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A generalized BornsGBd model is proposed that approximates the electrostatic part of
macromolecular solvation free energy over the entire range of the solvent and solute dielectric
constants. The model contains no fitting parameters, and is derived by matching a general form of
the GB Green function with the exact Green’s function of the Poisson equation for a random charge
distribution inside a perfect sphere. The sphere is assumed to be filled uniformly with dielectric
medium ein, and is surrounded by infinite solvent of constant dielectriceout. This model is as
computationally efficient as the conventional GB model based on the widely used functional form
due to Stillet al. fJ. Am. Chem. Soc.112, 6127s1990dg, but captures the essential physics of the
dielectric response for all values ofein andeout. This model is tested against the exact solution on
a perfect sphere, and against the numerical Poisson–BoltzmannsPBd treatment on a set of
macromolecules representing various structural classes. It shows reasonable agreement with both
the exact and the numerical solutions of the PB equationswhere availabled considered as reference,
and is more accurate than the conventional GB model over the entire range of dielectric values.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1857811g

I. INTRODUCTION

An accurate description of the solvent environment is
essential for realistic biomolecular simulations, but may be-
come very expensive computationally. The analytic general-
ized BornsGBd approximation is a computationally effective
way to calculate the main contribution to the total solvation
free energy of the molecule—its electrostatic partDGel. The
methodology has become popular,1–13 especially in molecu-
lar dynamics applications14–24 due to its relative simplicity
and computational efficiency, compared to the more standard
numerical solution of the Poisson–BoltzmannsPBd equation.

Both the GB and linear PB approximations share the
same underlying physics of the continuum dielectric model
in which discrete solvent molecules are replaced by an infi-
nite continuum medium with the dielectric properties of the
solvent: despite the fundamental nature of the approxima-
tion, the model has enjoyed considerable success in calculat-
ing various macromolecular properties.6,25–30

Since the first publications on the GB model,1 it has
almost invariably been written in the form

DGel < o
i j

DGij
GB = −

1

2
S 1

ein
−

1

eout
Do

i j

qiqj

fGBsr ij ,Ri,Rjd
,

s1d

where it is assumed that the molecule is filled uniformly with
material of dielectric constantein and is surrounded by a
solvent of dielectric valueeout se.g., 80 for water at 300 Kd.
The sum above is over all pairs of atomsi and j , with r ij

representing the distance between them, andqi being the
charge at the center of atomi. So-calledeffective Born radius
of atom i is denoted byRi; it is related to the degree of the
atom’s burial inside the low dielectric region. Note that

DGel=DGelsein ,eoutd calculated via the GB formula above
corresponds to the electrostatic free energy of transferring
the molecule from a medium with the same dielectric con-
stant as the interior of the molecule,ein, into the medium of
dielectriceout, see Fig. 1. The most commonly used form of
fGB is the one due to Still:1

fGB = fr ij
2 + RiRj exps− r ij

2/4RiRjdg1/2, s2d

although other expressions have been proposed,4,31 which
approach the same limits as the above formula forr ij →0 and
r ij →`. For a hypothetical molecule with a single chargeqi

FIG. 1. The thermodynamic cycle used to calculate the electrostatic part of
the free energyDGtransfs1→2d of transferring a molecule from a medium
with dielectric constantein into a medium of dielectric constanteout. The
interior of the molecule has dielectricein.
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at r i, Eq. s1d takes on a particularly simple form

