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ABSTRACT 

Scientists regularly confront situations where they are trying to 
understand large quantities of information, that vary over time and 
space. Analyzing such systems where structure and function are 
related is still a challenge despite the continued improvement of 
visualization tools and techniques. Given the spatial basis of many 
simulations, Information Rich Virtual Environments (IRVEs) can 
be a successful way of presenting heterogeneous information in an 
intuitively comprehensible form.  

In this paper we describe the evolution of a web-based IRVE 
delivery system for simulation data. Our framework decouples 
geometry, the underlying data set, and the expressive repertory for 
information display. This allows us to incorporate domain-specific 
information while providing for easy retargeting of the 
information displayed in that domain. As a result of these 
abstractions, we are able to continually expand and improve our 
visual mappings and components and finally apply our framework 
in a completely unrelated domain. 

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation]: Multimedia 
Information Systems – Artificial, augmented, and virtual 
realities,  

General Terms 
Design, Standardization. 

Keywords 
3D Interaction, Visual Design, Information-Rich Virtual 
Environments. 

1. INTRODUCTION 
In this paper, we describe the evolution of a visualization 
framework driven by the need to structure and represent large-
quantities of multidimensional data in a comprehensible form. 
Spatially-registered time series data is a common type of data in 
simulation where an object or point in space has some set of 
properties or attributes that change over time. To provide a real-

time integrated information space for this data, we developed an 
Information-Rich Virtual Environment (IRVE) [Bowman et al 
2003] system geared towards a centralized simulation with 
distributed access and visualization capabilities.  

Because scientists are attempting to extend existing knowledge, 
they do not always know what they are looking for. As a 
consequence, the necessary ingredients for analysis and discovery 
may not be known a priori. Visualization tools must be flexible 
enough to support opportunistic questions and hypotheses with 
little specialized modification. 

The origin of this framework we call ‘IRVE-Serve’ begins with a 
visualization front end for Pathsim, an agent-based pathogen 
simulation of Epstein-Barr virus infection [Polys et al. 2004]. The 
most recent incarnation of this framework delivers an IRVE 
adapted to an entirely different simulation engine - that of the 
energetic behavior of large space structures. The evolution of this 
framework illustrates the benefits of abstraction and encapsulation 
for spatially-registered simulations; we present a flexible tool for 
composing and delivering IRVEs across simulation domains.  

In Pathsim, seven biological species (virus, plus T-cells and B-
cells in various states) interact in the tonsils, lymph and blood. 
The tonsils were modeled as a three dimensional anatomical 
structure, while the blood and lymph were represented as abstract 
‘compartments’. The populations of the agent species vary both 
over time and how they are spatially distributed. By displaying 
these data in an IRVE, we intend to make these virtual biological 
processes intelligible to the biomedical researchers who were the 
primary clients of the simulation.   

Some requirements were easy to identify:  

• The service must be available over the web to serve 
working groups in different locations. 

• The system must give the bio-medical researchers 
sufficient control over the working simulation to be able to 
launch and monitor the runs which will help them generate 
and test hypotheses. 

• It must simultaneously insulate them from the mundane 
details of run management. 

• It must display the results of runs in a multitude of 
intuitively comprehensible manners. 

• It must give researchers direct access to the underlying 
information in order to enable further analysis in other 
formats. 

 

 



In the first version of Pathsim Visualizer (see [Polys et al. 2004]), 
we attempted to meet these requirements through user-centered 
design and usability engineering methods. We learned that neither 
the developers nor the end users know in advance what they will 
want to look at or how the will want to look at it. For example, 
how should the data be normalized? Should the per-tonsil data for 
a given species (e.g., free virus) be normalized as a fraction of 
current total free virus? As a fraction of the maximum total free 
virus? As a fraction of the maximum free virus for that tonsil?  

This dictated a search for a framework in which these data 
transformations and representations can be easily changed. Our 
solution was to decouple the problem into geometry, expressive 
repertory, the information to be displayed via this repertory, and 
the underlying data which is being studied. The data being studied 
is the output of a given run; the geometry includes the three 
dimensional layout where that simulation took place (e.g. the 
tonsils and their subdivisions).  

The information to be displayed includes such choices as the 
normalizations mentioned above, but can be far more general. For 
example, one might wish to display the log of the number of 
infected B-cells, or the ratio between the number of infected B-
cells and the number of free virus. The expressive repertory 
includes such things as the ability to map information to geometry 
color over space and time, the ability to display numbers or 
graphs of time series, etc.  

