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ABSTRACT Implicit solvation models provide,
for many applications, a reasonably accurate and
computationally effective way to describe the elec-
trostatics of aqueous solvation. Here, a popular
analytical Generalized Born (GB) solvation model is
modified to improve its accuracy in calculating the
solvent polarization part of free energy changes in
large-scale conformational transitions, such as pro-
tein folding. In contrast to an earlier GB model
(implemented in the AMBER-6 program), the im-
proved version does not overstabilize the native
structures relative to the finite-difference Poisson–
Boltzmann continuum treatment. In addition to
improving the energy balance between folded and
unfolded conformers, the algorithm (available in
the AMBER-7 and NAB molecular modeling pack-
ages) is shown to perform well in more than 50 ns of
native-state molecular dynamics (MD) simulations
of thioredoxin, protein-A, and ubiquitin, as well as
in a simulation of Barnase/Barstar complex forma-
tion. For thioredoxin, various combinations of input
parameters have been explored, such as the underly-
ing gas-phase force fields and the atomic radii. The
best performance is achieved with a previously
proposed modification to the torsional potential in
the Amber ff99 force field, which yields stable native
trajectories for all of the tested proteins, with back-
bone root-mean-square deviations from the native
structures being �1.5 Å after 6 ns of simulation time.
The structure of Barnase/Barstar complex is regen-
erated, starting from an unbound state, to within 1.9
Å relative to the crystal structure of the complex.
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INTRODUCTION

An accurate description of the aqueous environment is
essential for realistic biomolecular simulations, but may
become very expensive computationally. For example, an
adequate representation of the solvation of a medium-size
protein typically requires thousands of discrete water
molecules to be placed around it. Alternatively, one can
use an electrostatic model, which replaces discrete water
molecules by an infinite continuum medium with the
dielectric properties of water. Although this model repre-

sents an approximation at a fundamental level, it has in
many cases been successful in calculating various macro-
molecular properties.1–7 The continuum models have sev-
eral advantages over the explicit water representation,
especially in molecular dynamics (MD) simulations:

1. The computational cost associated with the use of these
models in simulations is generally considerably smaller
than the cost of representing water explicitly.

2. The models describe an instantaneous solvent dielectric
response, which eliminates the need for the lengthy
equilibration of water that is typically necessary in
explicit water simulations.

3. Due to the absence of viscosity associated with the
explicit water environment, the molecule can more
quickly explore the available conformational space.

4. The continuum model corresponds to solvation in an
infinite volume of solvent, thereby avoiding possible
artifacts of the replica interactions that occur in the
periodic systems typically used for explicit water calcu-
lations.

5. Since solvent degrees of freedom are taken into account
implicitly, estimating energies of solvated structures is
much more straightforward than with explicit water
models.

The total (free) energy of a solvated molecule can be
written as Etot � Evac � �Gsolv, where Evac represents the
molecule’s energy in vacuum (gas-phase), and �Gsolv is the
free energy of transferring the molecule from vacuum into
solvent (i.e., solvation free energy). In what follows, we
assume that Evac is represented by a classical potential
function that breaks the interaction down into various
physical components, such as bond and angle stretching,
torsional twist, and Van der Waals (VDW) and Coulomb
interactions between its atoms.8 To estimate the total
solvation free energy of a molecule, �Gsolv, one typically
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assumes that it can be decomposed into the “electrostatic”
and “nonelectrostatic” parts:

�Gsolv � �Gel � �Gsurf, (1)

where �Gsurf is the free energy of solvating a molecule
from which all charges have been removed (i.e., partial
charges of every atom are set to zero), and �Gel is the free
energy of first removing all charges in the vacuum, and
then adding them back in the presence of the solvent
environment. The above decomposition is the basis of the
widely used PB/SA scheme.9 In this approach, �Gel is
computed by numerical Poisson–Boltzmann (PB) method-
ology, and �Gsurf is taken to be proportional to the total
solvent-accessible surface area (SA) of the molecule, with a
proportionality constant derived from experimental solva-
tion energies of small nonpolar molecules. In this work, we
follow the same approach to compute �Gsurf and concen-
trate on developing an algorithm for obtaining a reason-
able, computationally efficient estimates of �Gel, to be
used in MD simulations.

The analytic Generalized Born (GB) approximation is a
way to calculate the electrostatic part of the solvation free
energy, �Gel. The methodology has become popular,1,10–17

especially in MD applications,18–23 due to its relative
simplicity and computational efficiency, compared to the
more standard numerical solution of the PB equation.
Within our GB model, we represent each atom in a
molecule as a sphere of radius �i with a charge qi at its
center; the interior of the atom is assumed to be filled
uniformly with material of dielectric constant 1. The
molecule is surrounded by a solvent of a high dielectric
value �w (80 for water at 300 K). The GB model approxi-
mates �Gel by an analytical formula,10,24

�Gel � �GGB � �
1
2 �

ij

qiqj

f GB	rij, Ri, Rj

�1 �

e��fij
GB

�w
�, (2)

where rij is the distance between atoms i and j, the Ri are
the so-called effective Born radii of atoms i and j, and fGB is
a certain smooth function of its arguments. A common
choice10 of f GB is

f GB � �rij
2 � RiRjexp	�rij

2 /4RiRj

1/2, (3)

although other other expressions have been tried.13,25 The
effective Born radius of an atom reflects the degree of its
burial inside the molecule: For an isolated ion Ri is equal to
its VDW radius �i, while for a deeply buried one Ri � �i.
The effective radii depend on the molecule’s conformation,
and have to be recomputed every time the conformation
changes: The procedure is described in detail below. Fi-
nally, the electrostatic screening effects of (monova-
lent) salt are incorporated24 into formula Eq. (2) via the
Debye–Huckel screening parameter �[Å�1] � 0.316�[salt]
[mol/L].

