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Enlarged symmetry and coherence in arrays of quantum dots

A. V. Onufriev and J. B. Marston
Department of Physics, Brown University, Providence, Rhode Island 02912-1843

~Received 18 September 1998!

Enlarged symmetry characterized by the group SU~4! can be realized in isolated semiconducting quantum
dots. A Hubbard model then describes a pillar array of coupled dots, and at half-filling the system can be
mapped onto an SU~4! spin chain. The physics of these structures is rich as novel phases are attainable. The
spins spontaneously dimerize, and this state is robust to perturbations that break SU~4! symmetry. We propose
ways to experimentally verify the existence of the dimerized phase.@S0163-1829~99!03419-0#
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I. INTRODUCTION

Quantum dot arrays are a new arena for the study
strongly correlated electrons and the persistence of quan
coherence. Physical properties of a single semiconduc
dot as well as tunneling between dots can be controlled o
a wide range—a luxury not available to us in ordinary co
densed materials. Recent advances in nanofabrication t
niques offer the possibility of constructing artificial stru
tures so small that the electronic level spacing is compar
to the charging energy. As a consequence, these struc
can exhibit enlarged continuous symmetries not norm
found in nature. In this paper we determine conditions un
which a pillar of coupled semiconducting quantum dots
alizes the group SU~4! as a good symmetry and shows th
the SU~4! spins spontaneously dimerize—a phase of ma
that would be difficult to attain with the smaller SU~2! sym-
metry of electrons in generic quantum dots.

Continuous symmetries are ubiquitous in physics. Ro
tional invariance characterized by the group O~3! permits the
classification of atomic orbitals via integer angular mome
tum quantum numbers.1 Spinning particles, such as ele
trons, are described by representations of the group SU~2!.
Approximate SU~3! isospin symmetry of hadrons has its o
gin in the light masses of the up, down, and strange flav
of quarks.2 Unlike the case of electrons for which SU~2!
symmetry is exact, quarks can be described by SU~3! only
approximately since the masses of the quarks are not ex
equal. Nevertheless, the approximate SU~3! symmetry is use-
ful for classifying hadrons. We show how an approxima
SU~4! symmetry can be realized in quantum dot structu
and we exploit its properties to describe novel phases
should emerge in these structures under certain conditio

Consider a potential well withN degenerate eigenstate
Taking electron spin into account there are a total of 23N
degenerate states, and, if all of these states are equivale
a sense made precise below, we can think of them as re
ing the fundamental representation of the SU(2N) group. In
other words, electrons placed in the shell can be consid
as having 2N different, but equivalent, flavors instead of ju
the ordinary two flavors of spin up and spin down. It
important to note that SU(2N) symmetry isnot equivalent,
in general, to the higher-spin representations of the us
SU~2! group familiar from the quantum theory of angul
PRB 590163-1829/99/59~19!/12573~6!/$15.00
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momentum. Rather, forN.1, SU(2N) is a different and
larger symmetry.

Ordinary atomic orbitals might seem like a good can
date but, for real atoms, the enlarged symmetry is bro
down to the usual SU~2! symmetry by electron-electron in
teractions that lift the degeneracy. However, as Stafford
Das Sarma noticed,3 semiconducting quantum dots offer th
possibility of realizing enlarged symmetries. Quantum d
can be thought of as artificial atoms4,5 with tunable param-
eters. To be precise, the electron mass is replaced by
smaller band massme→mb , and the Bohr radiusaB

5\2/(mee
2) is replaced byaB* 5«(me /mb)aB . In GaAs,

mb'0.067me , the dielectric constant«'13, and aB*
'100 Å, which is two orders of magnitude larger than
fundamental value. Electrons in a quantum dot are confi
in a nonsingular potential often described6 as a short square
well in the z direction and a simple parabola in thex-y
plane,V(x,y)5 1

2 mbv0
2(x21y2), though our results do no

depend on the detailed form of the potential as long as it
cylindrical symmetry. For the lowest mode in thez direction,
the resulting harmonic-oscillator eigenenergies areEn,l z
5\v0(2n1u l zu11) wheren and l z are, respectively, the
radial and angular momentum quantum numbers.

