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Cooperative ligand-binding curves may often appear deceptively featureless, yet the underlying microscopic
models may be rather complex, and the connection between them is not intuitive. To address some of these
issues, we have extended the framework of the decoupled sites representation (DSR), previously developed
in the context of pH titration, to include cooperative ligand binding as well as multiple conformations and
multiple ligands. The extended framework is based on general thermodynamic arguments and is applicable
to both anti-cooperative and cooperative binding. It can be used to elucidate the connection between the
experimentally observed binding curves and parameters of underlying microscopic models. It is demonstrated
that any binding curve can be decomposed into simple standard components that permit a model-independent
physical interpretation in terms of noninteracting (quasi) groups. A simple mathematical form of the DSR is
proposed, that is well-suited for use in least-squares fitting of experimental binding curves; the fitting procedure
produces an integer parameter indicative of the degrees of cooperativity possible in the system. A two-site
example is worked out in detail. We demonstrate that the same macroscopic binding behavior observed
experimentally can have qualitatively different origins at the level of the underlying microscopic mechanism.
We also show that, in the absence of the microscopic model, it is not possible to draw a meaningful distinction
between non-cooperative and anti-cooperative scenarios. We define a new measure of cooperativity and show
that it is in many cases more adequate than the Hill coefficient when used to characterize complex binding
curves. The extended DSR is applied to experimental data sets on oxygen binding to carp hemoglobin at
different pHs, where the framework is used to interpret the degree of cooperativity in the system and provides
an indication as to whether specific microscopic models are applicable.

Introduction

Binding of ligands to macromolecules is one of the most
important reactions in biology; well-known examples include
oxygen binding to hemoglobin, calcium binding to calmodulin,
and magnesium binding to RNA. Often binding of one ligand
molecule can enhance or reduce the receptor’s affinity to bind
subsequent ligand molecules. Such effects are in general referred
to as “cooperative”, and can be found in many biological
systems. Reduction of affinity upon multiple ligand binding can
be attributed to the presence of an effective repulsion between
the ligands and is called negative cooperativity or anti-
cooperativity. Affinity enhancement due to ligand binding can
be attributed to an effective attraction between the ligands and
is called positive cooperativity or simply cooperativity. Positive
cooperativity is important for the regulation of biochemical
reactions,1,2 where it leads to steep titration curves and thus to
a fast transition from the completely free to the completely
bound state of the macromolecule as the ligand concentration
is increased. Cooperative effects are also important for enzymes,
where they can increase the enzymes’ turnover rates3 as in
aspartate transcarbamylase, which was studied intensively.

Because of its biological importance, cooperative binding has
for a long time been attracting attention in the theoretical
biochemistry community. Adair was probably one of the first
to develop a quantitative model of cooperative ligand binding.4

It was based on general thermodynamic arguments and did not
rely on any microscopic or structural details of the binding
process. Much later, Monod, Wyman, and Changeux5 as well
as Koshland, Ne´methy, and Filmer6 developed their treatment
of cooperative binding based on an underlying structural model.
Hammes and Wu3 pointed out that the Monod-Wyman-
Changeux (MWC) as well as the Koshland models were special
cases of a more general model of cooperative binding. Over
the past few decades, a great number of studies have been carried
out aimed at understanding the interaction between ligands7-20

using both structure-based and phenomenological models.
In a our previous work,21 we discussed the complexity of

titration curves that involve more than one interacting ligand
and showed that any titration curve, no matter how complex,
can be decomposed into a linear combination of simple standard
components. These components are sigmoidal titration curves
corresponding to noninteracting quasisites; the latter are char-
acterized by their own set of binding constants and are related
to the original microscopic binding sites via a linear transforma-
tion. The relationship between binding constants of the quasi-
sites, the original (physical) binding sites, and the standard
macroscopic binding constants is discussed in detail in ref 22.
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The new framework, the decoupled site representation or DSR,21

allows us to interpret any complicated titration behavior in a
model-free, thermodynamically rigorous way. The DSR is thus
analogous to the normal-mode representation of vibrations.
Previously, we focused on pH titration as a typical example of
anti-cooperative ligand binding. While the general arguments
used in the derivation of the DSR apply verbatim to the
cooperative case as well, and the same mathematical formalism
holds, the presence of an effective attractive interaction between
the ligands can cause some of the quasisite binding constants
to acquire an imaginary part. One way out of this difficulty
would be to use the concept of “ghost site”1 with the associated
binding constants that are allowed to have an imaginary part.
However, as we showed in our previous work21 on the anti-
cooperative scenario, the DSR quasisite binding constants can
be directly measured experimentally and are straightforwardly
related to the energetic parameters of the system. To treat both
cooperative and anti-cooperative binding within the same
framework, we have reworked the mathematical formalism of
the DSR to accommodate the cooperative case without the
explicit use of nonreal numbers for all the binding constants
involved. This strategy is consistent with our philosophical
conviction that a physical observable should be a purely real
number. We will use cooperative oxygen binding to carp
hemoglobin as a test case and will show how an application of
the DSR helps to interpret experimental data and select plausible
microscopic models.

We begin by briefly outlining the theory of multiple ligand
binding and the concept of macroscopic and microscopic binding
constants. We then introduce the DSR and the idea of quasisites
and their binding constants. We extend the DSR framework to
the multiple conformer case and consider binding of more than
one type of ligands. We introduce the notion of aquasigroup,
which is a generalization of the quasisite concept introduced
earlier. Each quasigroup is characterized by a set of purely real
binding constants analogous to macroscopic binding constants.
We define a measure of cooperativity for each quasigroup and
show that it is superior to the Hill coefficient when used to
interpret cooperative binding curves. Furthermore, we show that
a simple equation based on purely real numbers can be used to
fit experimental data to the DSR model and that an integer
parameter obtained automatically as a result of the least-squares
fit can provide valuable information about types of cooperative
behavior possible in the system. A two-site example is worked
out in detail; we use this case, which permits an analytical
solution, to demonstrate that very different underlying micro-
scopic models may lead to the same phenomenological ligand-
binding behavior at the macroscopic level. The DSR helps to
unambiguously classify similar types of binding and distinguish
between qualitatively different scenarios. We apply the extended
DSR to available experimental data sets on oxygen binding to
carp hemoglobin at different pH, show how the framework can
help to interpret the various degrees of cooperativity seen in
the system, and provide an indication whether certain micro-
scopic models (such as the two-state MWC) are applicable. In
the end of the paper, we summarize our main conclusions.
Details of some of the derivations, too lengthy for the main
text, are presented in the Supporting Information.

Theory

Basic Concepts in Multiple Ligand Binding. In this section,
we summarize the basic concepts in the theory of multiple ligand
binding and connect two different approaches which often
complement each other in theoretical studies. The first approach

describes titration curves in terms of equilibrium constants; the
second one uses the energies of micro- and macrostates. Both
approaches are fully equivalent, but the notational framework
of the latter is more compact for molecules that can bind many
ligands.

The binding of a ligand L to a receptor R is described by the
following basic equations

The square brackets denote the concentration (activity) of the
species. The standard energy∆G° of ligand binding is given
by

with â ) (kBT)-1, wherekB is the Boltzmann constant andT is
the absolute temperature. The probability〈x〉 of finding a ligand
associated with its receptor at a given chemical potentialµL of
the ligand is given by

where Λ ) [L] ) eâµL is the ligand activity. This equation
describes a sigmoidal titration curve with a unit slope at its only
inflection point. In the following, we call such titration curves
standard sigmoidal titration curves.

The ligand binding to a molecule that can bindN ligands of
the same type is given by

The species RLi is the macrostate of the receptor withi ligands
bound. The total binding curve〈X〉 is in general described by
eq 5

The binding constantsKh i aremacroscopicbinding constants for
binding theith ligand to the molecule, i.e., the molecule is only
considered as a whole, and individual binding sites are not
considered explicitly.1,22 In contrast to macrostates, for which
it is not specified to which sites the ligands bind, it is also
possible to definemicrostates, for which this specification is
required. For each macrostate withi ligands bound, (iN) ) (N!/
(N - i)!i!) different microstates can be distinguished.

