented System for producing IRVEs
with MeshObjects

4.2 Encapsulating the New Geometry
The first change for this new application required that we
implement a way to represent the simulation domain, in this case,
the mesh. In the Pathsim visualizer, we relied on VRML produced
by the simulation for our geometry. Here, we chose to encapsulate
the geometry in a Perl object, MeshObject.pm. Our mesh is a
fixed topology: a tubular, structural support of a satellite truss.
The researchers’ MatLab code outputs a coordinate.dat file,
which describes the number of length segments and the number of
sides around the circumference of the tube.

Similar to Pathsim, many simulations may be run and varying
mesh resolutions used. In this case, resolutions are described by
the number of sampled points in the (2D) X and Y dimensions of
the tube itself. Accordingly, the MeshObject must calculate its
vertices from the coordinates.dat file and compute the
location of the tube’s mesh points. The MeshObject exposes
these to the rest of the visualization processing system through the
getPointArray() method. The points can be indexed in a number
of ways but we were most successful using quadrilateral lines or
faces. Currently we tessellate the tube using the method
getQuadFaceIndices() (Figure 10).

Figure 10: A variety of meshes from the space structure
simulation engine

4.3 Encapsulating the New Data
In addition, we had to update our DataObject to parse the new
simulation output format. This required changing the build()
method to parse a new ordering of data points into its internal data
structure. Because these time series may contain negative values,
a new method was also added to retrieve a data item’s minimal
value (over the course of the simulation).

4.4 Color Interpolation
The spatial objects in this space structure simulation are mesh
points within one Shape{}. In order to drive the Color{} node’s
per-vertex coloring from time series data, we built an
MFColorInterpolator{} using Braden McDaniel’s
ColorArrayInterpolator{} [McDaniel 1999]. This required a
corresponding new function in IRVE.pm to map both positive and
negative values to the RGB color values in an MFColor array.
Figures 11 and 12 (Color plate) shows the result of the
processing.

4.5 Information Visualizations
Our initial data sets from this simulation have time series data for
anywhere from 249 to1896 mesh points. Beyond providing some
mapping functions to per vertex color scales, we wanted to
include the other representations of the data, such as the PopView
object. We modified the PopView visualization so the graphs
could display positive and negative X and Y values. We also
locate a TouchSensor {} at each vertex point instanced with a
small transparent cube. This provides the details on demand

functionality by selection for PopView annotations to display the
three views of the vertex time series.

However, the initial results were not encouraging. Although our
current application only renders one attribute for the time series in
a PopView, when we included PopView data for all mesh points
we quickly ran into memory limitations that significantly reduced
frame rate. The solution we pursued is similar to that used at the
micro scale in Pathsim: we only deliver PopView data to the
scene when it is requested by the user. We implemented this using
Browser.createVrmlFromURL() method where the PopView data
for each mesh point is written into individual files in the
/Results/RunID/perpoint/ folder. This approach does save
processing time and the requirement of a live network, but costs
in terms of hard disk storage.

5. TECHINCAL NOTES
In the process of implementing IRVE-Serve, we discovered a
number of pragmatic limitations that are worth mentioning. First,
when we tried to use PHP as the CGI processing mechanism, we
ran out of memory when processing large data arrays. In contrast,
Perl is able to handle operations on the majority (but not all) of
our large arrays. Our current working solution is to warn users not
to run a nine month-long infection scenario while recording
simulation output every twenty (simulation time) minutes.

Many of our scene graph techniques rely on the use of SF or MF
Nodes on PROTO interface fields. Unfortunately, this is not
supported in some browsers and limits the adoption of our system
at least in the short term. Regarding node usage in PROTO
interfaces, we expect them to be copied by value into the PROTO
sub-graph instance. We hope that through clarification of the
specification, more engines will support this technique.

When using the Browser interface to dynamically deliver data (as
we did with section_query.pl), we were introduced to
another memory ceiling – that of JavaScript’s
createVrmlFromString(). Because storing strings is expensive,
some of our larger Pathsim data sets overran memory when
delivering arrays of all data points via a PopView. Therefore
depending on the number of time steps in a run, we down-sample
the data used for the DataExtrusion{} line graph. Because
there are more data points in a longer time series, this has little
visual effect.

We ran into a limitation when using the VRML colour model for
scientific visualization: RGB colour does not provide perceptually
linear palettes (as does HSV or luminance) [Ware 2000]. We
consider this problematic when trying to visually represent scalar
values in a pre-attentive form. One solution within the VRML
idiom is to implement an HSV to RGB. This could be done
server-side in our Perl function library or client-side in JavaScript
or Java.

6. CONCLUSIONS AND FUTURE WORK
This paper has documented the common web publication
framework behind the implementation of two visual simulation
applications. Both application domains, population dynamics and
the energetics of space structures, deal with spatially-registered
time series data. The challenge common to both is delivering large
quantities of information in a way that is easily comprehensible
and interactive for overview plus details on demand. Our
architecture makes no assumptions about what data or attributes

may be interesting to the end user. The mapping functions and
function library provide the means to customize and extend the
visual representation for the client.