This article has the following structure: We begin by
discussing the main problems with some previous versions
of the GB approximation, and outline the improvement
strategy. Next, we introduce the modifications that are the
core of the new model and describe approaches to testing

its performance. We test the model against the PB treat-
ment on a variety of structures, and then evaluate its
performance in native-state MD simulations of a number
of proteins, as well in a simulation of Barnase/Barstar
complex formation from an unbound state. Various under-
lying gas-phase force fields from the AMBER package are
explored, with one version in particular giving consistently
good results.

IMPROVING THE GENERALIZED BORN
APPROXIMATION

The GB approximation was originally10 developed and
optimized for small molecules, where it performed quite
well.10,13,24,26,27 However, its performance on larger mol-
ecules has generally not been as good, with the trend being
more pronounced for molecules having large interior re-
gions.24,26 Since the GB model shares the same underlying
physical approximation—continuum electrostatics—with
the PB approach, it is natural, in optimizing the GB
performance, to use the PB model as a reference. Agree-
ment with PB calculations is not the only criterion of
optimal GB performance; other tests include comparisons
to explicit solvent simulations results, and to experiment.
In particular, if the GB approach is to be used in MD
simulations, we require that analytical expressions used
to compute the effective Born radii that enter Eq. (2) be
simple enough, and the resulting electrostatic energy
component �Gel be “well-behaved,” so as not to cause any
instabilities in numerical integration of Newton’s equa-
tions of motion. Since the continuum model is by itself an
approximation, extreme efforts to achieve a perfect agree-
ment between the GB and PB theories, especially at the
expense of computational efficiency, may not pay off.
Ultimately, one should seek best agreement with experi-
ment, and as an intermediate goal, make sure that the
model yields MD trajectories of protein native states that
stay close to the corresponding X-ray or NMR structures.
In light of these considerations, we have balanced our
efforts equally between improving the agreement between
the GB and PB approaches on a variety of test systems and
satisfying the other criteria mentioned above.

A New Model for Effective Born Radii

In our previous work,25 we demonstrated that a very
good agreement between the GB and PB models can be
achieved if the effective Born radii match those computed
exactly using the PB approach—these are the so-called
“perfect” radii. We therefore concentrate first on improving
the way the radii are computed within the analytic GB
approximation,15,16 which typically involves at least two
levels of approximation. First, it is assumed that the
energy density of the electrostatic field of the molecule in
solvent can be approximated as the energy density of a
Coulomb field; that is, the contribution of the reaction field
is neglected. Second, approximations are introduced for
the integration of this energy density over the molecular
region, typically in order to obtain an expression involving
only a sum over atom pairs.27,28 The result is summarized
as
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Ri
�1 � �̃i

�1 � I, (4)

where

I �
1

4� �
VDW

�	�r�� � �̃i

1
r4 d3r�. (5)

In a popular GB model,27 which we refer to as GBHCT

(Hawkins, Cramer, Truhlar), the three-dimensional (3D)
integral in the above equation is performed over the VDW
spheres of solute atoms outside of the atom i whose
effective radius is being calculated (the step-function �
ensures that the volume of atom i itself is excluded from
the integration). This implies a definition of the solute
volume in terms of a set of spheres, rather than the
complex molecular surface29 commonly used in the PB
calculations. This allows one to obtain a relatively simple
analytical form for Ri. A closed-form analytical expression
for two overlapping spheres, from which I can be derived in
the pairwise approximation, is given in Hawkins et al.27

and Schaefer and Froemmel.28 It was also shown10 that
using slightly reduced values of �̃i � �i � 0.09 Å instead of
�i in Eqs. (4) and (5) gives, for small molecules, a better
agreement with the corresponding PB calculations based
on �i.

For macromolecules, the approach based on Eqs. (4) and
(5) tends to underestimate the effective radii for buried
atoms,16 arguably because the standard integration proce-
dure in Eq. (4) treats the small vacuum-filled crevices
between the VDW spheres of protein atoms as being filled
with water, even for structures with a large interior.25

This error is expected to be greatest for deeply buried
atoms characterized by large effective radii, while for the
surface atoms, it is largely canceled by the opposing error
arising from the Coulomb approximation, which
tends11,15,28 to overestimate Ri. Since the GBHCT model
was parameterized and shown13,27 to perform very well on
small molecules with few buried atoms (small effective
radii), we focus on improving the procedure to calculate
the effective radii for buried atoms in larger compounds,
while preserving the good performance of GBHCT for small
Ri’s. In particular, we retain the use of �̃i � �i � 0.09 Å
instead of �i.

