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Abstract: This study compares generalized Born (GB) and Poisson (PB) methods for calculating electrostatic
solvation energies of proteins. A large set of GB and PB implementations from our own laboratories as well as others
is applied to a series of protein structure test sets for evaluating the performance of these methods. The test sets cover
a significant range of native protein structures of varying size, fold topology, and amino acid composition as well as
nonnative extended and misfolded structures that may be found during structure prediction and folding/unfolding
studies. We find that the methods tested here span a wide range from highly accurate and computationally demanding
PB-based methods to somewhat less accurate but more affordable GB-based approaches and a few fast, approximate PB
solvers. Compared with PB solvation energies, the latest, most accurate GB implementations were found to achieve
errors of 1% for relative solvation energies between different proteins and 0.4% between different conformations of the
same protein. This compares to accurate PB solvers that produce results with deviations of less than 0.25% between each
other for both native and nonnative structures. The performance of the best GB methods is discussed in more detail for
the application for force field-based minimizations or molecular dynamics simulations.
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Introduction

A complete energetic description of biomolecular processes has to
include the aqueous solvent environment that is present in vivo and
in vitro.1,2 Theoretical models of such systems may include sol-
vent explicitly or implicitly. Explicit solvent representation, where
a biological molecule of interest is embedded in a fairly large
number of solvent molecules, is straightforward and can provide a
realistic description of energetic and kinetic effects.3 However,
substantial computational resources are already required for single
protein chains and many larger systems such as protein oligomers
and macromolecular assemblies will remain prohibitively expen-
sive in the foreseeable future. Implicit solvent models, on the other
hand, replace explicit solvent interactions with an equivalent en-
ergetic term based on its mean field behavior.4–6 Such an approach
can be computationally much more affordable while still providing
a realistic description of an aqueous solvent environment.

Continuum Solvent Description Based on Poisson Theory

The most popular models for implicit solvation begin from a
continuum electrostatic viewpoint and assume that the macro-

scopic description of solvent as a continuous dielectric medium
can be used as an approximation on the microscopic scale.7,8 The
physical system for calculating the electrostatic contribution of the
energetic effects of solvation for a given molecule can then be
reduced to a distribution of charges in a solvent-inaccessible low
dielectric cavity surrounded by a homogeneous high dielectric
media. The electrostatic potential �(r) in such a model is described
rigorously by the Poisson equation:

����r����r�� � �4���r� (1)

where �(r) and �(r) are the space-dependent charge distribution
and dielectric constant, respectively. If this equation is expanded to
include ionic salt concentrations it is called the Poisson–Boltz-
mann (PB) equation (in linear and nonlinear forms). Because we
are not considering salt effects in this study we are concerned only
with solutions to the simpler Poisson equation, but we will use the
common abbreviation PB nevertheless for convenience and tradi-
tion.
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If a classic force field is used to describe molecular interactions,
the charge distribution is given by the partial charges located at the
atomic centers and the dielectric boundary most commonly fol-
lows the molecular surface, which is defined by the contact points
of a sphere of the size of the solvent molecule with the van der
Waals surface of the molecule of interest.9 While the choice of the
external dielectric constant depends on the solvent media (e.g., � �
80 for water), the choice of the internal dielectric constant has been
the subject of some debate. While a value of 1 is appropriate if
simulations are used to sample conformational fluctuations explic-
itly, values from 2 or 4 or higher have been suggested for evalu-
ating solvation energies for static structures, when dynamic con-
tributions to the dielectric response are not directly included7,10–12

and the choice of a single dielectric constant assuming that the
protein interior can be treated as a dielectric continuum may be
problematic altogether.12

The molecular surface definition provides a sharp dielectric
boundary between the solute cavity and the external dielectric. A
more gradual change of �(r) across the boundary may be more
realistic, and a smooth boundary also facilitates the calculation of
continuous forces for atoms at the dielectric boundary upon con-
formational changes during simulations.13–15 Nevertheless, the
simple two-dielectric system based on the Lee–Richards molecular
surface of the molecule of interest has remained the de facto
standard for the calculation of solvation energies with a continuum
solvent model because it models directly the effective solvent
accessibility based on a spherical solvent molecule approximation.

The PB equation can be solved numerically in different ways.16

Quite popular are finite difference methods, where charges and
dielectric constants are discretized using a grid.17 PB solvers based
on finite difference methods such as UHBD18 or DelPhi19,20 have
been available for some time and enjoy widespread use. High-
accuracy results can be achieved with sufficiently fine grids, but
the computations can become costly and memory intensive for
increasing system sizes. In fact, memory limitations are usually
more prohibitive than the CPU time that would be required for
solution of the equations. Improvements have focused on multi-
gridding and focusing techniques that offer advantages for larger
system sizes.21,22

Alternative approaches are given by finite element meth-
ods21–24 and boundary element methods25–27 where explicit po-
larization charges are calculated at the solvent boundary. The
electrostatic potential is then computed from the interaction of the
molecular charges with these polarization charges. Recently the
boundary element method has been combined with fast multipole
methods, resulting in better scaling than finite difference methods
with increasing system size.28,29

Once the electrostatic potential is known, the electrostatic en-
ergy is given by

Gelec �
1

2 �
V

��r���r�dV (2)

where the volume is integrated over all space. The electrostatic
free energy of solvation is then given as the difference between
Gelec in vacuum (i.e., with an external dielectric of 1) and Gelec in
solution:

�Gsolvation
el � Gelec

��80 � Gelec
��1 (3)

or for a set of discrete charges, {qi}

�Gsolvation
el �

1

2 �
i

qi��
��80�ri� � ���1�ri�� (4)

Normally, application of eq. (4) requires the PB equation to be
solved twice, once in vacuum (� � 1) and a second time for the
desired solution environment (e.g., � � 80). It is possible, how-
ever, to calculate the induced polarization surface charges from the
electrostatic potential near the dielectric boundary and then calcu-
late the electrostatic solvation energy from a simple Coulomb
interaction between the solute charges and the polarization
charges, as in the boundary element method, without requiring a
second finite-difference run.20 In addition, this approach also pro-
vides more accurate results with coarser grid sizes because the grid
is only used for solving the PB equation while the location of the
induced surface charges can be interpolated between grid points.

PB calculations are commonly used to evaluate electrostatic
potentials for static structures of biomolecules in solution.2 PB
models have also been successful in the determination of pKa

values of protonizable chemical groups to account for pH effects
on binding and stability of biomolecules.30–33 More recently, PB
calculations have been used on larger structural ensembles to
provide electrostatic free energies of solvation in scoring applica-
tions following the MMPB/SA scheme.34–36 The application of
PB solutions for molecular dynamics simulations is more limited
due to high computational costs and technical difficulties. How-
ever, a number of studies have demonstrated that implicit solvent
simulations that use the PB equation directly can be feasible.37–44

Approximation of Poisson Theory Through Generalized
Born Formalisms

Because of the significant computational expense of numerical
solution of the PB equation, many efforts have focused on equiv-
alent energetic descriptions that describe the same or similar
continuum solvent at a much reduced cost.7 The most popular
approach in this respect is based on the generalized Born (GB)
formalism.45 The starting point in this model is the Born solvation
energy for a single charge q in a sphere of radius R that is
embedded in a medium with the dielectric constant �:46

�Gsolvation
el � �

q2

2R �1 �
1

�� (5)

For a polyatomic system occupying a more complex shape this has
been generalized by an ansatz based on a pairwise sum over
interacting charges:47,48

�Gsolvation
el � �

1

2 �1 �
1

�� �
i, j

qiqj

�rij
2 � �i�jexp��rij

2 /F�i�j�
(6)

where rij is the distance between atoms i and j, qi and qj are the
respective (partial) charges, and �i are the effective or so-called

266 Feig et al. • Vol. 25, No. 2 • Journal of Computational Chemistry



generalized Born radii, which may be interpreted roughly as the
distance from each atom to the dielectric boundary. For the factor
F a value of 4 has been proposed originally.48 Extensions of this
model to include salt effects have been proposed.49

Key in the successful application of the GB model is the
definition and calculation of �i, the Born radii. The Born radius for
a given atom can be calculated exactly by solving the PB equation
assuming a unit charge for the atom while the rest of the molecule
is uncharged but still present to define the dielectric boundary. It
has been demonstrated that if these atomic PB radii are used as the
�i in eq. (6) the resulting solvation energies correspond surpris-
ingly well to the PB solvation energies for the entire molecule.50

Of course, following this prescription would require much more
work to solve the PB equation to obtain values for � for each atom.
The real advantage of the GB formalism then comes from a
formulation of efficient means to calculate atomic Born radii, �i,
for a given configuration without having to solve the PB equation.

The basic idea for the estimation of Born radii is based on the
so-called Coulomb field approximation (CFA), which is exact for
a charge in the center of a spherical cavity and assumes that the
dielectric displacement follows a Coulombic form, independent of
the external dielectric.45 Inverting eq. (5) and expressing �G in
terms of the dielectric displacement results in the following ex-
pression for �i (for a complete derivation see Ref. 45):

1

�i
�

1

Ri
�

1

4� �
solute,r	Ri

1

r4 dV (7)

where Ri are the atomic radii (e.g., van der Waals radius) used to
define the solute cavity filling out the volume V, over which the
integral is calculated. This is the basis for most GB implementa-
tions, although the somewhat costly evaluation of the integral is
often avoided by using a discrete sum over atomic volumes with an
appropriate overlap function for computational convenience.51–56

Such approaches can be implemented efficiently and are suitable
for simulations because of their analytic nature. A related variation
of this scheme is based on an approximation of the solute volume
by overlapping Gaussian functions as in the ACE model.57,58

Another variation has been proposed in the form of an alternative
surface integral formulation, with the motivation to find improved
agreement with PB solvation energies.59 More recently, higher-
order correction terms were added to eq. (7) as heuristic correc-
tions beyond the CFA, resulting in Born radii that were found to be
in near-perfect agreement with PB radii and, consequently, more
accurate estimates of total solvation energies when the integral
form was evaluated numerically.60,61 (A differentiable form of the
numerical volume integration can be maintained for the use in
molecular dynamics simulations.60) This improved accuracy in
reproducing the PB model comes at somewhat higher costs com-
pared to other GB implementations.

GB models have been used successfully for calculating accu-
rate solvation energies of small molecules,51,59,62 scoring of pro-
tein conformations,63–65 evaluation of protein–ligand binding,66

pKa predictions,54 and implicit solvent molecular dynamics simu-
lations.55,66–69 However, problems in achieving stable trajectories
of native conformations when using GB for simulations have also
been pointed out.70–72

The number of GB implementations has been growing rapidly,
but only limited comparisons of GB methods and between GB and
PB methods, in terms of accuracy and speed, have been published
to date.70,71,73 Such a study might be in particular helpful in
directing users of GB methods to find the most suitable version for
different types of applications. A comparative study will also serve
as a guide to future development efforts. It is the goal of this study
to provide such information for a number of commonly used GB
implementations. Obviously, many aspects are important in eval-
uating implicit solvent models. However, we intend to focus here
only on the ability of different GB methods to reproduce electro-
static free energies of solvation in the context of continuum models
as described by the PB equation because both are based on the
same underlying physical model. While a comparison of GB
models with explicit solvent simulations and experiment is equally
important, such comparisons will not be discussed here. To put the
performance of GB methods into perspective, we have also in-
cluded a number of commonly used PB methods as yardsticks in
terms of accuracy and speed. While a comparison of various GB
methods between themselves as well as an evaluation of their
performance relative to PB results is the goal of this study, we are
not attempting to compare the performance of various PB methods.
Criteria that determine the latter are often nontrivial (e.g., conver-
gence and grid sizes) and the question of reference energies
becomes more critical. For the purposes of this study we used
solvation energies that were obtained by finite difference solutions
to the Poisson equation with a fine grid spacing of 0.25 Å as
reference values for both GB and PB methods.