We have described the evolution of the IRVE-Serve visualization
framework as it became more general-purpose and finally was
able to be applied to a new simulation domain. We discovered
that without good abstractions and encapsulation of functionality,
the code became difficult to maintain and extend. Furthermore,
when one of our choices for normalizing data proved not to be
what our biomedical researchers wanted, we decided to abandon
the idea that we could predict their needs. To accommodate future
choices, we decoupled geometry, expressive repertoire, data
mapping and underlying data. A simple lexical device – the
introduction of #META_INCLUDE statements into VRML
fragments turns these into scene templates whose expressive
repertoire can be coupled to different data mappings by choices
made in a function map.

This architecture allows developers to provide researchers with
additional visual/analytic tools by checking new functions into a
function library. They need not revise any other part of the
existing code base. This flexibility is important when working
with a scientific community where attention inevitably focuses on
new factors as a result of new insights and the questions they
generate.

There are many opportunities for future work. Primary among
these will to be to migrate the system to X3D where we can take
advantage of a number of exciting new visualization features
including RGBA color, Layers, Particle Systems & Shaders.
However, it is not just the improved node-set that attracts us to
X3D. The Scene Access Interface (SAI) programming interface
provides much more extensive services for X3D runtime and
scene management. For example, the pre-eminently useful method
getNode() by DEF name is not supported in VRML’s javascript
binding.

In addition we also intend to migrate our runtime Scripts to Java
for better handling of essential data-types such as Arrays, Longs,
and Doubles. The architecture of the IRVE-Serve visualization
system provides our initial answer to the requirements of
publishing spatially registered time series data.

Finally, with such a flexible framework in place, we can extend
Human Computer Interaction research for IRVEs. Polys [2006]
has investigated the roles of perceptual cues in IRVE layouts.
Continued progress involves more formal study of the use of
IRVEs as applied problem-solving environments.

7. ACKNOWLEDGMENTS
The PathSim work was supported by a Public Health Service
grant (RO1 AI062989) to David Thorley-Lawson. Thanks to
Doug Bowman and Chris North for supporting IRVE research;
Eugene Cliff and Terry Herdman for information and data sets for
the space structure simulation. Thanks to the NPS SAVAGE

library for the DVDController {} PROTO (adapted) and to
Braden McDaniel for the ColorArrayInterpolator {} PROTO.

8. REFERENCES

BOWMAN, D., NORTH, C., CHEN, J., POLYS, N., PYLA, P.,
and YILMAZ, U. Information-Rich Virtual Environments:
Theory, Tools, and Research Agenda. In: Proceedings of ACM
Virtual Reality Software and Technology (Osaka, Japan).
ACM Press, 2003.

HOCHHEISER, H., SHNEIDERMAN, B. Dynamic Query Tools
for Time Series Data Sets, Timebox Widgets for Interactive
Exploration. Information Visualization, Palgrave-Macmillan 3,
1-18. 2004.

MCDANIEL, B. ColorArrayInterpolator.
 http://www.endoframe.com/vrml/protos/index.html (accessed

2007)

POLYS, N., BOWMAN, D., NORTH, C., LAUBENBACHER,
R., DUCA, K. PathSim Visualizer: An Information-Rich
Virtual Environment for Systems Biology. In: Web3D
Symposium (Monterey, CA). ACM Press, 2004.

POLYS, N. F. Publishing Paradigms with X3D. In: Information
Visualization with SVG and X3D, ed. Vladimir. Geromenko &
Chanomei Chen, Springer-Verlag, 2005.

POLYS, N. F. Display Techniques in Information-Rich Virtual
Environments, Ph.D. Thesis. Virginia Polytechnic Institute and
State University, Blacksburg, VA.
http://scholar.lib.vt.edu/theses/available/etd-06152006-024611/
(accessed 2007).

SHAPIRO, M., DUCA, K., LEE, K., DELGADO-ECKERT, E.,
JARRAH, A.S., LAUBENBACHER, R., POLYS, N.F.,
HADINOTO, V. THORLEY-LAWSON, D. A. Virtual Look at
Epstein-Barr Virus Infection: Simulation Mechanism.
Submitted to PLOS Pathogens 2006.

SHNEIDERMAN, B. The eyes have it: A task by data type
taxonomy for information visualizations. In: Proceedings of
IEEE Visual Languages (Boulder, CO). 1996.

THORLEY-LAWSON, D. A., HADINOTO, V., LUZURIAGA,
V., JARRAH, A.S., LAUBENBACHER, R., LEE, K., POLYS,
N.F., DELGADO-ECKERT, E., SHAPIRO, M., DUCA, K. A
Virtual Look at Epstein-Barr Virus Infection: Biological
Interpretations. Submitted to PLOS Pathogens 2006.

WARE, C. Information Visualization: Perception for Design New
York, Morgan Kauffman.2000.

WEB3D, CONSORTIUM. X3D Specification, VRML
Specification. ISO http://www.web3d.org (accessed 2007).