DGii
el < DGii

GB = −
1

2
S 1

ein
−

1

eout
Dqi

2

Ri
. s3d

Here the reader can recognize the famous expression due to
Born for the solvation energy of a single ion of radiusRi.
Reasonable agreement of this formula with experiment for
simple monovalent ions was arguably one of the first suc-
cesses of the implicit solvent model based on continuum
electrostatics. The key premise of the GB approximation is
that if DGii

el fand henceRi via the inverse of Eq.s3dg is
available for every atomi in the molecule, one can use these
effective radii in Eq.s1d to get an estimate ofDGel. Note that
for a molecule ofN atoms, a computation via Eq.s1d in-
volves estimation of12NsN+1d terms:N diagonal self-energy

terms DGii
GB and 1

2NsN−1d off-diagonal “cross” terms

DGij
GB=DGji

GB. Thus, knowledge of onlyN self-energy terms

DGii
GB, or equivalently, values ofRi for each of theN atoms

in the molecule gives, via Eq.s1d, an estimate of the remain-
ing , 1

2N2 charge-charge interaction energiesDGij
GB. In our

view, this is the key assumption and the essence of the GB
model. It was shown earlier31 that if the self-energiesDGii

el

and henceRi are computed accurately enough using the PB
approach, then Eqs.s1d ands3d give very reasonable, relative
to the PB treatment, estimates of the cross-termsDGij

GB for
biomolecules in watersein=1,eout=80d.

There are many situations when it is desirable to have an
efficient estimate ofDGel, as well as of all of the charge-
charge interaction energies,DGij

el, as a function of both the
internal and external dielectric constants. For example, inpK
calculations, a value for theein larger than 1 may be
appropriate,32 e.g., ein=4. This higher value takes into ac-
count, albeit very approximately, the polarizability of the
molecular interior. The external dielectric constant may also
be different from its commonly used value of 80 for water at
room temperature: the temperature may be different or the
solvent may not be pure water. Another situation when one
may needDGelsein ,eoutd is in calculations of the free energy
of transferDGtransf of the molecule between two different
media with dielectricseout 1 and eout 2, respectively, since
DGel is a part ofDGtransf salong with the nonpolar contribu-
tionsd. The value ofDGtransf can be directly measured experi-
mentally and therefore used in testing and parametrizing of
an implicit solvent model such as the GB. Since neithereout 1

nor eout 2 may not, in general, be equal toein, Eq.s1d needs to
be used twice in order to compute the electrostatic compo-
nent ofDGtransf. First, one computesDGelsein ,eout 1d and then
DGelsein ,eout 2d to obtain DGel

transfs1→2d=DGelsein ,eout 1d
−DGelsein ,eout 2d; refer to the thermodynamic cycle in Fig. 1.

The explicit dependence of theDGel on the value of the
internal dielectric constantein is in the prefactor in Eq.s1d,
and so when it is combined with Eq.s2d to calculate the
transfer energy, this dependence cancels out, leading to
DGel

transfs1→2d being independent ofein sproviding that the
effective Born radii depend only on the molecular geometry,
which is the usual assumptiond. The following simple argu-
ment shows that this cannot generally be true: the distribu-
tion of the polarization charge on the molecular surface does

depend onein, therefore affectingDGel
transfs1→2d. sThe only

exception is a spherical ion with a single charge in its center,
in which case the Born formula corresponds to the exact
solution of the Poisson equation.d This argument is con-
firmed by the numerical calculationsssee belowd, which
show a large discrepancy between theDGelsein ,eoutd values
computed within the GB models based on Eq.s1d and PB
models. The purpose of this work is to introduce the correct
functional dependence ofDGel upon both the internal and
external dielectrics, based on rigorous physical principles.

Formally, the key principle of the GB model can be writ-
ten in terms of the Green function33 of the corresponding
Poisson equationswe do not consider the effects of salt hered

=fesr d = Gsr i,r jdg = − 4pdsr i − r jd, s4d

whose solution is

Gsr i,r jd =
1

ur i − r ju
+ Fsr i,r jd, s5d

where the effects of the nontrivial molecular boundary are
embedded in the reaction field component of the Green func-
tion Fsr i ,r jd. The latter can be used to findDGel via

DGel =
1

2o
i j

Fsr i,r jdqiqj . s6d

We now postulate the generalized Born model in its most
general form

Fsr i,r jd < FGBsDGii
el,DGjj

el,r ijd, s7d

where DGii
el and DGjj

el are self-energy contributions to the
electrostatic part of the solvation free energy of chargesqi

andqj in the molecule. The goal of this study is to propose a
functional form ofFGB that would incorporate a realistic de-
pendence on dielectric environments.