In our previous work,16 we introduced a simple correc-
tion factor into Eq. (4) that increased the effective radii Ri

of buried atoms and brought the GB model in closer
agreement with the PB in calculating pKa values of protein
side-chains, which was the primary goal of that study. This
simple correction did not, however, perform as well in MD
simulations, where it led to numerical instabilities. The
main difficulty was that small changes in conformation
could sometimes lead to large alterations of effective radii,
requiring very careful MD simulations with extremely
short timesteps. The problem also exists, but is less
pronounced, with the GBHCT model, where the Ri’s were
routinely underestimated, and as a consequence, were less
sensitive to structural variations. Furthermore, the one-
parameter correction we16 introduced was not optimal in
keeping the GBHCT model’s established performance on

small molecules. Here, we propose to rescale the Ri [Eq.
(4)], with the rescaling parameters being proportional to
the degree of the atom’s burial, as quantified by the value
of I in Eq. (5). The latter is large for the deeply buried
atoms and small for exposed ones. Consequently, we seek a
well-behaved rescaling function, such that Ri � (�̃i

�1 � I)�1

for small I, and Ri � (�̃i
�1 � I)�1 when I becomes large. We

also want to have a “smooth” upper bound on Ri versus I to
ensure numerical stability (see below). While there is
certainly more than one way to ratify these constraints, we
have chosen the following simple, infinitely differentiable
rescaling function to to replace the original expression for
the effective radii [Eq. (4)]:

Ri
�1 � �̃i

�1 � �i
�1tanh	�� � ��2 � ��3
, (6)

where � � I�̃i, and � �, � are treated as adjustable
dimensionless parameters to be optimized. In this article,
we consider two sets of {�, �, �} that are optimal according
to criteria described further in the text:

GBOBCI : � � 0.8, � � 0, � � 2.91 (7)

GBOBCII : � � 1.0, � � 0.8, � � 4.85 (8)

We call this model—based on Eq. (6)—GBOBC (Onufriev,
Bashford, Case). Compared to GBHCT, which is based upon
the original expression in Eq. (4), the use of Eq. (6) results
in a considerable increase of the effective radii for � � 0.3,
but has little effect in the region of small � � 0.2, where
GBHCT already works well. This point is illustrated in the
�i � 1.7 Å case in Figure 1, which compares Eq. (6) to Eq.
(4). Figure 1 also illustrates the source of sensitivity of
large effective radii to subtle conformational changes in
the GBHCT model based on Eq. (4): For � approaching

Fig. 1. Graphical representation of different mathematical expres-
sions used to compute effective radius from the scaled volume integral �.
The broken lines correspond to Eq. (6) with parameters from Eq. (7)
(dashed lines) and Eq. (8) (dotted lines) used, respectively, by GBOBC (I)
and (II) models. Original formula [Eq. (4)] used to compute effective radii
in GBHCT model is shown as a solid line. All curves correspond to �i � 1.7
Å (carbon atom).
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�0.6 (i.e., for I3 �̃i
�1), the formula diverges and can even

change sign, which was observed in some large proteins.30

Although the latter is a consequence of the approximations
used to evaluate �, and could not happen if the integral in
Eq. (5) were computed exactly, the sensitivity of Ri to
conformational changes would still remain, since Eq. (4)
does diverge for I3 �̃i

�1. The use of the hyperbolic tangent
as a capping function in Eq. (6) limits the variation of the
Ri and prevents occasional numerical instability in the MD
integrator, which otherwise may result from large values
of �Ri/�rj. Since �tanh(y)� � 1, the upper limit of an Ri

computed from Eq. (6) is (�̃i
�1 � �i

�1)�1, which is about 30 Å
for a carbon atom (� � 1.7 Å), as in Figure 1. In our
experience, perfect effective radii almost never exceed 15 Å
even for the most deeply buried residues of typical pro-
teins.25 The above restriction on the upper values of Ri

should therefore have very little effect on the accuracy of
computed solvation energies, especially since the the con-
tribution to �Gel from deeply buried atoms is small, �1/Ri.

The distribution of effective radii produced by the GBOBC

model (with either set I or II) is considerably closer to the
distribution of the perfect (PB-based) radii than that
produced by GBHCT, as illustrated in Figure 2 (top). In
particular, the systematic underestimation of the effective
radii produced by GBHCT is largely corrected in GBOBC,
especially for Ri’s between 2 and 5 Å [Fig. 2 (bottom)],
although the model is still not an exact match of PB.

In many applications of the GB approximation, such as
the computation of forces in MD simulations, the absolute
value of �Gel of a molecule is not so important as its
conformational dependence. Compared to PB calculations,
the GB model was known16 to reproduce variations in �Gel

associated with small conformational changes quite well,
but the deviation became significant when large changes
were involved, such as in protein folding.25 To address this
issue in optimizing parameters {�, �, �} of GBOBC, we use
snapshots from MD simulations that describe global confor-
mational changes, such as the complete unfolding of a
protein. The fit to the PB model has been performed on an
MD trajectory that describes acid-unfolding of apo-
myoglobin, and includes both native and completely un-
folded states at 300 K.31 The latter has twice the size of the
native state and about 20% residual helical structure, in
agreement with the experiment.32 At this point, we seek
best agreement between the GB and PB models in comput-
ing the change in �Gel in going from the native (N) to
unfolded (U) ensembles of structures (see Table I).

The transferability of the optimized parameter sets I
and II is verified using the unfolding trajectory of pro-
tein-A at neutral pH. Note a good agreement with the PB
and GBOBC for very different charge states: the apo-
myoglobin at low pH bears a total charge of �36, while the
charge of protein-A is �3 at neutral conditions.

In contrast to these results, the GBHCT model based on
Eq. (5) shows a considerable energetic bias toward the
native structures. This bias reflects the underestimation of
effective radii for buried atoms resulting in too negative
solvation energies of protein compact states, and is elimi-

nated almost completely by the GBOBC model, as shown in
Table I.