Rewriting eq 5 in terms of microscopic constants requires
replacement of the macroscopic constantsKh i in eq 5 by
equivalent expressions based on microscopic constants.9,23Each
microstate can be characterized by a state vector xbn, where each
componentxi

n is either 0 or 1 depending on whether the sitei
is occupied or empty. For instance, a state of a three-site system
in which the first and the third sites are occupied and the second
one is empty is given by (101). The number of ligands bound
to staten is given bypn ) ∑i)1

N xi
n. The equilibrium between

the microstateu (reactant state) andv (product state) is given
by the microscopic equilibrium constantku

v. Writing eq 5 in
terms of microscopic equilibrium constants would, however,

R + L y\z
K

RL K )
[RL]

[R][L]
(1)

G° ) -â-1 ln K (2)

〈x〉 ) e-â(G°-µL)

1 + e-â(G°-µL)
) KΛ

1 + KΛ
(3)

R + NL y\z
Kh1

RL + (N - 1)L y\z
Kh2

... y\z
KhN

RLN (4)

〈X〉 )

Kh 1Λ + 2Kh 1Kh 2Λ
2 + ... + N ∏

i)1

N

Kh i ΛN

1 + Kh 1Λ + Kh 1Kh 2Λ
2 + ... + ∏

i)1

N

Kh i ΛN

(5)
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result in rather complicated expressions even for systems with
relatively few binding sites.9,23We therefore switch to a different
but equivalent representation, in which instead of using the
equilibrium constants that lead to a certain microstaten from
the reference state, we use the standard free energyG°n of this
microstate relative to the reference state. The standard free
energyG°n relates to the microscopic constants as given in eq 6

The product in eq 6 ranges over the equilibria that connect the
reference state with thatn. For example, for state (101), the
product in eq 6 would bek000

100 k100
101 or equivalentlyk000

001 k001
101. The

total binding curve in terms of the energies of the microstates
is then given by eq 7

The denominator in eqs 5 and 7 corresponds to the grand
canonical partition functionZ of the system.

The Decoupled Sites Representation for Multiple Con-
formers and More Than One Ligand. In the presence of an
effective ligand-ligand interaction, titration curves of individual
ligand-binding sites in a molecule can be considerably more
complex than those of independent sites described by a standard
sigmoidal curve. In our previous paper,21 we introduced a novel
framework, the decoupled site representation (DSR), that
decomposes any complicated titration behavior into simple
standard (sigmoidal) components. The approach maps the set
of N interacting sites in the molecule onto a set ofN
independent, noninteracting quasisites, each characterized by a
new binding constant. From general thermodynamic arguments,
we showed that the titration curve of an individual site in the
molecule is a linear combination of standard sigmoidal titration
curves corresponding to the quasisites. The total binding curve
is the sum of these standard sigmoidal titration curves. The DSR
allows to interpret any complicated titration behavior in a model-
free way.

In this section, we generalize the DSR to include multiple
receptor conformations and allow for binding of more than one
type of ligand. A more detailed derivation of the DSR for the
case of a single conformation and one type of ligand can be
found in ref 21.

Consider a molecule that can adoptT conformations and has
N binding sites for ligand L andR sites for another type of
ligand S. Also different hydration levels of the receptor can be
interpreted as alternative conformations of the receptor. The
receptor is in equilibrium with the ligands in the surrounding
solution. Only one single ligand can bind to one site. A ligand
of type L cannot bind to a site for a ligand of type S and vice
versa. The binding state of the molecule is specified by aN +
R dimensional vectorxbn,r,t where each elementxi

n,r,t is 1 or 0
depending on whether sitei is occupied or empty in the given
conformationt. The superscriptn,r,t denotes the microstate
(ligand-binding and conformational states). We assume that sites
from 1 to N bind ligands of type L and sites fromN + 1 to N
+ R bind ligands of type S. The total number of possible
microstates of the molecule is 2N × 2R × T. Each microstate is
characterized by its free energyGn,r,t and the number of bound

ligands of each type,pn ) ∑i)1
N xi

n,r,t and qr ) ∑j)N+1
R+N xj

n,r,t.
Here,Gn,r,t is the standard Gibbs free energy of the microstate
when all ligand activities equal 1. In what follows, we take the
reference state with free energy of zero to be the completely
empty state of the lowest-energy conformer. The equilibrium
properties of the system can be calculated from its grand
canonical partition function, which can be written8,10as a power
series (binding polynomial) in the ligand activitiesΛL ) eâµL

andΛS ) eâµS

The equilibrium occupation of the sitei averaged over all
microstates is given by

The calculation of the cooperativity between L and S requires
an analysis ofZ as a function of bothΛS andΛL; thus instead
of the problem of finding roots of a polynomial, it leads to the
more complicated problem of finding the curves in the (ΛS,ΛL)
plane obtained from the intersectionZ(ΛS,ΛL) ) 0. The latter
equation is, in general, too complex and is unlikely to lead to
a rigorous mathematical treatment that can be transparent enough
to clarify the main points that follow. We therefore revert to
the case of constant chemical potential of the ligand S and
consider it as a parameter, which is a typical experimental
situation. This assumption reduces the partition function to the
tractable form of the single-variable binding polynomialZ(ΛL).
In this case, eqs 8 and 9 are polynomials ofNth degree of only
one variableΛ ) ΛL, and so all the mathematical formalism
developed in our earlier work21 applies. In particular, as was
noted before, the binding polynomial eq 8 can always be
factorized,1,8,9,24and so we can rewrite eq 8 as

whereK′i is obtained as the negative inverse of the roots of the
binding polynomial in eq 8 consideringΛS constant. Applying
the relationship25

to eq 8, one obtains for the total average occupancy of the
molecule withN ligands

Equation 12 as well as eq 10, from which it is derived, describes
the binding toN noninteracting or independent sites with some
new binding constantsK′i. We call thesequasisitesto distin-
guish them from the original, physical binding sites. The two
sets become identical only when all ligand-binding sites are
completely independent. Since it is a priori not known whether
there is an effective interaction between the ligands, one cannot,
from the total binding curve alone, assignK′i to a particular
physical site, although real-valuedK′is are experimentally
accessible.21

Z ) ∑
t)1

T

∑
r)1

2R

∑
n)1

2N

e-âGn,r ,t
ΛL

pnΛS
qr (8)

〈xi〉 )
1

Z
∑
t)1

T

∑
r)1

2R

∑
n)1

2N

xi
n,r ,t e-âGn,r ,t

ΛL
pn ΛS

qr (9)

Z ) ∏
i)1

N

[1 + ΛLK′i] (10)

∑
i

〈xi〉 )
∂ ln Z

∂ ln ΛL

(11)

〈X〉 ) ∑
i)1

N

〈xi〉 ) ∑
i)1

N ΛLK′i

1 + ΛLK′i
(12)

G°n ) -â1 ln ∏ ku
v (6)

〈X〉 )

∑
j)1

2N

pj e-âG°jΛpj

∑
j)1

2N

e-âG°jΛpj

(7)
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The original interacting binding sites are related to the
quasisites by a linear transformation21

where〈yj〉 is the occupancy of quasisitej; the latter is described
by a standard sigmoidal titration curve since, by construction,
quasisites do not interact with each other. An explicit repre-
sentation for the elements of the transformation matrix{aij} can
be found in our previous publication.21

The Decoupled Sites Representation for Cooperatively
Interacting Sites.When the number of binding sites isN > 2,
there is no straightforward way8 to determine analytically the
number of real roots of the binding polynomial eq 8. Our
previous numerical analysis suggested21 that, in the single ligand/
single conformer case, repulsion between ligands on different
sites is a sufficient condition for all of the roots to be purely
real. Conversely, an effective attraction between the ligands may
result in some of the roots being complex, which implies
cooperativity between the sites.8 CooperatiVe bindingmeans
that the binding of a ligand increases the affinity for subse-
quent ligand binding. Such a scenario can be interpreted as an
effective attraction between ligands. The opposite effect, i.e.,
the decrease of the ligand-binding affinity with the number of
ligands already bound, is calledanti-cooperatiVe binding. We
call bindingnon-cooperatiVe if binding of a ligand has no effect
on binding of the subsequent ligands. As we will show later,
effective attraction, and therefore cooperativity, may result
from conformational transitions after ligand binding, the pres-
ence of more then one type of ligand, or attractive site-site
interactions.

