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Charge transfer between hyperthermal alkali atoms and metallic scattering surfaces is an experimental and
theoretical arena for many-body interactions. To model new facets, we use a generalized time-dependent
Newns-Anderson Hamiltonian that includes electron spin, multiple atomic orbitals with image shifted levels,
intra-atomic Coulomb repulsion, and resonant exchange. A variational electronic many-body wave function
solves the dynamical problem. The wave function consists of sectors with zero and one particle-hole pair and
goes beyond earlier work with the inclusion of amplitudes for a neutral atom plus an electron-hole pair.
Higher-order sectors with more than one particle-hole pair are suppressed by powers of 1/N; hence the
wave-function ansatz is equivalent to a 1/N expansion. The equations of motion are integrated numerically
without further approximation. This solution shows improved loss of memory — the final charge state is
independent of the initial one — in agreement with theoretical and experimental expectations. Understanding
of this phenomenon is deepened through an analysis of entropy production. By studying the independent-
particle approximation, and by examining the role played by different sectors of the Hilbert space in entropy
production, we arrive at necessary and sufficient conditions for loss of memory to occur in the many-body
solution. As further tests of the theory, we reproduce the experimentally observed peak in the excited neutral
Li(2p) occupancy at intermediate work functions starting from different initial conditions. Next, we include
Auger processes by adding two-body interaction terms to the many-body Hamiltonian. Several types of Auger
processes are considered, and these are shown to affect the final-state occupancies at low work functions
because phase space enlarges rapidly as the work function is lowered. Preliminary experimental evidence for
an upturn in the Li(2p) occupancy at the lowest work functions thus may be explained by Auger transitions.
Finally, we comment on the plausibility of observing a signature of the Kondo resonance in charge transfer
experiments.@S0163-1829~96!01620-6#

I. INTRODUCTION

Charge transfer between metallic surfaces and atoms is a
quantum-mechanical many-body phenomenon. Electrons of
either spin up or spin down can neutralize a positive ion, but
once one species has transferred to the atom, electrons of the
opposing spin are blocked, at least partially, by the two-body
Coulomb repulsionU. In previous work1 @I# the time-
dependent Newns-Anderson Hamiltonian was employed as a
model of resonant charge transfer dynamics in the scattering
of alkali atoms off metal surfaces. The only approximation
made in solving the model was a systematic truncation of the
Hilbert space. This variational approach, pioneered in the
static case by Varma and Yafet,2 and in the dynamical prob-
lem by Brako and Newns,3 is equivalent to a systematic
1/N expansion, whereN is the spin degeneracy of the elec-
trons, which equals two for the physical cases of spin up and
down. The model and its approximate solution have been
used by two experimental groups to describe the interaction
of hyperthermal Li, Na, and K ions with an alkali/Cu~001!
surface4 and Li ions with an alkali/Al~100! surface.5 Quali-
tative agreement has been found between experiment and
theory.

In this paper we extend the many-body model of@I# by
adding Auger processes. We also improve the approximate
solution by including higher-order terms. One test of the ac-
curacy of the approximation is provided by the phenomenon
of loss of memory, which is said to occur when the final state

of a dynamical system is independent of its initial state. It
has been observed experimentally6 that the relative propor-
tion of charge species in a scattered beam of atoms depends
only on parameters such as surface work function and the
outgoing velocity. Loss of memory occurs in the
independent-particle approximation to the many-body
Newns-Anderson Hamiltonian7 and, as explained below,
should also occur in better approximations that respect the
strong intra-atomic correlation. To test loss of memory in the
approximate solution we integrate the equations of motion
forward in time starting from four different initial conditions.
The calculations show a significant improvement in loss of
memory compared to that found in@I# with a more restricted
Hilbert space. By analyzing loss of memory in terms of the
increase of entropy, we find a simple explanation for this
improvement.

Loss of memory is important for another reason. The
Newns-Anderson model breaks down when the atom is in
the strong coupling region very close to the metal surface.
Atomic orbitals, which in the model are assumed to be or-
thogonal to the metal states, hybridize with surface states
close to the surface. Also, higher-lying excited atomic states
that are neglected in the model begin to mix in and the scat-
tering atom cannot be accurately described by a small set of
discrete levels. Finally, Coulomb interactions between the
electrons on the atom and in the metal become important.
Nevertheless, as long as loss of memory occurs, the Newns-
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Anderson model will be an accurate description of charge
transfer because the final charge state of the outgoing atom is
determined on the outbound portion of its trajectory, beyond
the strong coupling region. The breakdown in the model
close to the surface therefore does not affect the subsequent
physics of charge transfer further out.

The outline of the rest of the paper is as follows. In Sec. II
we discuss the generalized Newns-Anderson Hamiltonian of
resonant charge transfer. The approximate solution of the
model is presented in Sec. III. To the Hilbert space originally
considered in@I# we add new sectors to the many-body wave
function at order 1/N that correspond to a neutral atom plus
a particle-hole pair and solve the resulting equations of mo-
tions numerically. We compare the solutions to ones ob-
tained previously in@I# and find that the present model
agrees better with experiment as there is improved loss of
memory. We also comment on the plausibility of observing
the Kondo effect in charge transfer experiments. Section IV
of the present work is devoted to analyzing the origin of loss
of memory. We study the relationship between loss of
memory and growth in a coarse-grained von Neumann en-
tropy. For comparison, we also calculate the corresponding
entropy increase in the independent-particle approximation.
Since the Hilbert space is unrestricted in the independent-
particle approximation, the comparison clarifies how the
truncation of Hilbert space affects entropy production. In
Sec. V we add two-body interaction terms to the original
Hamiltonian that model several types of Auger processes. A
simple phase-space argument shows that these couplings are
increasingly important at low work functions. We demon-
strate that Auger processes can explain the experimentally
observed8 upturn in the formation of excited Li(2p) atoms at
the very lowest work functions. Conclusions are presented in
Sec. VI.

II. THE GENERALIZED NEWNS-ANDERSON MODEL

To model the dynamics of charge transfer, we make sev-
eral simplifying assumptions. We employ the Newns-
Anderson Hamiltonian, ignore radiative charge transfer pro-
cesses, and for now consider only resonant charge transfer.
The electrons in the target metal are modeled as zero-
temperature noninteracting spinning fermions, albeit with the
renormalized dispersion of a Landau Fermi liquid.9 The zero-
temperature approximation is justified, as experiments typi-
cally operate at temperatures much less than other relevant
electronic energy scales. The atom is modeled as a system
with a finite number of discrete states moving along a fixed
classical trajectory given byz(t) where z is the distance
from the atom to the metal surface. Each of these atomic
states couples to the metal electrons when the atom is close
to the metal surface. Feedback between the electronic de-
grees of freedom and the trajectory is ignored in the formu-
lation. This trajectory approximation should be adequate as
long as the kinetic energy of the ion is much larger than the
electronic energies.

The model is defined by the following generalized time-
dependent Newns-Anderson Hamiltonian:

H~ t !5(
a
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~1!~z!P̂11ea
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†scas1(
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ekck
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Here the fermion operatorca
†s creates a spins electron in

orbital a of the atom. For lithium,a50 for the 2s orbital,
a51, 2, and 3 for 2pz , 2px , and 2py , etc. Likewise,ck

†s

creates an electron of momentumk and energyek in the
metal. Of course,k is really a three-vector, which labels all
of the levels in the metal, both filled and empty, but it may
be regarded as a scalar without loss of generality by absorb-
ing the three-dimensional aspects of the problem intoek and
Va;k . We introduce the operatorsP̂1 and P̂2 to project, re-
spectively, onto atoms with one or two valence electrons.
These projectors, which may be written in terms of the or-
bital occupanciesna[ca

†scas , permit one to assign different
orbital energies,ea

(1) and ea
(2) , and metal-atom couplings,

Va;k
(1) andVa;k

(2) , to the two cases of neutral atoms and negative
ions. An implicit sum over repeated upper and lower Greek
indices is adopted; for nowN52 ands51,2 to represent the
physical SU~2! case of spin-up and -down electrons. We
have multiplied the atom-metal resonant coupling by a factor
of N21/2. This factor keeps atomic level widths finite in the
N→` limit. Finally, we eliminate excited negative ions from
the Hilbert space by taking the Coulomb repulsionUab→`
for a,bÞ0.