By construction, the GBOBC model is intended to correct
the deficiencies of the GBHCT on compounds with pro-
nounced interior regions, while preserving its performance
on extended structures with little or no interior. To further
test the model along these lines, we compare the perfor-
mances of the GBHCT and GBOBC models as a function of a
protein’s degree of compactness, using structures of pro-
tein L obtained in an MD simulation, from the native to
completely unfolded state at 450 K.17 As Figure 3 shows,
for this protein, the overall effect of the rescaling proce-
dure introduced in the GBOBC model is to largely reduce
the undue bias toward folded structures exhibited by
GBHCT. The improvement appears to be distributed fairly
uniformly across the range of protein compaction.

The importance of conformational averaging in compar-
ing �Gel between different theoretical models is empha-
sized by the thin dotted line in Figure 3, which is the
difference between �Gel calculated by the PB model based
on a coarse, 1 Å, and a finer, 0.25 Å, grid spacing: The

Fig. 2. Top: Distribution of effective radii in thioredoxin computed with
the PB (solid line), GBHCT (dashed line), and GBOBC (I) (dotted line)
models. Bottom: Effective radii in thioredoxin computed for each atom,
with GBHCT (black squares) and GBOBC (red circles) models versus those
calculated by the PB. An exact match between GB and PB models is
indicated by the diagonal line.
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variation of �Gel from snapshot to snapshot can be as high
as 20 kcal/mol, but no systematic bias is present.

Macromolecular complex formation is another area
where large conformational changes are expected, and the
GBOBC model may be advantageous, at least in providing a
reasonable approximation to the PB. As a recent study33

suggests, the GBOBC model shows considerable improve-
ment (compared to the GBHCT) in estimating the electro-
static component of free energies of unbound proteins Ras
and Raf, and their complex, relative to the PB treatment.

Finally, we note that for molecules with little interior
region, �Gel calculated by the GBOBC model are not
expected to differ much from those computed by the
original GBHCT model, which should give a reasonable
estimate in this case. For example, when applied to an
ensemble of 120 structures representing30 various confor-

mational states of the small, rather loosely packed protein
villin head-piece, the GBOBC shows only marginal improve-
ment over GBHCT (Fig. 4). Specifically, �Gel computed by
GBOBC differs from that computed by PB (0.5 Å grid) by
5.41 kcal/mol [root-mean-square deviation (RMSD)],
whereas for GBHCT, this number is 7.16 kcal/mol. These
numbers represent, respectively, 0.8% and 1.1% of the
average electrostatic solvation energy of the protein (�Gel �
�653 kcal/mol), and are similar30 to those computed by the
new GB(MV) model17 implemented in CHARMM. We feel
that a word of caution would be appropriate at this point:
The quality of an approximation should be judged in the
context of the particular application of the method and
characteristic energy scales involved. While a 1% or smaller
error in the total solvation energy relative to a standard
(PB in our case) may be negligible in many cases, that

TABLE I. The Change in the Electrostatic Part of Solvation Free Energy, �Gel(N) � �Gel(U)
[kcal/mol], of Apo-Myoglobin and Protein-A in Going from the Unfolded (U) to the Native

(N) States Calculated with PB and GB Models Based on the Bondi Radii Set

Electrostatic model

PB (1 Å) PB (0.5 Å) GBOBC set I GBOBC set II GBHCT

(Apo)myoglobin, pH � 2 �2082.0 �2088.8 �2089.9 �2093.8 �2161.1
Protein-A, pH � 7 �143.9 �143.0 �145.1 �142.9 �131.1

Since a perfect GB model would correspond to zero grid-size PB, and since we observe a decrease in �Gel(N) �
�Gel(U) upon reducing the grid size from 1 Å to 0.5 Å, we adjust the parameters of GBOBC to produce values of
�Gel(N) � �Gel(U) slightly below the PB predictions based on 0.5 Å grid spacing.

Fig. 3. Performance of the GBHCT (solid line) and GBOBC (dashed line) models relative to PB model as a
function of a protein’s degree of compactness represented by the number of residue–residue tertiary contacts
in the protein. We use structures of protein L, obtained in an MD simulation,17 from the native to completely
unolded at 450 K. �Gel (GB) is calculated, within the GB model, for each of the 215 snapshots, and compared
to the corresponding �Gel(PB) estimated using the PB model with grid spacing of 0.25 Å, � � �Gel(GB) �
�Gel(PB). The dependence of �Gel(PB) on the grid spacing is illustrated by the thin dotted line, representing the
difference between �Gel computed using coarse (1 Å) and fine (0.25 Å) grid PB models, � � �Gel(PB, 1 Å) �
�Gel(PB, 0.25 Å). Thick black dots correspond to the native structure.
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same error may become appreciable in others. For ex-
ample, the 2–5 kcal/mol difference between GB and PB
results in Table I translates into 20–50% of the protein’s
experimental folding free energy of about 10 kcal/mol—
clearly a non-negligible error if one is considering theoreti-
cal estimates of the folding free energy.

MD SIMULATIONS WITH THE IMPROVED GB
MODEL

Thioredoxin

One of the most attractive features of a GB model is the
possibility to use it in MD simulations where it can
effectively mimic solvation effects and therefore eliminate
the need for a more costly explicit water representation.
The GBOBC model is particularly attractive in this respect
due to its algorithmic simplicity and reasonably good
performance relative to PB treatments. The latter cannot,
however, serve as a sole measure of the quality of a GB
model, so as the next step we test it directly in MD
simulations.

We begin by performing 6 MD simulations, �7-ns each,
of thioredoxin, a 108-residue protein that had been used
previously to test GB models.25,34 The simulations, summa-
rized in Table II, use the GBOBC model based on either of
the parameter sets [Eqs. (7) and (8)], with either the Bondi
or a modified Bondi radii set. We have also explored three
different underlying gas-phase force fields from AMBER.