Our strategy is as follows: start with the exact Green
function for a simple geometry and then use it on the left-
hand side of Eq.s7d to suggest a computationally facile form
of FGB. A natural choice of the model geometry for globular
molecules is a perfect sphere with point charges distributed
inside—the exact solution of the Poisson equation for this
system was found a long time ago by Kirkwood,34 and will
serve as a starting point for this model.

In this study we assume that the self-energy contribu-
tions DGii

el can be computed accurately and in a way that
does not depend upon any particular choice of the functional
form for FGB in Eq. s7d. While a number of approximate
strategies exist to compute this quantity, or equivalently the
effective Born radius, we use the essentially exact numerical
solution of the Poisson equation for this purpose. While ex-
pensive, and hardly practical in applications, this approach
was found to be useful in theoretical studies,31 as it elimi-
nates one possible source of error and allows us to focus on
the functional form of the GB equation.

This paper has the following structure. Our GB method
sGBed is derived from Kirkwood’s exact solution of the Pois-
son equation for a sphere in Sec. II. We show how the perfect
sphere solution can be transferred to the case of an arbitrary
globular molecule by expressing the appropriate variables
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via local geometry parameters. Most mathematical details of
the derivation are placed in the Appendixes, while physics is
discussed in Sec. II. The GBe method is tested on a set of
structures described in Sec. III. The accuracy and perfor-
mance of the method are compared to those of the existing
PB and conventional GB methods in Sec. IV. The physical
origin of unusually high effective dielectric values some-
times observed in both the PB and the GB models is dis-
cussed. We also explore the question of whether or not ef-
fective Born radii should be considered as dependent on the
solvent or solute dielectrics. The conclusion is given in
Sec. V.

II. THEORY: e-DEPENDENT GENERALIZED BORN
METHOD

A. Kirkwood’s solution for an ideal sphere

We begin by recasting Kirkwood’s well-known
solution34 of the Poisson equation for a spherical molecule in
terms of its Green’s function. For further convenience, we
separate the self-contributionFsr i ,r id from the interaction
part Fsr i ,r jd:

Fsr i,r idsphere= −
1 − b

Aein
o
l=0

`
tii
l

1 +
l

l + 1
b

, s8d

Fsr i,r jdsphere= −
1 − b

Aein
o
l=0

`
tij
l Plscosud

1 +
l

l + 1
b

, s9d

where tij =r ir j /A
2, r i = ur iu being the atom’s position relative

to the center of the sphere,A is molecule’s radius,u is the
angle betweenr i and r j, andb=ein /eout ssee Fig. 2d.

This solution isexactfor a sphere, and may be expected
to be reasonably accurate for many realistic globular mol-
ecules. The dependence upon the internal dielectric constant
enters in a nontrivial waysin the denominator of the sum-
mand, viabd, and, unlike in the case of the traditional GB
theory based upon Eq.s1d, this dependence does not simply
cancel out when the transfer energy is computed.

B. Local geometry approach for arbitrarily shaped
molecules

The Kirkwood equationsfEqs.s8d ands9dg are exact for
a hypothetical molecule with a perfectly spherical boundary.
However, they cannot be immediately used for realistic mol-
ecules. The problem is that it is not at all obvious how the
values ofA andr i, and thereforetij andu, should be defined
for a nonspherical molecule. While the distance between the
atoms r ij = ur i −r ju can be easily computed for any pair of
atoms in the molecule, the definition of individualr i sFig. 2d
requires the knowledge of the molecule’s center, which may
not be defined unambiguously for a molecule of irregular
shape. As long asr i andr j are not clearly defined, the angle
between them,u, is not known, either. Last but not the least,
a suitable definition of the “electrostatic radius”A must be
given in the general case of nonspherical geometries. Our
strategy is to express these key quantities—A and
r i—through the precomputed values ofDGii