II. CONSTRUCTING AND COUPLING SU „2N…

QUANTUM DOTS

We propose a one-dimensional array of rotationally sy
metric III-V semiconducting quantum dots arranged in
pillar7 and show how approximate SU~4! symmetry can be
realized in the structure. Given sufficient control over d
diameters and gate positions and biases,5 the lowests level
(n5 l z50) of each dot can be completely filled~with two
electrons!, and the next higher, fourfold degeneratep level
with n50 and l z561, can be half-filled with two valence
electrons,8 as shown in Fig. 1. Apart from configuratio
splitting ~discussed below!, the twop electrons realize a self
conjugate~particle-hole symmetric! representation of SU~4!.
The dimension of this representation is six, which cor
sponds to the six distinct ways the two electrons can
placed in the four availablep states.9 Once electron tunnel-
ing between the dots is turned on, there are four ene
scales in the problem: the gross level spacingDE5\v0 in
each well, the on-site Coulomb repulsion energyU, which
12 573 ©1999 The American Physical Society
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12 574 PRB 59A. V. ONUFRIEV AND J. B. MARSTON
represents the energy cost to add an additional electron to
dot, the energy splitting between the six differentp-level
configurationsDU, and the tight-binding electron hoppin
amplitude t.0 between states in adjacent wells, see F
1~b!.

The advantage of the proposed pillar array in Fig. 1~a! is
clear: Conservation of the electron’s orbital angular mom
tum around thez axis, a consequence of the cylindrical sym
metry of the confining potential, guarantees that transiti
between different angular momentum states in adjacent d
which would break the flavor symmetry, are forbidden. T
crucial conditions are that the energy gainJ due to electron
exchange between the dots greatly exceedDU, and also that
the four flavors of electrons participate in the exchange on
equal footing. To second order in perturbation theory10 J
54t2/U and thus we require

4t2

U
@DU and U@DU. ~1!

FIG. 1. ~a! Individual quantum dot and proposed pillar array
quantum dots with approximate SU~4! symmetry. By adjusting the
bias, the lowests level in each dot is filled completely and the fir
p level is half-filled with two electrons.~b! Energy diagram of two
adjacent dots from the array.DU is the energy difference betwee
the highest state of total orbital angular momentumuLzu52 ~shown
in the right dot! and the lowest state withLz50 ~depicted in the left
dot!. An electron in ap level can temporarily hop into an empt
level on an adjacent dot and then hop back. This virtual excha
process lowers its energy by the order ofJ54t2/U. If U@DU and
J@DU, all six configurations on each dot participate equally in t
exchange, and the array realizes approximate SU~4! symmetry.
the

.

-

s
ts,

n

Another inequality ensures that only thep electrons play an
active role in the low-energy physics:

DE@t. ~2!