In the case of cooperative binding, some of the quasisite
binding constants become complex, i.e., they consist of a real
and a nonzero imaginary part. For complexK′j, fitting of the
total binding curve to eq 12, although still mathematically
possible with the use of complexK′j andaij, is not practical. In
addition, a physical interpretation of the complex binding
constant is problematic.

To obtain a purely real expression which would not involve
“complex binding constants”, we follow Wyman’s strategy and
group the factors [1+ ΛK′j] in eq 8 to obtain a representation
of Z in terms of the product of lowest-degree polynomials with
real, non-negative coefficients

whereN1 + 2N2 + ... + MNM ) N. We call each of the above
polynomialsirreduciblesince, by construction, they cannot be
further factored into lower-degree polynomials with real, non-
negative coefficients in front ofΛk. Therefore, by construction,
all K′j and Kh j

mk are real and positive and can be considered
binding constants in the usual sense. The partition function in
eq 15 describes a system that can be interpreted as a system of
N1 independent quasisites,N2 pairs of cooperatively interacting
quasisites, and so on up toNM mplets of cooperatively interacting

quasisites (1< m e M). We call themplets of cooperatively
interacting quasisitesquasigroups of order mand the corre-
sponding subpolynomialquasigroup polynomial. Quasigroups
do not interact with each other since each corresponds to a factor
in the partition function. The roots of the quasigroup polynomial
are also roots of the whole binding polynomial. The constants
Kh j

mk are macroscopic binding constants of these quasigroups. It
is not a priori possible to assign a given quasigroup to a real
group of sites in the molecule. This situation is similar to the
one of quasisites which cannot a priori be assigned to real sites
in the molecule but, similar to normal modes, can include
contributions from different sites.

By application of eq 11 to eq 15, one obtains for the total
average occupancy of the molecule withN ligands

Each fractional term in eq 16 involving polynomials of order
mcorresponds to a polynomial (mplet) factor of the same order
in the partition function in eq 15, i.e., to a quasigroup polynomial
(these polynomials are obviously the denominators in the
expression above). Since eq 16 is derived using only the basic
thermodynamic arguments, it is the most general form of the
total titration curve of a macromolecule withN ligand-binding
sites. Each term of orderm > 1 in eq 16 describes a binding
curve with a cooperativity greater than 1 and less than or equal
to m. The specific form of the many-body cooperativity
suggested by eqs 15 and 16 does exist in real systems; an
example will be presented later in this work, in the section on
cooperative oxygen binding by hemoglobin.

Using the Decoupled Sites Representation for Data Fitting.
The form of eq 16, although useful for theoretical analysis, may
become cumbersome in practical applications, such as fitting
of experimental data. One reason being that parameters{N1,
N2, ...} are a priori unknown and considering all possible
combinations of them may be impractical, especially for large
values ofN. Also, using ratios of high-degree polynomials for
fitting may not be the best choice from the point of view of
numerical algorithms. To provide a simple and practical fitting
procedure, we use the fact that roots of a polynomial always
come in complex conjugate (CC) pairs:z ) Rez+ Imzandz*
) Rez- Imz. Combining such pairs in eq 10, we break up the
partition function into products over (N - 2C) quasisites with
real K′ andC pairs (ReK′j ( ImK′j) of CC ones

Applying eq 11, we obtain a purely real expression for the
total average occupancy

〈xi〉 ) ∑
j

N

aij〈yj〉 (13)

〈yj〉 )
K′jΛL

1 + K′jΛL
(14)

Z ) ∏
j)1

N1

[1 + K′jΛ] × ∏
j)1

N2

[1 + Kh j
21Λ + Kh j

21Kh j
22Λ2] × ... ×

∏
j)1

NM

[1 + Kh j
M1Λ + Kh j

M1Kh j
M2Λ2 + ... + ∏

k)1

M

Kh j
MkΛM] (15)

〈X〉 ) ∑
j

N1 K′jΛ

1 + K′jΛ
+ ∑

j

N2 Kh j
21Λ + 2Kh j

21Kh j
22Λ2

1 + Kh j
21Λ + Kh j

21Kh j
22Λ2

+ ... +

∑
j

NM
Kh j

M1Λ + ... + M ∏
k

M

Kh j
MkΛM

1 + Kh j
M1Λ + ... + ∏

k

M

Kh j
MkΛM

(16)

Z ) ∏
i)1

N-2C

[1 + K′iΛ] ∏
j)1

C

[1 + K′jΛ][1 + K′j
*Λ]

) ∏
i)1

N-2C

[1 + K′iΛ] ∏
j)1

C

[1 + 2ReK′jΛ + |K′j|2Λ2] (17)
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whereK′i, Rj, and γj are related to the rootsz of the binding
polynomial eq 8 by

Just like eqs 16 or 5, eq 18 is the most general form of the
titration curve of a macromolecule withN ligand-binding sites.
Note that the Adair equation,4 often used to fit multiple ligand
binding, is fully equivalent to eq 5 (for details, see the
Supporting Information). The key difference of eq 18 from eq
5 or the Adair equation is that not only canK′i, Rj, andγj be
treated as fitting parameters but the integerC can as well. A
similar but not identical approach was suggested before.26

Compared to eq 5, which is commonly used to fit ligand-binding
curves, eq 18 has at least two advantages. First, the maximum
power of polynomials involved in eq 18 is 2, notN as in eq 5,
which simplifies the fitting procedure and is less likely to result
in a numerical instability. Second, eq 18 automatically provides
some information about the degree of cooperativity of the ligand
binding. As we shall see later, this information is contained in
the parameterC, half the number of nonreal roots of the binding
polynomial. In particular ifC ) 0, eq 18 reduces to the sum of
standard sigmoidal titration curves as described in our previous
work. If C > 0, the “quadratic” terms are present in eq 18.
Such a system can exhibit various degrees of cooperativity
between 1 andN.

One has to keep in mind that some of the parametersRi and
γj in eq 18 can be negative in which case a straightforward
interpretation of these values as binding constants is not possible.
Once, however, eq 18 has been fitted and theK′i, Ri, γj, andC
have been determined, they can be used to obtain, via a
straightforward procedure exemplified later in the work, a set
of non-negative quasigroup constants specified in eq 16. The
latter have physical meaning as explained above.

The described fitting procedure is as general as the Adair
equation often used for fitting experimental data for cooperative
binding. However, the mathematical expression (eq 18) to which
the data are fitted is much simpler and less likely to cause
numerical problems. In addition, the DSR parameter C provides
additional information about the cooperativity of ligand binding.

A Quantitative Measure of Cooperativity. Experimental
curves that describe ligand binding are sometimes very complex,
and the widely used description in terms of Hill coefficient may
be inadequate21 and even misleading. Consider for example a
set of binding isotherms depicted in Figure 1, corresponding to
a system of four binding sites. Although the visual appearance
of the two curves is deceptively different, they both have the
same mathematical form given by eq 18 withC ) 1 (N ) 4)

indicating the presence of cooperative binding. In the case of
the dashed line, the domains of anti-cooperative (standard
sigmoidal terms in eq 20) and cooperative (“quadratic” term)
regimes nearly coincide, yielding a curve with a classical

cooperative appearance. The Hill coefficient, defined as the slope
of 〈X〉/(N - 〈X〉) vs the chemical potentialµ of the ligand at
half saturation 〈X〉 ) N/2, correctly indicates cooperative
behavior,nHill > 1. One the other hand,nHill is much smaller
than 1 for the solid curve and can be misinterpreted as a sign
of strongly anti-cooperative behavior, which is obviously not
the case. In fact, there are two well-separated domains in this
case: cooperative, corresponding roughly toµ J 0, and anti-
cooperative, whereµ j 0. Use of eq 18 to fit the experimental
binding isotherms automatically eliminates these difficulties in
interpretation; the best fit yields not only a set of{K1, K2, ...R1,
γ1...} but alsoC, which points to a degree of cooperativity
possible in the system.