The orbital energies and atom-metal couplings change
with time. Time dependence enters through the ion trajec-
tory, which we model as

z~ t !5zf2uit; t<t turn[~zf2z0!/ui

5z01uf~ t2t turn!; t.t turn. ~2!

Thus the trajectory starts at a distancezf far away from the
surface at timet50. We account roughly for the decrease in
ion kinetic energy during impact, due principally to the re-
coil of surface atoms and the change in the scattering angle,
by instantaneously changing the initial perpendicular compo-
nent of the ion velocityui to uf,ui at the point of closest
approach,z0 .

The Fermi energyeF is defined to be zero and the vacuum
level lies aboveeF at work functionW. For simplicity, we
define all orbital energiesea relative toeF . Because of im-
age charges, the orbital energies of the neutral atomea

(1) shift
upward bye2/4z as the atom approaches the metal surface.
To parametrize thisz dependence we use the following form
for ea

(1) , which saturates close to the surface:

ea
~1!~z!5H I a1W1@1/vmax

2 116~z2zim!2/e4#21/2, z.zim

I a1W1vmax, z,zim .

~3!
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HereI a is the ionization energy of an orbitala of an isolated
atom that is taken to be negative andzim is the distance from
the surface at which the image shift saturates to the value
vmax.

In contrast to the ionization levels, the affinity levels shift
downward as the atom approaches the surface. In other
words, the energy required to remove the two valence elec-
trons bound to a negative alkali ion~thereby making it a
positive ion! is unaffected by the image charges. As the
intra-atomic Coulomb repulsion is already accounted for ex-
plicitly in the two-body interaction term in Eq.~1!, the or-
bital energies for the negative ion are given by the same
formula as Eq.~3! without the image shift:

ea
~2!5I a1W. ~4!

The Coulomb energy between two electrons in the lowests
orbital (a50) is then given byU005A2I 0 whereA is the
electron affinity~also defined here to be negative!. The atom-
metal couplingsVa;k decay exponentially with distance when
the atom is far from the metal surface because the atomic
wave functions drop off exponentially with increasing dis-
tance from the atom, and the electronic wave functions in the
metal fall off exponentially with increasingz. Closer in, the
couplings deviate from the pure exponential form and satu-
rate. In the following calculations we ignore thek depen-
dence of the metal-atom coupling. This approximation is jus-
tified insofar as most of the resonant electronic processes
occur close to the Fermi surface and the wave-vector depen-
dence of the couplings is smooth.

The metal states are labeled by 2M discrete momenta,
M above the Fermi energy andM below it. We setM530 in
the numerical calculations presented below, a sufficient num-
ber to sample the continuum of states accurately. Though the
couplingsVa;k are of fundamental importance in the many-
body theory, it is convenient to express them in terms of the
atomic half-widths, as the couplings must be rescaled each
time we change the number of discrete metal statesM . We
relate couplings and half-widthsDa via the approximate
independent-particle Fermi golden rule formula:

Va;k
2 5

Da

pr
, ~5!

where r5M /D is the density of states for a flat band of
half-width D. Level half-widthsDa(z) are obtained from
first-principle calculations, within an independent-particle
approximation, carried out by Nordlander and Tully10 and
Nordlander.11 Exact values forVa;k will, of course, differ
somewhat from those obtained via Eq.~5!. To be useful,
theoretical predictions must be robust to changes in the val-
ues of the couplings. A simple three-parameter function,
which accounts for both exponential decrease away from the
surface and saturation close to it, fits the calculated widths
well:12

Da~z!5
D0

@e4az1~D0 /Dsat!
421#1/4

. ~6!

To be concrete, we study the case of lithium atoms interact-
ing with a Cu~001! surface. Some of the parameters that
appear in the Hamiltonian Eq.~1! via Eqs.~2!, ~3!, and ~6!
are fixed throughout the rest of the paper. In Eq.~2! we either
start the trajectory far away from the surface atzf520 Å and
bounce off the surface atz051 Å or begin from the point of
closest approach,z0 , and integrate outward. In Eq.~3! we
takezim50.0Å andvmax52.6 eV. For lithium, the ionization
energy from the 2s ground state is given byI 0525.39 eV
and the ionization energy from the 2pz excited state is
I 1523.54 eV. We ignore the 2px,y states as they couple
only weakly to the metal. We also eliminate higher-lying
excited states and, as mentioned above, excited states of the
negative ion as these states are not expected to become sig-
nificantly populated. The electron affinity energy in Eq.~4! is
given byA520.62 eV. Finally, the half-bandwidth of cop-
per is given approximately byD54 eV. Parameters appear-
ing in the resonant widths formula Eq.~6! are given in Table
I. Parameters that vary are the surface work functionW and
the incoming and outgoing velocities of the lithium atom
ui and uf . Values for these variables are listed in the text
below and in the figure captions.

III. SYSTEMATIC SOLUTION

To construct an approximate wave function for the prob-
lem we follow Varma and Yafet2 and also Brako and Newns3

and group the full many-body electronic wave function into
sectors containing more and more numbers of particle-hole
excitations in the metal. Upon truncating the wave function
at a given number of particle-hole pairs, we obtain a varia-
tional wave function that spans only a small, but manage-
able, portion of the entire Hilbert space. The amplitude for
particle-hole pair production is controlled at least formally
by generalizing the two types of SU~2! electrons~spin up
and down! to N types of SU~N! fermions. Thus the spin
index s now runs from 1 toN. We show below that the
amplitudes for terms involving more and more particle-hole
pairs are reduced by higher and higher powers of 1/N.

To begin, we decompose the many-body wave function
into five sectors, four of which were introduced in@I#. The
new fifth sector consists of two parts, symmetric (S) and
antisymmetric (A). In this paper we adopt the convention of
using capital letters to denote momenta indices that are re-
stricted to values greater thankF , or in other words, states
above the Fermi energy. Lower case letters denote momenta
indices that run over values less thankF . The variational
ansatz for the many-body wave function can then be written
as

TABLE I. Parameters appearing in Eq.~6! which characterize
the resonant half-widths for different atomic states of lithium. All
parameters are in atomic units.

Atomic state D0 a Dsat

Li 0(2s) 2.23 0.86 0.04
Li 0(2pz) 0.70 0.54 0.04
Li 2(2s2) 0.18 0.38 0.05
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~7!

Each sector is a global SU(N) singlet. Nonsinglet sectors can
be ignored insofar as the initial state of the system, a closed-
shell positive alkali ion far away from an unperturbed non-
magnetic metal, and the Hamiltonian are both SU~N! sin-
glets. Here the orthonormal basis states in different sectors of
the Hilbert space are given by

ua;k&[N21/2ca
†scksu0&,

uL,k&[N21/2cL
†scksu0&,

uk,q&[@N~N21!#21/2c0
†ackac0

†bcqbu0&. ~8!

The basis for the new sectors is given by

ua;L,k,q&S[@2N~N21!#21/2$cL
†ackaca

†bcqbu0&

1cL
†acqaca

†bckbu0&%.

ua;L,k,q&A[@2N~N11!#21/2$cL
†ackaca

†bcqbu0&

2cL
†acqaca

†bckbu0&%. ~9!

The reference stateu0& represents a positive alkali ion~i.e.,
an empty valence shell! along with the Landau Fermi liquid

at zero temperature with no particle-hole excitations. Ac-
cording to the convention the limits on the momenta ranges
appearing in Eqs.~8! and ~9! are shorthand notation for
eq,ek,eF and eL.eF , whereeF[0 is the Fermi energy.
In other words,k and q label hole momenta, andL labels
particle momentum, so whileuL,q& is a positive ion plus a
particle-hole pair, the stateuk,q& instead represents a nega-
tive ion with two holes in the metal. A schematic of the
different sectors of the Hilbert space is presented in Fig. 1.
We show below that terms involving two or more particle-
hole pairs constitute higher-order corrections, which are
dropped in the approximate solution.