To estimate the size ofDU for thep states in a quantum dot
we first note that spin-orbit coupling is negligible.11 Thus
DU is due almost entirely to the dependence of the electr
electron Coulomb interaction on the shell configuration
described by Hund’s rules,12 which have been shown bot
experimentally8 and theoretically13,14 to be directly appli-
cable to semiconducting dots. The six configurations br
up as: 6→3% 1% 2. The triply degenerate state of total o
bital angular momentumLz50 and total spinS51 is lowest
in energy, the intermediate nondegenerate state hasLz50
andS50, and the twofold degenerate highest level hasuLzu
52 andS50. As bothDU andU scale asd21 with dot size
d, we may introduceG[DU/U, whereG depends only on
the shape of the dot and the confining potential. Lowe
order direct and exchange interaction integrals allow us
estimate that G ranges from 0.5 for thin, quasi-two
dimensional dots toG50.2 for thick dots. Because the Cou
lomb interaction is long ranged, these numbers are ne
independent of the confining potential; indeed,G'0.2 also
holds for real~nearly spherical! atoms. For an electron in a
potential well of characteristic sized we have: DE
'h2/(mbd2), U'e2/(«d), and thus DE/U'aB* /d.
Symmetry-breaking effects due to the electron-electron in
action are therefore minimal in sufficiently small dots. T
satisfy Eqs.~1! and ~2! with G50.2, simple algebra show
that we require (DE/U)2@1, which is in fact satisfied by
small dots. For example, InAs/GaAs (aB* '300 Å) quantum
dots have been made15 that haved'200 Å, U'18 meV,
DE'50 meV, and (DE/U)2'8. Adjusting the array spacing
and the thickness of the insulating barriers, the hopping a
plitude may be increased16 to t50.2DE. It then follows that
J'20 meV. For dots that are not too thin,G50.2, DU
'4 meV, and the crucial inequalities@Eqs.~1!# are satisfied.
In contrast to these artificial atoms, there are no real ato
for which both inequalities@Eqs. ~1! and ~2!# hold because
DE'U and t!U. A typical example is a copper oxid
antiferromagnet17 with J'0.13 eV, U'10.5 eV, and hence
DU@J.

III. ARRAYS OF SU „4… QUANTUM DOTS

Provided that the conditions outlined above are met,
pillar array of quantum dots may be described by an SU~4!-
invariant Hubbard model. We retain only nearest-neigh
hopping and on-site Coulomb repulsion and assume tha
spin-flip or orbital-flip processes occur. Interdot Coulom
repulsion is not expected to change our results qualitativ
We use one Greek indexa51, . . . ,4 tolabel all four flavors
of p states:3 u l z51,sz511/2&→ua51&, u1,↓&→u2&,
u21,↑&→u3&, andu21,↓&→u4&. At half-filling the Hubbard
Hamiltonian, for an open chain of lengthL sites, may be
written

H5 (
i 51

L21

t~ci
†aci 11,a1H.c.!1(

i 51

L

U@n~ i !22#2; ~3!

e
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here repeated raised and lowered Greek indices are sum
over, indexi labels the dots,ci

†a is the creation operator fo
an electron in statea, andn( i )[ci

†aci ,a is the total electron
number operator at sitei . Both the hopping and interactio
terms in the Hamiltonian@Eq. ~3!# are explicitly SU~4! in-
variant as can be easily checked by applying a unitary tra
formation,ci

†a→Ub
aci

†b , with U†U51, which leaves Eq.~3!
unchanged.

At half-filling, the low-energy physics of the system
governed by the SU~4! spin degrees of freedom as creati
of a charge excitation is energetically unfavorable. A we
coupling renormalization-group~RG! calculation shows tha
umklapp scattering processes@which in the SU~4! case carry
both charge and spin# drive the Hubbard model into a Mott
Hubbard insulating phase with gaps in both sectors.18 In the
strong-coupling limit of utu/U!1, again there is a charg
gap, and perturbation theory maps directly the Hubb
Hamiltonian@Eq. ~3!# onto an insulating quantum antiferro
magnetic Heisenberg spin chain. ToO(t4/U3), the effective
Hamiltonian is

HSU~4!5
J

2 (
i 51

L21 H cos~u!Tr$S~ i !S~ i 11!%

1
1

4
sin~u!@Tr$S~ i !S~ i 11!%#2J ~4!

plus next-nearest-neighbor terms. HereSb
a( i )5ci

†acib2 1
2 db

a

are the 15 traceless SU~4! spin generators, the analogs of th
three Pauli spin matrices in the familiar SU~2! case. With our
summation convention Tr$S( i )S( j )%[Sb

a( i )Sa
b( j ). The

next-nearest-neighbor terms areO(t4/U3) and tan(u)
5Ct2/U2, where we find the constantC.0; its exact value
can be computed.19 The purely nearest-neighbor SU~4! spin
chain was studied by Affleck, Arovas, Marston, a
Rabson.20 A combination of exact ground states, RG ana
sis, and conformal field theory permitted the determinat
of the entire phase diagram, the antiferromagnetic region
which is depicted in Fig. 2.