Much recent interest in implicit solvation techniques has re-
volved around their application in simulations of biologic macro-
molecules, so that longer timescales or larger system sizes can be
modeled compared to approaches that consider solvent explicitly.
While many GB methods have been evaluated extensively for
small molecules,51,59,62 we will reflect the interest in modeling
macromolecules by using a large number of representative native
and nonnative protein structures as test cases.

In the next section we will describe the GB and PB implemen-
tations that are being compared in this study. Then we will present
the results we obtained in terms of accuracy and speed, discuss our
findings with respect to potential applications, and finally summa-
rize our conclusions.

Methods

Test Sets

Five different test sets were used in this study to cover different
aspects of protein structure conformations (see Table 1). For all of
the structures we generated complete all-atom representations as in
the CHARMM22,74 Amber94,75 and OPLSAA force fields.76 The
initial structures were used as is, without any minimization or
refinement, and with missing hydrogen atoms added if necessary
using the HBUILD procedure in CHARMM.77 Explicit solvent
molecules, ions, or any coligands that may have been present in
experimental structures were not included in the calculations. All
of the test structures are available from the authors upon request.
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Set 1 contains 22 native protein structures from the Protein
Data Bank (PDB)78 with less than 100 residues that were used as
the initial training set for some of our GB methods. The PDB codes
for the structures in this set are given in the Appendix.

Set 2 contains a comprehensive set of 611 nonhomologous
single-chain PDB structures ranging from small protein fragments
to very large structures with more than 800 residues and covering
a wide variety of native folds. The PDB codes are also given in the
Appendix. This set presents a more challenging test than set 1 for
the calculation of solvation energies in native protein structures.
Because of the very large size of some of the structures in this set
we could not run all PB methods for all structures given present
memory and time limitations. Some GB methods also did not
result in valid solvation energies for some structures in this test set,
apparently due to the erroneous prediction of negative Born radii
by some of the approaches.

Sets 3, 4, and 5 were used to test how well solvation energies
for different native and nonnative conformations of the same
protein can be reproduced with different GB and PB methods. Set
3 consists of 120 near-native, misfolded, and unfolded structures
of chicken villin headpiece (PDB code 1VII). These conformations
were generated through a lattice sampling protocol with low-

resolution representations79 followed by a subsequent reconstruc-
tion of all-atom models.80 Set 4 consists of 216 different confor-
mations for protein L (PDB code 2PTL) that were generated by
thermal unfolding in explicit solvent, and set 5 contains 101
representative structures of apomyoglobin from a recent study of
this molecule’s unfolding pathway.81 In set 5 the structures are
also protonated according to an acidic environment with pH � 2
and consequently have a much higher charge than typical proteins
at neutral pH values. All of the PB and GB methods were tested
with set 3, but only a subset of methods was applied to sets 4
and 5.

Reference Solvation Energies

Reference solvation energies were calculated with the standard
finite difference method implemented in the PBEQ module14,82,83

in CHARMM.77 A grid spacing of 0.25 Å was deemed sufficient
for the purposes of this comparison while approaching the limits of
feasibility for the largest molecule in the test sets. The molecular
surface was used to define the dielectric boundary based on a
spherical water probe radius of 1.4 Å. A margin of at least 4.5 Å
from the extent of each structure to the edge of the grid was
allowed in all cases to avoid boundary effects. Charges were
distributed onto grid points using the trilinear interpolation method
and successive overrelaxation84 was used to speed convergence,
which was reached in all calculations. For the boundary potential
a simple Coulomb term was calculated on every other grid point
and interpolated for grid points in between. As summarized in
Table 2, different sets of solvation energies were calculated for a
number of combinations of charges and atomic radii to be able to
compare PB and GB methods that are based on different force
fields and/or sets of radii. While most PB methods are flexible in
this respect by allowing atomic charges and radii as external input,
many GB implementations are tied more closely to specific force
fields and/or radii through parameterization or lack of input op-
tions. If arbitrary charges and radii could be used, the charges and
van der Waals radii from the CHARMM22 force field were chosen

Table 1. Summary of Test Sets Used in This Study.

Test set Structures Residues RMSD (Å)

1: Training 22 30–98 0
2: PDB 611 30–839 0
3: Villin headpiece 120 36 3.2–15.3
4: Protein L 216 62 2.8–14.1
5: Myoglobin (pH � 2.0) 101 153 3.5–28.4

For each test set the number of structures, range of number of residues, and
range of root mean square displacements (RMSDs) from the experimental
native structure are given. The PDB codes for test sets 1 and 2 are given
in the Appendix.

Table 2. Reference Energy Sets Calculated from Finite Difference Solutions to the PB Equation
with 0.25-Å Grid Spacing Using the PBEQ Module in CHARMM.

Reference set Charges Radii �int �ext

CHARMM CHARMM22a CHARMM22a 1 80
Amber94Bondi Amber94b Bondic 1 80
Amber94mBondi Amber94b modified Bondid 1 80
Amber94Eps2 Amber94b Amber94b 2 80
OPLSImpact OPLSe OPLS/Impactf 1 80
CHARMMSmoothg CHARMM22a CHARMM22a 1 80

aStandard CHARMM22 charges and van der Waals radii.74

bStandard Amber 94 charges and van der Waals radii.75

cvan der Waals radii derived by Bondi90: C*, 1.7 Å; N*, 1.55 Å; O*, 1.5 Å; H*, 1.2 Å; S*, 1.8 Å.
dModified Bondi radii, where HC/N � 1.3 Å and H0 � 0.8 Å.52,67

eStandard OPLS charges.76

fModified OPLS radii, where H � 1.0 Å if zero.
gSmooth boundary definition.14

For each set the charges, atomic radii, and dielectric constants are given.
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by default. We also calculated a set of reference energies with a
smooth, van der Waals-based surface as implemented in the PBEQ
module.14 In all cases except one (see Table 2), an internal solute
dielectric of 1 and an external solvent dielectric of 80 were used.
Salt effects were not considered here because many GB imple-
mentations and some PB methods do not offer this option.

GB Methods

We tested various GB implementations in the latest versions of the
CHARMM, Amber, Tinker, and Impact programs. These compar-
isons are described in detail below.

CHARMM

The CHARMM program,77 version c30a1, implements four dif-
ferent GB and GB-like methods. The first version, called
cGBSTILL, follows a pairwise approach developed by Still and
coworkers for the calculation of Born radii51 but uses a slightly
modified linearized version to facilitate parameterization by fitting
to solvation energies from PB calculations.55 For the tests per-
formed here we used the original published parameters with the 	
factor recommended for proteins for the CHARMM22 force field.
We also increased atomic radii of polar hydrogens to 0.8 Å (from
a value of 0.2 Å given by the force field) as recommended.55

The second model, called GBMV, is a newly developed GB
implementation that calculates Born radii by analytic volume
integration according to eq. (7).61 It includes a higher-order cor-
rection term to the Coulomb field approximation:

A7 � � 1

4Ri
4 �

1

4� �
solute,r	Ri

1

r7 dV�1/4

(8)

which yields an improved fit between GB and PB radii. This
version also incorporates an analytic formalism for approximating
the molecular surface rather than the van der Waals surface that
would result from a simple overlap of atomic spheres.60 This
method is tunable in terms of accuracy and speed by the choice of
integration grid points. In this study we used the following grid
sizes: 26-point and 38-point Lebedev grids85,86 as well as regular
angular grids with N� values of 5 and 8 (for a detailed description
see Ref. 61). We used the published parameters in the latest
article,60 including a modified value of 8 for parameter F in eq. (6)
instead of 4. We also examined a recently improved empirical
adjustment of calculated Born radii based on solvation energies for
all of the structures in test set 2. In the original parameterization
the function

�i �
S

�1 �
1

�2�A4 � A7

� D (9)

is used to calculate the final Born radii with A7 defined as in eq. (8)
and A4, the regular Coulomb field contribution, given in eq. (7).
The parameters S and D were optimized for the CHARMM22

force field to S � 0.9085 and D � �0.102.60 The new parame-
terization uses the more general expression

�i �
S

C0A4 � C1A7
� D (10)

which was found to produce a better fit than eq. (9) with S �
0.9114, C0 � 0.2966, C1 � 1.0369, and D � �0.0637. These
parameters appear to be more universally applicable and were used
for the calculation of solvation energies based on the Amber force
field as well.

A slower, grid-based, nonanalytic version of GBMV is also
available in CHARMM as described by Lee et al..61 Because we
found that the results are much the same as with the analytic
method when angular grids with N� � 8 are used this method is
not included in the present study.

The third model, termed GBSW, follows much of the same
methodology used in GBMV but without its expensive molecular
surface approximation.87 Instead, a van der Waals-based surface
with a smooth dielectric boundary, as introduced earlier for cal-
culation of PB solvation forces,14 is modeled in GBSW. Simply by
setting S to 1 and D to 0, C0 and C1 in eq. (10) were optimized for
various smoothing lengths against the exact Born radii of a small
protein (1AJJ in test set 1) calculated by PB with the smooth
boundary. In this study, we used a smoothing length of 0.6 Å (i.e.,
w � 0.3 Å) along with 38 Lebedev angular integration points and
24 radial integration points up to 20 Å for each atom.87 The
integration points and weights for the radial component were
generated by Gaussian–Legendre quadrature88 and those for the
angular component by Lebedev quadrature.86 We also tested an
alternative parameterization, GBSWMS, which targets electrostatic
solvation energies obtained for a regular, sharp molecular surface
rather than smooth van der Waals-based surfaces in the context of
GBSW. For this purpose, we reoptimized C0 and C1 in eq. (10) for
a smoothing length of 0.4 Å (i.e., w � 0.2 Å) with test set 1 and
the best agreement was found with C0 � 1.204 and C1 � 0.187.
The solvation energies were calculated with F � 4 in eq. (6).

A fourth version is the GB-like model ACE by Schaefer and
Karplus,57 as reparameterized recently for the all-atom version of
the CHARMM force field.58 It uses a precomputed set of atomic
volumes that are accumulated using Gaussian functions to repre-
sent the molecular volume. We tested the two published parameter
sets based on the Voronoi volumes for the CHARMM22 force
field with and without atomic hydrogen volumes, called ACE22
and ACE22h, respectively. Both of these parameters require a
slight extension to the original CHARMM22 topology and param-
eter files to allow ACE to distinguish aromatic carbon atoms as
well as amino and imino nitrogen atoms in arginine side-chains. As
recommended, we used a Gaussian width of � � 1.3 for the
parameters without hydrogens and � � 1.5 for the parameters that
include hydrogen volumes. We also tested a set of new parameters
with zero hydrogen volumes, called ACE22n, that do not require a
modified CHARMM22 force field with � � 1.3 (Michael
Schaefer, personal communication). All of the tests with ACE
were done with the ACE2 code in CHARMM version c30a1.
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Amber

The molecular mechanics package Amber 7 also implements a
number of GB methods. All of the methods in Amber are essen-
tially based on the pairwise descreening formulation of the calcu-
lation of Born radii by Hawkins et al.56,89 In the first version,
aGBHCT, this method was reparameterized for use with the Amber
force field and shown to perform quite well on small molecules
and DNA.52,67

A second model, aGBOBC is based on aGBHCT (to preserve its
performance on small compounds) but better approximates the
molecular volume of larger compounds by introducing an appro-
priate rescaling procedure53 for the effective Born radii calculated
from van der Waals spheres in a modified version of eq. (7):

1

�i
�

1

Ri � s
�

1

Ri
tanh�
� � ��2 � �3� (11)

where s � 0.09 Å and � is given by

� �
Ri � s

4� �
r	Ri

1

r4 dV (12)

Two parameterizations, aGBOBC(I) and aGBOBC(II), with the pa-
rameters 
 � 0.8, � � 0, and  � 2.91 (I) and 
 � 1.0, � � 0.8,
and  � 4.85 (II) have recently been applied in MD simulations
[Onufriev, Bashford, and Case: Exploring protein native states and
large-scale conformational changes with a modified generalized
Born model. (submitted)] and will be tested here as well.