el.
To this end, we consider two separate limiting cases of

Kirkwood’s solution for the self-energy part, Eq.s8d: b
→` andb→0. In the first case only thel =0 term survives,
while in the other limit we have a geometric series that does
not depend onl and can be summed exactly. Recalling that
DGii

el= 1
2Fsr i ,r idqi

2, we can formally expressA and r i via the
correspondingDGii

elsb→`d andDGii
elsb→0d:

DGii
elsb → `d = −

qi
2

2
S 1

ein
−

1

eout
D 1

A
, s10d

DGii
elsb → 0d = −

qi
2

2
S 1

ein
−

1

eout
D 1

As1 − tiid

= −
qi

2

2
S 1

ein
−

1

eout
D 1

A − r i
2/A

. s11d

Once the value ofA is determined from Eq.s10d, r i can be
computed for every atom via Eq.s11d, and we can then use
the cosine rule to uniquely define

cosu = sr i
2 + r j

2 − r ij
2d/2r ir j . s12d

To summarize, we define the effective local geometry
around every pair of charges, based on the known self-
energy of each charge embedded in the molecule. Therefore,
provided thatDGii

elsb→`d and DGii
elsb→0d are known, we

can express all of the input parameters of Eq.s9d through
these quantities, and compute all the pair interactions
DGij

GBsein ,eoutd, which is the goal of the GB theory. This is in
the spirit of, but going beyond, the conventional GB model
in which the key quantity—the effective Born radius—is
computed from the self-energy via Eq.s3d. To follow the GB
convention of expressingDGii

el via quantities with the dimen-
sion of length, we compare Eq.s3d with Eq. s11d to relater i

directly to the corresponding effective Born radius:

r i
2 = AsA − R̃id, s13d

where we useR̃ to denote the effective Born radii computed
in the limit b=ein /eout→0. Note that this quantity is close,
but not exactly equal to the effective radius computed at the

FIG. 2. Illustration for Eqs.s8d ands9d: a sphere of dielectricein of radiusA
with two charges,qi and qj at positionsr i and r j relative to the sphere’s
center. The sphere is surrounded by infinite medium of dielectriceout.
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standard solvation conditionsein=1, eout=80, as often used

in the GB literature. We will see later that it isR̃ that should
be used in the GB formulas of the kind given by Eq.s1d. To

sum up, ifA andR̃i have been computed, the values oftij and
cosu needed in the Green functionfEqs.s8d ands9dg can be
expressed through them by simple algebra.

While the meaning and the ways of computing of the
effective Born radii have been extensively discussed in the
literature, in this work we introduce the concept of theelec-
trostatic radius A. A discussion about its physical meaning is
therefore required. The defining equation, Eq.s10d, is quite
curious, as it effectively states thatDGelsb→`d is indepen-
dent of the charge distribution within the molecule. For a
perfect sphere this result follows directly from Kirkwood’s
solution, and for an arbitrary shape can be qualitatively ex-
plained as follows. In theein→` limit smolecule filled with
conductord the electric field of the charges inside must be
completely screened out by the polarization charges in the
immediate vicinity, to ensure that the electric field inside the
bulk of the molecule is zero. Therefore, the polarization
charges that build up on the dielectric boundary do not “see”
the charges inside, their distribution is determined by the
geometry of the molecular boundary only, and is completely
independent of the positions of the atomic charges. The only
relationship between them follows from the overall neutrality
of the dielectric, which necessitates thatospolarization
chargesd=oiqi. The total electrostatic energy of the system is
expressed through the volume integral of the electric field,
and since the electric field inside is zero, only the outside
field due to polarization charges on the boundary will con-
tribute. Therefore, the solvation energy of suchshypotheti-
cald molecule will depend only on its total charge and not on
how this charge is distributed inside. Note that the electro-
static radius of the molecule is nothing else but the limiting
value of the effective Born radii of its atoms in the limit
ein /eout→`. However, whileN separate computations have
to be performed to compute all of effective Born radii for a
molecule ofN atoms, only one computation is, in principle,
necessary to estimateA, since this quantity is independent of
the position of the probe chargeqi inside the molecule. The
point is illustrated in the Fig. 3 below, where the distribution
of perfect,31 i.e., PB-based, effective radii is shown in the
ein /eout!1 andein /eout@1 limits for a realistic protein myo-

