IRVE-Serve: A Visualization Framework for
Spatially-Registered Time Series Data

Nicholas F. Polysl
npolys@vt.edu

Michael Shapiro2
michael.shapiro@tufts.edu

Karen Duca®
karen.duca@gmail.com

! Virginia Polytechnic Institute and State University
Z Department of Pathology, Tufts University School of Medicine
® Kwame Nkrumah University for Science and Technology; Kumasi, GH.

ABSTRACT

Scientists regularly confront situations where tlaeg trying to
understand large quantities of information, thayaver time and
space. Analyzing such systems where structure anctibn are
related is still a challenge despite the continimgrovement of
visualization tools and techniques. Given the gpatisis of many
simulations, Information Rich Virtual Environmer(ifRVES) can
be a successful way of presenting heterogeneoasmafion in an
intuitively comprehensible form.

In this paper we describe the evolution of a webedalRVE
delivery system for simulation data. Our framewald&couples
geometry, the underlying data set, and the expesspertory for
information display. This allows us to incorpordtmain-specific
information while providing for easy retargeting dhe
information displayed in that domain. As a resuft tbese
abstractions, we are able to continually expand iematove our
visual mappings and components and finally applyfamework
in a completely unrelated domain.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems — Artificial, augmented, and virtual
realities,

General Terms
Design, Standardization.

Keywords
3D Interaction,
Environments.

Visual Design, Information-Rich Virtual

1. INTRODUCTION

In this paper, we describe the evolution of a \igaton
framework driven by the need to structure and sgre large-
quantities of multidimensional data in a compreft@asform.
Spatially-registered time series data is a comnype of data in
simulation where an object or point in space havesset of
properties or attributes that change over timepfavide a real-

time integrated information space for this data,deeeloped an
Information-Rich Virtual Environment (IRVE) [Bowmaet al

2003] system geared towards a centralized simulatioth

distributed access and visualization capabilities.

Because scientists are attempting to extend egisimowledge,
they do not always know what they are looking fés a
consequence, the necessary ingredients for analydisliscovery
may not be known a priori. Visualization tools mbst flexible
enough to support opportunistic questions and Hgsas with
little specialized modification.

The origin of this framework we call ‘IRVE-Serveédgins with a
visualization front end for Pathsim, an agent-bapathogen

simulation of Epstein-Barr virus infection [Polys ét 2004]. The

most recent incarnation of this framework delivens IRVE

adapted to an entirely different simulation enginthat of the

energetic behavior of large space structures. Vbiigon of this

framework illustrates the benefits of abstractiod ancapsulation
for spatially-registered simulations; we preseffiegible tool for

composing and delivering IRVEs across simulatiomdins.

In Pathsim, seven biological species (virus, plusells and B-
cells in various states) interact in the tonsiysnph and blood.
The tonsils were modeled as a three dimensionatoamieal
structure, while the blood and lymph were represgtts abstract
‘compartments’. The populations of the agent sgeemy both
over time and how they are spatially distributeg. dsplaying
these data in an IRVE, we intend to make thesealittiological
processes intelligible to the biomedical reseachéro were the
primary clients of the simulation.

Some requirements were easy to identify:

¢ The service must be available over the web to serve
working groups in different locations.

e The system must give the bio-medical researchers
sufficient control over the working simulation te Bble to
launch and monitor the runs which will help themegmate
and test hypotheses.

e It must simultaneously insulate them from the mureda
details of run management.

e It must display the results of runs in a multitudé
intuitively comprehensible manners.

e It must give researchers direct access to the Uyiadgr
information in order to enable further analysisadther
formats.

In the first version of Pathsim Visualizer (seeljRcet al. 2004]),
we attempted to meet these requirements throughces¢ered
design and usability engineering methods. We leathat neither
the developers nor the end users know in advanee thiky will

want to look at or how the will want to look at For example,
how should the data be normalized? Should theqresiitdata for
a given species (e.g., free virus) be normalized d&saction of
current total free virus? As a fraction of the nmaxin total free
virus? As a fraction of the maximum free virus fioat tonsil?

This dictated a search for a framework in whichsthedata
transformations and representations can be eadsdpged. Our
solution was to decouple the problem into geomeadrpressive
repertory, the information to be displayed via ttepertory, and
the underlying data which is being studied. Thedeting studied
is the output of a given run; the geometry includies three
dimensional layout where that simulation took pldeeg. the
tonsils and their subdivisions).

The information to be displayed includes such ob®ias the
normalizations mentioned above, but can be far rgereeral. For
example, one might wish to display the log of thenber of
infected B-cells, or the ratio between the numbfenfected B-
cells and the number of free virus. The expressimertory
includes such things as the ability to map infoiorato geometry
color over space and time, the ability to displaynbers or
graphs of time series, etc.