Two more GB versions are available in Amber that follow the
same approach for the calculation of Born radii as aGBHCT but
apply modified versions of eq. (6) for the calculation of solvation
energies from Born radii.62 In the first of these variants, aGBJSB,
only the exponential prefactor F in eq. (6) is changed from 4 to 2.
The second variant, aGBMGB, uses a different functional form
derived previously from the consideration of simple model sys-
tems.54 Both aGBJSB and aGBMGB assume an internal dielectric of
2, which will be taken into account when comparing to PB solva-
tion energies. All of the GB methods in Amber were tested with
the charges from the Amber force field but different sets of radii as
recommended for each method. The van der Waals radii from the
Amber force field were only used for aGBJSB and aGBMGB. In
aGBOBC(I) and aGBOBC(II) the Bondi radii set90 was used instead.
For aGBHCT the radii for carbon, nitrogen, oxygen, and sulfur
atoms were taken from Bondi as well but radii for hydrogen atoms
were modified slightly.52

Tinker

We tested two GB methods from the Tinker molecular dynamics
package, version 3.9.91 The first one, tGBSTILL, directly imple-
ments the pairwise summation proposed by Qui et al.51 The second
method, tGBHCT, directly follows the pairwise descreening ap-
proach by Hawkins et al.56 For the purposes of this comparison we
used Tinker with the CHARMM22 force field charges and van der
Waals radii.

Impact

The surface integral method, S-GB, developed by Ghosh et al.,59

was implemented originally in the Impact program.92 This pro-
gram is now part of Schrödinger, Inc.’s FirstDiscovery program
suite. In this approach, a surface formulation of eq. (7) is obtained
by applying Gauss’ law and empirical correction terms are added
to improve the calculation of solvation energies in agreement with
results from PB calculations, in particular for larger molecules. We
used the standard set of parameters for S-GB in Impact. Impact
uses the OPLS force field76 but with slightly modified atomic
hydrogen parameters for the use in S-GB (all of the zero van der
Waals radii from OPLS were set to 1.0 Å).

Poisson Methods

In addition to the GB methods described above we also looked at
a number of popular PB solvers. This was done mostly to provide
a perspective for the performance of different GB version. The
different PB methods that were considered in this study are de-
scribed below.

CHARMM PBEQ

As mentioned above, the finite difference method from the PBEQ
module14,82 in CHARMM was used to calculate the reference
solvation energies. While the reference energies were calculated
with a grid spacing of 0.25 Å, we also calculated energies with grid
spacings of 0.4 and 0.5 Å to evaluate how speed can be gained at
the expense of accuracy with this implementation.

MEAD

MEAD,93 version 2.2.0, also implements the finite difference
method and was included mainly to validate the CHARMM PBEQ
results. Solvation energies from MEAD were calculated only for
test sets 1 and 3 because the methodologies in MEAD and
CHARMM PBEQ are so similar. As with CHARMM, we also
calculated solvation energies with a larger grid spacing of 0.5 Å.
When running MEAD we used the default setup with an initial grid
spacing of 1 Å before focusing down to the desired grid resolution.
The size of the cubic grid was adjusted accordingly to fit the
molecule with sufficient margin as for the CHARMM PBEQ
calculations described above.

DelPhi

The DelPhi program2,19,20 has been a popular choice for calculat-
ing solution electrostatics. While it also uses the finite difference
method for solving the Poisson equation, it has the interesting
feature of requiring only one instead of two finite difference
solution runs. Such savings are achieved by calculating the in-
duced polarization charges directly and deriving the solvation
energy from the interaction between the solute charges and the
reaction field due to the polarization charges.20 This approach also
allows the use of coarser charge distribution grids, which speeds
the calculation even more. In the present study we calculated
reaction field-based solvation energies with the latest version,
DelPhi V.4, using grid spacings of 0.25, 0.5, and 1.0 Å and a
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convergence criterion of 0.1 kT/e. We also tested the older version,
II, which is still widely used by many groups, and found no
significant difference in terms of accuracy or speed for the calcu-
lations of solvation energies without salt.

APBS

The APBS program,21,22 version 0.2.4, represents a new class of
multigrid finite element solvers, where the errors for initial coarse-
grid solutions are estimated and used for adaptive refinement at
finer resolutions. Three types of surfaces are available with APBS:
the molecular surface, a molecular surface with simple harmonic
average smoothing, and a spline-based smooth surface following
the idea of Im et al.14 for obtaining continuous forces at the
boundary that corresponds to the smooth surface in CHARMM. In
all tests we used four hierarchy levels with final grid spacings of
0.40 and 0.50 Å. Depending on the size of the molecule, grid sizes
of 65, 97, 129, 161, 193, and 225 points in each dimension were
sufficient to fit all of the molecules at 0.50-Å grid spacing and all
but a few very large molecules at 0.40 Å. Note that the method
limits the number of grid points to n � 25 
 1 for four hierarchy
levels. Consequently, a larger number of points often has to be
used compared to finite difference methods to cover the spatial
extent of a given molecule. Grid sizes larger than 2253 were not
practical due to memory constraints because memory requirements
approached 2 Gb (for 225 grid points). For the same reason we
could not test grid spacings smaller than 0.4 Å with APBS on a
complete test set. In running APBS we used trilinear charge
interpolation (chgm � 0) and Debye–Hückel boundary conditions
with superposition for each ion (bcfl � 2) because we found that
they gave the best results in our comparison.

Impact PBF

A finite element Poisson solver based on tetrahedral meshes, called
PBF, is available in the Impact package from Schrödinger,
Inc..23,24 As with S-GB, the OPLS force field is used to provide
charges and radii, except for hydrogen atom radii that were
changed to 1.0 Å from 0.0 Å for PB as well as the GB calculations.
Although the article describing the method also compares results
for a regular molecular surface definition with DelPhi, the imple-
mentation in Impact apparently only uses a smooth boundary
definition for the calculation of smooth forces94 (Schrödinger, Inc.,
technical support, personal communication). Consequently, a com-
parison of solvation energies from PBF with other PB and GB
methods is less straightforward.

REBEL

We also tested the fast boundary element method, REBEL,95

which is implemented in the ICM software package.96 For this
study we used version 3.0.017 (available from MolSoft, LLC).
Due to technical limitations it was not possible to calculate solva-
tion energies with the very small atomic van der Waals radii for
polar hydrogens in the CHARMM22 force field in the fast, default
mode of REBEL. Instead, we used charges from the Amber force
field and Bondi radii, consistent with some of the GB methods
implemented in the Amber program. In addition to the default

setup, we also calculated solvation energies with a much higher
density of surface boundary elements as given by the “exact”
option in REBEL. Note that slight modifications to the original
program did allow the use of small hydrogen radii with the “exact”
option (Max Totrov, MolSoft, LLC, personal communication), but
this was not tested extensively.

ZAP

ZAP, obtained from Openeye Software on November 4, 2002,
solves the PB equation using a Gaussian-based molecular volume
definition. The resulting boundary with a smooth transition from
� � 80 to � � 1 allows much faster convergence compared to
conventional PB methods, but the gain in speed comes at the
expense of a less accurate reproduction of the exact molecular
surface.15 We used ZAP with grid spacings of 0.5 and 0.25 Å.

Performance Analysis

The results of the GB and PB methods tested here were evaluated
by comparing the calculated solvation energies with the appropri-
ate set of reference energies (see Table 2). Absolute and relative
errors with respect to PB solvation energies as well as standard
deviations were calculated for each of the five test sets. While
absolute solvation energies may be shifted by a constant value in
different methods due to grid artifacts or for other reasons, the
correct estimate of relative solvation energies between conforma-
tions is most important in applications of GB or PB methods. For
this reason, we will focus on using the minimal errors from
optimally shifted energies for comparing the accuracy of different
methods. The constant energy shifts that minimize the error for
each data set and each method were determined by heuristic search
and are given below as part of the results.

The timing of all methods was done on a Pentium IV (2 GHz)
workstation running Linux. The following versions of the pack-
ages described above were used for timing: standard distributions
of Tinker and Impact; CHARMM version c30a1, compiled with
the Portland Group compiler according to the standard CHARMM
installation script; Amber, versions 7 and 8beta, the latter imple-
menting recent speedups in the GB routines, compiled with the
Intel IFC compiler; and DelPhi, compiled with the Portland Group
compiler and optimized at the O2 level.

Results

GB Methods

The comparison of different GB methods is given in Table 3. We
find that the overall level of accuracy varies substantially between
different implementations and also between test sets. In general,
test set 2, which represents a comprehensive set of small and large
protein structures, appears to be the most challenging as indicated
by the large average errors and root mean square (RMS) deviations
in the solvation energy. On the other hand, the errors in the
solvation energies for the villin headpiece and protein L in test sets
3 and 4 are fairly small with almost all of the methods. For the
myoglobin structures, the percentage errors with respect to the PB
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Table 3. Comparison of Electrostatic Solvation Energies from GB Methods with Appropriate PB Reference
Energies.

GB method PB reference

Average/maximum error (%)

Set 1
(training)

Set 2
(PDB)

Set 3
(villin)

Set 4
(protein L)

Set 5
(myoglobin)

cGBSTILL CHARMM 6.37/18.3 13.73a/99.6 3.65/10.9 3.16/9.6 1.76/4.1
GBMVb CHARMM 1.21/3.2 1.02/5.5 0.46/1.9 0.55/2.1 0.09/0.3
GBMVc CHARMM 1.14/3.3 0.82/7.2 0.40/1.6 0.50/1.8 0.09/0.3
GBMVd CHARMM 1.24/3.9 0.82/7.4 0.50/1.8 0.55/2.4 0.09/0.3
GBMVe CHARMM 1.28/3.7 0.83/6.5 0.47/1.9 0.53/1.9 0.09/0.3
GBMVf CHARMM 1.26/3.4 0.86/6.9 0.53/1.5 0.57/2.0 0.09/0.3
ACE22 CHARMM 12.0/43.0 25.3g/90.1 1.75/6.2 1.28/6.3 N/A
ACE22h CHARMM 8.47/28.0 18.8g/110.2 2.45/8.0 1.81/5.1 N/A
ACE22n CHARMM 12.4/44.5 25.9g/92.9 1.83/6.6 1.42/7.2 N/A
ACE22nh CHARMM 8.52/28.8 19.5g/87.5 1.51/5.8 1.00/4.1 N/A
GBSW CHARMM 5.21/23.7 9.87/65.1 1.41/6.8 1.05/5.7 0.25/0.6
GBSW CHARMMSmooth 0.88/2.7 1.47/8.5 0.46/2.4 0.34/1.8 0.07/0.2
GBSWMS CHARMM 2.76/7.9 2.06/12.3 0.79/4.0 0.67/2.9 N/A
aGBHCT Amber94mBondi 1.25/3.2 2.27a/16.1 0.76/4.2 0.95/3.0 0.36/0.9
aGBOBC(I) Amber94Bondi 1.51/5.1 3.10/20.5 0.78/3.6 0.58/2.3 0.09/0.3
aGBOBC(II) Amber94Bondi 1.05/2.5 1.88/14.2 0.63/2.5 0.63/2.3 0.10/0.3
aGBJSB Amber94Eps2 7.69/18.1 13.50a/68.5 1.74/6.3 1.43/4.6 N/A
aGBMGB Amber94Eps2 3.90/9.3 5.05a/31.1 1.51/6.7 1.31/4.3 N/A
GBMVi Amber94Bondi 1.11/3.0 1.28/5.0 0.41/1.5 0.38/1.5 0.10/0.3
GBMVi Amber94Bondi 1.09/3.2 1.27/4.6 0.46/1.3 0.41/1.6 N/A
tGBHCT CHARMM 3.77/7.4 2.79g/15.9 1.23/7.0 1.06/4.2 N/A
tGBSTILL CHARMM 3.88/9.2 3.87g/18.4 1.19/5.6 0.91/3.6 N/A
S-GB OPLSImpact 1.66/4.1 2.10g/14.7 0.84/3.3 0.68/2.5 N/A