While both of the GBOBC parameterizations show simi-
lar performance with respect to deviations from the crystal
structure, the parm99 force field performed appreciably
better than parm94 at the 6-ns timescale (Table II). In the
parm94 case, a large and abrupt jump in RMSD from �1.7

to �2.7 Å was observed, with the maximum RMSD reach-
ing 3.5 Å over the course of the simulation. (Trajectories I
and II were generated using the same MD protocol but a
different random number generator seed to prepare distri-
bution of initial velocities; the rapid increase in the RMSD
occurred at t � 2 ns in trajectory I and at t � 3.6 ns in
trajectory II.) The structural changes responsible for this
jump are localized in residues 82–92. These residues were
initially in a � strand conformation but underwent a fast
transition into a helix. Removing residues 82–92 from the
calculation of the RMSD removes the corresponding
“jumps” and lowers the final RMSD for both trajectories by
about 1 Å. This kind of behavior does not appear to be
specific to the GB model we use—similar observations
were made in earlier MD simulations of thioredoxin using

TABLE II. Summary of the Six MD Trajectories of
Thioredoxin

MD trajectory I II III IV V VI

Final RMSD (Å) 3.00 2.94 2.14 2.16 2.02 1.48

The simulation protocol is the same in each case (see Methods), except
for three parameters that define the potential function: gas-phase
force field, GB model (I or II), and radii set used to estimate the
solvation energy (which includes both the electrostatic and the surface
energy parts). These parameters listed in the above order for each
trajectory are: I, parm94, GBOBC (I), Bondi; II, same as I, but different
random seed; III, parm99, GBOBC (I), Bondi; IV, parm99, GBOBC (II),
Bondi; V, parm99, GBOBC (I), mBondi2; VI, parm99MOD2, GBOBC (I),
mBondi2. The mBondi2 set is prepared from the Bondi set by
increasing radius of every hydrogen atom bound to a nitrogen from 1.2
to 1.3 Å. The final RMSD is reported as an average over 1-ns time
interval between t � 5 and 6 ns.

Fig. 4. Performance of the GBHCT (solid squares) and GBOBC (II) (open circles) models relative to the PB
model in calculating the electrostatuc part of solvation free energy for 120 conformers of villin head-piece. An
exact match between the GB and PB models is given by the diagonal line. Both GB models approximate the PB
results quite well for this small protein lacking significant interior region.
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parm94 and the GBHCT model.22 Poor performance of
parm94 on structures containing �-strands was reported
before.35,36 The use of parm99 with either of the GBOBC

parameterizations considered here yields smaller struc-
tural deviations, backbone RMSD being less then 2.2 Å by
the end of the simulation, with no abrupt changes, and
never exceeding 2.5 Å (Fig. 5). In earlier simulations34 of
thioredoxin using the GBHCT model, the RMSD was also
about 2.4 Å after 5 ns. Note that the GBOBC model appears
to have much less energetic bias toward the compact
(native) states, at least as judged from its comparison with
the PB treatment discussed above.

On the other hand, an earlier explicit water simulation
of thioredoxin based on parm94 resulted34 in RMSD from
X-ray of only about 1.1 Å on a 6-ns timescale. This may
indicate problems with the GB model. Or it may be that
the structural changes seen in the GB-based MD simula-
tions may not have occurred in the corresponding explicit
water simulation on the same timescale of a few nanosec-
onds—that much longer simulation times are required in
explicit water simulations than in GB-based ones to ob-
serve similar change. Indeed, conformational transitions
in explicit water are expected to happen considerably
slower than if the essentially zero viscosity GB model is
used. For example, it was shown earlier22 that the A3 B
conformational transition in DNA happens about 20 times
faster in MD based on GB compared to an equivalent
explicit water simulation. These observations suggest that
one can use a reasonable GB model, even with imperfec-
tions, in testing of underlying molecular mechanics force

fields: For example, here we have been able to identify a
possible problem with parm94 parameterization of �-struc-
tures in proteins; the use of parm99 instead apparently
has partially alleviated the problem.

Although the use of a newer gas-phase force field
(parm99) did result in a more stable MD trajectory of
thioredoxin, the structural drift is still not negligible, with
C� RMSD reaching 2.2 Å in 6.5 ns (Fig. 5, green trace).
There are at least two distinct levels at which one may
seek further improvements to the GB model’s performance
in MD simulations: at the level of the underlying electro-
static model and/or at the level of the gas-phase force field.
In GBHCT-based MD simulations of nucleic acids, it was
shown34 that using a larger value for the hydrogen radius
improves the model’s performance, and here we explore a
possibility along those lines. Namely, we have performed
an MD simulation based on a slightly modified radii set
used to calculate the solvation energy: it is prepared from
the Bondi set by increasing radius of every hydrogen atom
bound to a nitrogen, H(N), from 1.2 Å to 1.3 Å. This
modification is intended to strengthen hydrogen-bonded
interactions, which may be underestimated in the mean-
field continuum models relative to explicit solvent. The
result for thioredoxin is shown in Figure 5 (red trace).
Compared to an equivalent simulation based on the origi-
nal Bondi radii (green trace), the use of the modified radii
set yields only a slightly more stable trajectory: C� RMSD
averaged over the entire trajectory has shown only a
marginal decrease from 1.7 Å to 1.6 Å. Longer simulations
are required to make a decisive choice in favor of one or the

Fig. 5. Backbone RMSD (residues 4–107) from X-ray structure during a MD simulation of thioredoxin using
GBOBC (I) model based on different radii sets and underlying force fields. Green trace: the original Bondi set
and AMBER parm99. Red trace: a modified Bondi radii set (radius of hydrogens bound to a nigrogen is
increased to 1.3 Å versus 1.2 Å in the original Bondi set) and AMBER parm99. Black trace: modified Bondi set
and parm99MOD2 underlying force field.
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other radii set for thioredoxin. However, it is important to
stress that no undue bias toward the folded form is
introduced by the radii adjustment (Table III), and since it
was shown before to improve GB’s performance on nucleic
acids, here we continue to explore the modified set on other
systems.