In the following sections, we describe how the original 
biomedical visualization system was extended and applied more 
generally for the transformation and instantiation of spatially-
registered time series visualizations. We begin by covering the 
background related to the original system including a brief 
explanation of the biology, the simulation, and the framework. In 
Section 3 we detail the implementation of the PathsSim Visualizer 
from its initial version to its Object-Oriented version. Section 4 
demonstrates our application of the framework to an entirely 
different domain – the energetics of space structures. Section 5 
summarized technical problems encountered and Section 6 
contains our conclusions and prospects for future work. 

2. BACKGROUND 
2.1 Biomedical Background 
Epstein-Barr Virus (EBV) infects greater than 90% of all people 
and is usually benign, though it is also responsible for acute 
infectious mononucleosis and can result in some cancers, 
particularly in transplant patients whose immune systems have 
been suppressed. The main biological systems of infection are the 
circulation and the ring of tonsilar tissue at the top of the throat - 
the Waldeyer’s ring. This ring of tissue consists of four tonsils 
and two adenoids. 

The Epstein-Barr virus is transmitted in saliva and infects naïve 
B-cells.  These infected B-cells migrate to the follicles of the 
tonsil (also known as ‘germinal centers’) where they enter a latent 
state. They can then enter the circulation. When they return from 
the circulation to the tonsilar ring, they can become lytic and die, 
producing a burst of fresh virus. The host immune system’s 
response involves the activation of naïve T-cells to regulate the 
infected B-cells. 

2.2 Pathsim Simulation 
Pathsim is a large agent-based simulation of the dynamics of 
Epstein-Barr virus infection and our immune responses to it. 
Pathsim provides a three-dimensional graph representing 
Waldeyer’s ring, i.e., the oropharynx - tonsils, the adenoids and 
their connecting tissue. In addition, two abstract compartments 
represent the lymph and the circulation. These constitute an arena 
in which seven different agent types interact. These agent types 
include free virus, the cells which become infected by the virus, 
and those cells of the immune system responsible for regulating 
the resulting infection (more detailed descriptions can be found in 
[Shapiro et al. submitted; Thorley-Lawson et al. submitted]). As 
the sizes and locations of these agent populations shift over time, 
the visualization engine attempts to tell their story.  

Pathsim is a C++ application that runs under Linux. It consists of 
an environment engine and a rule set. On launch, Pathsim reads a 
configuration file specifying the simulation parameters; these 
include things like the size of the tonsils, initial agent 
demographics, and the probability values governing agent 
interaction. Typical simulation environments involve over 
160,000 mesh points, 800,000-plus time steps, and seven different 
agent species whose populations sum to upwards of 7 million 
agents. The number of time steps is reduced for display purposes. 

The simulation first generates a hierarchical anatomical mesh 
according to the dimensions of the virtual patient. This ‘agent 
transportation network’ through the tonsils and adenoids are 
described in combinations of hexagonal units (Figure 1). Based 
on clinical averages, there are defaults for each tonsil’s surface 
area. Once the tissue is built in memory, it is output as a VRML 
file where each recorded tissue volume is DEF-ed with a unique 
ID corresponding to its ID in the simulation and located in 3D 
space [Web3D Consortium 2007]. 

 

Figure 1: A generated simulation environment from Pathsim 
(VRML) 

As the simulation time advances, agents move through the tissue 
network and interact. The smallest simulation time interval is 6 
minutes and time step output may be written at any multiple of 
this simulation time basis. At each output, the system appends the 
population values for each agent to the output files for each tonsil 
and each basic tissue unit.  



 
Figure 2: Service Architecture for Pathsim Web Interface 

Pathsim uses a naming convention of unique RunIDs for each 
execution. These RunIDs are also the names of folders inside the 
‘Results Directory’ (e.g. ../Results/RunID/) where parameters and 
output for each execution are organized and stored. Parameter 
files are tab-delimited text files that can be edited by hand or 
through a web-based form; output files are tab-delimited text.  

2.3  Pathsim Simulation Server 
This project involved the cooperation of clinicians, bio-medical 
researchers, software developers and mathematicians. These 
people were located at multiple sites. Accordingly, Pathsim was 
configured to run from a central server. Through a CGI + HTML 
front-end, remote collaborators can setup, initiate, cancel, and 
analyze a simulation on this dedicated computing resource over 
the web. Figure 2 shows the overall service architecture for the 
system. For example, researchers need to: 

• Setup and invoke a new run 
• Process output for visualization / analysis 
• Manage results (delete, zip, download) 
• View results 
• Manage server threads 
• View documentation 

The web interface insulated our collaborators from the details of 
run management. In general, significant processing of 
visualization mappings such as re-tabulation, normalization, or 
scaling of the time points is run on the server. From the client 
perspective, processed simulation data is structured and available 
through the website directory structure. An HTML frameset 
allows the user to navigate the /Results directory to examine 
existing runs and parameter files. 