The time-dependent coefficients appearing in the many-
body wave function Eq.~7! are amplitudes for the following
states:~1! f (t): A positive ion with no excitations in the
metal, which is at absolute zero temperature. Note that
f (t50)51 describes the initial state of an experiment that
directs incoming positive ions against the metal target.~2!
ba;k(t): A neutral atom with orbitala occupied and a hole
left behind in the metal at momentumk. ~3! eL,q(t): A posi-
tive ion and a single particle-hole pair in the metal~the elec-
tron has momentumL and the hole has momentumq). ~4!
dk,q(t): A negative ion with a double-occupieds orbital
(a50) and two holes in the metal at momentak andq. ~5!
sa;L,k,q andaa;L,k,q : Amplitudes for the new states that rep-

FIG. 1. Schematic of the different sectors of the Hilbert space up to order 1/N. The new sector is highlighted in the box. Still missing
atO(1/N) are amplitudes for a negative ion with two holes plus a particle-hole pair in the metal.
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resent a neutral atom with orbitala occupied plus two holes
in the metal with momentak andq and a particle of momen-
tum L. To enforce orthogonality, the sector is split into sym-
metric (s) and antisymmetric parts (a) with respect to inter-
change of momenta indicesk and q. Physically, the state
produced by an electron hopping to the atom from a metallic
level k while another electron hops fromq to L can be dis-
tinguished from the state in whichk andq are interchanged.
In the special case of no spin degeneracyN51, however,
there is only one state, the antisymmetric one, as the particles
are then spinless and can no longer be distinguished.

The logic behind the truncation scheme becomes clear
upon considering the nature of the off-diagonal coupling, the
terms in the Hamiltonian proportional toN21/2Va;k . These
terms couple adjacent sectors of the Hilbert space, as shown
in Fig. 2.~By adjacent we mean sectors that differ by at most
one elementary excitation in the band such as a hole or a
particle.! Repeated applications of the off-diagonal coupling
to the reference stateu0& generates all of the sectors in the
singlet many-body wave function. Each timeVa;k acts, it
brings along a factor ofN21/2. Thus amplitudes for sectors
involving multiple particle-hole pairs are weakly coupled to
lower-order terms whenN is large. In particular, from Eq.
~10! below it is clear that the amplitudes of sectors contain-

ing a single particle-hole pair (eL,q , sa;L,k,q , andaa;L,k,q)
are reduced by a factor ofN21/2 in comparison to the ampli-
tudes for the sectors with no particle-hole pairs (f , ba;k , and
dk,q). The probability for a particle-hole pair is therefore
reduced by a factor of 1/N. The restriction to this trial basis
is achieved by projecting the Schro¨dinger equation
i (d/dt)C5ĤC onto each sector of the Hilbert space to ob-
tain the equations of motion. Following@I#, to reduce com-
putational work we remove diagonal terms from the equa-
tions of motion by a change of variables:
l(t)5L(t)exp2if(t) where l(t) is an amplitude andf(t)
would be the phase of the corresponding state were the cou-
pling of the atom to the surface turned off. For instance, in
the newly added sector, diagonalization is accomplished with
the following change of variables:

sa;L,k,q~ t !5Sa;L,k,q~ t !exp$2 i @fa~ t !1~eL2ek2eq!t#%,

aa;L,k,q~ t !5Aa;L,k,q~ t !exp$2 i @fa~ t !1~eL2ek2eq!t#%,

wherefa(t)[*0
t ea

(1)(t8)dt8 is the time-evolved phase for
the decoupled, but image-shifted, atomic orbitala. The re-
sulting equations of motion are

i
d

dt
F5(

a;k
Va;k

~1!* exp$ i @ekt2fa~ t !#%Ba;k ,

i
d

dt
Ba;k5Va;k

~1!exp$ i @fa~ t !2ekt#%F1da,0A121/N(
q

V0;q
~2!* exp$2 i @~U2eq12e0

~2!!t2f0~ t !#%@u~k2q!Dkq1u~q2k!Dqk#

1N21/2(
L

Va;L
~1!exp$ i @fa~ t !2eLt#%ELk ,

i
d

dt
ELk5N21/2(

a
Va;L

~1!* exp$ i @eLt2fa~ t !#%Ba;k1A~N21!/2N(
a;q

Va;q
~1!* exp$ i @eqt2fa~ t !#%@u~k2q!Sa;Lkq

1u~q2k!Sa;Lqk#1A~N11!/2N(
a;q

Va;q
~1!* exp$ i @eqt2fa~ t !#%@u~k2q!Aa;Lkq2u~q2k!Aa;Lqk#,

i
d

dt
Dkq5A121/NV0;q

~2!exp$ i @~U2eq12e0
~2!!t2f0~ t !#%B0;k1A121/NV0;k

~2!exp$ i @~U2ek12e0
~2!!t2f0~ t !#%B0;k

1~2/N!1/2(
L

V0;L
~2!exp$ i @~U2eL12e0

~2!!t2f0~ t !#%S0;Lkq ,

i
d

dt
Sa;Lkq5da,0~2/N!1/2V0;L

~2!* exp$2 i @~U2eL12e0
~2!!t2f0~ t !#%Dkq1A~N21!/2N@Va;q

~1!exp$ i @fa~ t !2eqt#%ELk

1Va;k
~1!exp$ i @fa~ t !2ekt#%ELq#,

i
d

dt
Aa;Lkq5A~N11!/2N@Va;q

~1!exp$ i @fa~ t !2eqt#%ELk2Va;k
~1!exp$ i @fa~ t !2ekt#%ELq#. ~10!
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In the above equations we have used the following symme-
tries of the amplitudes:Dkq5Dqk , Sa;Lkq5Sa;Lqk , and
Aa;Lkq52Aa;Lqk . Also, we have corrected several typo-
graphical errors that appeared in Eq.~3.6! of @I#. As the
amplitudes undergo unitary evolution forward in time, the
sum of their squares is conserved and equals one.

The equations of motion are numerically integrated for-
ward in time with the use of a fourth-order Runge-Kutta
algorithm with adaptive time steps. The double-precision C
code is run on IBM RS/6000 machines and, in a vectorized
and multiprocessor form, on a Cray EL-98 computer.14 Prob-
ability is conserved to better than 1 part in 106. ForM530
levels, one run at a typical velocity takes on the order of 10
min of RS/6000 CPU time. We choose one of the following
four initial conditions:~1! A positive alkali ionA1 far away
(z5zf) from the surface. The only nonzero initial amplitude
is F(t50)51. ~2! A neutral, unexcited, alkali atomA0 far
away. The only nonzero initial amplitude isB0;051. A
single hole lies at the Fermi energy. It is important to note
that the hole is delocalized throughout the entire target and
hence does not affect charge transfer.~3! A negative alkali
ion A2 far away. The only nonzero initial amplitude is
D0,051. Two holes lie at the Fermi energy.~4! Start at the
point of closest approach,z5z0 , in the equilibrium ground
state.~The ground state is obtained via the imaginary-time
Lanczos algorithm.! This initial condition is realized in sput-
tering experiments.

In Fig. 3~a! we present results from the improved equa-
tions of motion for the case of a lithium atom striking a clean
Cu~001! surface of work functionW54.59 eV for three dif-
ferent initial conditions,~1!, ~2!, and~4!, and over a range of
velocities (0.005 a.u.,uf,0.05 a.u.!. The occupancies
change by less than 1% when the number of metal levels
below the Fermi energy,M , is increased from 30 to 60. For
comparison, in Fig. 3~b! we also report results obtained from
the previous equations of motion of@I#, which are missing
the new sectors. Note in particular the significant improve-
ment in loss of memory compared to that found in@I# for all
three initial conditions. From both experiment6,12 and the
independent-particle approximation,13 we expect loss of
memory to be complete at this velocity. Evidently the sys-
tematic 1/N expansion works better and better as the Hilbert
space is enlarged and higher-order terms are included. How-
ever, we also find that loss of memory is absent from both
solutions for initial condition~3!, the negative ion. For this
initial condition, the final charge state is nearly 100% neutral
(A0) for the improved equations of motion, and 100% nega-
tive (A2) in the case of@I#. The breakdown of loss of
memory for the negative-ion initial condition has an expla-

nation in the particular manner in which the Hilbert space is
truncated, and we return to this question below in Sec. IV.