GB Method

RMSD (kcal/mol) Shift (kcal/mol)

1 2 3 4 5 1 2 3 4 5

cGBSTILL 91.3 771.9a 33.4 45.5 274.5 �10.4 21.3a 61.6 116.1 455.4
GBMVb 14.5 32.3 3.7 8.1 11.5 �0.2 �7.3 7.1 �11.8 �29.9
GBMVc 14.1 25.4 3.2 7.4 12.6 6.9 0.1 11.8 0.7 �14.9
GBMVd 14.4 25.7 3.9 8.0 12.4 7.4 1.4 12.5 1.1 �14.5
GBMVe 15.2 25.4 3.9 7.9 12.6 7.3 1.2 12.2 0.1 �14.8
GBMVf 15.3 26.2 4.0 8.3 12.4 7.6 1.2 11.3 0.6 �13.9
ACE22 208.4 921.2g 12.6 19.5 N/A �222.3 �332.1g �96.8 �294.2 N/A
ACE22h 114.5 677.2g 23.6 25.5 N/A �215.6 �374.1g �186.1 �405.8 N/A
ACE22n 215.3 948.9g 13.1 21.8 N/A �226.7 �337.8i �100.5 �300.7 N/A
ACE22nh 138.8 729.3g 10.8 14.8 N/A �173.5 �239.8i �60.8 �216.2 N/A
GBSW 65.0 330.0 12.8 16.0 30.7 136.0 209.4 87.1 194.4 369.4
GBSW 13.9 50.7 4.4 6.0 9.1 �7.5 �19.4 10.3 2.4 �38.3
GBSWMS 37.3 54.7 6.3 10.0 N/A 10.9 13.2 15.9 29.0 N/A
aGBHCT 17.8 78.0a 7.2 14.7 50.7 �5.2 �1.5a �13.5 �45.9 15.1
aGBOBC(I) 25.4 112.0 6.9 9.3 12.3 34.9 56.7 22.5 34.4 104.6
aGBOBC(II) 13.9 54.7 5.2 9.9 13.4 �13.2 �16.7 �16.3 �38.1 �68.2
aGBJSB 118.7 505.2a 16.8 21.8 N/A �167.2 �237.4a �133.8 �256.2 N/A
aGBMGB 50.2 177.1a 15.9 20.2 N/A �48.9 �59.2a �48.7 �130.3 N/A
GBMVi 15.3 41.8 3.3 6.1 13.6 �11.1 �18.7 �0.6 �24.3 20.3
GBMVj 15.0 41.2 3.7 6.5 N/A �12.3 �18.8 �0.1 �23.5 N/A
tGBHCT 48.7 76.7g 11.7 16.4 N/A �13.1 �11.1g �12.9 �30.7 N/A
tGBSTILL 45.7 115.7g 9.7 13.5 N/A 20.0 25.5g 28.0 48.9 N/A
S-GB 26.3 66.4g 8.4 11.8 N/A �27.9 �56.9g �33.2 �104.3 N/A

aSolvation energies could not be calculated for some structures due to negative Born radii.
bOriginal parameters and 38-point Lebedev grid.
cNew parameters (see Methods) and regular angular grid with N� � 8.
dNew parameters and regular angular grid with N� � 5.
eNew parameters and 38-point Lebedev grid.
fNew parameters and 26-point Lebedev grid.
gSolvation energies could not be calculated for some structures due to memory/program limitations.
hAtomic volumes scaled by 0.9.
iAmber 94 charges, Bondi radii,90 new parameters, regular angular grid with N� � 8.
jAmber 94 charges, Bondi radii, new parameters, regular angular grid with N� � 5.
For each of the five test sets (1–5, see Table 1) the average and maximum error in solvation energies relative to the PB
reference energies, the RMSDs of solvation energies, and the energy shift resulting in the smallest overall error are given.
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reference energies are very small, partially as an artifact of the high
charge resulting in very large numbers for the solvation energies.
The energy RMS deviations are comparable with the other test
sets.

Upon close examination the following general trends may be
observed: First, the methods cGBSTILL, aGBJSB, aGBMGB, and all
of the ACE versions do not provide solvation energies for proteins
that are comparable in accuracy with the other methods. We do
note, though, that aGBMGB appears to be significantly improved
over aGBJSB, as suggested by the authors of these methods.62

Further, ACE performs much better in the calculation of relative
solvation energies between different conformations of villin and
protein L, in test sets 3 and 4, than for relative solvation energies
between different proteins in test sets 1 and 2. We also find that
scaling the atomic volumes in ACE by 0.9 (as suggested by M.
Schaefer, personal communication) does improve the results some-
what; however, they still do not reach the level of agreement with
PB that is achieved with most GB methods.

The results from GBSW also carry quite substantial deviations.
This is not too surprising because GBSW aims at modeling a
somewhat different dielectric boundary definition.14,87 In fact, if
solvation energies from PB calculations with the same surface
definition are used as the reference (CHARMMSmooth) the agree-
ment is comparable to the best performance in Table 3. This would
suggest that the deviations with respect to the PB energies for a
molecular surface mostly reflect the extent to which solvation
energies differ between van der Waals-based and molecular sur-
face-based definitions. It was possible, however, to reparameterize
GBSW to fit electrostatic solvation energies based on sharp mo-
lecular surface boundaries. Denoted as GBSWMS, the deviations
with respect to molecular surface PB energies then become much
reduced.

Good agreement with PB solvation energies is in general found
of the GBMV, aGBHCT, aGBOBC, and S-GB methods, where we
find errors that are less than 3% for test set 2 and well below 1%
for test sets 3 and 4. Excellent accuracy is found with the GBMV
method in CHARMM, which achieves average errors of 1% or less
for test set 2 and about 0.5% for different conformations of the
same protein in sets 3 and 4 when the CHARMM force field is
used. Using GBMV with the Amber force field and Bondi’s radii90

the error for test set 2 is slightly worse, at 1.3%, but better for sets
3 and 4. The most accurate method in Amber relative to the PB
reference, aGBOBC(II), is quite comparable to GBMV for test sets
3 and 4 but has somewhat larger errors for set 2. The accuracy of
the S-GB method in Impact is similar but slightly worse compared
to aGBOBC(II) across all of the test sets.

The GB methods in Tinker, based directly on Still’s formula-
tion (tGBSTILL)51 and on the model by Hawkins, Cramer, and
Truhlar (tGBHCT),56,89 also produce reasonably accurate solvation
energies. The errors are comparable but in general slightly larger
than the errors seen with very similar approaches in Amber.

The average relative errors and energy deviations compared to
PB reference energies provide a good measure of the average
performance of different GB methods in approximating the PB
equation. For practical purposes it is equally important, however,
to look at the maximum errors that one may encounter with a given
method. For example, if one compares the GBMV results for the
Amber force field and aGBOBC(II) the average errors for structures

in test set 2 are not that different, 1.28 and 1.88%, respectively.
However, the maximum errors are only 5% with GBMV but
14.2% with aGBOBC(II), which has consequences for the mini-
mum level of accuracy that may be expected with either method
for any given structure. In this respect, the S-GB method is also
quite competitive with the GB methods in Amber with fairly low
maximum errors despite somewhat larger average errors.

We note that we are using PB reference energies that were
calculated with the CHARMM PBEQ module, whereas many of
the GB methods tested here used PB energies from DelPhi or other
PB solvers were used as the reference for parameterization and
testing. While the CHARMM PBEQ energies are very similar to
energies obtained from other PB solvers (see below), one might
suspect nevertheless that the agreement between GB and PB is
somewhat better if the PB reference energies for the test cases are
calculated in the same way as during the parameterization, e.g.,
with DelPhi. As shown in Table 4, we found that this does not
appear to be the case. The data for test sets 2 and 3 suggest that the
agreement is very much the same if compared to CHARMM
PBEQ energies (0.25-Å grid spacing) or energies from DelPhi
(0.5-Å grid spacing).

During our own efforts in developing and parameterizing GB
methods we have noticed that the errors with respect to PB
calculations are often systematic rather than random in nature.
More specifically, we found that GB methods tend to have diffi-
culties in reproducing relative solvation energies between folded
and unfolded conformations and between smaller and larger pro-
tein structures. To investigate these points further we have taken a
closer look at test sets 2 and 3.

Test set 3, with different conformations of the chicken villin
headpiece generated from a lattice simulation protocol, really
consists of three distinct subsets. The structures in the first subset
come from short simulations that were started from extended
conformations and for the most part have not yet reached compact
configurations. The second subset contains structures that have
been allowed to fold to compact protein-like, but misfolded, non-
native conformations. Structures in the third subset were simulated
starting from the native conformation and are in general similar to
the native fold or native-like. By comparing the average deviation
in solvation energy for each of these subsets after shifting GB

Table 4. Dependence of Errors in Solvation Energies from Selected GB
Methods on Different PB Reference Energies.

GB method PB reference

Average/maximum error
(%)

2 (PDB)
3

(villin)

aGBOBC(II) PBEQ, 0.25 Å 1.88/14.2 0.63/2.5
aGBOBC(II) DelPhi, 0.5 Å 1.90/13.9 0.63/2.2
S-GB PBEQ, 0.25 Å 2.10a/14.7 0.84/3.3
S-GB DelPhi, 0.5 Å 2.07a/13.7 0.80/3.3

aSolvation energies could not be calculated for some structures, presum-
ably due to size limitations.
Data are shown only for test sets 2 and 3.
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energies according to the overall best shifts given in Table 3,
systematic errors with respect to different types of conformations
become apparent. Ideally, one would like to have average devia-
tions of zero for all three subsets. Table 5 shows the actual
deviations for a selected set of GB methods. Because the differ-
ence PB � GB is shown, positive values mean that conformations
in a corresponding subset are too favorable relative to the other
conformations and negative values mean that they are too unfa-
vorable. This is dramatic, e.g., in cGBSTILL, where the solvation
energies for extended structures are overestimated while the sol-
vation energies for native-like conformations are not favorable
enough, also relative to the misfolded conformations in the second
subset. This would certainly pose a problem if such a method was
used as part of a scoring function for finding the native structure
according to the lowest energy in structure prediction efforts.64

Some bias appears to be present in most GB methods and it is
usually largest, positive or negative, for extended conformations.
As one might expect, the more accurate methods also exhibit less
of a bias in reproducing solvation energies for different types of
conformations. The GBMV and aGBOBC(II) methods also stand
out here with deviations that are uniformly low for all subsets,
suggesting that these methods would be in particular suited for
applications such as structure prediction or protein folding, at least
as judged by comparison to the PB treatment.

The issue of protein size-dependent errors is addressed in Table
6. Here, we have correlated the individual error in solvation energy
for structures in set 2 with the radius of gyration and calculated the
slope from a best-fit linear regression. Ideally, if there is no bias,
the slope should be zero. Again, GBMV and aGBOBC(II) meet this
goal along with the other methods aGBHCT and tGBHCT and also
GBSWMS, the molecular surface-based reparameterization of the
regular GBSW method. However, a significant systematic error

with increasing protein size is found for the cGBSTILL and ACE
and to a smaller degree also with aGBOBC(I), aGBMGB, and S-GB.