Note that from a general standpoint, the task of balanc-
ing the intramolecular H-bonds versus H-bonds to implicit
solvent is nontrivial. While in explicit solvent models their
relative strength can be estimated from quantum mechani-
cal calculations on small water/solute clusters, the strat-
egy would not be directly applicable to the continuum
solvent case.

The performance of the GBOBC model in MD simulations
can be significantly improved by modifications to the �/�
torsional potentials of the underlying parm99 gas-phase
force field, according to a proposal37 aimed at a better
energetic balance between �-helical and �-sheet regions of
the Ramachandran plot. This force field, parm99MOD2, is
described in the Methods section. Its use with the GBOBC

model results in additional stabilization of thioredoxin
trajectory, C� RMSD is 1.5 Å at 6 ns (Fig. 5, black trace),
with the trajectory averaged value of 1.3 Å. Overall, for
thioredoxin, we find the last combination (i.e., modified
Bondi set and parm99MOD2) to perform best in MD
simulation based on the GBOBC model.

Ubiquitin and Protein-A

To test the performance of the GBOBC model further, MD
simulations on the native states of ubiquitin and protein-A
have been carried out, using the same protocol as for
thioredoxin. In both simulations, we use parm99MOD2
force field and the modified Bondi radii set. Results are
presented in Figure 6. In both cases, backbone C� RMSDs
from corresponding X-ray structures are stable over the
last 7 ns of the trajectory, being around 1.4 Å for ubiquitin
and 1.7 Å for protein-A. A short “spike” in the protein-A
RMSD observed in the very beginning of the trajectory
quickly disappears. Protein-A, being the smallest (46
residues) of the proteins we have used, is likely to be
sensitive to residual strain left in the structure after
equilibration; the effect is more pronounced in the implicit
water environment, where there is nothing to “hold” the
proteins during the first steps of unconstrained dynamics.

Barnase/Barstar Complex Formation

So far, we have been testing the modified GB model in
MD simulations of native proteins. The usefulness of the
GBOBC model in simulating large conformational changes

and protein–protein interactions can be explored by simu-
lating the formation of Barnase/Barstar complex from the
unbound state. Unlike native-state simulations, consider-
able change in the amount of buried surface is expected
upon docking, providing a good test for the model.

The results of this kind of simulation based on the
GBOBC model are presented in Figure 7. Initially, the two
proteins are separated by 4.5 Å relative to their position in
the X-ray structure of the complex (see Methods section).
During the next 0.2 ns of the simulation, Barstar docks
back into Barnase, and stays docked over the rest of the
simulation. The decrease in the potential energy correlates
well with the formation of the complex (Fig. 7). The
structure corresponding to the lowest potential energy at
t � 0.409 ps has a C� RMSD from the X-ray (complex) of
1.88 Å. This observation suggests that one can further
explore the possibility to use the AMBER-7 molecular
mechanics potential energy, which, in the case of an
implicit solvation model, includes solvation free energy as
a reasonable scoring function in predicting the correct
conformation of the complex. One test along these lines
that we have carried out is as follows: We have performed
22 different MD simulations in which barnase and barstar
are initially separated by 7 Å relative to their position in
the X-ray structure of the complex (see Methods section).

Fig. 6. Backbone RMSD from X-ray structure during the MD simula-
tion of ubiquitin (solid line) and protein-A (dashed line) using GBOBC (I)
model based on the modified Bondi radii set and AMBER parm99MOD2
force field.

TABLE III. Effect of Radius Set Modification on �Gel(N) � �Gel(U) [kcal/mol]

Electrostatic model

PB (1 Å) PB (0.5 Å) GBOBC set I GBOBC set II GBHCT

(Apo)myoglobin, pH � 2 �2090.4 �2094.6 �2095.2 �2093.4 �2149.8
Protein-A, pH � 7 �142.3 �141.9 �142.8 �141.2 �127.9

Radii of all hydrogens bound to a nitrogen are increased to 1.3 Å from 1.2 Å in the Bondi set. All other radii
are Bondi.

390 A. ONUFRIEV ET AL.



Results are presented in Figure 8, where the deviation
(RMSD from the X-ray) from the correct structure is
plotted as a function of the average energy of the 10 lowest
energy snapshots for each trajectory. Clearly, there is a
correlation between the two quantities: Structures with
the lower energy tend to deviate less from the experimen-
tally determined conformation of the complex.

Recently, Wang and Wade23 reported a “run away”
problem in GB-based simulations of barnase/barstar dock-
ing: After formation of a few intermolecular contacts, the
molecules quickly moved away from each other. While a
number of factors may account for the observed differences
between the simulations based on GB and other models
used in that study, as well as our own results presented
above, we would like to point out that the effects of the
initial conditions and the equilibration protocol may be
more pronounced in the implicit solvent simulations rela-
tive to what is expected from one’s experience with explicit
solvent; we have already seen a possible manifestation of
these effects in the previous section (protein-A). In the case
of Barnase/Barstar docking, the bound conformation corre-
sponding to the lowest potential (Fig. 7) may not be
reached if the relative kinetic energy of the unbound
components is large enough. In fact, we observed this
behavior with a protocol (different from what we have used
in the present work) in which ballistic motion of the parts
was not explicitly removed.