Another important test of the improved approximation is
whether it reproduces the peak in the excited neutral
Li(2p) occupancy seen in experiments1,8 at a surface work
function value ofW'2.8 eV. The improved calculations do
in fact yield a peak.~The physical origin of this peak is
discussed in Sec. V below.! Experimental measurements8 of
the number of photons produced by the decay of the excited
Li(2p) state to Li(2s) are plotted alongside the calculated
final Li(2p) occupancy in Fig. 4 for the case of initial con-
ditions ~2! and ~4!. Good qualitative agreement between
theory and experiment is obtained. The positive-ion initial
condition does not, however, yield results that agree with
experiment at work functions below 2.8 eV as the Li(2p)
occupancy continues to grow monotonically. We attribute
the breakdown at low work functions to the truncation of the
Hilbert space. A term at order 1/N has been left out because
it has four momenta indices: the amplitude in theA2 sector

FIG. 2. Resonant charge transfer couples the different sectors of
the truncated Hilbert space indicated by the arrows.

FIG. 3. ~a! The calculated neutralization probability for lithium
(N52) as a function of outgoing velocityuf using the improved
approximate solution. Three different initial conditions are exam-
ined. The incoming velocity, except in the case of the ground-state
initial condition, is given byui5(4/3)uf . The surface work func-
tion isW54.59 eV, corresponding to a clean Cu~001! surface.~b!
Same as~a! but using the smaller variational Hilbert space and
equations of motion of@I#.
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corresponding to a negative ion with two holes plus a
particle-hole pair in the metal. We expect that this term could
absorb the excess excited neutrals at low work functions.

Scattering experiments off clean surfaces are the best
arena for answering quantitative questions about many-body
effects, as complications involving surface adsorbates5 are
then avoided. Recently Shao, Nordlander, and Langreth have
made an interesting suggestion: at low velocities, a Kondo
resonance should appear in the atomic spectral function.15 To
argue that this resonance could be observable in charge
transfer experiments, Shao, Nordlander, and Langreth em-
ploy a slave boson noncrossing approximation~NCA! treat-
ment of the time-dependent Newns-Anderson model.16 Shao,
Nordlander, and Langreth argue, based on an assumed pure
exponential form for the atom-metal coupling, that the
Kondo peak could show up as deviations from a single
straight line in a plot of the logarithm of the atomic occu-
pancy versus the inverse perpendicular velocity.

It is important to note that the slave boson NCA approxi-
mation breaks down when the atom is in a mixed valence
state, which must occur whenever there is a level crossing
the Fermi energy. In particular, a nonphysical temperature
scale appears within NCA. It is an artifact of the approxima-
tions made: especially, the neglect of vertex corrections.17

Away from a level crossing it is small and can usually be
neglected. This is no longer the case in charge transfer ex-
periments, where the Kondo temperature is of orderADD
near the level crossing. Then the unphysical temperature
scale is of orderD2/D, which is generally larger than both
the bandwidthD and the Kondo temperature.17 A compari-
son between the NCA approximation and an essentially ex-
act renormalization group~RG! analysis of the Anderson im-
purity model also shows that NCA is an inaccurate
approximation for dynamical properties.18 In contrast the
1/N approximation employed here is free of these difficulties
as it contains vertex corrections. For example, the Kondo
peak disappears in the variational 1/N approach atN51 as it
should, since there is no longer any spin degeneracy. In the
slave boson NCA approximation it persists as an unphysical
feature.17

Besides the technical limitation of the slave boson NCA
approximation, other problems arise in attempting to extract
the weak Kondo signal from the large background. Shao,
Nordlander, and Langreth assume that the negative ion has
the same width as the neutral15 but this assumption should be
relaxed since, as noted above, negative alkali ions are larger
than neutral atoms. This means negative-ion yields cannot be
directly compared to positive yields. Furthermore, the de-
tailed form of the width is not a pure exponential and the
image shift is impossible to compute precisely. These com-
plications may introduce additional nonlinearities that will be
difficult to separate from those produced by the Kondo reso-
nance. Excited states also have been neglected in the model
of Shao, Nordlander, and Langreth, but these may cause
wiggles in the occupancy that could be misinterpreted as
Kondo effects. Indeed, we find no clear signature of the
Kondo resonance in the approximate solution to our model,
which incorporates these generalizations. Finally, there ap-
pears to be no way to do a control experiment in which only
the intra-atomic Coulomb repulsion is turned off, with all
else left unchanged. Nevertheless, the observation that
Kondo effects can in principle occur serves to underscore the
many-body nature of charge transfer.

IV. ORIGIN OF MEMORY LOSS

In this section we analyze how the 1/N expansion works
in the dynamical problem. In particular, we investigate the
physical mechanism responsible for loss of memory. We
analyze how loss of memory is affected by the truncation of
the Hilbert space to clarify why the approximate solution
exhibits loss of memory for three of the four initial condi-
tions while it breaks down for the case of an incoming nega-
tive alkali ion. We begin by formulating a simple necessary
criterion for memory loss to occur and show that it is always
satisfied as long as the initial velocity of the atom is low
enough. As loss of memory is not complete in the approxi-
mate solution, we conclude that the conditions that determine
its presence or absence are more subtle. To characterize the
phase decoherence of the initial state and thus loss of
memory, we introduce a coarse-grained entropy in both the
independent-particle and the many-body picture. In the
former case the Hilbert space is unrestricted and loss of
memory at low velocities is complete.19 By comparing en-
tropy increase in the two pictures we gain insight into the

FIG. 4. The measured and predicted normalized yields of the
excited neutral atom Li(2p) ~triangles! vs the surface work function
W. In the experiment, Li1 is incident on K/Cu~001! with initial
kinetic energyE05400 eV. The peak occurs atW'2.8 eV. Solid
and the dashed lines are the results of the improved approximate
solution of the many-body model (N52) for two different initial
conditions. In this case the band consists ofM530 states above and
30 states below the Fermi surface with a half-bandwidth ofD54
eV. The atomic level width parameters are given in Table I. For the
initial condition of the equilibrium ground state~solid line! the tra-
jectory begins from the point of closest approach (z051.0 Å! with
an outward velocity given byuf50.03 a.u. For the initial condition
of a neutral atom~dashed line!, the trajectory starts atzf520.0 Å
with an initial velocity ofui50.04 a.u., bounces atz051.0 Å, and
leaves the surface with a lower outward velocity ofuf50.03 a.u.
The experimental and theoretical yields, which agree in magnitude,
are here normalized to unity. We attribute the broader width of the
experimental peak to inhomogeneities in the surface potential due
to the K adsorbates.
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importance of the higher-order sectors left out in the trun-
cated Hilbert space of Eq.~7!. We show that the probability
flow between different sectors of the Hilbert space is toward
the direction of increasing entropy; the entropy grows as
probability flows to sectors that occupy larger and larger por-
tions of phase space.

First we review the phenomenon of loss of memory
within the independent-particle approximation. In this ap-
proximation, we neglect the strong correlations between
electrons on the atom by reducing the atomic states to a
single orbital, and by treating the electrons as spinless
(N51). Then the Pauli exclusion principle, instead of the
intra-atomic Coulomb repulsion, prevents multiple occu-
pancy of the atomic orbital. Consider an atom initially in
some stateua& incident on the metal surface. As the atom
moves towards the surface, it begins to forget its initial state.
If the atom does not spend enough time close to the surface,
however, the initial state will not decay completely, and the
final charge state will depend on the initial one. Thus the
atom must move slowly enough for loss of memory to occur.
In the independent-particle approximation, for the case of

infinite bandwidth (D→`), the following expression is ob-
tained for the time evolution of the expected atomic
occupancy:19

na~ t !5na~0!expS 22E
0

t

D@z~ t8!#dt8D 1O~ t !. ~11!