In the following sections, we describe how the ioi@g
biomedical visualization system was extended arplieg more
generally for the transformation and instantiatioh spatially-
registered time series visualizations. We begincbyering the
background related to the original system includiagbrief
explanation of the biology, the simulation, and ftfenework. In
Section 3 we detail the implementation of the P3itsVisualizer
from its initial version to its Object-Oriented g@n. Section 4
demonstrates our application of the framework to emirely
different domain — the energetics of space strestuBection 5
summarized technical problems encountered and d®ed
contains our conclusions and prospects for futurekw

2. BACKGROUND

2.1 Biomedical Background

Epstein-Barr Virus (EBV) infects greater than 90%alh people
and is usually benign, though it is also respomesifdr acute
infectious mononucleosis and can result in someceran
particularly in transplant patients whose immunstays have
been suppressed. The main biological systems etioh are the
circulation and the ring of tonsilar tissue at thp of the throat -
the Waldeyer’s ring. This ring of tissue consisfsfaur tonsils
and two adenoids.

The Epstein-Barr virus is transmitted in saliva anfé:cts naive
B-cells. These infected B-cells migrate to thelidtds of the
tonsil (also known as ‘germinal centers’) whereythater a latent
state. They can then enter the circulation. Whey tieturn from
the circulation to the tonsilar ring, they can bmeadlytic and die,
producing a burst of fresh virus. The host immurystesn’s
response involves the activation of naive T-callgdgulate the
infected B-cells.

2.2 Pathsim Simulation

Pathsim is a large agent-based simulation of theamhjcs of
Epstein-Barr virus infection and our immune resgsnso it.
Pathsim provides a three-dimensional graph reptiesen
Waldeyer’s ring, i.e., the oropharynx - tonsilse thdenoids and
their connecting tissue. In addition, two abstresmpartments
represent the lymph and the circulation. Thesetdates an arena
in which seven different agent types interact. hagent types
include free virus, the cells which become infedbgdthe virus,
and those cells of the immune system responsilvleefgulating
the resulting infection (more detailed descripticas be found in
[Shapiro et al. submitted; Thorley-Lawson et abrsitted]). As
the sizes and locations of these agent populasbifsover time,
the visualization engine attempts to tell theirgto

Pathsim is a C++ application that runs under Lidtonsists of
an environment engine and a rule set. On laundhsPareads a
configuration file specifying the simulation paraers; these
include things like the size of the tonsils, iritimgent
demographics, and the probability values governiagent
interaction. Typical simulation environments inwelvover
160,000 mesh points, 800,000-plus time steps, enehsdifferent
agent species whose populations sum to upwards willion

agents. The number of time steps is reduced fptaligpurposes.

The simulation first generates a hierarchical amatal mesh
according to the dimensions of the virtual pati€ftis ‘agent
transportation network’ through the tonsils and redeés are
described in combinations of hexagonal units (Fégl). Based
on clinical averages, there are defaults for eactsifs surface
area. Once the tissue is built in memory, it ispatitas a VRML
file where each recorded tissue volume is DEF-dti wiunique
ID corresponding to its ID in the simulation andadted in 3D
space [Web3D Consortium 2007].

Tonsil surface

Epithelium ==

Efferent Lymphatic

Figure 1: A generated simulation environment from Pathsim
(VRML)

As the simulation time advances, agents move thrdhg tissue
network and interact. The smallest simulation timerval is 6
minutes and time step output may be written at majtiple of
this simulation time basis. At each output, theeysappends the
population values for each agent to the outpus fibe each tonsil
and each basic tissue unit.

Web Interface

SceneTemplates

| Set Parameters || Start Execution | | Request Processing | | Browsle IRVE || LDownIomLI |
F F A
Server Directory
Simulation Output Multi-scale -
Hoe
Macro Time Series i lRw.E Eian
Micro Time Series i
Simulation G TimeSearcher
. | imulation Geometry ‘ VRML Hanie
/Results/RunID * PROTOS i
Server backend
Y y ¥
Pathsim
Executable QO Perl
Modules
VRIML ISR

Figure 2: Service Architecturefor Pathsim Web Interface

Pathsim uses a naming convention of unique Runtidsefich
execution. These RunIDs are also the names ofr®idside the
‘Results Directory’ (e.g. ../Results/RuniD/) wherarameters and
output for each execution are organized and stdPeslameter
files are tab-delimited text files that can be edity hand or
through a web-based form; output files are tabrdiedid text.

2.3 Pathsm Simulation Server

This project involved the cooperation of cliniciarso-medical
researchers, software developers and mathematici@hese
people were located at multiple sites. Accordinghathsim was
configured to run from a central server. Throug8@ + HTML

front-end, remote collaborators can setup, initiatencel, and
analyze a simulation on this dedicated computirepuece over
the web. Figure 2 shows the overall service archite for the
system. For example, researchers need to:

e Setup and invoke a new run

e Process output for visualization / analysis
« Manage results (delete, zip, download)

* View results

* Manage server threads

* View documentation

The web interface insulated our collaborators fithm details of
run management. In general, significant processing
visualization mappings such as re-tabulation, nématdon, or
scaling of the time points is run on the serveonfithe client
perspective, processed simulation data is strudtanel available
through the website directory structure. An HTMlarfreset
allows the user to navigate the /Results directmryexamine
existing runs and parameter files.