To launch a run, users login and open the parameters page. 
Through web forms (with default values), users can enter and 
modify a host of simulation parameters covering: 

• Simulation and output: time span and time interval 
• Agent properties 
• Agent interaction parameters 
• Initialization parameters 

After the user has submitted the parameters via the web form, they 
are printed out again for confirmation. Once the parameters are 
confirmed by the user, the simulation is initiated.  

For each run, a folder is created to store all information related to 
that run including the parameters file used, the simulation 
geometry generated for the simulation, and the time series output 
files. The time series output files are updated after every time step 
so during runtime, the latest data point is visible outside the 
simulation itself. File naming conventions are crucial to maintain 
organization of multiple runs as well as the environment and 
agent data for each unit scale. For each run, the global and macro 
scale data is written into the /Results/thisRunID folder. For the 
smaller scales of each simulated tissue region, named folders are 
added beneath /Results/thisRunID.  

3. PATHSIM VISUALIZER 
When a user wants to examine simulation output, there are a 
number of options. From the web interface (or a local command 
line) users can invoke scripts to process the data for common and 
research tools such as Excel, TimeSearcher [Hochheiser & 
Shneiderman 2004], and VRML IRVE output. The Excel and 
TimeSearcher scripts simply transform the output data into a 
tabular format that each application can read. These tools are 
useful for a number of analytic and visualization tasks. However 
they do not represent the spatial relationships of the anatomy well. 
The VRML IRVE allows us to represent much more information 
in a single integrated information space.  

The first version of the processing scripts required numerous 
scene fragments to be managed and merged and soon became a 
maintenance nightmare. The second Object-Oriented version 



composes scene files using lexical substitution in otherwise legal 
VRML files. 

3.1 Visualizer Version 1 
PathSim Visualizer version 1 [Polys et al. 2004] was an early 
prototype of the application server concept and consisted of a set 
of Perl scripts that would read the simulation data and process it 
in such a way as to write various fields of VRML PROTO 
instances. This publication process could be characterized as a 
‘Composition Paradigm’ where data and scene resources are 
collected and merged into complete files [Polys 2005].  

Once the VRML files exist in the /Results directory of the web 
server, they can be viewed or downloaded. In addition, Perl 
processing routines were added to generate Excel spreadsheets 
and TimeSearcher files for each run. The processing scripts can 
run on any currently available output, even if the run in question 
has not completed. This feature is important since wall-time runs 
of a week or more are common. Since the original system, we 
have made significant improvements to both the visualization 
processing scripts and the target VRML nodes.  

The first version of the processing scripts required numerous 
scene fragments to be managed and merged and soon became very 
difficult to extend and maintain. In addition, we found that some 
of the choices we had made concerning normalization of data 
were not those that the biomedical researchers wanted to see.  

3.2 Visualizer Version 2 
As the simulation and the research questions matured, it became 
less and less feasible to update the giant Perl scripts and integrate 
new visualization mappings and widgets. Therefore, we undertook 
a redesign that would be more flexible and maintainable by 
encapsulating specific visualization processing tasks. The result is 
a set of Object-Oriented Perl modules that enable the 
transformation of simulation data into results documents 
including a VRML Information-Rich Virtual Environment 
(IRVE). 

The need to retarget our normalization suggested that further 
retargeting was likely and that it was likely to be unpredictable. 
We did not wish to change the simulation, nor did we want to 
engage in extensive recoding of our VRML code base. This meant 
that we needed a layer between the data and the expressive 
repertoire that would allow for easy retargeting.  

We decided that the seven colors (which formerly represented the 
seven species) would now represent seven re-targetable data 
mappings. Thus, yellow would no longer necessarily represent 
normalized viral population, but could be used to represent any 
data series supplying a value for a simulation object at each time 
step. We chose to maintain the categorical meaning of the color 
across data representations. For example, the property designated 
as yellow in the HUD and color maps was the same property 
rendered in yellow in all other views.  

The data mappings needed to be decoupled from the scene graph. 
When developers needed to create a new data mapping this should 
not require them to change the VRML code base. Rather, they 
should check the new mapping into a function library. Associating 
any particular data mapping to a color would be carried out by a 
function mapping which the user could chose when assembling a 
Pathsim run into a scene graph. 