METHODS
Structures

The set of apo-myoglobin structures used in optimiza-
tion of the GB model parameters was prepared from the
holo-Mb coordinate set [Protein Data Bank (PDB) ID:
2Mb5] by heme removal and simulated acid unfolding in
explicit solvent, as described elsewhere.31 The native state
is represented by 50 consecutive snapshots (2 ps apart
from each other) with near-native radius of gyration, � 16
Å, taken from the beginning of the acid-unfolding simula-
tion. The unfolded state is represented by 50 consecutive
snapshots from the end of that simulation, at which point
the radius of gyration has approached �30 Å—as is
experimentally observed32 in the unfolded state. Protein-A
structures were prepared from the NMR average coordi-
nate set (PDB ID: 1BDD, residues 10–55). This structure
was used as a starting point for all MD simulations
reported here. The native-state ensemble is represented by
50 consecutive snapshots (2 ps apart from each other) from
the implicit solvent simulation protocol described below,
and deviations from the native coordinates are less than 2
Å for C� atoms. The unfolded state was prepared by
heating the protein to 450 K for 1 ns in an implicit solvent
environment (Onufriev, unpublished data) and 50 consecu-
tive snapshots with average RMSD from the native struc-
ture of no less than 15 Å were chosen to represent this
state. Protein L (PDB ID: 1PTL) is represented by 215
snapshots from an explicit solvent high-temperature un-
folding simulation,17 spanning various degrees of compact-
ness, from close to native to largely unfolded. The villin
head-piece is represented by 120 structures that model
compact near-native, compact misfolded, and extended
conformations, produced30 from the native coordinate set
(PDB ID: 1VII). The ubiquitin native structure is PDB ID:
UBQ, and thioredoxin is PDB ID: 2TRX. Barnase/Barstar
complex is given by X-ray coordinate set PDB ID: 1AY7,
which is also used to prepare the unbound state by
translating Barstar relative to Barnase.

Fig. 7. Separation between Barnase and Barstar, measured as the
distance between their centers of mass (top) and system’s potential
energy (bottom) during the MD simulation of the complex formation.
GBOBC (II) model is based on the original Bondi radii set and AMBER
parm99MOD2 force field is used. Thin dashed lines in the upper panel
indicates the distance between Barnase and Barstar centers of mass in
the X-ray structure of the complex.

Fig. 8. Correlation between the energy of the predicted docked
conformation of the Barnase/Barstar complex (AMBER-7 molecular
mechanics potential energy � solvation free energy) versus the RMSD
from the known X-ray structure of the complex. Each point represents an
average over 10 lowest energy snapshots from the corresponding
simulation. The 22 MD simulations differ by the initial position of Barstar
relative to Barnase. The lowest energy/lowest RMSD point corresponds
to Figure 7. GBOBC (II) model based on the original Bondi radii set and
AMBER parm99MOD2 force field is used.
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MD Simulation Protocols/Force Fields

We used gas-phase potentials Evac (force fields) pro-
vided by the AMBER(7) suite of programs, parm94 and
parm99, as well as a previously proposed modification of
parm99, which we refer to as parm99MOD2 (see below).
The GB/SA methodology is used to represent solvation
effects, with �Gel computed by a user-specified GB
model. In AMBER-7, setting igb � 1 or 2 invokes,
respectively, GBHCT or GBOBC (I) models used in this
study. The GBOBC (II) model also used here is currently
not implemented in AMBER-7 but can be easily accessed
within igb � 2 by changing appropriate values of the
rescaling parameters �, �, � (in mdread.f ) to gbalpha �
1.0, gbbeta � 0.8, gbgamma � 4.85. The nonpolar
contribution is computed via �Gsurf � 0.005[kcal/mol] �

A[Å2], where A is the solvent-accessible surface of the
molecule. The SHAKE method is used to restrain hydro-
gen– heavy atom bond distances. The integration time-
step is 2 fs, with no cutoff for long-range interactions
(with the exception of the Protein-A and the Barnase/
Barstar simulations, in which 20 Å and 24 Å cutoffs,
respectively, are used). The average temperature of the
system is maintained at 300 K by weak coupling (via the
Berendsen algorithm) to a heat bath with a coupling
constant of 2 ps. Each simulation begins with 100 steps
of steepest descent minimization, followed by 20 ps of
equilibration, during which the temperature is gradu-
ally raised to 300 K. The protein atom coordinates
remain fixed by harmonic restraints (force constant 1
kcal/mol�1 Å�2 during minimization and 0.1 kcal/mol�1