To launch a run, users login and open the paramgiage.
Through web forms (with default values), users esmter and
modify a host of simulation parameters covering:

e Simulation and output: time span and time interval

* Agent properties

¢ Agentinteraction parameters

« Initialization parameters
After the user has submitted the parameters viaveieform, they
are printed out again for confirmation. Once theapeeters are
confirmed by the user, the simulation is initiated.

For each run, a folder is created to store allrimfttion related to
that run including the parameters file used, thmugtion

geometry generated for the simulation, and the 8erées output
files. The time series output files are updatedradizery time step
so during runtime, the latest data point is visibletside the
simulation itself. File naming conventions are ¢éalito maintain

organization of multiple runs as well as the enwvinent and
agent data for each unit scale. For each run, Ititeaband macro
scale data is written into the /Results/thisRunéldér. For the
smaller scales of each simulated tissue regionedai@iders are
added beneath /Results/thisRunlID.

3. PATHSIM VISUALIZER

When a user wants to examine simulation outputrettae a
number of options. From the web interface (or al@wmmand
line) users can invoke scripts to process the fdl@taommon and
research tools such as Excel, TimeSearcher [Hosbhe&
Shneiderman 2004], and VRML IRVE output. The Exeed
TimeSearcher scripts simply transform the outputadato a
tabular format that each application can read. &hesls are
useful for a number of analytic and visualizatiasks. However
they do not represent the spatial relationshigh®fnatomy well.
The VRML IRVE allows us to represent much more infation
in a single integrated information space.

The first version of the processing scripts reqlirmimerous
scene fragments to be managed and merged and sgcamé a
maintenance nightmare. The second Object-Orientersion

composes scene files using lexical substitutiontirerwise legal
VRML files.

3.1 Visualizer Version 1

PathSim Visualizer version 1 [Polys et al. 2004]svamn early
prototype of the application server concept andsisted of a set
of Perl scripts that would read the simulation datd process it
in such a way as to write various fields of VRML ®@RO

instances. This publication process could be chetiaed as a
‘Composition Paradigm’ where data and scene ressuare
collected and merged into complete files [Polys500

Once the VRML files exist in the /Results directardfythe web
server, they can be viewed or downloaded. In aulditiPerl

processing routines were added to generate Excebdgheets
and TimeSearcher files for each run. The processamigpts can
run on any currently available output, even if tha in question
has not completed. This feature is important simal-time runs
of a week or more are common. Since the originatesy, we
have made significant improvements to both the aligation

processing scripts and the target VRML nodes.

The first version of the processing scripts requireimerous
scene fragments to be managed and merged and scamé very
difficult to extend and maintain. In addition, weuhd that some
of the choices we had made concerning normalizatibelata
were not those that the biomedical researcherseadntsee.

3.2 Visualizer Version 2

As the simulation and the research questions nturdecame
less and less feasible to update the giant Pegts@nd integrate
new visualization mappings and widgets. Therefaeundertook
a redesign that would be more flexible and maimtaie by

encapsulating specific visualization processingsashe result is
a set of Object-Oriented Perl modules that enalie

transformation of simulation data into results duoeats

including a VRML Information-Rich Virtual Environme

(IRVE).

The need to retarget our normalization suggested filwther
retargeting was likely and that it was likely to tepredictable.
We did not wish to change the simulation, nor did want to
engage in extensive recoding of our VRML code b@ikés meant
that we needed a layer between the data and theessiye
repertoire that would allow for easy retargeting.

We decided that the seven colors (which formenyresented the
seven species) would now represent seven re-thigetdata
mappings. Thus, yellow would no longer necessa®lgresent
normalized viral population, but could be used épresent any
data series supplying a value for a simulation atbée¢ each time
step. We chose to maintain the categorical meaoirtye color

across data representations. For example, the fyogesignated
as yellow in the HUD and color maps was the sanopgity

rendered in yellow in all other views.

The data mappings needed to be decoupled froncéregraph.
When developers needed to create a new data mahyisrghould
not require them to change the VRML code base. drathey
should check the new mapping into a function lipréssociating
any particular data mapping to a color would beiedrout by a
function mapping which the user could chose wheermabling a
Pathsim run into a scene graph.

—

3.3 Visualization Runtime Components
Through the user-centered design process we ediablia
number of requirements:

1. Qualitative and quantitative apprehension of ytaton
dynamics across anatomical space and shapes

2. Qualitative and quantitative apprehension of ybagion
dynamics across scales

3. Qualitative and quantitative apprehension of ybagion
dynamics across time

We built a set of VRML PROTO objects to realize e
requirements. In addition to those custom noderiesi for

Pathsim Visualizer 1, such as Semantic Objects MRdString

and Float Sequencers, we require our informaticoalizations
to also render the time series as a line graph plisb, at our
smallest scale of tissue sections, the amount taf idgprohibitive

to deliver at once; we need a way to dynamicalbdl@ata into
the scenegraph. We describe our techniques, winichealized in
VRML, in the following sections.

3.3.1 Information Visualizations

In spatially-registered time series data, time-wapattributes are
registered to points or objects in space. For eaectial item, we
wanted to provide views of the agent populationt thauld

provide multiple insights across time, space, arades We built a
custom node called ‘PopView' that displays popuwlatitime

series data in three ways, each shown in turn byase click
selection.