3.3 Visualization Runtime Components  
Through the user-centered design process we established a 
number of requirements: 

1. Qualitative and quantitative apprehension of population 
dynamics across anatomical space and shapes 

2. Qualitative and quantitative apprehension of population 
dynamics across scales 

3. Qualitative and quantitative apprehension of population 
dynamics across time 

We built a set of VRML PROTO objects to realize these 
requirements. In addition to those custom nodes described for 
Pathsim Visualizer 1, such as Semantic Objects and MF String 
and Float Sequencers, we require our information visualizations 
to also render the time series as a line graph plot. Also, at our 
smallest scale of tissue sections, the amount of data is prohibitive 
to deliver at once; we need a way to dynamically load data into 
the scenegraph. We describe our techniques, which are realized in 
VRML, in the following sections. 

3.3.1 Information Visualizations 
In spatially-registered time series data, time-varying attributes are 
registered to points or objects in space. For each spatial item, we 
wanted to provide views of the agent population that could 
provide multiple insights across time, space, and scale. We built a 
custom node called ‘PopView’ that displays population time 
series data in three ways, each shown in turn by a mouse click 
selection. 

 

Figure 3: Three visual states of a Pathsim Population View 

The first PopView view is as a bar graph to represent seven 
normalized values for an object at this time step. The second view 
is as Text- field-value pairs of agent species in this object at this 
time step. The third view is as a line graph of seven attributes for 



the object over the entire time course of the simulation. Figure 3 
shows agent populations from a Pathsim run; the bar graph values 
shown are local populations normalized to global populations per 
species, the time plot is local population. The current time step is 
highlighted with a cursor. Through Plane and Cylinder Sensor 
widgets on the line graph, it can be rotated (around the X and Y 
axes), scaled (across X, Y, and Z), or translated (in X and Y). 

There are a few notable things about our implementation of the 
PopView annotation. First, PopViews have three fields to be 
populated with simulation data: one for absolute numbers per 
agent per time step written as an MFString, one MFFloat for 
regional maxima per agent over the entire time series, and one 
MFFloat for normalized values per agent per time step. The 
numeric view and the line graph drawing routine use the strings in 
the absolute field. This is an important point because client-side 
computations in VRML JavaScript (such as the line graph 
drawing routine) cannot handle Long Integers such as those 
produced with Pathsim populations. Therefore, for drawing the 
agent time step value line graph, we truncate population values at 
the thousandth place. The bar graph uses the values in the 
normalized field. A PopView annotation needs only an SFFloat 
timeFraction eventIn to render the data for that particular time 
step.   

The second aspect is our use and reuse of another visualization 
abstractions implemented as a custom PROTOs: the TextPanel {} 
and the DataExtrusion{}. The TextPanel is an abstraction for 
labels containing a title and a set of field-values pairs. Because the 
strings are dynamic and the system cannot know beforehand how 
many digital agents there will be in the simulation, the size of the 
background panel of the TextPanel is dynamically estimated 
based on the number of characters, style, fontStyle, and 
justification of its strings. The DataExtrusion{} draws a colored 
line where its MFVec3f data points [ ] define an Extrusion { spine 
[ ]}. Because there may be many data points in a given line and 
many lines in a scene, we use a minimal triangular crossSection 
and only expose diffuse and emissive Color. 

3.3.2 Multi-scale Management 
Due to the large sizes of Pathsim datasets, it is not practical to 
deliver them to the client at once in entirety. We needed a way to 
provide “overview first, then zoom and filter for details on 
demand” [Shneiderman 1996]. This necessitated dividing up the 
IRVE visualization along scales that were manageable for real 
time frame rates and dynamic content loading. Figure 4 shows the 
implemented levels of scale for the Pathsim IRVE. 

When users first load the Pathsim IRVE, they are delivered the 
global population time series, the HUD and time controller, and 
static anatomy such as the body and skull. As they zoom into the 
oropharynx, macro-scale data (for the tonsils, blood, and lymph) 
is loaded (Figure 5, Colour Plate). As they zoom further into a 
specific tonsil, the micro scale visualization is loaded (Figure 6, 
Colour Plate). When they select individual tissue sections, 
numeric and graphical annotations are delivered (Figure 7, Colour 
Plate).  

As users explore the simulation, they can travel between two 
scales: the micro and the macro. For each nested scale or object, 
we wanted to provide awareness of the global or regional 
dynamics. As they drill down, appropriate visualizations for the 
scales above them are added to the HUD. 