The integerC can, as we shall see below, serve as a “global”
measure of cooperativity, but if one goes further and identifies
all of the constants and the quasigroups in eq 16, the degree of
cooperativity can be quantified separately for each quasigroup.
The example shown in Figure 1, representing a mixture of
cooperative and anti-cooperative regimes, points to the necessity
of such separation. A useful measure of cooperativity should
indicate how sharply a quasigroup converts from a completely
empty state to the completely filled one as ligand activity
increases. This measure is clearly connected to the maximal
slope of the ligand-binding curve.

In order to define the measure, we look at two extreme
cases: a system that bindsN ligands non-cooperatively toN
identical noninteracting binding sites (K ) e-â(G°i))

and a system that bindsN ligands fully cooperatively, i.e., the
system exists only in two states: all ligands bound or no ligands
bound

The maximum slope, i.e., the slope at the inflection point, is
given in the non-cooperative case by

and in the cooperative case by

By consideration of eqs 23 and 24, we propose

as a new measure of cooperativity. For a system of two
interacting sites, this measure is fully equivalent to the Hill
coefficient (see Supporting Information for the formal proof),
and so it can be interpreted as the number of ligands that bind
simultaneously to one quasigroup. The definition eq 25 therefore
provides a sensible measure for the degree of cooperativity of

Znon-coop) (1 + KΛ)N

〈Xnon-coop〉 ) N
e-â(G°i-µL)

1 + e-â(G°-µL)
(21)

Zfull-coop) 1 + KΛN

〈Xfull-coop〉 ) N e-â(Gk-NµL)

1 + e-â(Gk-NµL)
(22)

∂ 〈Xnon-coop〉
∂ µL

) âN
4

(23)

∂ 〈Xfull-coop〉
∂ µL

) âN2

4
(24)

¥ ) 4
âN

∂ 〈X〉
∂ µL

|
at the inflection point

(25)

〈X〉 ) ∑
i)1

N- 2C K′iΛ

(1 + K′iΛ)
+ ∑

j)1

C RjΛ + 2γjΛ
2

1 + RjΛ + γjΛ
2

(18)

K′i ) -zi
-1

Rj ) 2ReK′j ) -(zj
-1 + zj

*-1)

γj ) (ReK′j)
2 + (ImK′j)

2 ) zj
-1zj

*-1 (19)

〈X〉 )
K′1Λ

(1 + K′1Λ)
+

K′2Λ
(1 + K′2Λ)

+ RΛ + 2γΛ2

1 + RΛ + γΛ2
(20)
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a quasigroup 1< ¥ e N. A detailed derivation of the
cooperativity measure¥ and its relation to the Hill coefficient
is given in the Supporting Information. As far as the integer
numberC from eq 18 is concerned, clearlyC ) 0 in the non-
cooperative case. In the fully cooperative case,Zfull-coop from
eq 22 has either zero (for evenN) or one real root (for an odd
N), and soC ) N/2 or C ) (N - 1)/2, respectively.

The magnitude ofC characterizes the entire binding curve
and serves as a “global” indicator of the possible degree of
cooperativity. In this sense, it is similar to the Hill coefficient,
although we will see later thatC is often a better indicator of
what microscopic models are consistent with the experimental
data. On the contrary, the measure¥ should not be applied to
the total binding curve but instead to individual binding curves
of each quasigroup, i.e., a degree of cooperativity¥ can be
assigned to each quasigroup. This is one fundamental aspect in
which it is different from the Hill coefficient. The cooperativity
¥ of a quasigroup of orderm can adopt values between 1 and
m.

The values of the ligand chemical potential at which the
titration curve is steep are the points where the receptor-ligand
system is most sensitive to the changes in ligand activity. At
such a point, a quasigroup may “respond” to the ligand and
switch from one binding state to another, possibly transducing
a signal. In the analysis of experimental data, it is therefore
important to list not only the cooperativity measure¥, but also
the chemical potential at the inflection point of the corresponding
quasigroup binding curve.

Results

Receptor with Two Interacting Binding Sites. We now
illustrate how the concepts developed above can be applied to
a receptor with two binding sites. Despite its relative simplicity,
the system exhibits rich behavior and serves as a good test
model. It permits an exact analytical connection between the
macroscopic binding constants on one hand and cooperativity
signatures described above and physical parameters of the under-
lying microscopic model on the other. Since the development
of a microscopic model is often the goal when a new ligand-
binding system is investigated, it is important to understand the
intricate connections between the two levels of description.

Receptor with Two Binding Sites and a Single Conformation.
We consider a receptor that exists in a single conformation and
has two ligand-binding sites. The ligands bind to the free
receptor with binding energies ofG1

intr and G2
intr. When both

sites are occupied, they interact with an energyW. The grand
canonical partition functionZ of such a system is thus given
by eq 26

where as beforeΛ ) eâµL. The roots ofZ ) 0 from eq 26 are
real (C ) 0 in eq 18) if

where∆G ) G2
intr - G1

intr. The quasisite binding constantsK′1
andK′2 are related to the parameters of the binding polynomial
Z, eq 26. This relationship can be concisely expressed asK′1 +
K′2 ) A andK′1K′2 ) B. If eq 27 holds, the binding curve has a
“two-step” shape as shown in Figure 2, which indicates anti-
cooperative or non-cooperative binding. One typically observes
these types of curves in pH titration experiments where the
electrostatic repulsion between the protons results inW > 0.
When the inequality eq 27 is no longer true, the two roots of
the binding polynomial are no longer real (C ) 1 in eq 18) and
the binding is described by a single “quadratic” term in eq 18
with R ) A and γ ) B. The corresponding titration curve is
given by the dashed line in Figure 2 and represents cooperative
binding. Perhaps somewhat counterintuitively, the mere presence
of an attractive (W < 0) interaction between the binding sites
is not sufficient to cause cooperativity. A more stringent
condition is required. Figure 3 shows the regions of parameter
space (W,∆G) corresponding to cooperative and anti-cooperative
regimes. If the binding affinities of the two sites are very
different, the onset of cooperativity requires a strong attractive

Figure 1. Two possible ligand-binding curves for a four-site system.
The average total occupancy of the receptor〈X〉 is depicted as a function
of the ligand chemical potential (in units ofkBT, âµ ) ln(Λ)). Both
curves have the same mathematical form of eq 20 with C)1 indicating
the presence of cooperative binding. Solid line,K′1 ) 100,K′2 ) 100,
R ) 0.02,γ ) 0.0002; dashed line,K′1 ) 1, K′2 ) 1, R ) 1, γ ) 0.5.
Note that the Hill coefficientnHill , 1 for the solid curve, which can
be misinterpreted as the absence of cooperativity in the system.

Figure 2. Total titration curves of a receptor with two identical ligands
binding sites. The chemical potentialµL is given in units ofkBT. The
energies for binding of the first or the second ligand to the receptor,
G1

intr and G2
intr, are the same (-10 kBT). Different scenarios are

illustrated: The two sites do not interact (solid curve, non-cooperative
case); they interact repulsively with an energy of 5kBT (dashed-dotted
curve, anti-cooperative case); they interact attractively with an energy
of -5 kBT (dashed curve, cooperative case). The anti-cooperative case
can also be interpreted as non-cooperative ligand binding to binding
sites with different binding constants. Just from the titration alone, the
differentiation between anti-cooperative and non-cooperative ligand
binding cannot be made.