globin. The distribution of effective radii forein /eout=104 is
strongly peaked around the electrostatic radiusA=19.72 Å,
with the small spread likely due to numerical uncertainties.

C. GBe: Improved GB model with e-dependent
Green’s function

One of the key advantages of the GB method is that it is
ananalytical formula, which is important when computation
time is critical, in particular, in molecular dynamics applica-
tions. In what follows, we present an effective, accurate, yet
simple enough approximation to Kirkwood’s solutionfEqs.
s8d and s9dg.

Let us rewrite the series in Eq.s9d in the following way:

o
l=0

`
tij
l Plscosud

1 +
l

l + 1
b

= 1 +o
l=1

`
tij
l Plscosud

1 +
l

l + 1
b

< 1 + o
l=0

`
tij
l Plscosud
1 + ab

−
1

1 + ab

=
1

1 + ab
Fo

l=0

`

tij
l Plscosud + abG , s14d

where we have made an approximationl / sl +1d<a=const.
This approximation is reasonable forl .0, since in this case
l / sl +1d only varies between 1/2 and 1. A value that mini-
mizes the mean-square error of this approximation for a large
spherical molecule has been analytically found to bea
<0.57±0.01, the spread being due to weak dependence ofa
on b ssee Appendix Ad. We later show thata=0.57 is also a
good choice for realistic molecules.

Using the well-known identity for Legendre’s polynomi-
als fEq. sB8d, Appendix Bg to sum the series on the right-
hand side of Eq.s14d, we obtain the following expression:

Fsr i,r jdsphere< −
1

Aein

1 − b

1 + ab

3F 1

Î1 + tij
2 − 2tij cosu

+ abG . s15d

We now usetij , r i, and cosu as defined by the local geometry
considerationsfEqs. s10d–s12dg along with Eq.s13d to ex-
press the arguments of the above equation through the elec-

trostatic radiusA and the set of effective Born radiiR̃i:

A2s1 − 2tij cosu + tij
2d = A2 − 2r ir j cosu +

r i
2r j

2

A2

= r ij
2 + SA −

r i
2

A
DSA −

r j
2

A
D

= r ij
2 + R̃iR̃j , s16d

which leads to

FIG. 3. Distribution of perfect effective Born radii for myoglobin in media
with ein /eout=104 ssolid lined and ein /eout=1/80 sdashed lined. When ein

@eout, all effective radii are essentially the same and equal to the molecule’s
electrostatic radius.
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Fsr i,r jdsphere< − S 1

ein
−

1

eout
D 1

1 + ab

3F 1

Îr ij
2 + R̃iR̃j

+
ab

A G . s17d

The functional form f ij
sphere=Îr ij

2 +RiRj in the above
equation has been derived from Green’s function of the Pois-
son equation for a sphere, and is therefore35 the best form for
a hypothetical perfectly spherical molecule. However, for re-
alistic molecules, we find it to be slightly inferior to the
conventionalsStill’sd form of f ij

GB from Eq.s2d. This is likely
due to the fact that, for an elongated molecule, more of the
electric field lines between a pair of distant charges go
through the high dielectric region, effectively reducing the
pairwise interaction. The conventional form off ij

GB takes this
into account, at least to some extent, by allowing for steeper
decay of the interaction with charge-charge distance. In what
follows we will be using the conventional form off ij

GB from
Eq. s2d, unless otherwise specified.