At the top level of the scene graph along with the HUD and time 
controller is a section of scripts including the SceneManager 
Script{}. The SceneManager is responsible for knowing what 
agent map is loaded, what anatomical scale is loaded, and 
managing ProximitySensors activity. In addition the 
SceneManager is responsible for adding and removing ROUTEs 
between the time controller and the current agent/anatomy world. 
Dynamic scene loading was accomplished through two 
techniques: loading files that had been written on the server and 
loading content composed by the server by request on-the fly. 

 

Figure 4: Dynamic content loading of multi-scale information 
in Pathsim Visualizer 

3.3.2.1 VRML File Loading 
This method of scene graph management involves generating files 
on the server that are later seamlessly instanced into the main 
scene as the user zooms into tonsils at the macro and micro scales. 
In order to keep animation time of scale synchronized to the time 
controller on the HUD, we wrapped each scale of results inside a 
PROTO. When the user zooms into a particular region – the 
Waldeyer’s Ring or a tonsil for example- the current branch of the 
‘world’ scene graph is replaced by a PROTO instance of the 
smaller scale; a timeFraction ROUTE is added to connect it’s 
animations to the DVD time controller in the HUD.  

Currently, all interpolators and sequencers in PathSim share the 
same timebasis. To reduce redundancy across many instances, we 
‘baked-in’ the key [ ] time basis into each PROTO definition. The 
values for the animation key [ ]s are written into each run’s 
PROTO files by the server system (below). 

3.3.2.2 Micro-scale Details on Demand 
At the micro-scale, the anatomical mesh representing tonsillar 
tissue is aggregated into hexagonal units. We defined a VRML 
PROTO for these units with fields for: position, name, serverID, 
baseColor, keyValue[ ], and maxValue. The SFFloat maxval field 
is used to locate a hexagonal cap above the hex unit that 
represents the maximum value achieved for that agent in that 
section over the course of the entire simulation. The keyValue [ ] 
is an MFFloat of an agent’s time series in that unit. A hexunit 
needs only an SFFloat timeFraction eventIn to render the color 
data for a timestep.   

We used 7 color schemes, mapping to different combinations of 
scalar RGB color values. The color scalars did not provide 



satisfactory sensitivity over small gradients, so we multiplied the 
scalar population value of each hexunit by 10 and mapped that to 
each tissue unit’s height. While this was found to be important for 
the user to distinguish relative concentrations between tissue 
sections, it broke the realism of the tonsil anatomy. 

The second method of dynamic delivery is used at the smallest 
scale represented in PathSim output: the micro-scale unit tissue 
section. At this level, users are initially shown the color heat map 
and height map for a given agent population. This initial view 
provides a qualitative understanding of the infection dynamics 
across the tonsil tissue.  

For a quantitative view at the individual section level, users must 
select a tissue section just like at the larger scales. However in this 
case, the data that makes up a numeric/graph annotation is not 
written on the server, it is generated and delivered on the fly. 
When selected, the tissue calls Browser.createVrmlFromURL() 
with a string that points to a CGI script; e.g.  

http://./Results/gateway/section_query.pl?ServerID+SectionID . 

The ServerID parameter includes both the RunID plus an 
identifier for which tonsil region the section is in; the SectionID is 
a field of the section as well as the DEF name given to the 
instance in the scenegraph.  

The section_query.pl script receives the http request and builds a 
DataObject from the appropriate results files using the serverID 
and sectionID parameters it is given. After processing the data by 
way of the IRVE.pm object, VRML code is returned under the 
model/vrml content type. The VRML code includes an 
EXTERNPROTO definition and instance of the PopView object 
(Section 3.3.1), which is then added to the scene. 
Section_query.pl uses all modules except the 
SceneTemplateProcessor.pm. 

3.4 Server Processing Components 
To process simulation data for visual display, the web form 
invokes the processs_master.pl script with a parameter specifying 
which simulation run to process. This is the main script which 
marshals all the data and processing resources on the server 
machine and collects them into the /Results/thisRunID folder. 
First the script copies all configuration and visualization file 
resources into the results folder. These resources include a set of 
VRML files such as Inlines, scene templates (or ‘skeletons’) that 
will be fleshed out with data, and EXTERNPROTO code that will 
be modified.  

The script then invokes the various Perl Modules making up the 
visual processing system (Figure 3):  

• The SceneTemplateProcessor.pm object inserts 
data into template files via keywords, 

• The FunctionMap.pm object uses a text file to 
associate keywords to functions and parameters, 

• The IRVE.pm object provides the code to implement 
mapping functions such as population value to color, log 
ot linear scaling etc., 

• The DataObject.pm object reads in the simulation 
output file and provides methods to get time series data for 
any spatial item, agent population, maxima, minima, etc. 