PB Methods

The deviations between solvation energies calculated by different
PB methods were compared as well to provide reference points for

Table 6. Slope Calculated from Linear Regression of Individual Error
(%) Versus Radius of Gyration for Structures in Test Set 2.

GB method
Slope in error (%) vs.

radius of gyration

cGBSTILL 1.75a

GBMVb 0.07
ACE22nc 2.84d

GBSW �1.61
GBSWMS �0.01
aGBHCT �0.07a

aGBOBC(I) �0.42
aGBOBC(II) 0.05
aGBMGB 0.57a

tGBHCT 0.10d

tGBSTILL 0.16d

S-GB 0.24d

aSolvation energies could not be calculated for some structures due to
negative Born radii.
bNew parameters (see Methods) and regular angular grid with N� � 8.
cAtomic volumes scaled by 0.9.
dSolvation energies could not be calculated for some structures due to
memory/program limitations.

Table 5. Average Deviation of Solvation Energies for Subsets of Test Set 3 as the Difference
Between PB Reference and GB Energies after Substracting the Shifts Given in Table 3.

GB method

Average deviation (PB-GB) (kcal/mol)

1–40 (Extended) 41–80 (Misfolded) 81–120 (Native)

cGBSTILL 51.3 1.6 �14.6
GBMVa 1.7 0.7 �1.9
ACE22nb �4.0 10.7 �6.5
GBSW 16.0 �4.0 2.1
GBSWMS 4.1 2.3 �3.7
aGBHCT �5.7 1.1 1.1
aGBOBC(I) 7.9 �2.4 0.8
aGBOBC(II) 3.7 �1.7 1.4
aGBMGB �15.3 3.1 �1.5
tGBHCT 3.2 2.7 �5.3
tGBSTILL �9.5 3.3 0.0
S-GB �7.3 2.2 0.0

aNew parameters (see Methods) and regular angular grid with N� � 8.
bAtomic volumes scaled by 0.9.
In this test set the first 40 villin headpiece structures were generated from short lattice simulations
starting from extended chains, the second 40 compact (misfolded) structures that resulted from longer
lattice folding simulations, and the third 40 structures originated from the native conformation (for
annotations see Table 3).
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evaluating the performance of GB methods. We were in particular
interested in comparing faster PB methods that provide moderate
accuracy at low computational cost because such methods would
be in direct competition with GB methods for the calculation of
solvation energies.

The results from comparing PB methods are summarized in
Table 7. First, one may notice that PB methods that would be
expected to be of similar accuracy as the reference PBEQ calcu-
lations do in fact give very similar results for all of the test sets,
with deviations of 0.15–0.3%. These methods are MEAD with a
0.25-Å grid spacing, APBS with a 0.4-Å grid spacing (with the
molecular surface boundary), and DelPhi with a 0.5-Å grid spac-
ing. The observation that APBS and DelPhi match the 0.25-Å grid
PBEQ energies with coarser grid sizes translates into better com-
putational efficiency, as discussed in more detail below. As one
would expect, the accuracy is reduced with all methods if coarser
grid spacings are used. With DelPhi, it is still possible, however, to
obtain fairly low errors of around 0.5%, even when a rather coarse
1.0-Å grid spacing is used. This may be compared with the best
GB methods that show deviations between 0.5 and 1.0% depend-
ing on the test set. The errors found in the best GB methods are
otherwise comparable to PBEQ and MEAD results with 0.5-Å grid
spacing and also to the level of accuracy achieved with the fast
boundary element method REBEL.

As one would expect, different surface definitions do in fact
result in quite different solvation energies. This is the case for
APBS with a harmonically averaged molecular surface and espe-
cially with the spline-interpolated van der Waals-based smooth
boundary definition where the deviations are quite significant.
When compared to solvation energies obtained with CHARMM
PBEQ for the same kind of surface, the deviations are reduced but
remain large overall. This would suggest other differences in the
boundary definition because the solvation energies agree well
between PBEQ and APBS for the standard molecular surface with
the same set of APBS parameters. The solvation energies obtained
with the finite element method PBF in Impact also show significant
deviations from the finite element solutions with PBEQ or DelPhi,
as would be expected from the different surface definition based on
the smooth dielectric boundary as proposed by Gilson et al.94

However, the solvation energies do agree fairly well with energies
obtained by APBS with the harmonically averaged surface when
recalculated with the OPLS force field and radii to match the
Impact input parameters (data not shown), suggesting a very
similar surface definition.

Finally, ZAP, which uses Gaussian functions to approximate
the molecular surface, produces solvation energies with deviations
that match average GB methods but do not quite reach the level of
agreement with PB reference energies that is found with the best
GB methods.

Timing Data

Because GB methods are meant to approximate PB solutions at a
much reduced cost, a performance evaluation needs to consider the
computational expense necessary to achieve a certain level of
accuracy. For obtaining timing information on GB calculations we
considered two cases: The first is a single calculation of the
solvation energy for a given structure, which is directly compara-

ble to PB calculations; the second measures the time required to
calculate gradients in a 10-step steepest descent minimization run,
which is also relevant for running molecular dynamics simulations.
Two test systems were used: The first, 1VII, is the 36-residue
chicken villin headpiece; the second, 1DVJ_A, is chain A from
oritidine monophosphate decarboxylase, which is much larger with
239 residues. The timing data for GB calculations are given in
Table 8. We find that all of the methods implementing a pairwise
sum for the calculation of Born radii—such as cGBSTILL,
aGBHCT, aGBOBC(I), aGBOBC(II), aGBJSB, aGBMGB, tGBHCT,
and tGBSTILL—require approximately similar amounts of time.
However, it was possible to gain almost a factor of two with newly
optimized routines in a prerelease version of Amber 8 for the
aGBHCT, aGBOBC(I), aGBOBC(II), and aGBJSB models. We note
that the timings are platform dependent and the results may differ
somewhat on other computer architectures. The more accurate
GBMV method based on an analytic integration of the molecular
volume is in general slower, although the computational expense
scales more favorably with increasing system size if compared to
the current implementation in Amber. If no cutoffs are used, which
is most relevant for the calculation of complete solvation energies,
the timings for the larger structure 1DVJ_A are actually quite
competitive with the other GB methods while the calculations are
about three to four times more expensive for the smaller structure,
1VII. In dynamics simulations, interaction cutoffs are commonly
used. Here, the pairwise methods gain a significant advantage over
the volume integration scheme where the computational cost is not
reduced as much as a function of cutoff. In the case of the larger
system this translates into a factor of four to five for dynamics with
the GBMV method versus the newly optimized pairwise imple-
mentation in Amber 8. Finally, we note that the computational
times for S-GB are significantly larger than for the other GB
methods, both for the small and the large test structure.

The time to calculate single energies of solvation with GB can
be compared to the time required for different PB methods as
shown in Table 9. Timings for grid-based PB methods depend
foremost on the number of grid points, given similar convergence
criteria. Therefore, constraints on what kinds of grids can be used
with a given algorithm (rectangular as in PBEQ, cubic as in
MEAD and APBS, or limited choice of grid dimensions as mul-
tiples of 32 in APBS) strongly influence the timing, and a simple
comparison between methods based on the data given in Table 9 is
difficult. Nevertheless, APBS appears to be more expensive per
grid point, presumably due to extra expense in the multigridding
finite element approach, but (as shown above) a coarser grid
resolution appears to be sufficient in APBS to obtain a similar level
of accuracy as the standard finite difference method PBEQ, which
makes APBS overall more efficient. Another issue that arises when
comparing PB methods in terms of efficiency is the choice of
convergence criteria. This is most apparent with the MEAD pro-
gram. With the default settings in the latest version, fairly tight
convergence criteria are used with increasing grid size to maintain
the same level of long-range accuracy. As a result, the time
required for reaching convergence increases much faster for larger
grid sizes than with the comparable PBEQ module in CHARMM.
With more relaxed convergence criteria (using the flag –conver-
gence_oldway), the resulting solvation energies are quite similar
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Table 7. Comparison of Electrostatic Solvation Energies from PB Methods with Appropriate PB Reference
Energies.

PB
method

Grid
(Å) PB reference

Average/maximum deviation (%)

Set 1
(training)

Set 2
(PDB)

Set 3
(villin)

Set 4
(protein L)

Set 5
(myloglobin)

PBEQ 0.40 CHARMM 0.52/2.7 0.71/7.0 0.34/1.2 0.22/0.7 0.10/0.3
PBEQ 0.50 CHARMM 0.75/2.4 1.25/12.5 0.60/1.7 0.40/1.4 0.13/0.4
MEAD 0.25 CHARMM 0.21/0.9 N/A 0.16/0.8 N/A N/A
MEAD 0.50 CHARMM 0.98/3.4 N/A 0.62/2.2 N/A N/A
DelPhi 0.50 CHARMM 0.16/0.4 0.23/2.7 0.18/0.7 0.14/0.5 0.08/0.2
DelPhi 1.00 CHARMM 0.50/2.2 0.59/4.5 0.56/1.6 0.37/1.5 0.10/0.3
APBSa 0.40 CHARMM 0.29/0.8 0.23b/2.6 0.31/1.2 0.27/1.1 0.13b/2.3
APBSa 0.50 CHARMM 0.63/2.4 0.61/5.2 0.51/1.5 0.36/1.4 0.19/1.8
APBSc 0.40 CHARMM 1.41/6.8 2.44b/21.1 0.70/2.3 0.41/1.4 N/A
APBSc 0.50 CHARMM 1.51/6.7 2.66/23.2 0.74/2.3 0.44/1.3 N/A
APBSd 0.40 CHARMM 16.1/73.6 N/A 3.95/14.8 1.36/4.8 N/A
APBSd 0.50 CHARMM 16.9/73.1 N/A 4.27/12.0 1.52/5.3 N/A
APBSd 0.40 CHARMMsmooth 10.0/33.8 N/A 2.34/7.0 0.72/2.9 N/A
APBSd 0.50 CHARMMsmooth 10.7/39.1 N/A 2.65/6.9 0.90/3.5 N/A
PBF Lowe OPLSImpact 1.33/5.7 3.28b/31.2 0.89/2.8 0.73/3.1 N/A
PBF Highe OPLSImpact 1.64/8.8 3.95b/33.3 1.06/3.4 0.61/2.1 N/A
ZAP 0.25 CHARMM 1.11/5.1 2.63/18.9 0.72/3.9 0.90/3.9 2.11/3.9
ZAP 0.50 CHARMM 1.10/5.0 2.47/17.7 0.72/3.7 0.90/3.9 0.31/0.7
REBEL Default Amber94Bondi 1.33/5.1 1.29/10.5 0.37/1.2 0.46/1.9 N/A
REBEL Exact Amber94Bondi 0.48/2.0 N/A 0.21/0.9 0.23/0.9 N/A

PB
method

Grid
(Å)

RMSD (kcal/mol) Shift (kcal/mol)