There is a spin gap at both weak and strong coupling;
therefore expect the gap to persist at all values oft/U. For

FIG. 2. Antiferromagnetic part of the SU~4! phase diagram for
the isotropic, nearest-neighbor SU~4! spin chain. The two valencep
electrons on each quantum dot are depicted by solid circles. S~4!
singlet bonds encapsulate four electrons and are depicted as
angles. Chains with an odd number of artificial atoms have f
spins at the chain ends in both the dimerized and the cha
conjugation (C-breaking! phases. For an even number of atom
however, the dimerized phase has no free spins.
ed
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small values of t/U, u is also small, and in the low-
temperature limit (T!J/kb'250 K for the InAs/GaAs dot!
the system is in a dimerized phase21 with broken transla-
tional symmetry, which can be qualitatively described a
set of nearest-neighbor SU~4! singlet bonds as depicted i
Fig. 2. Spins not connected by a singlet bond are unco
lated; in other words, each of the 636536 possible configu-
rations of spin and orbital momentum on two such sites
realized with equal probability. In contrast, spins on si
connected by a singlet bond are tightly constrained: ther
zero amplitude for the same configuration to be found sim
taneously on both of the sites. This has direct experime
consequences as explained below at the end of Sec. IV.
dimerized state, which also breaks reflection symmetry ab
site centers, has a large excitation gap sinceO(J) energy is
required to break a bond. Consequently spin-spin corr
tions decay exponentially aŝTr$S( i )S( j )%&}exp(2ui2ju/
j), where j is the spin-spin correlation length. White’
infinite-size density-matrix renormalization-group22

~DMRG! analysis with open boundary conditions at t
chain ends confirms this scenario23 and determinesj to be of
order of the lattice spacing atu50, see Fig. 3~a!. Another
quantity of interest here is dimer-dimer correlation functio
^Tr$S( i )S( i 11)%Tr$S( j )S( j 11)%&, which tells us the prob-
ability to find a dimer on the link between sitesi and i 11

ct-
e
e-
,

FIG. 3. DMRG calculation of~a! the spin-spin and~b! the
dimer-dimer correlation functions for odd lattice separation a
centered at the middle of a spin chain of lengthL536. Diamonds:
u50; circles:u50.2; and squares:u50.416. The dimerized orde
diminishes asu approachesu* 5tan21(1/2)'0.4636.



tw

xi
ra
e

i

at

of

ti
va
d
nd
in
s

a-
e
t-

o
o
si
n
on
he
lt-

c

l
lly

b
s

dif

he
a

ng
n-
nal

nd
ing

ck
he
try-

the

f
the
ited

ate
ary

r-

-

ite

r
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given that there is one between sitesj and j 11. The open
boundary condition at the chain ends favors one of the
possible dimerization patterns, see Fig. 3~b!. The amplitude
of dimer-dimer correlation, the difference between its ma
mum and minimum values, can be used as an order pa
eter that provides a quantitative measure of the degre
dimerization.

It is interesting to note that dimer order can be achieved
ordinary translationally-invariant SU~2! antiferromagnetic
chains only with large next-nearest-neighbor or biquadr
exchange. Here, however, the dimerized state atu50 is a
natural consequence of the enlarged SU~4! symmetry. For
u.u* 5tan21(1/2)'0.4636, the chain is in a new phase
matter—not realizable for ordinary SU~2! chains—
characterized by spontaneously broken charge-conjuga
(C-breaking! symmetry, a spin gap, and extended singlet
lence bonds.20 The C-breaking state, unlike the dimerize
state, breaks reflection symmetry about the centers of bo
see Fig. 2. We find that the spin-spin correlation length
creases, and the dimer-dimer order parameter decrease
the system approaches the transition to theC-breaking phase
at u5u* , see Figs. 3~a! and 3~b!. It may, however, be diffi-
cult to reach theC-breaking phase in experimental realiz
tions of the system: ast/U is increased, terms in the effectiv
Heisenberg model@Eq. ~4!# such as the next-neares
neighbor exchange Tr$S( i )S( i 12)% become increasingly
important. This term has a positive coefficient,19 favoring
dimerized order.24