To summarize, we suggest the following form forDGel
i j

= 1
2Fsr i ,r jdqiqj to be used for realistic molecules:

DGel
i j = −

1

2
S 1

ein
−

1

eout
D qiqj

1 + aein/eout

3F 1

f ij
GBsr ij ,R̃i,R̃jd

+
aein/eout

A G , s18d

where f ij
GB=Îr ij

2 +R̃iR̃j exps−r ij
2 /4R̃iR̃jd for any i and j , in-

cluding i = j . It has not escaped our notice that, while the GB
theory itself has undergone considerable evolution since the
early nineties when this particular form off ij

GB was first in-
troduced by Stillet al., the function itself appears to remain
superior or equally good compared to other forms that have
been proposed in the literature.

Parametera has been found by rigorous derivation and
therefore it isnot a free model parameter; it should be kept in
mind though that the valuea<0.57 minimizes the approxi-
mation error for very large spherical molecules with random
charge distribution. For smaller molecules of complex shape
or with peculiar charge distribution the value ofa that brings
about the best results may be slightly different. However, as
will be shown below, Eq.s18d is not very sensitive toa,
thereforea=0.57 is a reasonable estimate for a generic case.

The key difference between the traditional form of
DGij

GB, Eq. s1d, and our GBe model based on expression Eq.
s18d is that the latter has an extra prefactor and an additional
term proportional to the ratiob=ein /eout and inversely pro-
portional to the electrostatic radiusA. The presence of this
term reflects the qualitative difference between the two mod-
els and explains why the traditional formulation does not
capture the right dielectric dependence, especially when the
ratio b is large. In fact, while the conventional formula
agrees with the current model in the limitb→0, it is very
much different in the other extreme,b→`. In the latter case
Eq. s18d provides the correct physical asymptotics:

DGel = o
i j

DGij
el → 1

2Aeout
o
i j

qiqj =
1

2Aeout
So

i

qiD2
,

b → `. s19d

This agrees with our earlier observation that in this limit the
electrostatic part of solvation energy does not depend on the
charge distribution inside the molecule.

While Eq.s17d is an approximation to the exact solution
for a sphere, one can showssee Appendix Bd that it agrees
with the exact formula given by Eq.s21d in the limits
b!1, b@1, and, quite trivially, forb=1. Perhaps, it is then
not so surprising that Eq.s17d gives an excellent agreement
with the exact solution for a spherefsee Fig. 5sbdg, while Eq.
s18d provides a realistic approximation for globular mol-
ecules over the entire range ofb ssee Sec. IVd. At the same
time, the computational expense associated with Eq.s18d is
not expected to be noticeably different from that of the con-
ventional formula, Eq.s1d.

The current model is expected to be effective in molecu-
lar dynamicssMDd calculations. While Eq.s18d is more ac-
curate than the conventional Eq.s1d, it differs from it in only
two aspects: the constant prefactor, which has no effect at all
on the computation speed, and the termab /A. The latter
term depends only on the global shape of the molecule
throughA, which varies slowly and may need to be recalcu-
lated only once in a while, if at all. It may not even be
unreasonable to assumedA/drij <0, and leave the corre-
sponding term out of the force calculations completely, espe-
cially in the case of aqueous solvationb!1. Thus, MD
based on Eq.s18d may only be insignificantly slower, while
essentially more accurate, than that utilizing the conventional
GB of Eq. s1d.