Adenoid
EBV:

naive B:
latent B:
lytic B:
naive T:
latent CTL:
Iytic CTL:

Figure 3: Threevisual states of a Pathsim Population View

The first PopView view is as a bar graph to repmesgeven
normalized values for an object at this time s second view
is as Text- field-value pairs of agent specieshis bbject at this
time step. The third view is as a line graph ofeseattributes for

the object over the entire time course of the satioh. Figure 3
shows agent populations from a Pathsim run; theytzgh values
shown are local populations normalized to globalwations per
species, the time plot is local population. Therentr time step is
highlighted with a cursor. Through Plane and Cyin&ensor
widgets on the line graph, it can be rotated (adothre X and Y
axes), scaled (across X, Y, and Z), or translated @nd Y).

There are a few notable things about our implentiemtaof the
PopView annotation. First, PopViews have threedfieto be
populated with simulation data: one for absolutenbers per
agent per time step written as an MFString, one M&for
regional maxima per agent over the entire timeeserand one
MFFloat for normalized values per agent per timepstThe
numeric view and the line graph drawing routine thestrings in
the absolute field. This is an important point hessaclient-side
computations in VRML JavaScript (such as the linapb
drawing routine) cannot handle Long Integers sushtriose
produced with Pathsim populations. Therefore, foawdng the
agent time step value line graph, we truncate @djoul values at
the thousandth place. The bar graph uses the vatugbe
normalized field. A PopView annotation needs onty $FFloat
timeFraction eventin to render the data for thatigpaar time
step.

The second aspect is our use and reuse of anathalization
abstractions implemented as a custom PROTOs: tkiaeel {}
and the DataExtrusion{}. The TextPanel is an alosiva for

labels containing a title and a set of field-valpegs. Because the

strings are dynamic and the system cannot knowéleémd how
many digital agents there will be in the simulatithre size of the
background panel of the TextPanel is dynamicalltimeged
based on the number of characters, style, fontStged
justification of its strings. The DataExtrusion{yalvs a colored
line where its MFVec3f data points [] define antifggion { spine
[I}. Because there may be many data points invergiine and
many lines in a scene, we use a minimal triangclassSection
and only expose diffuse and emissive Color.

3.3.2 Multi-scale Management

Due to the large sizes of Pathsim datasets, ibtspractical to

deliver them to the client at once in entirety. Weeded a way to
provide “overview first, then zoom and filter foretdils on

demand” [Shneiderman 1996]. This necessitated idigidip the

IRVE visualization along scales that were managedbi real

time frame rates and dynamic content loading. Eigushows the
implemented levels of scale for the Pathsim IRVE.

When users first load the Pathsim IRVE, they arkveled the
global population time series, the HUD and timetoalter, and
static anatomy such as the body and skull. As #oeyn into the
oropharynx, macro-scale data (for the tonsils, #jemnd lymph)
is loaded (Figure 5, Colour Plate). As they zoomihier into a
specific tonsil, the micro scale visualization éadied (Figure 6,
Colour Plate). When they select individual tissuecti®ns,
numeric and graphical annotations are delivereguei 7, Colour
Plate).

As users explore the simulation, they can traveiveen two
scales: the micro and the macro. For each nestdd st object,
we wanted to provide awareness of the global oroned
dynamics. As they drill down, appropriate visudii@as for the
scales above them are added to the HUD.

At the top level of the scene graph along with lt¢D and time
controller is a section of scripts including theeBeManager
Script{}. The SceneManager is responsible for kmayiwhat
agent map is loaded, what anatomical scale is thadad
managing ProximitySensors activity. In addition the
SceneManager is responsible for adding and remoRIDYTES
between the time controller and the current ageattany world.
Dynamic scene loading was accomplished through two
techniques: loading files that had been writtentlos server and
loading content composed by the server by request®fly.

+ HUD controllers & Global

Macro-scale T
time clock

+Global information
I_I {normalized & absolute)

Macro-scale - * Regional Information
details on demand b, (normalized & absolute)

Micro-scale = Sub-regional information

‘v.?

fnormalized)

LI + Sub-regional information

Micro-scale

details on demand {absolute)

Figure 4: Dynamic content loading of multi-scale infor mation
in Pathsim Visualizer

3.3.2.1 VRML File Loading

This method of scene graph management involvesging files

on the server that are later seamlessly instanctd the main
scene as the user zooms into tonsils at the macronécro scales.
In order to keep animation time of scale synchreaito the time
controller on the HUD, we wrapped each scale dafltesnside a
PROTO. When the user zooms into a particular regiothe

Waldeyer’'s Ring or a tonsil for example- the cutreranch of the
‘world’ scene graph is replaced by a PROTO instaotdhe

smaller scale; a timeFraction ROUTE is added toneot it's

animations to the DVD time controller in the HUD.

Currently, all interpolators and sequencers in Sathshare the
same timebasis. To reduce redundancy across matanaes, we
‘baked-in’ the key [] time basis into each PROT@inition. The
values for the animation key []s are written irgach run’s
PROTO files by the server system (below).