The first term is the memory termna
mem, which depends on

the initial atomic occupancyna(0). Thesecond termO(t)
does not interest us here as it is independent of the initial
condition. Assuming pure exponential dependence of the
level width on distance,D(z)[D0exp(2az), and using the
trajectory approximation Eq.~2!, the memory term in~11!
may be rewritten along the inward bound portion of the tra-
jectory as

na
mem~ t !5na~0!expS 2

2D0

aui
exp@2a~zf2uit !# D . ~12!

Initially the atom is at a distancezf from the surface and
moves towards it with a velocityui . It reaches the surface at

FIG. 5. The occupancies of the different charge statesA1, A0, andA2 as a function of time forfixedatomic positionz5z0 . A lithium
atom (N52) interacts with a metal surface of work functionW54.59. Time evolution begins from each of the following four initial
conditions:~a! Positive ionA1 at z51 Å. The final occupancies~at t58.2310215 sec! areP150.7806,P050.2134, andP250.0058.~b!
Neutral atomA0 at z51 Å. The final occupancies areP150.7471,P050.2480, andP250.0047.~c! Negative ionA2 at z51 Å. The final
occupancies areP150.028, P050.9508, andP250.0204. ~d! Equilibrium ground state atz51 Å. The final occupancies are
P150.7965,P050.1983, andP250.0071.
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t5t turn5zf /ui and loss of memory is thus complete if
na
mem(t turn)!na(0) or in other words,

2D0@aui . ~13!

The physical meaning of this equation is that there must be
enough time for an electron to hop back and forth between
the atom and the metal several times for loss of memory to
be complete. Parameters for the half-widths of lithium are
given in Table I. For the 2s orbital, D052.23 and
a50.86. Thus at a typical incoming velocity ofui50.04 a.u,
Eq. ~13! is well satisfied. Although the above estimate is
based on the independent-particle approximation and as-
sumes a pure exponential form forD(z), the conclusion is
valid in the many-body case and for the more general form
for D(z) we use below, as the key physical feature, the cou-
pling of the atomic level to a continuum of states in the
metal, is unchanged. Indeed, loss of memory occurs within
the slave boson NCA approximate solution to the dynamical
many-body problem in which a class of bubble diagrams is
summed to all orders.16 In a low-velocity limit the slave
boson NCA approximation reduces to a set of first-order rate
equations, which necessarily exhibit loss of memory when-
ever the occupancy of any channel attains unity along the
trajectory. However, as quantum mechanical phase informa-
tion is thrown away in the semiclassical rate equations, they
are inaccurate at velocities of most experimental interest13,20

and we do not consider them further here.
It is useful to examine the time evolution of an atom held

at a fixed position close to the surface as the Hamiltonian is
then time independent. If there is no loss of memory for
different initial conditions, then loss of memory will, in gen-
eral, be absent in the dynamical problem. Results for the
approximate solution to the many-body problem are pre-
sented in Fig. 5. It typically takest i'10215 sec for the oc-
cupancies to settle down to constant values. This interaction
time scale is shorter than the typical amount of time the atom
spends in the region of strong coupling in the dynamical
problem,tm.~5 Å!/~0.05 a.u.! '5310215 sec. Small oscil-
lations in the occupancies with period 1.03310215 sec at
large time are due to the finite metal bandwidth,D54 eV,
and are washed out in the dynamical system. The occupan-
cies change by less than 0.1% when the number of metal
states above or below the Fermi energy,M , is increased
from 30 to 60. Note that Poincare´ recurrence, relevant when
the coupling between the atom and the surface is weak, oc-
curs at the longer timet r52p\M /D'2310214 sec and
can be ignored. The final atomic occupancies of about 80%
positive fraction are nearly the same for three of the initial
conditions: positive ion~1!, neutral atom~2!, and equilib-
rium ground state~4!. In the case of the negative-ion initial
condition ~3!, however, the final charge state is mostly neu-
tral, not positive.

Study of the effects of the truncation of the Hilbert space
on loss of memory in the many-body solution requires a
quantitative measure of decoherence. For this purpose we
may introduce the fine-grained quantum mechanical von
Neumann entropy,Sfg(t)[2Tr$r̂(t)lnr̂(t)%, where r̂(t) is
the density matrix. The fine-grained entropy, however,
is constant for any time-independent Hamiltonian as
no phase information is lost in a system

undergoing unitary time evolution. Thus,
r(t)5Û(t) r̂(0)Û†(t), where Û(t)5exp(2iĤt), so
Sfg(t)52Tr$Û(t) r̂(0)Û†(t)Û(t)lnr̂(0)Û†(t)%. Grouping to-
getherÛ(t) andÛ†(t) under the Tr symbol, it is straightfor-
ward to see thatSfg(t)52Tr$r̂(0)lnr̂(0)%5Sfg(0). Instead,
we coarse grain21 the system by ignoring information con-
tained in the off-diagonal matrix elements ofr̂. The coarse-
grained entropy is then defined as

Scg~ t !52(
a

raa~ t !lnraa~ t !, ~14!

whereraa are the diagonal matrix elements ofr̂, which time
evolves as

raa~ t !5(
b

uUab~ t !u2rbb~0!1 (
bÞc

Uab
! ~ t !Uac~ t !rbc~0!.

~15!

The second term in this equation contains all the information
about phase correlations, and we expect it to vanish in the
t→` limit provided the Hilbert space is large enough. Then
it is easy to show21 that dScg(t)/dt>0, the quantum me-
chanical analogue of the BoltzmannH theorem.

It is straightforward to compute the coarse-grained en-
tropy Eq.~14! from the many-body states Eq.~7!:

Scg~ t !52uFu2lnuFu22(
a;k

uBaku2lnuBaku2

2(
L,k

uELku2lnuELku22 (
k.q

uDkqu2lnuDkqu2

2 (
a;L,k.q

uSa;Lkqu2lnuSa;Lkqu2

2 (
a;L,k.q

uAa;Lkqu2lnuAa;Lkqu22•••, ~16!

where the ellipses denote contributions from higher-order
sectors not included in the variational wave function. In the
independent-particle picture the coarse-grained entropy is
given by the standard expression for the statistical mechani-
cal entropy:22

Scg~ t !52(
k
nkln nk2(

k
~12nk!ln~12nk!2naln na

2~12na!ln~12na!. ~17!

Herenk is the occupancy of the metal band levelk andna is
the atomic occupancy. It is important to note that the two
entropy definitions, Eqs.~16! and ~17!, are not exactly
equivalent, even for the case of spinless electrons. Informa-
tion in the form of two-body and higher-order correlations
contained in Eq.~16! has been thrown away in Eq.~17!
where only the one-body occupancies appear. For example,
each Hilbert space sector of Eqs.~8! and ~9! strictly con-
serves total particle number. Conservation of total particle
number is reflected in nontrivial two-body correlations,
which are discarded when the state is described purely in
terms of one-body occupancies. While the two entropies are
equal in the limit of a macroscopic number of excitations, for
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the finite number of excitations generated in an atom-surface
collision the coarse-grained entropy of Eq.~17! is somewhat
larger than that of Eq.~16!.

Occupancies in the independent-particle approximation
are obtained by solving equations of motion for theopera-
tors ĉa(t) and ĉk(t) as opposed to equations of motion for
amplitudessuch as Eq.~10!. To highlight this difference, we
place carets on top of the operators. As there is no many-
body interactionU in the independent-particle approxima-
tion, the Heisenberg equations of motion for the operators,
obtained from Eq.~1!, are linear:

i
d

dt
ĉa5ea

~1!~ t !ĉa1(
k
V0;k

~1!~ t !ĉk ,

i
d

dt
ĉk5ekĉk1V0;k

~1!~ t !ĉa . ~18!

Here and belowa50 and the momentum indexk runs over
all momenta, not justk,kF . The operators at timet may be
expressed as a linear combination of the operators at the
initial time t50:

ĉa~ t !5 f ~ t !ĉa~0!1(
k
bk~ t !ĉk~0!,

ĉk~ t !5dk~ t !ĉa~0!1(
q

ekq~ t !ĉq~0!. ~19!