IV. SYMMETRY BREAKING

It is important to establish whether or not the phases
the pure SU~4!-invariant system survive in the presence
symmetry-breaking processes. We show that the mas
dimerized phase is robust in realistic experimental situatio
The major symmetry-breaking process is due to electr
electron interactions that lift the sixfold degeneracy of t
configurations of the twop electrons on each dot. The resu
ing DU in the Hubbard model induces SU~4!→SU~2! sym-
metry breaking both in the on-site energies (6→3% 1% 2)
and in the Heisenberg exchange term. Both perturbations
be incorporated by perturbing the SU~4!-invariant Hamil-
tonian @Eq. ~4!# with two-body interaction terms of genera
bilinear form, which in the simplest case of a translationa
invariant system can be written as

HHund8 5(
i 51

L

Sb
a~ i !Tan

bmSm
n ~ i !1 (

i 51

L21

Sb
a~ i !T̃an

bmSm
n ~ i 11!.

~5!

SU~4! invariance is recovered by settingTan
bm ,T̃an

bm}dn
bda

m ;
different choices for the tensors then realize all possible
linear SU~4!→SU~2! symmetry-breaking terms. Other les
important symmetry-breaking processes include~1! nonvan-
ishing hopping between states in neighboring dots with
ferent orbital angular momenta (tb

aÞtdb
a) also breaks

SU~4!→SU~2!, as again only spin symmetry remains. T
breaking is minimized in the pillar array due to rotation
symmetry about the vertical axis.~2! Spin-orbit coupling by
itself breaks SU~4!→SU~2!^SU~2!. However, this effect is
small in semiconducting quantum dots.11 ~3! Nonmagnetic
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impurities can lift the orbital degeneracy of a dot, breaki
SU~4!→SU~2!, as only spin symmetry remains intact. Spi
flip processes, induced by magnetic impurities or exter
magnetic fields, break SU~4! all the way down to discrete
symmetries. It is essential to eliminate both magnetic a
nonmagnetic impurities in and around the semiconduct
dots.

The effects of SU~4!→SU~2! symmetry breaking may be
analyzed numerically using the DMRG. We find that a blo
size of M536 suffices for an accurate description of t
massive phases. Even for large values of the symme
breaking parameter corresponding toDU'J the dimer long-
range order persists, as is evident in Fig. 4.

Other symmetry-breaking mechanisms not included in
general bilinear Hamiltonian@Eq. ~5!# can be incorporated by
adding a one-body perturbation to the Hamiltonian@Eq. ~4!#,

H85la
b(

i 51

L

Sb
a~ i !. ~6!

In particular, spin-orbit coupling corresponds to

HSO8 5l(
i 51

L

@S1
1~ i !2S2

2~ i !2S3
3~ i !1S4

4~ i !#. ~7!

We have examined the effect of this coupling, Eq.~7!, and
have found that even for an unrealistically large value ol
5J the dimerization pattern remains intact. The fact that
dimerized phase is robust is not surprising as the first exc
state is separated by a large, ofO(J), energy gap from the
ground state.