3.3.2.2 Micro-scale Details on Demand

At the micro-scale, the anatomical mesh represgntimsillar
tissue is aggregated into hexagonal units. We défima VRML
PROTO for these units with fields for: position,nma serverlD,
baseColor, keyValue[], and maxValue. The SFFloaxval field
is used to locate a hexagonal cap above the hek that
represents the maximum value achieved for that tagenhat
section over the course of the entire simulatidme KeyValue []
is an MFFloat of an agent’'s time series in thatt.uAi hexunit
needs only an SFFloat timeFraction eventin to reride color
data for a timestep.

We used 7 color schemes, mapping to different coatluns of
scalar RGB color values. The color scalars did paivide

satisfactory sensitivity over small gradients, s® multiplied the
scalar population value of each hexunit by 10 aagped that to
each tissue unit's height. While this was foundéomportant for
the user to distinguish relative concentrationsween tissue
sections, it broke the realism of the tonsil angtom

The second method of dynamic delivery is used atstmallest
scale represented in PathSim output: the micraesgalt tissue
section. At this level, users are initially shovne tcolor heat map
and height map for a given agent population. Thisal view
provides a qualitative understanding of the infattdynamics
across the tonsil tissue.

For a quantitative view at the individual sectiendl, users must
select a tissue section just like at the largelescélowever in this
case, the data that makes up a numeric/graph diumoia not
written on the server, it is generated and delivena the fly.
When selected, the tissue calls Browser.createMomBRL()
with a string that points to a CGI script; e.qg.

http://./Results/gateway/section_guery.pl?Serve8Bstion|D.

The ServerlD parameter includes both the RunID phms
identifier for which tonsil region the section g the SectionID is
a field of the section as well as the DEF name rgit@ the
instance in the scenegraph.

The section_query.pl script receives the http retjaad builds a
DataObject from the appropriate results files uding serverlD
and sectionID parameters it is given. After procegsshe data by
way of the IRVE.pm object, VRML code is returnedden the
model/vrml content type. The VRML code includes an
EXTERNPROTO definition and instance of the PopVielject
(Section 3.3.1), which is then added to
Section_query.pl uses all modules
SceneTemplateProcessor.pm.

except the

3.4 Server Processing Components

To process simulation data for visual display, theb form
invokes the processs_master.pl script with a paemspecifying
which simulation run to process. This is the mainps which

marshals all the data and processing resourceshensérver
machine and collects them into the /Results/thisBufolder.

First the script copies all configuration and vigeation file

resources into the results folder. These resountbsde a set of
VRML files such as Inlines, scene templates (oefstons’) that
will be fleshed out with data, and EXTERNPROTO cdtfukt will

be modified.

The script then invokes the various Perl Module&intaup the
visual processing system (Figure 3):

e The SceneTenpl at eProcessor. pm object inserts
data into template files via keywords,

e The FunctionMap. pm object uses a text file to
associate keywords to functions and parameters,

« The | RVE. pm object provides the code to implement
mapping functions such as population value to ¢dtoy
ot linear scaling etc.,

e The Dat aObj ect. pm object reads in the simulation
output file and provides methods to get time sates for
any spatial item, agent population, maxima, miniete,

the scene.

SceneTemplate
Processor.pm { scene_skeletons il ‘

_+Functionr\.’lap.pm+
[o_mapt |

IRVE.pm
{(function library)

_4DataObject.pm

Figure 8: The Object-Oriented System for Pathsim Visualizer

Once theFunct i onMap. pm andDat aObj ect . pmare built
and thel RVE. pmis instantiated, th@r ocess_mast er. pl
script runs through its list of .wrl scene skeletoralling the
SceneTenpl at ePr ocessor . pnis process() method on each.
The process_mast er. pl script iteratively calls this method
for each scene skeleton file and so simply paseeggps to the
other processing objects.

21+ simulation_data.out

‘—'cﬁﬁm:.'-*mm3| r;nmco-ocj.—"o‘

3.4.1 Scene Templates

To process simulation data for visual display, theb form
invokes the processs_master.pl script with a paemspecifying
which simulation run to process. This is the mairips, which
marshals all the data and processing resourceshenserver
machine and collects them into a single folder. sSEheesources
include a set of VRML files such as Inlines, scézmplates (or
‘skeletons’) that will be fleshed out with data, dan
EXTERNPROTO fields that will be modified.

The SceneTenpl at ePr ocessor. pm module is a general-
purpose file processing script that runs throudileaearching for
lines that begin with th& META | NCLUDE keyword. Following
this keyword, the tab-delimited line contains adiion name that
specifies what data is to be inserted into thedil¢hat location.
The SceneTemplateProcessor knows nothing of Pathmim
VRML per se. Keywords in a scene skeleton only aigo the
system that some information is to be insertedhit {lexical)
location and the file saved.