Z ) 1 + AΛ + BΛ2

A ) e-âG1
intr

+ e-âG2
intr

B ) e-â(G1
intr+G2

intr + W) (26)

W g - 1
â

(2 ln(1 + e-â∆G) - ln 4) - ∆G (27)
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interaction between them. If the physical interaction between
the sites is repulsive,W > 0, the cooperative regime cannot be
reached if the receptor can only exist in a single conformation.
Another important conclusion that can be made is that the
information contained in the total binding curve alone is not
enough to distinguish between true anti-cooperativity and non-
cooperativity, since both are described by the same mathematical
form. There is no way to decide just from the dash-dotted curve
in Figure 2 whether it is produced by binding to independent
sites (W ) 0) having different intrinsic affinities to the ligand
(∆G * 0) or by identical (∆G ) 0) interacting (W > 0) sites.
Both scenarios belong to the same region in Figure 3b specified
by eq 27. The separatrix line in Figure 3b corresponds to the
equality sign in eq 27. It corresponds to a set of microscopic
models{G1

intr,G2
intr,W} with standard sigmoidal titration curves

and equal quasisite binding constantsK′1 ) K′2 ) 2B/A, as for
instance the solid line in Figure 2. Only the point{W ) 0,∆G
) 0} on this line represents a system of two independent
noninteracting sites that is truly non-cooperative. Since the two-
site microscopic model is fully determined by three parameters
{G1

intr,G2
intr,W} and the macroscopic binding curve has only two

parameters, the absence of a one-to-one mapping between the

models is not surprising. Although a one-to-one mapping is also
not possible for the cooperative regime, there is one important
distinction from the anti-cooperative case: the binding curve
cannot be reduced to a sum of two standard sigmoidal titration
curves in the cooperative regime. Thus, cooperative binding
curves cannot be interpreted as two independent sites. In the
language of the DSR, the cooperative system can be described
by one quasigroup capable of binding two ligands. In contrast,
an anti-cooperative or non-cooperative system can be described
by two quasisites each binding one ligand. The microscopic
origin of this important distinction is in the fact that in the
cooperative region there must exist an (effective) attractive
interaction,W < 0, between the ligands bound to the two sites.

Now we want to quantify the cooperativity of the system
using the measure¥ from eq 25. The¥ ) 1 value separates
the cooperative from the non-cooperative or anti-cooperative
regimes, the last two scenarios being indistinguishable on the
basis of a binding curve alone, as discussed above, and so it is
only meaningful to assign¥ ) 1 to both. In the qualitatively
different cooperative regime¥ > 1, and Figure 4 illustrates the
behavior of¥ as a function of∆G andW. Note that the same
value of¥ can correspond to different combinations of{∆G,W}.
The cooperativity discussed in this section is brought about by
attractive interaction between the ligands. Such an attraction
can have various physical origins, such as for instance hydro-
phobic interactions or polar interactions. Attractive interaction
is, however, unlikely between ligands which bear a net charge
such as protons or metal ions, because of electrostatic repulsion.
If cooperativity is found for such species, it is caused by other
effects and not by a direct ligand-ligand attraction.

Receptor with Two Binding Sites and Two Conformations.
We now consider a receptor with two binding sites. The receptor
can exist in two conformations which differ in energy byGconf.
The binding energies of the ligands in the first conformation
are G1

intr and G2
intr and in the second conformationGA

intr and
GB

intr. The interaction between the sites isW12 in the first
conformation andWAB in the second. The energy diagram of
the system is presented in Figure 5. Despite the simplicity of
this model, its full parameter space is fairly large. A few
simplifying assumptions help illustrate the key points. We
assume that the difference in binding free energies of the two
ligands is the same in the two conformations,∆GAB

intr ) ∆G12
intr

) ∆G, and so is the interaction energy between the ligands in
the two conformations,WAB ) W12 ) W. However, the
individual ligand-binding free energies are assumed to be

Figure 3. (a) Dependence of the quasisite binding constants on the
interaction energyW (in kBT) between the original (microscopic) sites.
The y axis gives the binding energy of a quasisite, which is obtained
from G′i ) -ln Re(K′i). The intrinsic binding constants are-10 kBT
and -10 kBT for the solid curve and-10 kBT and -12 kBT for the
dashed curve. To the right of the bifurcation point, the two distinct
roots of the binding polynomial are purely real, and the system can be
decoupled into two independent quasisites, each characterized by its
own binding constantK′i. To the left of the bifurcation point, the roots
of the binding polynomial are complex, i.e., the binding is cooperative.
This is when the two quasisites merge into one second-order quasigroup.
Right at the bifurcation point the binding polynomial has 1 real root of
multiplicity two, the binding is no longer cooperative. (b) Line
separating the cooperative from the anti- and non-cooperative regimes.
The line corresponds to the equality sign in eq 27. All energies are
given in kBT units.

Figure 4. Dependence of the cooperativity measure¥ on the interaction
strengthWbetween the original (microscopic) binding sites. The curves
are drawn for several∆G values representing the difference in ligand-
binding affinity between the two sites. The sign of∆G has no influences
on the curve, i.e., the curves for∆G and-∆G are identical. Energy
units are inkBT.
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different in the conformations. The difference is specified by
∆GA1

intr ) GA
intr - G1

intr. With these assumptions, the partition
function is given by eq 26 with the coefficientsA andB that
are now functions of five free-energy parametersG1

intr, ∆G, W,
Gconf, and∆GA1

intr

The first three parameters determine the energetics of a single
conformation, and the last two pertain to the differences between
the conformations.

First, considerGconf ) 0, i.e., the free energy of the receptor
is the same in both conformations without any ligands bound,
but the affinities of the ligands to the different conformations
differ. Similar to the receptor with only one conformation,
different values of∆G and W determine whether the system
behaves cooperatively or anti-cooperatively. However, the
position of the line separating the non- and anti-cooperative
regimes from the cooperative regime does depend on∆GA1

intr. In
particular, the cooperative regime can now be reached even with
repulsive interactions between the ligands (Figure 6a). The
difference in ligand-binding free energy between the conforma-
tions acts as an effective attraction and can thus cause coopera-
tive binding. The qualitative similarity betweenW and ∆GA1

intr

in this respect does not, however, translate into their equivalence.
While it is always possible to achieve cooperativity via a strong
enough attractive (W < 0) interaction between the ligands, it is
not the case with∆GA1

intr (Figure 6b). A relatively small
repulsive interactionW > kBT ln 2 can overwhelm even a
hypothetically infinite∆GA1

intr and cause anti-cooperative bind-
ing, as can be shown by simple algebra. IfW ) 0, one can
achieve cooperativity by increasing the value of∆GA1

intr, but the
maximum cooperativity¥ that can be achieved in such a system
is rather small, no larger than¥ < 1.18. Therefore, an observed
value for¥ larger than 1.18 indicates that∆GA1

intr cannot be the
only cause of cooperative ligand binding. Similar to the single-
conformer case,¥ decreases with∆G, which means that∆GA1

intr

alone is an even weaker cause of cooperative binding for
nonequivalent sites,∆G * 0.

Let us now explore the influence ofGconf. In principle, a three-
parameter space should be considered, as cooperativity is now
a function ofW, ∆GA1

intr, andGconf. To make a useful graphical

representation of the observed trends, we limit the quantitative
discussion to the caseW ) 0 and focus on the{∆GA1

intr,Gconf}
plane, Figure 7. The effect of nonzeroWwas considered above
and can be summarized as follows: attractive interaction (W <
0) always enhances cooperative binding, and strong enough
repulsion (W > 0) always leads to anti-cooperativity.