Initially, the time-dependentc-number coefficients are given
by f (0)51, bk(0)5dk(0)50, andekq(0)5dkq . Subsequent
values are obtained from the equations of motion for the
coefficients:

i
d

dt
f5ea

~1!~ t ! f1(
k
V0;k

~1!~ t !dk ,

i
d

dt
bk5ea

~1!~ t !bk1(
q

V0;q
~1! ~ t !eqk ,

i
d

dt
dk5ekdk1V0;k

~1!~ t ! f ,

i
d

dt
ekq5ekekq1V0;k

~1!~ t !bq . ~20!

Once the diagonal terms are removed by a change of vari-
ables as in Eq.~10!, these equations are numerically inte-
grated forward in time with the fourth-order Runge-Kutta
algorithm.14 The occupanciesna(t)5^ĉa

†(t) ĉa(t)& and
nk(t)5^ĉk

†(t) ĉk(t)& may then be calculated for any initial
state of the system. For example, in the case of an incident
positive alkali ion and a filled Fermi sea, initiallyna(0)50
andnk(0)51 for k,kF . The many-electron wave function
is then given at all times by the Slater determinant

uC~ t !&5Pk,kF
ĉk
†~ t !u0&5Pk,kFFdk* ~ t !ĉa

†~0!

1(
q

ekq* ~ t !ĉq
†~0!G u0&; ~21!

here u0& is the true vacuum state devoid of any electrons.
Now it is clear how an arbitrary number of particle-hole
excitations are accommodated within the independent-
particle approximation. From Eq.~21! it follows that
na(t)5(k,kF

udk(t)u2, andnq(t)5(k,kF
uekq(t)u2.

In Fig. 6 we plot the time evolution of the entropy in the
independent-particle approximation and in the approximate
solution to the many-body model for the case of spinless
fermions (N51) with and without the new sectors
ua;L,k,q& of the Hilbert space, Eq.~7!. We also eliminate
excited atomic states in the many-body equations of motion
Eq. ~10! to permit direct comparison of the approximate
many-body solution with the independent-particle solution.
The initial state of the lithium atom, which is held at fixed
position z5z051.0 Å, is a positive ion and the entropy is
zero. As time advances, this pure state evolves into a mixed
one and the entropy grows. Several features shown in Fig. 6
are generic for all of the initial conditions and parameters we
tested. First, the entropy increase in the independent-particle
case is comparable to that in the many-body case, even
though the Hilbert space of the independent-particle solution
is unrestricted. This suggests that sectors containing two and
more particle-hole pairs, the ones not present in the varia-
tional wave function, do not become significantly populated
and can be safely neglected. Indeed the number of electron-
hole pairs produced during a collision, estimated in the
independent-particle solution by counting the expected num-
ber of particles due to pairs,(k.kF

nk , is typically less than
one. Evidently an infrared catastrophe is avoided: the num-
ber of very low energy excitations is severely limited. We

FIG. 6. Time evolution of the dimensionless coarse-grained en-
tropyScg(t) for afixedatomic positionz51 Å. Initially, at t50, the
lithium atom is a positive ion. It then interacts with a metal surface
of work functionW51.59. The independent-particle and the two
approximate many-body solutions are compared for the case of
spinless electrons,N51.
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also see that entropy does not grow monotonically when the
ua;L,k,q& sectors are dropped as the Hilbert space is now too
restricted for phase decoherence to be complete. Finally, Fig.
7 shows how the entropy grows monotonically in the many-
body solution for the physical case of spinning electrons,
N52, with both excited neutral and negative-ion states now
included.

Entropy growth provides clues as to how probability
flows between different sectors within the truncated Hilbert
space. We again turn off the couplings to the negative-ion
and excited-state sectors. The coarse-grained entropy grows
in time as long as the Hamiltonian is time independent. The
main direction of the probability flow corresponds to flow
into sectors with larger and larger phase space. The phase
space corresponding tou0& is a single state and is therefore
smaller than the phase space of theua;k& sector that contains
M states. TheuL,k& sector occupies an even larger portion of
the phase space consisting ofM2 states. Finally, sector
ua;L,k,q& occupies the largest portion of the Hilbert space as
it comprisesM3 states. Thus, probability that flows in the
direction u0&→ua;k&, ua;k&→uL,k&, and uL,k&→ua;L,k,q&
as shown in Fig. 8~a! leads to an entropy increase while a
reversal of flow would, in general, lead to a decrease of
entropy and is improbable. As an illustration of probability
flow, consider the time dependence of the occupancies
shown in Fig. 9~a!. The initial positive ionu0& state first
dwindles into a group of neutralua;k& states because in this
case the surface work function has been set to the low value
of W51.59 eV. Later on, the higher orderuL,k& and
ua;L,k,q& sectors become partially populated. Had the initial
state been a neutral atom and had the surface work function
been high, probability would instead have flowed from the
singleua;k50& state diagonally into the ionized states with a
particle-hole pair,uL,k&. The alternative ionization route
ua;k50&→u0& does not increase the entropy and is negli-
gible compared to theua;k&→uL,k& route. The approximate
solution confirms this scenario in this case as the particle-
hole sectoruL,k& dominates the finalA1 occupancy.

An important feature of the probability cascade is the in-
creasing time scale at which higher-order sectors become
populated as seen, for instance, in Fig. 9~b!. The atomic oc-
cupancies essentially reach their final values at
t57.5310216 sec, despite the fact that probability continues
to flow from u0& to uL,k& and fromua;k& to ua;L,k,q& even
at much later timest520310216 sec. That the occupancy of
the atomic orbital is unaffected by these subsequent prob-
ability flows to the higher-order sectors supports the use of
the 1/N expansion, as the neglect of terms of order 1/N2 and
higher should not significantly disturb observables accessible
to experiment.

We next switch back on the coupling toA2 as depicted in
Fig. 8~b!. It is now clear why loss of memory breaks down
for theA2 initial condition at high work functions, as shown,
for instance, in Fig. 5~c!. For high work functions the final
charge state should be mostlyA1. However, as shown in
Fig. 8~b!, there is no path of strictly growing entropy that
leads fromA2 into any of the sectors corresponding to
A1. The probability can only flow into theua;L,k,q& sector
corresponding to a neutral atom and a particle-hole excita-
tion, and stay there as in Fig. 5~c!. We conjecture that loss of
memory for this initial condition can be restored with the
inclusion of a new sector corresponding to a positive ion
with two particle-hole pairs, which appears at second order
in 1/N as shown in Fig. 8~b!. The probability may then cas-
cade diagonally down fromA2 to A1 with increasing en-
tropy at each step. The reason this sector has not been in-
cluded is pragmatic: it is labeled by four momenta indices,
and the computational power required to solveO(M4) dif-
ferential equations versusO(M3) at the current level of ap-
proximation would be excessive.

Up until now we have focused on the static problem of an
atom at a fixed distance from the surface. We now return to
the dynamical problem. Consider the positive-ion initial con-
dition ~1! and a surface of intermediate work function. Away
from the surface, the atomic level lies below the Fermi en-
ergy and the atom neutralizes via theu0&→ua;k& path as
shown in Fig. 8~a!. Close to the surface the level is image
shifted above the Fermi energy and probability flows back
into the positive-ion sectoruL,k&. On the outgoing leg of the
trajectory, the atomic level shifts back below the Fermi en-
ergy and the atom again neutralizes by filling up the
ua;L,k,q& sector. As the image shift is a monotonic function
of distancez, higher-order sectors do not become populated
significantly during the atom-surface collision, as this would
require more than two level crossings. In the dynamical
problem there is backflow of probability, manifested as a
decrease in entropy along part of the outgoing trajectory as
shown in Fig. 10. The decrease in entropy does not contra-
dict the quantum generalization of theH theorem as the
Hamiltonian now depends explicitly on time. Even though
the incoming Li1 ion is completely neutralized during its
encounter with theW51.59 eV surface, the probability for
exciting an electron into one of the unoccupied levels above
the Fermi energy is only 0.098 in the independent-particle
approximation. Thus the probability for the creation of a
particle-hole excitation is comparably small.