The scene templates in our case are syntacticalig WRML
files. They include#META | NCLUDE statements which will be
processed to insert VRML fields populated with dimtion data
as keyValue [] arrays for example. TheteETA | NCLUDES
simply mark the location at which to insert somedeo For
example, where a TimeSensor’s cyclelnterval wowddefined
for the run, a scene skeleton may contain thevatig line:

#META _| NCLUDE TI ME_| NTERVAL

The keywords following &META | NCLUDE may signify any
kind of VRML field information to be inserted sues strings,
floats, integers, or arrays. It is important to lima that
#VETA | NCLUDE keywords have no meaning until they are
resolved according to some visualization functioapping. We
describe the resolution process in subsequenbsacti

Scene templates give the high-level architectureafecene. The
job of marshalling the scene templates, resolvifeirt

#META | NCLUDEs and assembling them into a populated scene

graph is carried out byr ocess_nast er. pl. The resolution of
the data to be inserted into the templates is thestribed from
the bottom up.

3.4.2 Encapsulating the Data

Pathsim formats its output as a collection of tabrdited files.
The first step in providing flexible access to thdata is to
encapsulate it as an object with methods that athfgrcts can use
to access it. This is implemented in a Perl
Dat aCbj ect . pm When theDat aChj ect is created, it reads
in the Pathsim run data and builds a massive afrtye spatially-
registered time series data.. It provides multiple level views of
this data. For example, it has methods for retgrnin

e The parameters which generated this run

e The time series for all populations in one region
« The time series for a specific agent in one region
e Global maxima for each agent

* Regional maxima for each agent

« Time charger routes

The Dat aOhj ect is expected to evolve in minor ways, if at all.
It expects to find its input data in a known formatould evolve
to accommodate population means or some other sjaloet
would not be expected to provide any sophisticatealysis.

3.4.3 Processing the Data

This is the job of the function library. These ftioos live in a
Perl module,l RVE. pm The functions in this module consume
the data provided by thBat aCbj ect . When they are invoked
in the course of processing a scene template, thay be
provided with additional parameters. They perfor@thrematical
transformation of their data, and return the resas$ strings.
These strings are the VRML field values to be itexkinto the
scene template and saved.

Typical functions in RVE. pmprocess the time series’
« Total population for a given species in a giveriorg

« Total population for a given species in a giverigrgs a
fraction of total population for that series

 Log of total population for a given species in aegi
region

e« Other VRML resources such as labels, wrappers for

PROTOs and time charger routes.

Finally, the link between thé&META | NCLUDEs of the scene
templates and the functions named RVE. pmis encapsulated
in a Perl moduleFuncti onMap. pm which relies on the
mappings contained in a text file calléstn_map.t xt. This
file contains tab-delimited data. The first fields ithe

#META | NCLUDE keyword from the scene template that needs to

be resolved. The second field is thRVE. pmfunction to resolve
it to. Additional fields provide parameters to thusiction such as
agent, region, label, etc. Typical statements are:

¢ COLOR_1_LABEL MESSAGE EBV - This associates the
label EBV with the heat map color yellow.

module,

e TIME_KEY TIME_KEY — This associates the time key
function provided byl RVE. pm with the TI ME_KEY
#META_| NCLUDE keyword.

ADENO D ABS ABS Rl — Here ADENOD is a
geometrical region of the visualization whiRl is the
corresponding region for Pathsim’'s output data. sThi
associates theRVE. pm absolute value function applied to
the R1 data with the #META | NCLUDE keyword
ADENO D_ABS.

4. MIGRATING TO A NEW DOMAIN

One of us recently joined a project at Virginia Methat is

investigating mathematical models of space strecemergetics
by way of simulation. Since the dataset was alsspatially-

registered time series, we considered how our |IFBéBE«e system
could be applied to the problem. The IRVE visudlta service
we developed for Pathsim had evolved into a flexitdol to

process and deliver spatially-registered time sedia. Through
a number of modifications and extensions, whichdescribe in
this section, we were able meet the new reseaschegiuirements
for visualizing spatial, abstract, and temporabinfation.

4.1 Requirements

The first crucial difference between Pathsim ane émergetics
simulation is the spatial domain in which the siatidn operates.
Instead of using shapes as the basic representétign the
regions and sections of Pathsim), the simulatioraluates

energies at each mesh point of a shape. This egtjglianges to
our existing framework so that it could address¢hpoints and
connect animation data to them. Figure 9 showstithtion of a

new object to the system that is responsible fandhag the

geometry of the simulation mesh.

Second, the time series output was formatted eiffity. In order
to use the new output file for our internal dataicures, we had
to adapt our parsing objects to handle the new. daastly,

instead of having multiple integer time series (ageopulation
counts) associated to each location, we had aesirggll valued
time series (watts/mef@rat each location.

SceneTemplate
Processor.pm | scene skeletons wirl ‘

' _+FunctionMap.pm+
-[or_mapoe |

IRVE.pm
(function library)

_+Data0bject.pm+””| simulation_data out ‘
. MeshObject.pm
-+ J = +{ coordinates dat ‘

Figure 9: The Object-Oriented System for producing IRVEs
with M eshObjects

|—‘;::.ﬁc0'—*mm3| mmmooﬂtﬁ|

4.2 Encapsulating the New Geometry

The first change for this new application requirdtht we
implement a way to represent the simulation domiairhis case,
the mesh. In the Pathsim visualizer, we relied &W. produced
by the simulation for our geometry. Here, we chtmsencapsulate
the geometry in a Perl objedteshCbj ect. pm Our mesh is a
fixed topology: a tubular, structural support ofatellite truss.
The researchers’ MatLab code outputsoar di nat e. dat file,
which describes the number of length segmentsfadumber of
sides around the circumference of the tube.