The cooperativity¥ as a function of∆GA1
intr and Gconf is

shown in parts a and b of Figure 7, respectively. While the mere
existence of two different conformations,Gconf * 0, is not
enough to cause cooperative binding (Figure 7c), it can enhance
the cooperativity caused by other factors, such as attractive
interactions between the ligands or difference in their binding
affinity between the different conformations (∆GA1

intr * 0).
Two Binding Sites for One Ligand Type Plus a Site for

Another Type of Ligand.Now consider a receptor that can exist
in a single conformation but has two ligand-binding sites for
ligand of type L and one binding site for ligand of type S. The
interaction energy of the ligands of type S with the ligands of
type L is WSL. This interaction is assumed to be the same for
both binding sites of type L. The second-order binding
polynomial can again be written in the form of eq 26 with

Figure 5. Energy diagram for a receptor with two interacting
microscopic binding sites and two conformations. Empty and filled
circles represent empty and ligand-bound sites.

A )

e-âG1
intr

+ e-â(G1
intr+∆G) + e-â(G1

intr+∆GA1
intr+Gconf) + e-â(G1

intr+∆GA1
intr+∆G+Gconf)

1 + e-âGconf

B ) e-â(2G1
intr+∆G+W) + e-â(2(G1

intr+∆GA1
intr)+∆G+W+Gconf)

1 + e-âGconf
(28) Figure 6. Lines separating the non- or anti-cooperative regime from

the cooperative regime for a receptor that can exist in two conforma-
tions, each capable of binding two ligands. The energy difference
between the conformations (Gconf) is assumed to be zero. All energies
are given inkBT units. (a) Separatrix line for several∆GA1

intr (solid line,
-∆GA1

intr ) 0 kBT; dashed line,-∆GA1
intr ) 1 kBT; dashed-dotted line,

-∆GA1
intr ) 2 kBT; dotted line,-∆GA1

intr ) 5 kBT). The spacing between
the lines decreases with increasing∆GA1

intr. (b) The separatrix as a
function of ∆GA1

intr (for ∆G ) 0).

A )
e-â(G1

intr+GS-µS+WSL) + e-â(G1
intr+∆G+GS-µS+WSL) + e-âG1

intr
+ e-âG1

intr+∆G

1 + e-â(GS-µS)

B ) e-â(2G1
intr+∆G+WSL) + e-â(2G1

intr+∆G+GS-µS+2WSL)

1 + e-â(GS-µS)
(29)
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whereGS andµS are the binding affinity and chemical potential
of the ligand of type S and the other variables have the same
meaning as in eq 28 and Figure 5. Equation 29 becomes fully
equivalent to eq 28 upon substitution ofWS ) ∆GA1

intr andGS -
µS ) Gconf. This substitution maps the problem at hand onto
the already discussed problem of two ligands and a receptor
with two conformations. We therefore do not discuss it further
here and refer the reader to the previous section.

The case of nonattractive interaction between ligands of one
type and attraction between different types is of special interest,
as it is found in many experimental systems such as coupling
between protonation and reduction (H+ and e-). The cooper-

ativity for binding a ligand of one type can be caused by the
binding of a ligand of a different type, in the same way as it
can be induced by conformational dependence of binding.

One should also keep in mind that other combinations of the
above sketched scenarios are possible. For instance, it is possible
that the ligands of type L and type S do not interact but the
receptor exists in two conformations. One conformation binds
the ligand of type S with a higher affinity. In this conformation,
the ligands of type L have a higher affinity and thus could also
bind cooperatively to the receptor. This scenario is probably
realized for the Bohr effect of hemoglobin.

Cooperative binding can be realized via many different
microscopic mechanisms. Simple binding studies, although very
important and helpful, cannot provide a understanding of the
binding mechanism at a microscopic level and need to be
complemented by other studies.

The equivalence between the chemical potentialµS and the
conformational energyGconf is biologically of great interest.
While conformational energy of a receptor can only be changed
by a mutation and thus is not a useful regulatory mechanism at
the level of a single organism, it is easily possible to change
the chemical potential of a ligand and thus change the degree
of cooperativity of the receptor by varying the ambient
conditions. For example, calcium concentration in cells regulates
many physiological processes, e.g., muscle contraction.

Receptor With More Than Two Binding Sites. While for
N > 2 the algebra becomes more intricate and is best treated
on a case-by-case basis,7,25 several general conclusions are still
worth mentioning. As in the two-site case, a fully factorizable
polynomial in the form of eq 8 with all realK′i values (C ) 0
in eq 18) represents a completely non-cooperative or anti-
cooperative case. The total binding curve is a sum ofN standard
sigmoidal titration curves.

For a system that is not fully factorizable in the above sense,
and has the highest irreducible polynomial of the orderM, the
maximum cooperativity¥ cannot exceedM, the maximum
possible cooperativity of quasigroup of orderM. Note thatM
e 2C for evenN and thatM e 2C + 1 for oddN. No matter
how largeM is, even ifM ) N, the cooperativity in the system
can be as low as 1, that is,¥ can only be infinitesimally larger
than unity. This property can be seen from considering a binding
polynomial of the formZ ) (1 + KΛ)N + ε, ε > 0, whose
roots lie on a circle of radiusK-1ε1/n centered at (-K-1,0) in
the complex plane. For smallε, the above polynomial corre-
sponds to a system of nearly noninteracting identical sites, each
characterized by¥ ≈ 1.

The most important general conclusions made in the previous
section for a two-site system remain valid in theN > 2 case
and are listed below. It is impossible to infer, from apparently
non-cooperative binding curves alone, whether the microscopic
interactions between the binding sites exist, or if the system is
composed of truly independent sites. For cooperative binding
to occur, an effective microscopic interaction between the sites
must be present. This interaction may have various origins, such
as difference in ligand-binding constants in different conforma-
tions of the receptor, binding of another type of ligand or real
attractive interaction between the ligands.

Hemoglobin: A Test Case.Oxygen binding to hemoglobin
is probably the most studied of cooperative ligand-binding
phenomena. As such, it presents a perfect test case for a novel
approach such as DSR.

Historically, our understanding of oxygen binding to hemo-
globin was based on two types of models that can be broadly
defined as “phenomenological” or macroscopic and “structural”

Figure 7. Cooperativity in a two-site system that can exist in two
conformations. The cooperativity is measured by¥ introduced in eq
25. The conformational energy difference between the two conforma-
tions is Gconf, and the difference in the intrinsic binding constants is
∆GA1

intr. All energies are given inkBT, andW is set to zero. (a)¥ vs
Gconf for different ∆GA1

intr: solid black, 3kBT; dashed black, 9kBT;
dashed-dotted black, 15kBT; solid red,-3 kBT; dashed red,-9 kBT;
dashed-dotted red,-15 kBT. (b) ¥ vs GA1

intr for differentGconf: black,
0 kBT; solid red, 1kBT; dashed red, 6kBT; dashed-dotted red, 15kBT;
solid blue,-1 kBT; dashed blue,-6 kBT; dashed-dotted blue,-15
kBT. (c) Two-dimensional representation of¥ (color code) as a function
of GA1

intr andGconf.
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or microscopic. A pure example of the first type of model is
the Adair description.4 The chemical mechanism proposed by
Perutz27 is an example of the second approach. The MWC
model5 is between the two approaches; it is a phenomenological
model based on some structure-based assumptions that limit the
model’s conformational space (“symmetry model”). In this
respect, the DSR approach based on eq 18 clearly belongs to
the macroscopic models. The strength of such a very general
method is in its applicability to a very broad class of systems,
regardless of underlying molecular mechanisms. Its advantage
is in the ability to provide guidance for more specific model
building.