Two conclusions should be emphasized. First, the intro-
duction of a coarse-grained entropy permits a quantitative
understanding of the loss-of-memory process and elucidates

FIG. 7. Coarse-grained entropyScg(t) as a function of time for
the approximate many-body solution in the physical caseN52 for
a fixed atomic positionz51 Å and a surface work function of
W54.59 eV. Three different initial conditions are studied.
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the origin of irreversibility in charge transfer. It also facili-
tates analysis of the 1/N expansion. Second, truncation of the
Hilbert space at first order in 1/N in most instances suffices
for the dynamical charge transfer problem as the probability
flow does not significantly populate higher-order sectors dur-
ing the course of the atom-surface interaction. This conclu-
sion is supported by the independent-particle approximation,
which shows that less than one particle-hole pair is produced
under typical conditions.

V. AUGER PROCESSES

We can take advantage of the newly added extension to
the Hilbert space to include Auger charge transfer processes
in addition to the resonant processes considered up until
now. It has been a long-standing question23 whether or not
Auger processes are of comparable importance to resonant
charge transfer. We show here that at least at low surface
work functions, Auger transitions may be required to obtain
an accurate description of experiments involving lithium

FIG. 8. Schematic showing the different sectors of the Hilbert space up to order 1/N. The arrows indicate the direction of probability flow
as the entropy grows. In~a!, coupling to the negative-ionA2 is turned off and the corresponding sector is not shown. In~b! all sectors
discussed in the paper are shown plus anA1 sector at second order in 1/N which has not been included. We conjecture that loss of memory
from an initialA2 state would occur if the Hilbert space were expanded further to include this sector.
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bombardment of copper surfaces with alkali overlayers. The
measured yield of excited neutral Li(2p) atoms grows at the
very lowest work functions when the incoming kinetic en-
ergy of the Li1 ion is 100 eV. At kinetic energies of 400 eV,
however, this feature appears to be absent.8

In a typical Auger process an electron from one of the
filled states below the Fermi energy of momentumq trans-
fers nonresonantly into the atomic orbitala, while a second
metal electron beloweF of momentumk is promoted to a
state of momentumL of higher energy. Within the truncated
Hilbert space transitions withL.kF andk,q,kF couple the
u0& sector to theua;L,k,q& sector as shown in Fig. 11~a!.
Two other possible Auger processes are shown schematically
in Figs. 11~b! and 11~c!. In these cases one of the metal
electrons hops onto the atomic orbital while the other re-
mains below the Fermi level but fills up a hole that was
already present. These transitions couple the neutralua; l &
sector to the negativeuk,q& sector. Other Auger processes,
which we do not consider here, include Auger deexcitation

of the neutral atom and transitions between theuL,q& and
ua;k& sectors.

It is straightforward to include new terms in the Hamil-
tonian Eq.~1!, which correspond to these processes:

HAug~ t !5
1

N
(
L,k,q

Va;Lkq
A~1! ~z!P̂1cL

†ackaca
†bcqb

1
1

AN
(
l ,k,q

V0;lkq
A~2! ~z!P̂2cl

†ackac0
†bcqb1 H.c.

~22!

We use the same notation here as in Eq.~1! except that now
the sum over momenta indices is restricted to states either
above or below the Fermi energy, depending on whether the
index is a capital or a lower case letter. We have normalized
the couplingsVA(1,2) differently to account for theN species
of spins. For Auger transitionsVA(2) from the neutralua; l &
sector to the negativeuk,q& sector, a preexisting hole in the
metal of momentuml and specific spin must be filled. This is
not the case for Auger transitionsV(1) from a positive ion to
a neutral atom that involve the creation of two new holes of
any spin; hence, the matrix element must be reduced by an
additional factor of 1/AN to make theN→` limit well de-
fined. As we work in the restricted Hilbert space defined
previously, projection onto singly and doubly occupied
atomic sectors occurs automatically and we may drop the
projection operatorsP̂1,2 in the following equations. Before
we proceed further it is useful to separate the Auger Hamil-

FIG. 9. Occupancies as a function of time for afixed atomic
positionz51 Å. The pure initial state is a positive ion (A1), which
then decays. For clarity, the coupling to the negative-ion and ex-
cited neutral sectors is turned off.~a! The surface work function is
W51.59 eV. ~b! Same as~a! except the surface work function is
W53.28 eV. In both~a! and~b! a cascade of probability flow from
the low-order to the higher-order sectors of the Hilbert space is
evident.

FIG. 10. Time evolution of the dimensionless entropy
Scg@z(t)# in the full dynamical problem for spinless fermions
(N51). We compare the independent-particle solution with the
many-body solution; only the coupling to the Li~2s! state is turned
on. A positive lithium ion with an incoming velocity ofui50.04
a.u. interacts with a metal surface of work functionW51.59 eV.
The atom bounces off the surface with an outgoing velocity of
uf50.03 a.u. and is completely neutralized. Note the comparable
sizes of the two entropies. In this case, the probability for an elec-
tron to be excited into a state above the Fermi energy is only 0.098;
hence the probability for the formation of a particle-hole pair is also
small.
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tonian into symmetric and antisymmetric parts~with respect
to interchange of the momenta indicesk and q) to accord
with Eq. ~9!. We also ignore the momentum dependence of
the Auger matrix elements. This approximation, like the one
already imposed on the resonant matrix elements, can easily
be relaxed to incorporate more complicated momentum de-
pendence. With this assumption, the antisymmetric part of
HAug(t) vanishes, and

HAug~ t !5
1

N
(

L,k.q
Va
A~1!~z!~cL

†ackaca
†bcqb1cL

†acqaca
†bckb!

1
1

AN
(
l ,k.q

V0
A~2!~z!~cl

†ackac0
†bcqb

1cl
†acqac0

†bckb!1H.c. ~23!

Adding the Auger Hamiltonian to the resonant one, Eq.~1!,
and projecting the resulting Schro¨dinger equation onto each
sector of the Hilbert space, we obtain the following terms to
be added to the equations of motion Eq.~10!:

i
d

dt
F5•••1A2~121/N! (

a;L,k.q
Va
A~1!* ~z!exp$2 i @~eL2ek

2eq!t1fa~ t !#%Sa;Lkq ,

i
d

dt
Ba; l5•••22da,0A121/N(

k.q
V0
A~2!* ~z!exp$ i @~ek1eq

2e l22e0
~2!2U !t1f0~ t !#%Dkq ,

i
d

dt
ELk5•••,

i
d

dt
Dkq5•••22A121/N(

l
V0
A~2!~z!exp$2 i @~ek1eq2e l

22e0
~2!2U !t1f0~ t !#%B0;l ,

i
d

dt
Sa;Lkq5•••1A2~121/N!Va

A~1!~z!exp$ i @~eL2ek2eq!t

1fa~ t !#%F,

i
d

dt
Aa;Lkq5•••. ~24!

Here the ellipses denote all of the terms in the original equa-
tions of motion, Eq.~10!, which remain unchanged. Like Eq.
~10!, the new equations of motion, Eq.~24!, are exact in the
N→` limit. Higher-order terms are suppressed by powers of
1/N.