 

 
Figure 8: The Object-Oriented System for Pathsim Visualizer 

Once the FunctionMap.pm, and DataObject.pm are built 
and the IRVE.pm is instantiated, the process_master.pl 
script runs through its list of .wrl scene skeletons calling the 
SceneTemplateProcessor.pm’s process() method on each. 
The process_master.pl script iteratively calls this method 
for each scene skeleton file and so simply passes pointers to the 
other processing objects. 

3.4.1 Scene Templates 
To process simulation data for visual display, the web form 
invokes the processs_master.pl script with a parameter specifying 
which simulation run to process. This is the main script, which 
marshals all the data and processing resources on the server 
machine and collects them into a single folder. These resources 
include a set of VRML files such as Inlines, scene templates (or 
‘skeletons’) that will be fleshed out with data, and 
EXTERNPROTO fields that will be modified.   

The SceneTemplateProcessor.pm module is a general-
purpose file processing script that runs through a file searching for 
lines that begin with the #META_INCLUDE keyword. Following 
this keyword, the tab-delimited line contains a function name that 
specifies what data is to be inserted into the file at that location. 
The SceneTemplateProcessor knows nothing of Pathsim or 
VRML per se. Keywords in a scene skeleton only signal to the 
system that some information is to be inserted in that (lexical) 
location and the file saved. 

The scene templates in our case are syntactically valid VRML 
files. They include #META_INCLUDE statements which will be 
processed to insert VRML fields populated with simulation data 
as keyValue [ ] arrays for example. These #META_INCLUDEs 
simply mark the location at which to insert some code. For 
example, where a TimeSensor’s cycleInterval would be defined 
for the run, a scene skeleton may contain the following line:  

  #META_INCLUDE TIME_INTERVAL  

The keywords following a #META_INCLUDE may signify any 
kind of VRML field information to be inserted such as strings, 
floats, integers, or arrays. It is important to realize that 
#META_INCLUDE keywords have no meaning until they are 
resolved according to some visualization function mapping. We 
describe the resolution process in subsequent sections. 



Scene templates give the high-level architecture for a scene. The 
job of marshalling the scene templates, resolving their 
#META_INCLUDEs and assembling them into a populated scene 
graph is carried out by process_master.pl. The resolution of 
the data to be inserted into the templates is best described from 
the bottom up. 

3.4.2 Encapsulating the Data 
Pathsim formats its output as a collection of tab-delimited files. 
The first step in providing flexible access to this data is to 
encapsulate it as an object with methods that other objects can use 
to access it. This is implemented in a Perl module, 
DataObject.pm. When the DataObject is created, it reads 
in the Pathsim run data and builds a massive array of the spatially-
registered time series data.. It provides multiple low level views of 
this data. For example, it has methods for returning:  

• The parameters which generated this run 

• The time series for all populations in one region 

• The time series for a specific agent in one region 

• Global maxima for each agent 

• Regional maxima for each agent 

• Time charger routes 

The DataObject is expected to evolve in minor ways, if at all. 
It expects to find its input data in a known format. It could evolve 
to accommodate population means or some other values, but 
would not be expected to provide any sophisticated analysis. 

3.4.3 Processing the Data 
This is the job of the function library. These functions live in a 
Perl module, IRVE.pm. The functions in this module consume 
the data provided by the DataObject. When they are invoked 
in the course of processing a scene template, they may be 
provided with additional parameters. They perform mathematical 
transformation of their data, and return the results as strings. 
These strings are the VRML field values to be inserted into the 
scene template and saved. 

Typical functions in IRVE.pm process the time series’ 

• Total population for a given species in a given region 

• Total population for a given species in a given region as a 
fraction of total population for that series 

• Log of total population for a given species in a given 
region 

• Other VRML resources such as labels, wrappers for 
PROTOs and time charger routes. 

Finally, the link between the #META_INCLUDEs of the scene 
templates and the functions named in IRVE.pm is encapsulated 
in a Perl module FunctionMap.pm which relies on the 
mappings contained in a text file called fxn_map.txt.  This 
file contains tab-delimited data. The first field is the 
#META_INCLUDE keyword from the scene template that needs to 
be resolved. The second field is the IRVE.pm function to resolve 
it to. Additional fields provide parameters to this function such as 
agent, region, label, etc. Typical statements are: 

• COLOR_1_LABEL MESSAGE EBV – This associates the 
label EBV with the heat map color yellow. 