The oxygen binding to hemoglobin from carp is a particularly
interesting test case. It is characterized by a remarkable pH
dependence, which at some pH values cannot be fitted to the
MWC model. Here we use the DSR model (eq 18) to fit the
experimental data obtained by Chien and Mayo28 for the oxygen
binding to carp hemoglobin at different pH. The fitted param-
eters are listed in Table 1. These parameters fit the data very
well, which is not surprising as the framework of the DSR is
as general as the Adair equation (see Supporting Information
for details); the latter was used in ref 28 to fit the same sets of
experimental data. However, fitting to eq 18 is less likely to
present numerical problems, since it uses polynomials of degree

no larger than two. More importantly, compared to the Adair
equation, the DSR procedure provides more information about
the cooperativity of binding. Namely, the integer parameterC
obtained as a result of the best-fit procedure is an indicator of
the types of cooperative couplings possible in the system. The
general restrictive conclusions that can be made from theC
values can be used in building the underlying microscopic
model. In particular, ifC * 0, one can assert that there must
exist an effective interaction between the sites at the microscopic
level. If C ) 1, it is possible that the underlying microscopic
model has two (out of four) sites that do not interact with each
other, while forC ) 2, this is impossible. The last column of
Table 1 indicates whether MWC model is an admissible
description of the binding isotherm at the given pH. While there
appears to be no clear correlation between the applicability of
the two-state MWC model and the Hill coefficientnHill , there
is a clear one-to-one correspondence with theC values; forC
) 2 the model is admissible, and forC < 2, it is not. The proof
of this fact is based on the analysis29 of zeros of the binding
polynomial corresponding to the (two-state) MWC model; it
was shown29,30 that the latter always has two pairs of complex
roots. Note that no complex numbers are used in eq 18 and
that the global indicator of cooperativityC is automatically
obtained as a fitting parameter. In practice, one performs a least-

TABLE 1: DSR Fitting Parameters of Experimental Oxygen Binding Curves of Carp Hemoglobin at Several pH Valuesa

DSR fitting parameters, eq 18

pH K′1 K′2 R1 γ1 R2 γ2 C MWC nHill
max

6.25 0.00867 0.042 0.00288 0.000205 1 no 1.34
6.61 0.0420 0.0797 -0.0190 0.00112 1 no 1.93
6.92 0.1414 0.00771 -0.0586 0.00461 2 yes 2.33
7.20 0.326 0.0287 -0.0760 0.0256 2 yes 1.82
7.35 0.540 0.140 -0.01750 0.064 2 yes 1.62
7.65 1.164 0.492 0.1302 0.211 2 yes 1.42
7.83 1.800 1.33 0.322 0.344 2 yes 1.32
8.37 1.068 2.735 0.192 0.349 1 no 1.36
9.11 3.840 4.92 1.276 0.925 1 no 1.06

a In the DSR fitting procedure based on eq 18,C is treated as a discrete variable;C ) 0, 1, or 2. The value that provides the best global fit to
experiment is listed. The next-to-last column indicates whether the particular binding isotherm can be described by a two-state MWC model.
Experimental data used in the fit, and the Hill coefficient for each binding curve are from ref 28.

TABLE 2: Quasigroup Binding Constants of the DSR Model in the Form of Equation 16 that Describe the Binding of Oxygen
to Carp Hemoglobin at Different pH Valuesa

pH quasigroup constants m ¥ kBT ln[O2]

6.25 K′1 ) 0.0087 1 1.00 4.74
Kh 1

21 ) 0.0029 Kh 1
22 ) 0.0711 2 1.82 4.24

K′2 ) 0.0428 1 1.00 3.15
6.61 Kh 1

31 ) 0.0231 Kh 1
32 ) 0.0139 Kh 1

33 ) 0.1474 3 1.64 3.39
K′1 ) 0.0797 1 1.00 2.54

6.92 Kh 1
41 ) 0.0828 Kh 1

42 ) 0.0486 Kh 1
43 ) 0.0497 Kh 1

44 ) 0.1780 4 2.30 2.30
7.20 Kh 1

41 ) 0.2504 Kh 1
42 ) 0.1179 Kh 1

43 ) 0.2100 Kh 1
44 ) 0.1190 4 1.82 1.83

7.35 Kh 1
41 ) 0.5240 Kh 1

42 ) 0.3735 Kh 1
43 ) 0.1653 Kh 1

44 ) 0.2800 4 1.59 1.31
7.65 Kh 1

21 ) 0.1303 Kh 1
22 )1.6193 2 1.75 0.78

Kh 1
21 ) 1.1657 Kh 1

22 ) 0.4224 2 1.09 0.36
7.83 Kh 1

21 ) 0.3228 Kh 1
22 ) 1.0659 2 1.57 0.53

Kh 1
21 ) 1.8012 Kh 1

22 ) 0.7421 2 1.12 -0.14
8.37 K′1 ) 1.0684 1 1.00 -0.06

K′2 ) 2.7351 1 1.00 -1.01
Kh 1

21 ) 0.1924 Kh 1
22 ) 1.8172 2 1.72 0.53

9.11 K′1 ) 3.8405 1 1.00 -1.59
K′2 ) 4.9218 1 1.00 -1.35
Kh 1

21 ) 1.2777 Kh 1
21 ) 0.7248 2 1.20 0.04

a All binding constants are real positive numbers. Also listed are the orderm and cooperativity measure¥ for each quasigroup as well as the
ligand chemical potential (last column) at which the titration curve has the steepest slope.
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squares procedure based on eq 18 with different values ofC )
0, 1, andN/2 (or (N - 1)/2 for an oddN) and choosesC that
corresponds to smallestø2. It may so happen that two or more
ø2 values corresponding to consecutive values ofCs come out
to be identical, within the accuracy of the numerical procedure.
In this case, one should check if any of the denominators in eq
16 allow further factoring into a product of two linear terms
with non-negative coefficientsK′, i.e., (1+ RiΛ + γiΛ2) ) (1
+ K′1Λ)(1 + K′2Λ), in which case the corresponding fraction
can be reduced to a sum of two fractions, each being in the
standard sigmoidal form. The value ofC should then be reduced
by 1. The factoring is possible ifRi

2 - 4γi g 0, and so one
tests each pair{Ri,γi} for the above inequality and reducesC
by 1 for each pair for which it holds. For example, for carp
hemoglobin at pH) 6.25,ø2 corresponding toC ) 1 andC )
2 are the same, and we find that the above condition is satisfied
for one pair of{Ri,γi}, and soC is 1, not 2, for this data set,
Table 1.

It is also possible that some of the fitting parametersR are
negative, e.g., at pH) 6.61, which means that quasigroups of
an order larger than two are present in the DSR decomposition
eq 18. To see this, we combine (add) the term withR < 0 with
other terms in the decomposition until we obtain fractions in
which the denominator polynomials have only positive coef-
ficients, i.e., become irreducible. In other words, we recast the
binding curve in the form of eq 16. It was shown before31 that
the decomposition into irreducible polynomials is unique forN
e 5. Each irreducible polynomial in the denominator is the
irreducible sub-polynomial in the partition function eq 15 and
as such corresponds to a quasigroup introduced earlier in this
study. The real positive binding constants that characterize
quasigroups for carp hemoglobin are listed in Table 2 along
with the order of each quasigroup, i.e., the degreeM of the
corresponding binding sub-polynomial. Also listed in Table 2
is the cooperativity measure¥ for each quasigroup and the
ligand chemical potential at which the slope of the quasigroup
binding curve reaches its maximum.

We now analyze the results presented in Tables 1 and 2 in
some detail. From the values of eitherC or ¥, it follows that
carp hemoglobin binds oxygen cooperatively at all pH values
considered here. At pH) 6.25, 8.37, and 9.11, the cooperativity
is the lowest, and the binding curve can be decomposed into a
second-order quasigroup plus two single quasisites (i.e., quasi-
groups of order 1). The combined “order” (2+ 1 + 1) ) 4
equals the number of binding sites, as expected. The cooper-
ativity measure¥ for a quasigroup is always larger than 1.0,
while it is always exactly 1.0 for a single quasisite. An example
of the binding curve with the above quasigroup decomposition
is shown in Figure 8a.