Before we proceed with the solution of the above system
of equations, we must find reasonable values for the Auger
matrix Va

A(1,2)(z). Adopting the same parametrization
scheme forVa

A(1,2)(z) as in the case of the resonant cou-
plings, we assume that the couplings fall off exponentially
fast at large distances from the surface and saturate close to
it. As now there are four overlapping wave functions in the
matrix element~compared to two in the resonant case! we
expect the coupling to fall off roughly twice as fast away
from the surface.24 We obtain the couplings from the corre-
sponding atomic half-widths by using the Fermi golden rule.
For the neutral atom,

FIG. 11. Schematic of three different Auger processes.~a! A metal electron from below the Fermi level of momentumk transfers
nonresonantly to the atomic orbitala while another electron from below the Fermi level of momentumq is promoted to a state of momentum
L above the Fermi level to conserve energy. Final-state transitions are possible only when the atomic level dips below the Fermi level,
ea,eF . ~b!, ~c! Two other Auger processes that involve the negative ion. A metal electron from below the Fermi level transfers nonreso-
nantly to the atomic orbitala, while another electron from below the Fermi level of momentumk jumps to a state of momentuml which
is also below the Fermi level. Final-state transitions in this case are possible both for~b! ea.eF and for ~c! ea,eF .
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Da
A~1!~z!5p (

k,q,L
uVa

A~1!~z!u2rdeL1e
a
~1!2ek2eq ,0

, ~25!

and for transitions to the negative-ion state,

D0
A~2!~z!5p (

k,q,l
uV0

A~2!~z!u2rde
0
~1!2e l ,2e

0
~2!1U2ek2eq

,

~26!

where again the density of states for a conduction band de-
scribed by a set ofM equidistant levels spacedD/M apart is
given byr5M /D. From Eq.~25!, it follows that:

Da
A~1!~z!5 1

2p~M /D !3uVa
A~1!~z!u2~ea

~1!2eF!2u~eF2ea
~1!!.

~27!

In Eqs.~27! the Auger rate is proportional to (ea2eF)
2. The

rate, like the inverse lifetime of a quasiparticle in a Landau
Fermi liquid,25 drops rapidly as the phase space available to
particle-hole pair excitations decreases. Foruea

(1)2eFu5D,
however,

Da
A~1!~z!5

p

2

M3

D
uVa

A~1!~z!u2. ~28!

Assuming that the holes are confined to the energies just
below the Fermi level, and assuming that the energy differ-
ence between the negative ion state and the neutral ground
state equals the half-bandwidthD, we also find

D0
A~2!~z!5

p

2

M3

D
uV0

A~2!~z!u2. ~29!

To be concrete, we choose as trial parameters for
Da

A(1,2) those listed in Table II and obtain the matrix ele-
mentsVA(1,2) from Eqs.~28! and~29!. Of course, the matrix
elements themselves, not the widths, are of fundamental im-
portance in the many-body theory. For instance, the sign of
the couplings is important; we chooseVA(1).0 and
VA(2),0 so that the Auger processes interfere constructively
with the resonant ones. The Fermi golden rule then deter-
mines the magnitude of the matrix elements in an approxi-
mately correct way with the right dependence onM . The
results of the dynamical calculation for lithium which in-
cludes both resonant and Auger charge transfer are presented
in Fig. 12. The Auger couplings have been chosen to be
sufficiently small so that the peak in the excited neutral
Li(2p) occupancy remains at work functionW'2.8 eV.
Now, however, there is a second upturn atW'1.5 eV in
qualitative agreement with experiment.8 These features are
robust as the two upturns remain even when the Auger rates

are doubled or halved. To understand the origin of the sec-
ond upturn at low work functions, we first review the expla-
nation for the existence of a peak atW52.8 eV when there is
only resonant charge transfer.8 Dynamical competition be-
tween Li(2p) and Li(2s) states is the key to understanding
the photon peak. As the atom bounces away from the surface
the coupling between the surface and the atom falls off faster
for the Li(2s) state than for the Li(2p) state because the
Li(2p) orbital is larger and of higher energy than the
Li(2s) orbital. At the highest work-function values, the en-
ergy of the Li(2p) state lies above the Fermi level at all
distances from the surface and is unoccupied. However, as
the work function is lowered, the Li(2p) state begins to
cross the Fermi level at closer distances where its coupling to
the surface is appreciable while the coupling to Li(2s) is still
small. For this intermediate range of work functions, the Li
(2p) state becomes populated on the outgoing leg of the
trajectory despite the fact that it is always energetically less
favorable than Li(2s). As the work function drops further,
the Fermi level crossing for the Li(2p) state occurs at dis-
tances for which coupling to Li(2s) is appreciable. Now the
Li(2p) state yields its occupancy to the lower energy Li
(2s) state.

Consider what happens when the Auger coupling is
turned on. At the very lowest work functions, Auger transi-
tions between the Li(2p) state and the metal occur more
frequently because the phase space for these processes grows
rapidly as (ea

(1)2eF)
2 increases. As theD2s(z) Auger rate

falls off more rapidly away from the surface than the
D2p(z) Auger rate, the picture outlined above in the resonant
case simply repeats itself and there is a second upturn in
Li(2p) occupancy. However, as evident from Fig. 12, the

TABLE II. Parameters which characterize the Auger half-widths
for lithium. All parameters are in atomic units.

Atomic state D0 a D sat

Li 0(2s) 14 1.8 0.7
Li 0(2pz) 10 1.3 0.6
Li 2(2s2) 5 1.4 0.3

FIG. 12. The experimentally observed and theoretically pre-
dicted yield of excited neutral Li0(2p). In the experiment, an inci-
dent Li1 ion interacts with a metal surface of variable work func-
tion. In the theory,N52, M530, and parameters which define the
level widths due to Auger transitions are given in Table II. The
initial condition in this case is~4!, the equilibrium ground state at
point of closest approach, though similar curves are also obtained
for initial condition ~2!, the neutral atom far away. The solid line is
for the case ofuf50.03 a.u. corresponding to an incoming kinetic
energy of 400 eV. The dashed line corresponds touf50.015 a.u. or
100 eV. Yields are normalized to one.
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second rise in Li(2p) occupancy is not noticeable at the
higher incoming kinetic energy of 400 eV. In the 100-eV
case the atom moves only half as fast as in 400-eV case and
there is sufficient time for an electron to make an Auger
transition to the excited neutral Li(2p) state. At higher ve-
locities there is not enough time for an Auger transition to
occur.

While the model developed here reproduces the upturn in
the excited neutral Li(2p) occupancy at the very lowest
work functions, it is only one of several possible explana-
tions for the feature. Two difficulties impede further
progress. Experimentally, it is hard to measure absolute
yields of ejected Auger electrons. Relative yields, as mea-
sured in Auger spectroscopy,26 provide little guidance. Most
of the Auger electrons are promoted to unoccupied metal
states instead of ejected from the surface. Indirect probes,
such as the formation of excited states, appear to be the only
way to gauge the relative importance of Auger processes.
Theoretically, Auger matrix elements cannot be computed
accurately because Auger transitions are driven by many-
body correlations.27 The parameters for the Auger rates listed
in Table II are at best just an educated guess. Indeed, calcu-
lations to date have focused on Auger widths as opposed to
matrix elements, which are of more fundamental importance.
Either constructive or destructive interference with resonant
processes is possible, but only a full microscopic calculation
of both types of matrix elements can determine the relative
sign.

VI. CONCLUSIONS

In this paper we described a generalized Newns-Anderson
model of charge transfer and its systematic solution based on
a 1/N expansion. We went beyond earlier work by including
new sectors in the Hilbert space and showed that loss of
memory was improved. We analyzed the effect of the trun-

cation of the Hilbert space on loss of memory by studying
entropy production both within the approximate solution to
the many-body theory and also within the independent-
particle approximation. This analysis showed how the 1/N
truncation scheme works in dynamical problems. In most
cases, higher-order sectors can be neglected as less than one
particle-hole pair is produced during the atom-surface colli-
sion. This conclusion was supported by the independent-
particle approximation. Despite the fact that an unlimited
number of particle-hole pairs can be accommodated within
this approximation, typically less than one is created during
an atom-surface interaction. The production of entropy dur-
ing the collision demonstrates the irreversibility of the inter-
action: at velocities of experimental interest, information
about the initial state of the incoming atom is dissipated.

We included Auger processes and showed that an experi-
mentally observed upturn in photon yield due to the forma-
tion of excited Li(2p) atoms at the very lowest work func-
tions can be explained in terms of competition between the
Li(2s) and Li(2p) states and the rapid growth at low work
functions in the phase space for Auger transitions. Finally,
we examined whether Kondo effects are accessible in experi-
ments involving alkali ions interacting with metal surfaces,
and concluded that it will be difficult to separate the small
predicted effects from other, more mundane, nonlinearities.
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