Å�2 during equilibration) at their original (crystallo-
graphic) positions. After the equilibration is completed,
the constraints are removed (except in the case of
Barnase/Barstar, see below), and the simulation contin-
ues at 300 K. Overall translational (C.O.M.) and rota-
tional motion is removed every 500 steps. The computa-
tions are performed on 16 CPUs of an R12000 SGI
Origin 2800 machine. For thioredoxin (108 residues), 1
ns of MD simulation takes about 24 h. We find that
computational speed, per CPU, of the GBOBC model for
this protein is only a few percentage points less than
that of the GBHCT model, although the difference may be
platform specific. For protein-A (46 residues), the compu-
tational time is reduced to 8 h per nanosecond. A 0.5-ns
Barnase/Barstar dynamics (185 residues) takes 24 h.
The initial state for the first of the 22 simulations of
Barnase/Barstar complex formation (Fig. 7) is prepared
from the crystallographic coordinates of the complex by
translating Barstar’s coordinates (residues 97–185) by a
vector (0, 3.0, �3.0)[Å], which is roughly perpendicular
to their mutual interface. The other 21 simulations (650
ps each) are prepared by translating Barstar’s coordi-
nates (residues 97–185) by a vector [0, 7.0�2 cos(�),
7.0�2 sin(�)] [Å], � � 120°, 125°…170°. For � � 155°, 7
simulations were performed, with different seeds (AM-
BER default and ig � 1000, 4000, 5000, 6000, 7000,
8000) used to initialize the random distribution of initial
velocities in the production run. For � � 170°, 4
simulations were performed, with different seeds (AM-

BER default and ig � 1000, 2000, 3000). Positions of
Barnase atoms remain fixed by weak harmonic re-
straints (0.01 kcal/mol Å�2), which, in combination with
the removal of the overall C.O.M. translational velocity
of the system, automatically eliminates possible ballis-
tic motion of Barstar. The parm99MOD2 modified force
field is obtained from parm99 by changing 4 torsional
potentials describing �/� dihedral motions. The modi-
fied lines in parm99MOD2.dat file are as follows:

N -CT-C -N 1 0.700 180.000 �1. parm99MOD2
N -CT-C -N 1 1.100 180.000 2. parm99MOD2
C -N -CT-C 1 0.000 180.000 �2. parm99MOD2
C -N -CT-C 1 1.000 0.000 1. parm99MOD2
The above changes were suggested in Simmerling et

al.37 and shown to yield good results for the folding of the
“trp-cage” miniprotein.

Poisson–Boltzmann Calculations

All PB solvation energies were computed using DELPHI-
II2,38 with a cubic box. The grid spacing used in each case
is given in the main text. The dielectric constant for
protein interior is 1, and the ionic strength is zero.

CONCLUSIONS

We have continued to improve the analytical pairwise
GB approximation, with an eye toward using it in MD
simulation of large-scale conformational changes. This has
required a nonuniform rescaling of the effective radii
computed by the original model. The modifications to the
algorithm ensured its numerical stability in MD simula-
tions, without significantly increasing the complexity of
the algorithm. The model has performed quite well in
native-state simulations of various proteins, as well in a
simulation of Barnase/Barstar complex formation from an
unbound state. Its computational efficiency in MD simula-
tions is as good as that of the earlier GB model imple-
mented in AMBER-6, in spite of a minor increase in the
algorithm’s complexity.

The adjustable parameters of the new model have been
optimized to give best agreement with solvation energies
computed via the numerical PB method on an ensemble of
apo-myoglobin structures representing its simulated un-
folding trajectory at low pH, from the native to the
completely unfolded state. The optimized parameters have
been tested on a set of structures representing the native
and unfolded states of protein-A at neutral pH. Despite the
large difference in the overall charge of these systems, the
modified GB model agrees with the PB model to within 2–5
kcal/mol, for both the apo-myoglobin and protein-A, in
computing the changes in electrostatic part of solvation
free energy upon unfolding. Overall, the use of the im-
proved GB model has substantially reduced, at a very
modest computational expense, the bias (relative to PB
model) toward compact structures found in the earlier GB
model. Putting extra effort into improving the match with
the PB may come at a price of increased complexity (and
reduced computational efficiency) of the model. For the
small villin head-piece structures, no appreciable differ-
ence between the new and earlier GB models was ob-
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served, both predicting the values of the electrostatic part
of solvation free energies within 1% of the corresponding
PB values.

We have also explored the performance of the modified
GB model in 8-ns-long MD simulations of three different
proteins. A number of parameter options have been ex-
plored, and we found that a modification of the �/�
torsional parameters in AMBER parm99 force field, aimed
at improving the energetic balance between �-helical and
�-sheet regions, results in smallest deviations (� 1.5 Å
backbone RMSD) from the X-ray structures, approaching
the values expected from explicit water simulations. This
is in contrast to the parm94 force field, which showed
poorer performance on these timescales when used for
structures containing �-strands. These results demon-
strate the usefulness of the modified GB model in fairly
long-scale MD simulations of proteins. Another possible
application of the model is the testing of underlying
gas-phase force fields. There, it provides a relatively
inexpensive way of exploring macromolecular dynamics on
large, effective timescales, which may yet be inaccessible
to explicit solvent simulations. The speed-up here is not
purely computational: The absence of viscosity in implicit
solvation models greatly facilitates conformational transi-
tions compared to MD simulations based upon conven-
tional explicit water models. This is not to say that the
implicit solvent methodology is ready to eliminate the need
for explicit solvent, but that a reasonable implicit solvation
model, such as the proposed modified GB, may help
identify subtle problems with force fields that only reveal
themselves on long timescales that are much harder to
access when using an explicit model.

The usefulness of the improved GB model in MD simula-
tions of large-scale conformational changes is demon-
strated in a simulation of Barnase/Barstar complex forma-
tion. The structure of the Barnase/Barstar complex is
regenerated, starting from an unbound state, to within 1.9
Å relative to the crystal structure of the complex. Signifi-
cantly, the decrease in molecular mechanics potential
energy along the trajectory correlates well with the forma-
tion of the complex.
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