1 2 3 4 5 1 2 3 4 5

PBEQ 0.40 5.8 20.7 3.0 3.3 12.7 13.8 21.6 10.5 24.6 64.9
PBEQ 0.50 10.4 36.5 5.1 6.0 16.5 23.3 38.0 19.1 42.3 103.0
MEAD 0.25 4.0 N/A 1.2 N/A N/A �3.8 N/A �3.2 N/A N/A
MEAD 0.50 13.1 N/A 4.9 N/A N/A 22.0 N/A 19.4 N/A N/A
DelPhi 0.50 3.4 8.4 1.4 2.1 9.8 1.1 2.7 �0.8 0.5 44.0
DelPi 1.00 6.6 19.0 4.3 5.7 12.8 6.0 12.6 4.0 11.4 53.6
APBSa 0.40 3.6 27.3b 2.4 4.1 37.1 3.1 3.4 3.5 4.5 5.6
APBSa 0.50 7.7 18.0 4.2 5.2 34.5 11.0 18.9 11.9 21.6 56.2
APBSc 0.40 17.4 71.5b 6.8 5.9 37.1 �42.5 �70.0 �34.7 �84.3 N/A
APBSc 0.50 18.9 79.4 7.1 6.4 29.3 �45.8 �76.9 �38.0 �90.9 �193.3
APBSd 0.40 215.6 N/A 35.2 20.3 N/A 552.2 N/A 349.7 742.0 N/A
APBSc 0.50 226.2 N/A 36.4 22.8 N/A 571.1 N/A 368.4 777.5 N/A
APBSc 0.40 162.0 N/A 24.7 12.3 N/A 384.8 N/A 274.2 550.7 N/A
APBSc 0.50 166.2 N/A 26.1 15.6 N/A 424.6 N/A 293.6 584.4 N/A
PBF Lowe 21.3 102.6b 8.3 13.0 N/A �40.1 �87.3 �43.5 �80.0 N/A
PBF Highe 24.2 121.8b 10.0 11.0 N/A �60.1 �112.2 �55.4 �110.8 N/A
ZAP 0.25 17.8 98.3 7.0 14.1 297.9 7.5 25.3 �2.6 5.1 �352.3
ZAP 0.50 17.7 93.8 7.0 14.0 42.1 6.9 25.8 �1.7 5.4 �1.0
REBEL Default 33.6 58.3 3.0 7.2 N/A 8.9 10.9 1.3 �6.9 N/A
REBEL Exact 7.3 N/A 1.7 3.5 N/A 9.5 N/A 5.1 14.2 N/A

aMolecular surface.
bSolvation energies could not be calculated for some structures, presumably due to size limitations.
cMolecular surface with simple harmonic averaging.
dSpline-interpolated van der Waals-based smooth dielectric boundary.
eLow and high resolution according to default settings in Impact program.
For each of the five tests (1–5, see Table 1) the average and maximum error in solvation energies relative to the PB
reference energies, the RMSDs of solvation energies, and the energy shift resulting in the smallest overall error are
given.
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but the time necessary to calculate solvation energies is reduced
substantially to about the same level as with CHARMM PBEQ.

If compared to PBEQ, APBS, and MEAD we find that DelPhi
requires about the same amount of time if the same grid spacing,
0.5 Å, is used with all of these methods. It needs to be taken into
account, however, that the accuracy is comparable to PBEQ with
0.25 Å and slightly better than APBS with a 0.4-Å grid spacing,
which translates into an effective speedup of 10 (1VII) or 5
(1DVJ_A) versus the PBEQ method. While this is impressive
compared to other PB solvers, it still leaves enough room for GB
methods where the timings with some methods are better by at
least an order of magnitude even if a 1-Å grid spacing is used with
DelPhi. The boundary element method REBEL comes much closer
to the speed needed for GB calculations. Slower by less than a
factor of two for larger molecules and about the same speed as
GBMV for the small villin headpiece, it provides a similar level of
accuracy as GBMV and is thus quite competitive with GB methods
in terms of speed and accuracy for the calculation of solvation
energies.

Finally, ZAP clearly fulfills its promise of being a very fast PB
solver. The times are much shorter than with all of the other PB
solvers and, for the larger molecule 1DVJ_A, also shorter than
most GB methods (see Table 8).

Overall Performance

The results discussed so far are summarized best in plots of
accuracy versus time as given in Figures 1 and 2, which compare
the time required for 1VII solvation energies against the error in
test set 3 (Fig. 1) and the time required for 1DVJ_A against the
error in test set 2 (Fig. 2). Both figures are shown on a double
logarithmic scale to represent the extended range of time and
accuracy for all of the methods tested here. While the accuracy for
the reference PB calculations with PBEQ and a grid spacing of
0.25 Å are technically 0 there is certainly an error associated with
these PBEQ calculations with respect to a hypothetical set of fully
converged reference energies at infinitely fine grid spacing. Be-
cause both MEAD and PBEQ essentially implement the same
accurate, finite difference method, the deviations between solva-
tion energies from both methods at 0.25-Å grid spacing may be
seen not just as an error estimate for MEAD but also for PBEQ.
Accordingly, we would estimate that PBEQ at 0.25-Å grid spacing
has an error of 0.2% for test set 2 (from the accuracy of MEAD for
test set 1) and 0.16% for test set 3. Another measure of the error
associated with finite difference PB solutions may be obtained
from the variation of solvation energies upon rotation or transla-
tion of a given molecule. While this error may be as large as a few
percent for a single ion,19 it is much smaller for polyionic molec-

Table 8. Timing of Single Calculations of Electrostatic Solvation Energies with GB Methods and 10-Step
Steepest Descent Minimizations on Pentium IV (2 GHz) with Standard Distributions and/or Default
Compiler Flags for 1VII (36 Residues, 596 Atoms) and 1DVJ_A (239 Residues, 3628 Atoms).

GB method

Time (s) for single energy
calculation

Timing (s) for 10-steps minimiation

1VII
(no cutoff)

1DVJ_A
(no cutoff)

1VII 1DVJ_A

(No cutoff) 14-Å cutoff) No cutoff 14-Å cutoff

cGBSTILL 0.2 4.7 3.1 2.6 68.5 16.6
GBMVa 1.3 9.5 14.4 14.1 116.8 90.0
GBMVb 0.6 5.1 7.2 6.8 69.4 43.0
GBMVc 0.7 5.8 8.1 7.8 75.4 49.6
GBMVd 0.6 4.7 6.3 6.0 63.8 37.3
ACE 0.2 4.9 3.1 2.6 69.7 17.1
GBSW 0.3 3.8 3.7 3.4 49.6 23.3
GBSWMS 0.4 4.3 4.6 4.3 53.8 27.4
aGBHCT 0.2/0.1 5.7/2.6 2.6/1.9 2.1/1.5 69.1/39.0 18.6/11.7
aGBOBC/JSB 0.2/0.1 5.5/2.5 2.6/1.9 2.1/1.5 69.8/39.0 19.5/11.7
aGBMGB 0.2 6.5 2.8 2.3 78.6 20.3
tGBHCT 0.2 5.1 N/A N/A N/A N/A
tGBSTILL 0.2 7.2 N/A N/A N/A N/A
S-GB 1.9 56.0 N/A N/A N/A N/A

aNew parameters (see Methods) and regular angular grid with N� � 8.
bNew parameters and regular angular grid with N� � 5.
cNew parameters and 38-point Lebedev grid.
dNew parameters and 26-point Lebedev grid.
Single energy calculations do not include overhead that is unrelated to GB. Steepest descent timings measure the
complete time including the time required for setup and calculation of non-GB energy terms. The two numbers given
for the GB methods implemented in Amber refer to Amber 7 and a prerelease version of Amber 8.
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ular systems due to cancellation of errors. For a small molecule (52
residues) from test set 1 (1MBG) we found a standard deviation of
0.62 kcal/mol when solvation energies are calculated for different
molecular orientations with the PBEQ method using a grid spacing
of 0.25 Å. This corresponds to a relative error of 0.05% with
respect to the total solvation energy.

Figures 1 and 2 demonstrate how different methods trade speed
for accuracy covering the range from fast and approximate to slow
and accurate ways of calculating solvation energies. It can be seen
how some methods—such as the GB methods aGBOBC(II) and
GBMV and the PB solvers REBEL and DelPhi—are pushing the
envelope in different regimes of accuracy and speed, but the lack
of data points in the lower left corners of both figures also suggest
fundamental limits of what can be achieved in terms of fast and
accurate calculations of electrostatic solvation energies with GB or
PB methods.

Finally, we would like to focus on the performance of GB
methods when used for molecular dynamics simulations. For this
case the minimization timings with typical 14-Å nonbonded cut-
offs as given in Table 8 are most relevant and may be compared
with the errors obtained for test sets 3 and 4. For the purposes of
this comparison we would consider the somewhat larger errors in
test set 2 less representative because they may indicate systematic

errors due to different amino acid compositions that would cancel
out to some extent in the relative energies between different
conformations of the same protein in simulations. Figures 3 and 4
show such comparisons for 1VII and 1DVJ_A with selected GB
methods in the CHARMM and Amber programs. Again, one can
see the trade-off between speed and accuracy from aGBOBC(II) to
the most expensive GBMV method with a high integration grid
(N� � 8). One may note that the GBMV methods become rela-
tively more expensive when cutoffs are used because the grid-
based integration method for calculating Born radii always con-
siders the solute volume up to a cutoff of 18 Å. With GBMV, the
introduction of cutoffs only reduces the time spent for the appli-

Figure 1. Performance of GB and PB methods as measured by aver-
age percentage error for test set 3 (1VII conformations) versus the time
required for a single calculation of the electrostatic solvation energy
for the native structure 1VII. Both time and error axes are shown
logarithmically. The labels indicate the source of data points shown.

Figure 2. Performance of GB and PB methods as measured by aver-
age percentage error for test set 2 (PDB conformations) versus the time
required for a single calculation of the electrostatic solvation energy
for the native structure 1DVJ_A. Both time and error axes are shown
logarithmically. The labels indicate the source of data points shown.

Table 9. Timing of Single Calculations of Electrostatic Solvation
Energies with PB Methods on Pentium IV (2 GHz) with Standard
Distributions and/or Default Compiler Flags for 1VII (36 Residues, 596
Atoms) and 1DVJ_A (239 Residues, 3628 Atoms).

PB method

Timing (s) for single energy calculation

1VII 1DVJ_A

PBEQ, 0.25 Å 65.3 529.4
151 � 135 � 115 254 � 241 � 195

PBEQ, 0.40 Å 14.0 108.2
95 � 85 � 73 157 � 151 � 121

PBEQ, 0.50 Å 7.6 54.1
75 � 67 � 57 127 � 121 � 97

DelPhi, 0.50 Å 6.5 139.3
DelPhi, 1.00 Å 1.5 33.5
APBS, 0.40 Å 30.8 227.2

97 � 97 � 97 161 � 161 � 161
APBS, 0.50 Å 13.2 122.9

65 � 65 � 65 129 � 129 � 129
MEAD, 0.25 Å 105.9/54.9 2377.0/993.9

121 � 121 � 121 231
MEAD, 0.50 Å 8.7/7.3 154.5/109.9

65 � 65 � 65 115 � 115 � 115
ZAP, 0.50 Å 0.3 2.9
PBF, low resolution 22.0 291.3
PBF, high resolution 83.3 1018.0
REBEL, default 0.8 10.9
REBEL, exact 8.1 N/A

The two numbers given for MEAD refer to new and old convergence
criteria, respectively. For DelPhi convergence criteria of 0.1 kT/e were
requested. Default convergence criteria were used in all other cases. Finite
difference grid dimensions are given in italics.
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cation of the generalized Born equation [eq. (6)] and of course the
time spent for the calculation of intrasolute, nonbonded interac-
tions that are unrelated to GB.

The GBMV method as implemented in CHARMM does scale
better, however, with an increase in system size because the
speedup of aGBOBC(II) versus GBMV (N� � 5) is reduced from
a factor of 4.2 for the 36-residue protein1VII to 3.7 for the
239-residue protein 1DVJ_A. We have investigated this point
further to estimate the performance for very large systems and
compared the timing with aGBOBC(II) and GBMV (N� � 5) for a

number of different proteins from test 2 as well as the dimer and
tetramer of �-galactosidase from Escherichia coli (PDB code
1DP0), which has 2022 residues for the dimer and 4044 residues
for the biologic tetramer unit. The results are shown in Figure 5,
illustrating the different scaling behavior depending on system
size, as measured by the number of residues. As is evident, the
GBMV method in CHARMM follows nearly linear scaling with
the number of residues, N, while the pairwise aGBOBC(II) method
as currently implemented in Amber is dominated by O(N2) scaling.
As a consequence there is a crossover point around 2500 residues
for a cutoff of 14 Å. For shorter cutoffs this crossover point would
move to a larger number of residues and for larger cutoffs to a
smaller number of residues.