• TIME_KEY TIME_KEY – This associates the time key 
function provided by IRVE.pm with the TIME_KEY 
#META_INCLUDE keyword. 

• ADENOID_ABS ABS R1 – Here ADENOID is a 
geometrical region of the visualization while R1 is the 
corresponding region for Pathsim’s output data. This 
associates the IRVE.pm absolute value function applied to 
the R1 data with the #META_INCLUDE keyword 
ADENOID_ABS. 

4. MIGRATING TO A NEW DOMAIN 
One of us recently joined a project at Virginia Tech that is 
investigating mathematical models of space structure energetics 
by way of simulation. Since the dataset was also a spatially-
registered time series, we considered how our IRVE-Serve system 
could be applied to the problem. The IRVE visualization service 
we developed for Pathsim had evolved into a flexible tool to 
process and deliver spatially-registered time series data. Through 
a number of modifications and extensions, which we describe in 
this section, we were able meet the new researcher’s requirements 
for visualizing spatial, abstract, and temporal information. 

4.1 Requirements 
The first crucial difference between Pathsim and the energetics 
simulation is the spatial domain in which the simulation operates. 
Instead of using shapes as the basic representation (e.g., the 
regions and sections of Pathsim), the simulation evaluates 
energies at each mesh point of a shape. This required changes to 
our existing framework so that it could address these points and 
connect animation data to them. Figure 9 shows the addition of a 
new object to the system that is responsible for handling the 
geometry of the simulation mesh. 

Second, the time series output was formatted differently. In order 
to use the new output file for our internal data structures, we had 
to adapt our parsing objects to handle the new data. Lastly, 
instead of having multiple integer time series (agent population 
counts) associated to each location, we had a single real valued 
time series (watts/meter2) at each location. 

 

Figure 9: The Object-Oriented System for producing IRVEs 
with MeshObjects 



4.2 Encapsulating the New Geometry 
The first change for this new application required that we 
implement a way to represent the simulation domain, in this case, 
the mesh. In the Pathsim visualizer, we relied on VRML produced 
by the simulation for our geometry. Here, we chose to encapsulate 
the geometry in a Perl object, MeshObject.pm. Our mesh is a 
fixed topology: a tubular, structural support of a satellite truss. 
The researchers’ MatLab code outputs a coordinate.dat file, 
which describes the number of length segments and the number of 
sides around the circumference of the tube.  

Similar to Pathsim, many simulations may be run and varying 
mesh resolutions used. In this case, resolutions are described by 
the number of sampled points in the (2D) X and Y dimensions of 
the tube itself. Accordingly, the MeshObject must calculate its 
vertices from the coordinates.dat file and compute the 
location of the tube’s mesh points. The MeshObject exposes 
these to the rest of the visualization processing system through the 
getPointArray() method. The points can be indexed in a number 
of ways but we were most successful using quadrilateral lines or 
faces. Currently we tessellate the tube using the method 
getQuadFaceIndices() (Figure 10). 

 

Figure 10: A variety of meshes from the space structure 
simulation engine 

4.3 Encapsulating the New Data 
In addition, we had to update our DataObject to parse the new 
simulation output format. This required changing the build() 
method to parse a new ordering of data points into its internal data 
structure. Because these time series may contain negative values, 
a new method was also added to retrieve a data item’s minimal 
value (over the course of the simulation). 

4.4 Color Interpolation 
The spatial objects in this space structure simulation are mesh 
points within one Shape{}. In order to drive the Color{} node’s 
per-vertex coloring from time series data, we built an 
MFColorInterpolator{} using Braden McDaniel’s 
ColorArrayInterpolator{} [McDaniel 1999]. This required a 
corresponding new function in IRVE.pm to map both positive and 
negative values to the RGB color values in an MFColor array. 
Figures 11 and 12 (Color plate) shows the result of the 
processing. 

4.5 Information Visualizations  
Our initial data sets from this simulation have time series data for 
anywhere from 249 to1896 mesh points. Beyond providing some 
mapping functions to per vertex color scales, we wanted to 
include the other representations of the data, such as the PopView 
object. We modified the PopView visualization so the graphs 
could display positive and negative X and Y values. We also 
locate a TouchSensor {} at each vertex point instanced with a 
small transparent cube. This provides the details on demand 

functionality by selection for PopView annotations to display the 
three views of the vertex time series. 