Similar to Pathsim, many simulations may be run aad/ing

mesh resolutions used. In this case, resolutioeasdascribed by
the number of sampled points in the (2D) X and Mehsions of
the tube itself. Accordingly, theeshObj ect must calculate its
vertices from thecoor di nat es. dat file and compute the
location of the tube’s mesh points. TMeshQhj ect exposes
these to the rest of the visualization processystesn through the
getPointArray() method. The points can be indexed inumber
of ways but we were most successful using quadraatines or
faces. Currently we tessellate the tube using thethod

getQuadFacelndices() (Figure 10).

Figure 10: A variety of meshes from the space structure
simulation engine

4.3 Encapsulating the New Data

In addition, we had to update obat aCbj ect to parse the new
simulation output format. This required changing i | d()
method to parse a new ordering of data pointsitatimternal data
structure. Because these time series may contgatine values,
a new method was also added to retrieve a datasiterimimal
value (over the course of the simulation).

4.4 Color Interpolation

The spatial objects in this space structure siriaadre mesh
points within one Shape{}. In order to drive thel@d§} node’s

per-vertex coloring from time series data, we budn

MFCol or I nterpolator{} using Braden McDaniel's
ColorArrayinterpolator{} [McDaniel 1999]. This reiped a

corresponding new function in IRVE.pm to map botisipve and
negative values to the RGB color values in an MBCairray.

Figures 11 and 12 (Color plate) shows the result thod

processing.

4.5 Information Visualizations

Our initial data sets from this simulation havediseries data for
anywhere from 249 t01896 mesh points. Beyond pingidome
mapping functions to per vertex color scales, wente@d to
include the other representations of the data, asdhe PopView
object. We modified the PopView visualization s@ tgraphs
could display positive and negative X and Y valud&e also
locate a TouchSensor {} at each vertex point instanwith a
small transparent cube. This provides the detailsdemand

functionality by selection for PopView annotaticiesdisplay the
three views of the vertex time series.

However, the initial results were not encouragiatihough our

current application only renders one attributetlfar time series in
a PopView, when we included PopView data for alsmeoints

we quickly ran into memory limitations that sigoéintly reduced
frame rate. The solution we pursued is similarhiat tused at the
micro scale in Pathsim: we only deliver PopViewad&b the

scene when it is requested by the user. We implardehis using
Browser.createVrmIFromURL() method where the Popvdata

for each mesh point is written into individual filein the

/Results/RuniD/perpoint/ folder. This approach dosave

processing time and the requirement of a live ngtwout costs
in terms of hard disk storage.

5. TECHINCAL NOTES

In the process of implementing IRVE-Serve, we disted a

number of pragmatic limitations that are worth nmming. First,

when we tried to use PHP as the CGI processing amésin, we

ran out of memory when processing large data artaysontrast,

Perl is able to handle operations on the majobtyt fot all) of

our large arrays. Our current working solutionasmarn users not
to run a nine month-long infection scenario whikcarding

simulation output every twenty (simulation time)nuies.

Many of our scene graph techniques rely on theofi§F or MF
Nodes on PROTO interface fields. Unfortunately,stliis not
supported in some browsers and limits the adopifarur system
at least in the short term. Regarding node usag®ROTO
interfaces, we expect them to be copied by valtetime PROTO
sub-graph instance. We hope that through clariicabf the
specification, more engines will support this tdgae.

When using the Browser interface to dynamicallywvéeldata (as
we did with secti on_query. pl), we were introduced to
another memory ceiling - that of JavaScript's
createVrmlFromString(). Because storing stringseipensive,

some of our larger Pathsim data sets overran memdrgn

delivering arrays of all data points via a PopVietherefore

depending on the number of time steps in a rundeven-sample
the data used for thBat aExt r usi on{} line graph. Because
there are more data points in a longer time setigs,has little

visual effect.

We ran into a limitation when using the VRML colaundel for
scientific visualization: RGB colour does not paiperceptually
linear palettes (as does HSV or luminance) [War8020We
consider this problematic when trying to visuakpresent scalar
values in a pre-attentive form. One solution withire VRML
idiom is to implement an HSV to RGB. This could Hene
server-side in our Perl function library or cliesitte in JavaScript
or Java.

6. CONCLUSIONSAND FUTURE WORK
This paper has documented the common web publicatio
framework behind the implementation of two visuahdation

applications. Both application domains, populatigmamics and
the energetics of space structures, deal with apategistered
time series data. The challenge common to botklisating large
guantities of information in a way that is easilgnprehensible
and interactive for overview plus details on demar@ur

architecture makes no assumptions about what datdtributes

may be interesting to the end user. The mappingtifums and
function library provide the means to customize amtend the
visual representation for the client.