In the extreme limitDU@J of large SU~4! breaking ac-
cording to Hund’s rules, however, only the triply degener
S51 states survive and the chain is described by an ordin
spin-1 SU~2! quantum antiferromagnet, which is in a diffe

FIG. 4. DMRG calculation of the spin-spin~circles! and the
dimer-dimer~squares! correlation functions for odd lattice separa
tion and centered at the middle of the chain for the caseu50 and
L536. We compare the perfectly SU~4!-symmetric chain~solid
symbols! to one with symmetry broken down to SU~2! via DU
Þ0 ~open symbols!. For the broken symmetry case, the on-s
tensorTan

bm has nonzero entries:T12
215T21

125T34
435T43

345J/4 andT14
23

5T32
415T41

325T23
145T13

135T31
315T24

245T42
425J/4. The nearest-neighbo

tensorT̃an
bm has nonzero entries:T̃33

335T̃43
345T̃34

435T̃44
445J/4 and T̃41

14

5T̃14
415T̃32

235T̃23
325J/8.
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PRB 59 12 577ENLARGED SYMMETRY AND COHERENCE IN ARRAYS . . .
ent massive phase, the Haldane gap phase,25 with transla-
tional symmetry restored as shown in Fig. 5.

Transport measurements can be used to confirm the
mation of a Mott-Hubbard charge gap at half-filling.26,27 To
detect the dimerized spin structure experimentally, it may
possible to exploit the fact that, for an odd number of d
only, there are nearly free spins at the chain ends that
dominate the magnetic susceptibility. This feature dist
guishes the dimerized state from other possible states o
SU~4! spin chain such as theC-breaking and Haldane ga
phases, which have free spins at chain ends for any num
of sites ~see Fig. 2!. The free spins may be observable
sensitive electron spin resonance~ESR! measurements,28 by
scanning tunneling microscopy~STM! with a magnetized
tip, or indirectly via optical spectroscopic experiments.29

V. CONCLUSIONS

Isolated circular semiconducting dots, filled with a fe
electrons and free of impurities, have already been c
structed and studied.8 We propose the construction of a pilla
array of such circular dots. Approximate SU~4! symmetry
will be realized if some simple requirements are met. In p
ticular, the dots must be small to minimize the symmet
breaking effect of the intradot electron-electron interacti
which partially lifts the degeneracy of the six different ele
tronic configurations. We predict that a chain of dots, at h
filling ~four electrons per dot!, will be in an insulating,

FIG. 5. The Haldane gap phase occurs when the SU~4! symme-
try is broken down to the usual SU~2! spin symmetry of a spin-1
quantum antiferromagnet. SU~2! singlet bonds, depicted as rec
angles, involve just two electrons. Translational symmetry in
ground state is restored, and there are free spins at the chain
both for odd and for even chain lengths.
tro

hit
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e
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r-
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-
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dimerized phase. Four to six dots will suffice because
correlation length is comparable to the lattice spacing, a
the state should be robust to various types of symme
breaking processes as there is a nonzero spin gap to
lying excitations. As a practical application of the propos
quantum dot array, there is the problem of quantu
computation,30 which requires a high degree of quantum c
herence between computing elements. The dimerized p
is a strongly correlated state and could be used to test
degree of coherence in an array of quantum dots. In th
differs greatly from the standard Coulomb blockade seen
coupled dots, which operates independently of quantum
herence and, apart from the quantization of the elect
charge, is classical. Indeed, quantum many-body phenom
such as the formation of long-range order are ideal tools
discern quantum coherence.

Finally we note two possible extensions of this work. E
perimental evidence for the Kondo effect has been repo
in transport measurements through a single quantum dot31 It
would be interesting to repeat the experiments with a SU~4!
dot as increasing the spin degeneracy enhances the K
effect.32,33 Also, the III-V dots discussed in this paper po
sess enlarged SU~4! symmetry because the twofold orbita
degeneracy combines with the usual twofold spin deg
eracy. Alternatively, the natural valley degeneracy
silicon34 could be exploited. In Si quantum wells, the tw
fold valley degeneracy is broken to twofold degeneracy
the Si/SiO2 interface.35 This remaining degeneracy, like th
orbital degeneracy in the III-V dots, is enough to reali
overall SU~4! symmetry.
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