Discussion

In this study we have compared a variety of GB methods and PB
solvers, some of which were developed in our own laboratories, in
terms of accuracy and speed for the calculation of electrostatic
solvation energies. The present study is focused on protein struc-
tures, but the results are expected to apply at least qualitatively to
other macromolecular systems of similar size and composition as
well. As the point of reference for such calculations, high-resolu-
tion solutions to the Poisson equation, obtained by finite difference
methods, for example, present the natural choice because both the
GB and PB models share the same physical basis. The agreement
with experimental data or explicit solvent simulations is not being
addressed here. To the extent that GB methods provide good
approximations to the “correct” solvation energies as described by
the Poisson equation they also share the successes and failures due
to such a continuum solvent environment. Other studies have
described the agreement of PB calculations with experimental
transfer energies from vacuum to water97 or with experimental pKa

values.30 Further evaluation of implicit solvent models, especially
based on dynamic trajectories in simulations that are now becom-

Figure 3. Performance of selected GB methods in CHARMM and
Amber as measured by average percentage error for test set 3 (1VII
conformations) versus the time required for 10 steps of steepest
descent minimization for 1VII. The labels indicate the source of data
points shown. Different integration grids were used for GBMV and are
annotated as follows: leb26, 26-point Lebedev grid; reg5, regular
angular grid with N� � 5; reg8, regular angular grid with N� � 8.

Figure 4. Performance of selected GB methods in CHARMM and
Amber as measured by average percentage error for test sets 3 (1VII
conformations) and 4 (protein L conformations) versus the time re-
quired for 10 steps of steepest descent minimization for 1DVJ_A. The
labels indicate the source of data points shown as in Figure 3.

Figure 5. Time required with aGBOBC(II) (squares) and GBMV with
N� � 5 (circles) for 10 steps of steepest descent minimization versus
number of residues for selected protein structures.
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ing possible with GB and some PB methods, is ongoing in our
laboratories.81

The comparisons here assume a simple two-dielectric model
with the dielectric boundary defined by the molecular surface as
the most appropriate target for GB and PB methods. This choice of
reference is motivated in particular by the fact that most GB and
PB methods are parameterized based on the molecular surface and
should therefore be compared to such. However, it then becomes
problematic when comparing to methods such as GBSW,87 which
explicitly target alternative surface definitions.

When comparing different GB methods in terms of accuracy
we find a continuous range from earlier GB models, cGBSTILL and
tGBSTILL, which are based on a pairwise approximation for cal-
culating Born radii, to a variety of newer implementations, either
based on the pairwise descreening approach by Hawkins, Cramer,
and Truhlar56 in aGBHCT, aGBOBC(I), and aGBOBC(II) as well as
a new surface integral approach59 in S-GB. The highest accuracy
was achieved with a volume integral formalism and additional
correction to the Coulomb field approximation in GBMV and also
GBSW. However, the better agreement with PB reference energy
in GBMV does come at the price of computational cost. As Tables
3 and 8 as well as Figures 3 and 4 show, the performance of
GBMV can be tuned to some degree between higher accuracy/
slower execution time and less accuracy/faster execution. There is
also some variation depending on the parameterization and the
underlying force field, as the error for test set 2 varies from 0.8%
with parameters optimized for CHARMM22 using test set 2 to
almost 1.3% with the same parameters using the Amber force field.
Previous parameterizations of GBMV based on smaller training
sets were found to produce similar errors within the same range.
We recognize that the error estimate of 0.8% for the CHARMM22
force field may be slightly too optimistic because we are reporting
the error for the training set in this case rather than an independent
test set. We think that this number is nevertheless relevant because
it gives a lower error estimate for the GBMV method when
calculating solvation energies for different protein structures, but
the test set is also so comprehensive in terms of size, fold topol-
ogies, and amino acid composition that it is difficult to imagine
that truly independent test sets can be found that would represent
qualitatively different types of native structures and possibly result
in significantly larger errors. However, to be on the safe side, one
may use the error of 1% for test set 2 from the previous parame-
terization as a conservative error estimate for GBMV.

Results from the GBSW method agree equally well with sol-
vation energies from PB if the same smooth surface definition is
used. If GBSW is reparameterized to reproduce molecular surface
PB solvation energies the agreement is still good, as the data for
GBSWMS shows, while the calculation based on overlapping van
der Waals spheres is computationally more efficient than the
explicit calculation of the molecular surface in GBMV.

The best method based on a pairwise calculation of Born radii,
aGBOBC(II), is faster by a factor of 2–6 depending on the size of
the protein. At this point, the choice of either method becomes a
question of accuracy and speed requirements for a certain appli-
cation. For example, somewhat lower accuracy may be acceptable
for scoring large sets of conformations or the generation of con-
formational ensembles with molecular dynamics simulations while
speed would certainly be of the essence there. On the other hand,

refinement of near-native structures or the calculation of binding
energies may require the best possible level of accuracy if even
that would entail higher computational costs.

While the overall error in calculating solvation energies with
GB methods should, obviously, be as small as possible, it is even
more important that systematic errors are avoided. We looked at
two aspects in this regard: systematic errors with increasing system
size and systematic errors for extended conformations versus com-
pact native-like and misfolded conformations. We found that only
the most accurate methods, aGBOBC(II) and GBMV, are mostly
free of systematic biases in either case, while in some cases
solvation energies for larger structures or extended structures are
significantly over- or underestimated. This also means that some of
the less accurate methods may be quite reasonable for a limited
subset of conformations, such as small native-like structures, while
lacking the general applicability to other structures. This is not be
too surprising because most of the GB methods tested here were
parameterized with small molecules and/or smaller protein struc-
tures and our study did not assess in detail whether it would be
possible to reparameterize underperforming methods to improve
the results.

Finally, it should be mentioned that the methods cGBSTILL and
ACE have been more successful with the united-atom force field
CHARMM19,55,63,68,98–100 which was not included in the present
study.

It is important to put the performance of GB methods in the
context of more approximate PB methods to verify that even the
slower and more accurate GB methods such as GBMV still pro-
vide an advantage for calculating solvation energies in terms of
speed. We find that all of the PB solvers that we have tested,
except for ZAP and REBEL, do in fact require much more time for
the same level of accuracy achieved with the best GB methods.
ZAP and REBEL stand out on their own by providing fast solva-
tion energies with an accuracy and speed that are comparable to
the performance of GB methods. We find that ZAP is very fast but
slightly less accurate than aGBOBC(II) and GBMV and REBEL is
as accurate as GBMV but noticeably slower.

A comparison of PB methods based on the data presented
here is not comprehensive because many details of PB solvers
that influence speed and accuracy were not tested exhaustively,
such as issues of convergence and grid size. Nevertheless, we
think that we can identify certain trends. The finite difference
and finite element PB solvers CHARMM PBEQ, MEAD, Del-
Phi, and APBS appear to be all fairly equivalent in terms of
accuracy, with relative errors of about 0.2%. A more detailed
comparison at this level of agreement would require a better set
of reference energies as well as a comparison with analytic
results for simple geometries. The observed differences in
speed on a larger scale can be explained mostly by the grid
resolutions required in different methods for obtaining the same
level of accuracy. Both APBS and DelPhi are faster than PBEQ
and MEAD because grid spacings of 0.4 and 0.5 Å in APBS and
DelPhi, respectively, provide the same accuracy as grid spac-
ings of 0.25 Å in PBEQ and MEAD. In DelPhi, this is achieved
by interpolating the location of surface charges that are used to
calculate the reaction field. APBS corrects solvation energies
from coarser grid resolutions based on an error estimate to
match solvation energies from higher grid resolutions. DelPhi
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has further advantages in terms of speed by using only a single
finite difference solution for calculating the reaction field di-
rectly rather than the two passes that are required in the other
methods for calculating the difference according to eq. (4).
Larger grid spacings for a given method in general reduce the
computational time significantly, but the trade-off in accuracy is
not competitive with most of the GB methods.

Another important aspect when comparing PB solvers is the
treatment of salt. We did not take salt effects into account in this
study because salt dependence is not implemented in many of the
GB methods tested here. The inclusion of salt requires solution of
the Poisson–Boltzmann rather than the Poisson equation, either in
its original nonlinear or an approximate linearized form. We ex-
pect that this would change the relative performance of different
PB solvers significantly and we should stress that the results from
this study are certainly not applicable in the same way to calcu-
lations that take salt into account.

Finally, we have looked in more detail at the performance of
the best GB methods, aGBOBC(II) and GBMV, for minimization
and molecular dynamics applications. The computational cost of
these methods depends differently on the choice of an electrostatic
cutoff and the size of the system. The pairwise formulation in
aGBOBC scales much better with the introduction of cutoffs than
the integral formulation in GBMV, resulting in a difference of
speed by a factor of 3–4 for smaller integration grid sizes. It
remains to be seen whether the better accuracy with GBMV
justifies the extra expense, especially if one keeps in mind that
even an ideal PB model presents only a fairly crude approximation
to the intricate details of explicit solvent interactions. We find,
though, that the pairwise formulation currently implemented in
Amber scales more like O(N2) with the number of residues while
the GBMV implementation in CHARMM scales closer to O(N) if
a cutoff is used. A difference in scaling is explained in part by the
different methods for calculating Born radii, but the dominant
O(N2) term in the aGB methods is a consequence of not using a
nonbonded pair list in the Amber implementation. While this
improves performance for small systems it increases computa-
tional expenses for large systems. This observation is noteworthy
because the ability to efficiently model large protein multimers and
supramolecular assemblies will become increasingly important in
the future.

It will be interesting to see whether new developments in the
area of PB-based continuum solvent descriptions will come from
improving PB-based, GB-based, or other novel approximate meth-
ods. While highly accurate Born radii can now be calculated with
GB methods such as GBMV, limitations in the generalized Born
formalism as given by eq. (6) are becoming more obvious as the
errors in calculating solvation energies approach those that can be
obtained with “perfect” Born radii from PB solutions.50 Future
improvements in terms of accuracy for GB methods will likely
have to focus on finding a better expression than eq. (8) for
representing the cross-polarization energies for a polyionic system.
More approximate PB methods, on the other hand, could benefit
from new developments for accurate representation of molecular
surfaces through analytic functions that have been developed for
GB methods60 but could be applied in PB solvers such as Zap as
well.

Conclusions

In this study we have attempted to provide a comprehensive test
of GB and PB methods for the calculation of electrostatic
solvation energies. We found a wide range of accuracy and
speed that is spanned from fast and fairly accurate newly
parameterized GB methods to PB solvers with high accuracy
but significant computational cost. The latest GB methods can
achieve errors of approximately 1% for solvation energies of
different protein structures and 0.4% for relative energies of
different conformations for a single structure, which is a sig-
nificant improvement over first implementations of the GB
methodology. However, higher levels of accuracy can only be
reached with much more expensive finite difference or finite
element PB methods at this point. Fast, alternative methods for
solving the PB equation based on boundary element methods, as
in REBEL, or Gaussian volume overlap in Zap were found to be
competitive with GB methods, although still either slower or
less accurate, respectively, than the best GB methods. Here, we
are focusing mainly on the calculation of electrostatic solvation
energies for single conformations. An important advantage of
most GB methods is the availability of analytic derivatives for
use in molecular dynamics simulations or gradient-based en-
ergy minimization. Obtaining smooth derivatives from PB
methods that provide suitable forces for simulations is often
difficult or impossible. This point should be taken into consid-
eration when fast PB solvers such as REBEL are compared to
GB methods with a similar level of performance.