At pH ) 6.61, the total binding curve can be decomposed
into a third-order quasigroup plus one quasisite, i.e., (3+ 1) )
4. The fitting to eq 18 leads toC ) 1 in this case, but since the
fitting parameterR is negative, the above interpretation requires
combining the terms in eq 18 to obtain the form of eq 16. In
practice, one simply forms products of the denominators, since
these correspond to binding sub-polynomials. For pH) 6.61,
it works out as

Only the second combination yields a polynomial that can be a
binding polynomial. The combination of the parameters that
yields all real and positive quasigroup binding constants is
unique, as is the decomposition of the binding polynomial into
irreducible sub-polynomials. The quasigroup decomposition
contains, in itself, information that may be useful in constructing
the underlying microscopic model. In the above example, (1+
3), the corresponding microscopic model cannot consist of
completely independent sites (1+ 1 + 1 + 1), or a pair of
interacting sites plus two independent sites (2+ 1 + 1), or two
pairs of sites with no interaction outside of each pair (2+ 2),
or sites interacting in such a way that their binding polynomial
cannot be factored into lower-order sub-polynomials (4).

(1 + R1Λ + γ1Λ
2)(1 + K′1Λ) )

1 + 0.0607Λ - 0.0003943Λ2 + 0.000089264Λ3

(1 + R1Λ + γ1Λ
2)(1 + K′2Λ) )

1 + 0.023Λ + 0.000322Λ2 + 0.00004704Λ3 (30)

Figure 8. Decomposition of the overall binding isotherm of carp
hemoglobin into titration curves corresponding to the decoupled
quasigroups identified by the DSR analysis. (a) At pH) 6.25, the total
titration curve can be interpreted as a combination of the second-order
quasigroup (solid line) and two independent quasisite sites (dashed and
dotted lines). (b) At pH) 7.20, the titration curve is that of a fourth-
order quasigroup; no decoupling is possible. (c) At pH) 7.83, the
DSR identifies a pair second-order quasigroups characterized by
different cooperativity measures¥ at different ligand concentrations.
(d) At pH ) 9.94, the situation is similar to a, except that the binding
occurs in a different range of the ligand concentration.
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At pH ) 6.92, 7.20, and 7.35, each binding curve is described
by a fourth-order quasigroup, (4), consisting of four sites that
cannot be decoupled via a linear transformation (such as the
DSR). In this case, one of the fitting parametersR in Table 1
is again negative, and so the product of the two quadratic
subpolynomials in the denominators will yield a fourth order
(irreducible) binding polynomial. For each of these three pH
values, only one cooperativity measure¥ can be given because
there is only one quasigroup. An example of such a curve is
depicted in Figure 8b.

At pH ) 7.65 and 7.83, the binding curve can be decomposed
into two second-order quasigroups (2+ 2). Both quasigroups
do not interact with each other and have different ligand sensing
abilities. For illustration, we focus on the binding curves at pH
7.83, which is depicted in Figure 8c. At this pH, we have two
quasigroups with different binding behavior. The first group
(dashed line in Figure 8c) has a higher affinity than the other
one, i.e., it binds the ligand at a lower value of the ligand
chemical potential. The cooperativity of this quasigroup is
relatively low, i.e., it goes from the free to the completely filled
state via a relatively smooth transition. The second quasigroup
(solid line in Figure 8c) has a lower affinity, but its cooperativity
is higher, i.e., it changes from the free to the completely filled
state via a relatively sharp transition. This example shows that
it is possible to have two different quasigroups that exhibit
different cooperative behavior. In principle, even a larger affinity
difference between the quasigroups is possible. Such a behavior
may be important for sensor proteins that need to sense different
levels of ligand concentration, as is believed to be the case for
several calcium-binding proteins.32 In the last example, one can
imagine two quasigroups sensing different levels of calcium
concentration. Moreover, since the quasigroup cooperativity can
differ, they can switch, with different sensitivity, between the
active and the inactive forms as the ligand concentration
changes.

Conclusions

In this paper, we have extended the framework of the DSR,
previously developed in the context of pH titration, to include
cooperative ligand binding. To treat both cooperative and anti-
cooperative binding within the same framework, we have
reformulated the DSR in terms of physically interpretable, purely
real and positive, binding constants of quasigroups. The latter
is a generalization of the quasisite concept for the case when
two or more sites cannot be viewed as noninteracting due to
the strength of cooperative interactions between them. A
quasigroup is characterized by a set of binding constants whose
number equals the order of the quasigroup, the degree of the
corresponding irreducible binding polynomial. We have also
extended the DSR framework to include multiple conformers
and more than one types of ligand.

A particularly simple form of the DSR is proposed that is
well-suited for least-squares fitting of experimental binding
curves. Along with the DSR decomposition constants, the fitting
procedure automatically produces an integer parameter indicative
of the degrees of cooperativity possible in the system.

We have used an analytically tractable model of a receptor
with two binding sites to explore various cooperative regimes
possible in the system, as well as the relationship between the
macroscopic description in terms of binding isotherms and the
parameters of the underlying microscopic model. We show that
without a microscopic model it is not possible to make a
meaningful distinction between non-cooperative and anti-

cooperative regimes, as these can result in identical binding
curves. In general, different microscopic models can lead to
the same macroscopic behavior. Thus information in addition
to binding constants is required to differentiate between different
microscopic models. However, one can differentiate from the
binding constants and from the binding curves between coop-
erative and anti-cooperative ligand binding. We use the two-
site example to explore possible microscopic origins of (positive)
cooperativity, which include effective attractive interactions,
changes in the receptor’s conformation upon binding, and
binding of another type of ligand that influences the ligand
affinity. Interestingly, the model describing the cooperativity
of binding caused by conformational changes and the one caused
by binding of another type of ligand are mathematically
equivalent. This finding is of significant biological interest,
because either of the two mechanisms for adjusting cooperativity
can be used in biological systems depending on particular
circumstances. For example, it is generally very hard, on short
time-scales and under normal physiological conditions, to
change the conformational energy of a molecule. Under these
conditions it is, however, relatively easy to change the concen-
tration of another type of ligand, an effector, and thus change
the cooperativity as needed. The adjustment of the conforma-
tional energy may come into play on longer time scales, e.g.,
during embryogenesis. There, chemical modifications, expres-
sion of other genes for a given receptor, or even different
splicing schemes for the receptor may lead to changes in the
conformational energy and so regulate the cooperativity. On
even longer, evolutionary-relevant time scales, mutations may
lead to changes in cooperative patterns on the molecular level,
thus allowing the species to adapt to the changes in the
ecological environment.

We have also explored the usefulness of the new framework
as applied to the well-known test case of a highly cooperative
phenomenon, oxygen binding to hemoglobin. Using available
experimental data on oxygen binding to carp hemoglobin at
different pH, we have employed the DSR to identify several
types of cooperative behavior possible in the system. Each type
corresponds to a different decomposition of the total titration
curve into quasigroup components. These decompositions
indicate the limiting behavior of the system upon site decoupling
and can be used in building an underlying microscopic model.
The integer parameterC, resulting from the DSR least-squares-
fit procedure of the experimental data, provides an indication
whether of not certain microscopic models (such as the two-
state MWC model) are applicable to the given data set.

The new measure of cooperativity¥ introduced in this work
describes how sensitive a quasigroup is to the change of the
ligand concentration. Each of the quasigroups found in the carp
hemoglobin system titrates at a slightly different pH and is
characterized by a different value of¥. As a possible practical
application of the above phenomenon, we note that a sensor
molecule designed to have similar behavior would be particu-
larly sensitive to changes in the ligand concentration not just at
one but at several values of the ligand concentration, one per
each quasigroup. This type of mechanism may be realized by
calcium-binding proteins such asS100, which need to react
differently at different levels of calcium concentration.

The extended DSR framework, which now includes both
cooperative and anti-cooperative binding on an equal footing,
is not an approximation and is based on very general thermo-
dynamic arguments. It provides insights into ligand-binding
phenomena and can be useful in fitting experimental data and
in selecting the underlying microscopic models.
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The software developed to perform the data analysis described
in this work is freely available at www.cs.vt.edu/∼onufriev.
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