D. Exact solution for a spherical molecule

We have so far been able to sum the infinite series of the
Kirkwood equation in an approximate fashion. While we will
show in Sec. IV that this approximation is reasonable not
only for a sphere but for realistic molecules as well, it is still
desirable to see if one could obtain a well-behaved analytical
Green’s function without any approximations, or within such
an approximation that allows full control of its accuracy and
becomes exact in some parameter limit. Such a solution
would provide a reference point for the current model, and is
valuable even if its computational cost is relatively high. The
obvious choice is to retain a large number of terms in the
infinite series corresponding to Kirkwood’s equationss8d and
s9d. In principle, the more terms that are kept, the closer the
partial sum is to the exact one. However, Eqs.s8d and s9d
cannot be used in this very form for this purpose because the
series involved converge too slowly whent approaches 1,
which happens when the atoms are close to the molecular
surfacestaken to coincide with the dielectric boundaryd. In
fact, both of the Green functions in the original Kirkwood
form of Eqs.s8d and s9d diverge in the limitt→1. One can
understand the origin of this divergence by invoking the im-
age charge considerations: as the charge approaches the di-
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electric boundary, its image approaches the same boundary
from the other side, causing the interaction between them to
diverge.

It is therefore critical to improve convergence of the se-
ries by resumming them in an appropriate manner. A possible
solution is given below, the derivation being detailed in Ap-
pendix B fsee Eqs.sB13d and sB15dg:

Fsr i,r idsphere= −
1

einAtii

1 − b

1 + b
F tii

1 − tii
−

b

1 + b
lns1 − tiid

+ o
n=2

` S b

1 + b
Dn

LinstiidG , s20d

Fsr i,r jdsphere= −
1

einAtij

1 − b

1 + b
F tij

Î1 − 2tij cosu + tij
2

+
b

1 + b
ln

tij − cosu + Î1 − 2tij cosu + tij
2

1 − cosu

+ o
n=2

` S b

1 + b
Dn

Qnstij ,cosudG , s21d

where polylogarithm function Linstd and its generalization
Qnst ,xd are defined in Appendix BfEqs.sB6d andsB7dg. It is
shown in Appendix B that Eqs.s20d ands21d coincide when
i = j . Though Eq.s20d is a particular case of Eq.s21d, the
former is worth keeping for numerical implementation.

Seriess20d ands21d converge foranyb, the convergence
being fastest for smallb. This case corresponds to low-
dielectric molecule immersed into high-dielectric solvent,
e.g., a protein in water. In the opposite case of largeb, which
meansein@eout, a computationally efficient series represen-
tation also existsfsee Appendix B, Eqs.sB25d and sB27dg:

Fsr i,r idsphere= −
1

einA

1 − b

s1 + bd2Fb +
1

1 − tii
−

b

1 + b
lns1 − tiid

− bo
n=2

`
s− 1dn

s1 + bdnLinstiidG , s22d

Fsr i,r jdsphere= −
1

einA

1 − b

s1 + bd2Fb +
1

Î1 − 2tij cosu + tij
2

−
b

1 + b
ln

1 − tij cosu + Î1 − 2tij cosu + tij
2

2

− bo
n=2

`
s− 1dn

s1 + bdnQn
†stij ,cosudG , s23d

where function Qn
† st ,xd is defined in Appendix BfEq.

sB19dg. Equationss22d and s23d are optimized for largeb
and converge for any positiveb. Again, Eqs.s22d and s23d
coincide fori = j .

No approximations have been made so far in derivation
of the optimized equations. Both pairs of Eqs.s20d, s21d and
s22d, s23d are still exact and mathematically equivalent to
Eqs.s8d ands9d for a spherical molecule. The corresponding

series converge for anyb, u, and anytij ,1, and can be well
approximated by partial sums with a reasonable number of
terms kept. Varying the number of terms retained, one can
adjust the accuracy or time of computation. The singularities
of Kirkwood’s original formulasfEqs. s8d and s9dg are now
localized within the first two terms of the each regularized
equation. Both of these terms are given by simple, closed-
form expressions, well suited for numerical computations.
The functions Lin std, Qn st ,xd, andQn

† st ,xd do not have any
singularities fornù2 fsee Eq.sB20dg and can be computed
numerically with any desirable accuracy via recursive rela-
tionships, Eqs.sB10d and sB23d. We find that estimating
DGel through Eqs.s20d and s21d for Eqs.s22d and s23dg is
only a few times more costly than through the conventional
GB formula, Eq.s1d, but captures the key physics of the
dielectric response missed by the conventional model. The
existence of well-converging equations proves critical for
obtaining a fast yet accurate numerical solution.