The results presented here are relevant to the application of
continuum models in a variety of applications such as the scoring
of protein conformations64 or the estimation of conformational
free energies34 by giving an estimate of what kind of performance
can be expected with different GB or PB methods. The much
improved level of accuracy in analytic GB methods, which are in
particular well suited for simulation studies, also provides an
encouraging basis for more reliable implicit solvent simulations
and opens a whole new range of possibilities for reaching larger
system sizes and longer timescales.
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Appendix

PDB Codes, Test Set 1

1AJJ, 1BBL, 1BOR, 1BPI, 1CBN, 1FCA, 1FRD, 1FXD, 1HPT,
1MBG, 1NEQ, 1PTQ, 1R69, 1SH1, 1SVR, 1TSG, 1UXC, 1VII,
1VJW, 2ERL, 2PDE, 451C.

PDB Codes, Test Set 2

1A23, 1A2S, 1A5R, 1A63, 1A66_A, 1A6B_B, 1A6S, 1A7M,
1A91, 1A93_A, 1A93_B, 1A9V, 1AA3, 1AB3, 1AB7, 1ABT_A,
1ABV, 1ABZ, 1AC0, 1ACA, 1ACI, 1ADN, 1ADR, 1AF8, 1AFH,
1AFO_A, 1AGG, 1AH2, 1AH9, 1AHL, 1AIW, 1AJ3, 1AJE,
1AJW, 1AJY_A, 1AK6, 1AKP, 1AML, 1AO8, 1AOY, 1AP0,
1AP7, 1AP8, 1APC, 1APS, 1AQ5_A, 1ARB, 1AUU_A, 1AUZ,
1AW0, 1AW6, 1AWJ, 1AXH, 1AXJ, 1AYJ, 1AZ6, 1B16_A,
1B1A, 1B22_A, 1B4R_A, 1B64, 1B6F_A, 1B8O_A, 1B8W_A,
1B91_A, 1B9P_A, 1B9U_A, 1BA9, 1BAK, 1BAL, 1BAQ, 1BB8,
1BBG, 1BBI, 1BBN, 1BBY, 1BC6, 1BC9, 1BCI, 1BCT, 1BDC,
1BDS, 1BFM_A, 1BGF, 1BGK, 1BH4, 1BHU, 1BI6_H, 1BIP,
1BJ8, 1BJX, 1BKR_A, 1BKU, 1BL1, 1BLA, 1BLJ, 1BLR,
1BM4_A, 1BMR, 1BMW, 1BMX, 1BNO, 1BNR, 1BO0,
1BO9_A, 1BOE_A, 1BPR, 1BPV, 1BQV, 1BR0_A, 1BRV,
1BRZ, 1BSH_A, 1BT7, 1BUQ_A, 1BUY_A, 1BVE_A, 1BVH,
1BW3, 1BW6_A, 1BWX, 1BXD_A, 1BXO_A, 1BY1_A, 1BYI,
1BYM_A, 1BYQ_A, 1BYY_A, 1BZG, 1BZK_A, 1C01_A,
1C05_A, 1C0P_A, 1C1D_A, 1C1K_A, 1C20_A, 1C2N, 1C3Y_A,
1C4E_A, 1C55_A, 1C5E_A, 1C75_A, 1C7K_A, 1C7U_A,
1C89_A, 1C9Q_A, 1CCH, 1CCM, 1CDB, 1CDQ, 1CE4_A,
1CF4_B, 1CFE, 1CG7_A, 1CHC, 1CHL, 1CK2_A, 1CKV,
1CL4_A, 1CLH, 1CMO_A, 1CMR, 1CN2, 1CO4_A, 1COK_A,
1COO, 1COU_A, 1CUR, 1CW5_A, 1CWW_A, 1CWX_A,
1CX1_A, 1CYE, 1CYU, 1CZ4_A, 1D1D_A, 1D1H_A, 1D6G_A,
1D7Q_A, 1D8B_A, 1D8J_A, 1D8V_A, 1DAQ_A, 1DBD_A,
1DBF_A, 1DCI_A, 1DDF, 1DE1_A, 1DE3_A, 1DEC, 1DEF,
1DFE_A, 1DFS_A, 1DGF_A, 1DGN_A, 1DGQ_A, 1DIP_A,
1DJ0_A, 1DL0_A, 1DL6_A, 1DLX_A, 1DMC, 1DNY_A,
1DP3_A, 1DP7_P, 1DPU_A, 1DQB_A, 1DQC_A, 1DQZ_A,
1DRO, 1DS1_A, 1DS9_A, 1DTV_A, 1DU2_A, 1DU6_A,
1DUJ_A, 1DV0_A, 1DVH, 1DVJ_A, 1DWM_A, 1DX0_A,
1DX7_A, 1DX8_A, 1DXZ_A, 1DZ7_A, 1E01_A, 1E0A_B,
1E0E_A, 1E0H_A, 1E0L_A, 1E0Z_A, 1E17_A, 1E19_A,
1E29_A, 1E2B, 1E3T_A, 1E3Y_A, 1E4U_A, 1E53_A, 1E5G_A,
1E5U_I, 1E68_A, 1E6Q_M, 1E6U_A, 1E7L_A, 1E88_A,
1E8L_A, 1E8R_A, 1ECI_A, 1EDS_A, 1EDV_A, 1EDX_A,
1EF4_A, 1EGX_A, 1EH2, 1EHJ_A, 1EHS, 1EHX_A, 1EIK_A,
1EIT, 1EIW_A, 1EJ5_A, 1EKT_A, 1ELK_A, 1EMW_A,
1ENW_A, 1EO0_A, 1EO1_A, 1EP0_A, 1EQ3_A, 1EQO_A,
1ERC, 1ERD, 1ERX_A, 1ES9_A, 1ESX_A, 1EUW_A, 1EV0_A,
1EWI_A, 1EWS_A, 1EWW_A, 1EXE_A, 1EXG, 1EXK_A,
1EZA, 1EZG_A, 1EZO_A, 1EZT_A, 1F0Z_A, 1F24_A, 1F3C_A,
1F3R_B, 1F41_A, 1F53_A, 1F5Y_A, 1F81_A, 1F8P_A, 1FA3_A,
1FA4_A, 1FAF_A, 1FBR, 1FCT, 1FCY_A, 1FD8_A, 1FDM,
1FGP, 1FHO_A, 1FJ2_A, 1FJE_B, 1FJK_A, 1FJN_A, 1FM0_D,
1FMH_A, 1FO5_A, 1FP0_A, 1FQQ_A, 1FR3_A, 1FRE,
1FSH_A, 1FU9_A, 1FVL, 1FW9_A, 1FWO_A, 1FWP,
1FWQ_A, 1FYB_A, 1FYC, 1FYJ_A, 1FZT_A, 1G1E_B,

1G25_A, 1G26_A, 1G2H_A, 1G3G_A, 1G4F_A, 1G5V_A,
1G61_A, 1G66_A, 1G6E_A, 1G6S_A, 1G7D_A, 1G7E_A,
1G84_A, 1G90_A, 1G9L_A, 1GAB, 1GD0_A, 1GE9_A,
1GGW_A, 1GH9_A, 1GHC, 1GHH_A, 1GIO, 1GNC, 1GP8_A,
1GW3, 1GYF_A, 1H8C_A, 1HA9_A, 1HBW_A, 1HCD,
1HDO_A, 1HEV, 1HHN_A, 1HKS, 1HNR, 1HP8, 1HPW_A,
1HRE, 1HS7_A, 1HSQ, 1HX2_A, 1HYI_A, 1HYK_A,
1HYW_A, 1HZN_A, 1HZY_A, 1I0H_A, 1I1S_A, 1I25_A,
1I27_A, 1I5G_A, 1I5H_W, 1I5J_A, 1I6W_A, 1IBA, 1IBX_B,
1ICA, 1IHV_A, 1IIE_A, 1IJA_A, 1IL6, 1IMT, 1INZ_A, 1IOJ,
1IRF, 1IRL, 1IRP, 1IRS_A, 1ISU_A, 1ITF, 1IXH, 1JBA_A,
1JHB, 1JLI, 1JOY_A, 1JUN_A, 1JWE_A, 1KDX_A, 1KHM_A,
1KJS, 1KLA_A, 1KOE, 1KRS, 1KSR, 1LEA, 1LRE, 1LXL,
1LYP, 1MFN, 1MGS_A, 1MKC_A, 1MKN_A, 1MLA,
1MNT_A, 1MRO_B, 1MRO_C, 1MUN, 1MUT, 1MYF, 1NCS,
1NCT, 1NEQ, 1NGL_A, 1NGR, 1NKL, 1NLS, 1NOE, 1NS1_A,
1NTC_A, 1OAA, 1OLG_A, 1OM2_A, 1PA2_A, 1PAA, 1PCE,
1PCN, 1PCP, 1PEH, 1PFL, 1PFS_A, 1PIH, 1PIR, 1PLS, 1PMC,
1PMS, 1PNB_A, 1PNB_B, 1PNJ, 1PON_B, 1POU, 1PRR, 1PSM,
1QA5_A, 1QCE_A, 1QCK_A, 1QDP, 1QFD_A, 1QFQ_B,
1QFR_A, 1QFT_A, 1QGP_A, 1QH4_A, 1QHK_A, 1QJO_A,
1QK6_A, 1QK7_A, 1QK9_A, 1QKF_A, 1QKL_A, 1QKS_A,
1QL0_A, 1QLO_A, 1QM9_A, 1QN0_A, 1QND_A, 1QNR_A,
1QOP_B, 1QP6_A, 1QQF_A, 1QQI_A, 1QQV_A, 1QRJ_B,
1QRY_A, 1QSV_A, 1QTN_A, 1QTN_B, 1QTO_A, 1QTS_A,
1QTT_A, 1QTW_A, 1QU5_A, 1QU6_A, 1QYP, 1R2A_A,
1RAX_A, 1RCH, 1RCS_A, 1RES, 1RGE_A, 1RIE, 1RIP, 1ROT,
1RPR_A, 1RRB, 1RXR, 1SAP, 1SCY, 1SGG, 1SHC_A, 1SRO,
1SSN, 1SUH, 1SVF_A, 1SVF_B, 1SVQ, 1SWU_A, 1TBA_A,
1TBA_B, 1TBD, 1TBN, 1TFB, 1THF_D, 1TLE, 1TNS, 1TOF,
1TPM, 1TRL_A, 1TSG, 1U2F_A, 1UMS_A, 1URK, 1UTR_A,
1UWO_A, 1UXC, 1VGH, 1VPU, 1VRE_A, 1WDB, 1WFB_A,
1WHI, 1XBL, 1XNA_A, 1XNB, 1XPA, 1YGE, 1YUA, 1YUB,
1YUI_A, 1ZTA, 1ZTO, 2A3D_A, 2ALC_A, 2BID_A, 2CTC,
2END, 2EZH, 2EZK, 2EZM, 2FMR, 2GAT_A, 2GCC, 2GVA_A,
2HGF, 2HIR, 2HMX, 2IF1, 2IFE_A, 2IFO, 2JHB_A, 2LFB,
2LIS_A, 2MRB, 2NCM, 2NLR_A, 2OLB_A, 2ORC, 2PCF_B,
2PRF, 2PTH, 2PTL, 2REL, 2SOB, 2TMP, 2TPS_A, 2U2F_A,
2VIK, 3CHB_D, 3CRD, 3LRI_A, 3MEF_A, 3MSP_A, 3PHY,
3RPB_A, 3SIL, 3VUB, 3ZNF, 4EUG_A, 4ULL, 5GCN_A,
7A3H_A.
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