However, the initial results were not encouraging. Although our 
current application only renders one attribute for the time series in 
a PopView, when we included PopView data for all mesh points 
we quickly ran into memory limitations that significantly reduced 
frame rate. The solution we pursued is similar to that used at the 
micro scale in Pathsim: we only deliver PopView data to the 
scene when it is requested by the user. We implemented this using 
Browser.createVrmlFromURL() method where the PopView data 
for each mesh point is written into individual files in the 
/Results/RunID/perpoint/ folder. This approach does save 
processing time and the requirement of a live network, but costs 
in terms of hard disk storage.  

5. TECHINCAL NOTES 
In the process of implementing IRVE-Serve, we discovered a 
number of pragmatic limitations that are worth mentioning. First, 
when we tried to use PHP as the CGI processing mechanism, we 
ran out of memory when processing large data arrays. In contrast, 
Perl is able to handle operations on the majority (but not all) of 
our large arrays. Our current working solution is to warn users not 
to run a nine month-long infection scenario while recording 
simulation output every twenty (simulation time) minutes.  

Many of our scene graph techniques rely on the use of SF or MF 
Nodes on PROTO interface fields. Unfortunately, this is not 
supported in some browsers and limits the adoption of our system 
at least in the short term. Regarding node usage in PROTO 
interfaces, we expect them to be copied by value into the PROTO 
sub-graph instance. We hope that through clarification of the 
specification, more engines will support this technique.  

When using the Browser interface to dynamically deliver data (as 
we did with section_query.pl), we were introduced to 
another memory ceiling – that of JavaScript’s 
createVrmlFromString(). Because storing strings is expensive, 
some of our larger Pathsim data sets overran memory when 
delivering arrays of all data points via a PopView. Therefore 
depending on the number of time steps in a run, we down-sample 
the data used for the DataExtrusion{} line graph. Because 
there are more data points in a longer time series, this has little 
visual effect. 

We ran into a limitation when using the VRML colour model for 
scientific visualization: RGB colour does not provide perceptually 
linear palettes (as does HSV or luminance) [Ware 2000]. We 
consider this problematic when trying to visually represent scalar 
values in a pre-attentive form. One solution within the VRML 
idiom is to implement an HSV to RGB. This could be done 
server-side in our Perl function library or client-side in JavaScript 
or Java. 

6. CONCLUSIONS AND FUTURE WORK 
This paper has documented the common web publication 
framework behind the implementation of two visual simulation 
applications. Both application domains, population dynamics and 
the energetics of space structures, deal with spatially-registered 
time series data. The challenge common to both is delivering large 
quantities of information in a way that is easily comprehensible 
and interactive for overview plus details on demand. Our 
architecture makes no assumptions about what data or attributes 



may be interesting to the end user. The mapping functions and 
function library provide the means to customize and extend the 
visual representation for the client. 

We have described the evolution of the IRVE-Serve visualization 
framework as it became more general-purpose and finally was 
able to be applied to a new simulation domain. We discovered 
that without good abstractions and encapsulation of functionality, 
the code became difficult to maintain and extend. Furthermore, 
when one of our choices for normalizing data proved not to be 
what our biomedical researchers wanted, we decided to abandon 
the idea that we could predict their needs. To accommodate future 
choices, we decoupled geometry, expressive repertoire, data 
mapping and underlying data. A simple lexical device – the 
introduction of #META_INCLUDE statements into VRML 
fragments turns these into scene templates whose expressive 
repertoire can be coupled to different data mappings by choices 
made in a function map. 

This architecture allows developers to provide researchers with 
additional visual/analytic tools by checking new functions into a 
function library. They need not revise any other part of the 
existing code base. This flexibility is important when working 
with a scientific community where attention inevitably focuses on 
new factors as a result of new insights and the questions they 
generate.  

There are many opportunities for future work. Primary among 
these will to be to migrate the system to X3D where we can take 
advantage of a number of exciting new visualization features 
including RGBA color, Layers, Particle Systems & Shaders. 
However, it is not just the improved node-set that attracts us to 
X3D. The Scene Access Interface (SAI) programming interface 
provides much more extensive services for X3D runtime and 
scene management. For example, the pre-eminently useful method 
getNode() by DEF name is not supported in VRML’s javascript 
binding. 

In addition we also intend to migrate our runtime Scripts to Java 
for better handling of essential data-types such as Arrays, Longs, 
and Doubles. The architecture of the IRVE-Serve visualization 
system provides our initial answer to the requirements of 
publishing spatially registered time series data. 

Finally, with such a flexible framework in place, we can extend 
Human Computer Interaction research for IRVEs. Polys [2006] 
has investigated the roles of perceptual cues in IRVE layouts. 
Continued progress involves more formal study of the use of 
IRVEs as applied problem-solving environments.  
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