We have described the evolution of the IRVE-Serigaalization
framework as it became more general-purpose arallyfinvas
able to be applied to a new simulation domain. WseaVvered
that without good abstractions and encapsulaticiurétionality,
the code became difficult to maintain and extendrttermore,
when one of our choices for normalizing data prowed to be
what our biomedical researchers wanted, we dedidexbandon
the idea that we could predict their needs. To mtoodate future
choices, we decoupled geometry, expressive repertaata
mapping and underlying data. A simple lexical devie the
introduction of #META | NCLUDE statements into VRML
fragments turns these into scene templates whopeessive
repertoire can be coupled to different data mappimg choices
made in a function map.

This architecture allows developers to provide aeseers with
additional visual/analytic tools by checking newdtions into a
function library. They need not revise any othertpaf the
existing code base. This flexibility is importanh@&n working
with a scientific community where attention inebitgfocuses on
new factors as a result of new insights and thestipres they
generate.

There are many opportunities for future work. Prynamong
these will to be to migrate the system to X3D wha&eecan take
advantage of a number of exciting new visualizatfeatures
including RGBA color, Layers, Particle Systems & aShrs.
However, it is not just the improved node-set thtitacts us to
X3D. The Scene Access Interface (SAl) programmimgrface
provides much more extensive services for X3D matiand
scene management. For example, the pre-eminergfylusethod
getNode() by DEF name is not supported in VRMLgagcript
binding.

In addition we also intend to migrate our runtimeifs to Java
for better handling of essential data-types suchraays, Longs,
and Doubles. The architecture of the IRVE-Serveialigation
system provides our initial answer to the requinetmeof
publishing spatially registered time series data.

Finally, with such a flexible framework in placegewan extend
Human Computer Interaction research for IRVEs. ®¢B006]
has investigated the roles of perceptual cues MEIRayouts.
Continued progress involves more formal study of tise of
IRVEs as applied problem-solving environments.

7. ACKNOWLEDGMENTS

The PathSim work was supported by a Public Heakhvige
grant (RO1 AI062989) to David Thorley-Lawson. Thanto
Doug Bowman and Chris North for supporting IRVEeash;
Eugene Cliff and Terry Herdman for information atata sets for
the space structure simulation. Thanks to the NRYAGE

library for the DVDController {} PROTO (adapted) @nto
Braden McDaniel for the ColorArrayinterpolator {{RDTO.

8. REFERENCES

BOWMAN, D., NORTH, C., CHEN, J., POLYS, N., PYLA, P
and YILMAZ, U. Information-Rich Virtual Environmest
Theory, Tools, and Research Agenda.Rroceedings of ACM
Virtual Reality Software and Technology (Osaka, Japan).
ACM Press, 2003.

HOCHHEISER, H., SHNEIDERMAN, B. Dynamic Query Tools
for Time Series Data Sets, Timebox Widgets for retéve
Exploration.Information Visualization, Palgrave-Macmillarg,
1-18. 2004.

MCDANIEL, B. ColorArrayinterpolator.
http://www.endoframe.com/vrml/protos/index.htm{accessed
2007)

POLYS, N., BOWMAN, D., NORTH, C., LAUBENBACHER,
R., DUCA, K. PathSim Visualizer: An Information-Ric
Virtual Environment for Systems Biology. InWeb3D
Symposium (Monterey, CA). ACM Press, 2004.

POLYS, N. F. Publishing Paradigms with X3D. Imformation
Visualization with SVG and X3D, ed. Vladimir. Geromenko &
Chanomei Chen, Springer-Verlag, 2005.

POLYS, N. F.Display Techniques in Information-Rich Virtual
Environments, Ph.D. Thesis. Virginia Polytechnic Institute and
State University, Blacksburg, VA.
http://scholar.lib.vt.edu/theses/available/etd-B1@5-024611/
(accessed 2007).

SHAPIRO, M., DUCA, K., LEE, K., DELGADO-ECKERT, E.,
JARRAH, A.S., LAUBENBACHER, R., POLYS, N.F,
HADINOTO, V. THORLEY-LAWSON, D. A. Virtual Look at
Epstein-Barr Virus Infection: Simulation Mechanism.
Submitted tdPLOS Pathogens 2006.

SHNEIDERMAN, B. The eyes have it: A task by datpey
taxonomy for information visualizations. IfProceedings of
IEEE Visual Languages (Boulder, CO). 1996.

THORLEY-LAWSON, D. A., HADINOTO, V., LUZURIAGA,
V., JARRAH, A.S., LAUBENBACHER, R., LEE, K., POLYS,
N.F., DELGADO-ECKERT, E., SHAPIRO, M., DUCA, K. A
Virtual Look at Epstein-Barr Virus Infection: Biajical
Interpretations. Submitted #LOS Pathogens 2006.

WARE, C.Information Visualization: Perception for Design New
York, Morgan Kauffman.2000.

WEB3D, CONSORTIUM. X3D Specification, VRML
Specification1S0 http://mwww.web3d.org (accessed 2007).