III. METHODS

A. Structures

We have carried performance tests on macromolecules
representing different structural classes: native myoglobin
sPDB ID 2MB5d, thioredoxin s2TRXd, hen egg lysozyme
s0LZ5d, b-hairpin s2GB1d, and B-DNA s10 base-pair du-
plexd. We have also used an artificial spherical molecule re-
ferred to as “sphere-15 Å.” This is a sphere of radius 15 Å
filled with uniform dielectricein with 11 chargesqi = +1 lo-
cated at pointss±6,0,0d, s0, ±6,0d, s0,0,6d, s±12,0,0d,
s0, ±12,0d, and s0,0, ±12d sall coordinates are in ang-
stromsd. Since the Kirkwood equation is exact for sphere, we
are able to use sphere-15 Å as a benchmark to test both the
GB and PB numerical methods.

B. Poisson–Boltzmann calculations

Numerical Poisson–Boltzmann solvers are used in two
ways here. To calculate the electrostatic part of solvation free
energy of each test molecule, MEADsRef. 36d and
DELPHI-II sRefs. 25 and 37d have been used, with a cubic
box and 0.25 Å grid spacing. The convergence criterion used
by MEAD is set to its default value. Ionic strength is zero.
Unless otherwise stated, all of the GB vs PB comparisons are
done using MEAD energies as reference.

To compute the perfect effective Born radii of each atom
in the test structure, a Poisson problem is set up and solved
having the dielectric boundary shape of the full molecule
present, but keeping only the charge of that particular atom.
The van der Waals radii of Bondi38 and a solvent-probe ra-
dius of 1.4 Å are used to define molecular surface,39 which is
taken as the dielectric boundary. The accumulation of these
solutions gives the necessary Green’s function information
for use in Eq.s6d for the full Poisson solvation energy and
Eq. s3d for the perfect effective Born radii. The computer
program PEP developed by Beroza26 and available via the
Internetsftp://ftp.scripps.edu/case/beroza/pepd is used for the
setup and solution of these Poisson problems. The finest grid
spacing used in all calculations is 0.07 Å, decreasing from
4 Å in eight steps of focusing on the atom in question. We
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have verified, by comparison with the exact solution on a
perfect sphere, thatPEP-based calculations do produce physi-
cally reasonable results even in the caseein@eout, where the
two other methods failed. However, thePEP algorithm is so
computationally intense that we did not use it as a reference
for all values ofein and eout. For a perfect sphere of given
radius A, the effective radii are computer exactly via
Eq. s13d.

C. Simple estimation of the effective electrostatic
radius

The principal way of calculating the effective electro-
static radii is given by Eq.s10d, and this is how they are
computed in this worksA is the limiting value of the effec-
tive Born radii forb@1d. However, thePEPcalculations in-
volved are intense, and it would be useful to have an analyti-
cal way of estimatingA. That will involve the same kind of
derivation, based on the expressions for the electrostatic en-
ergy density, that leads to a closed form expression for the
effective Born radii.8 Here we do not attempt to make the
formal derivations; rather, we propose a simple and quick,
albeit heuristic way to obtain a rough estimate of the effec-
tive electrostatic radius based on simple physical consider-
ations. We will also show directly that, at least in the case of
aqueous solvation of realistic biomolecules, the resulting sol-
vation energy is rather insensitive to variations inA.

For a typical globular molecule, the solvation energy de-
pends on its overall radius,DGel,1/R. In contrast, for a thin
and long cylindrical structurese.g., the DNAd, the character-
istic length scale is the cylinder radius,DGel,1/r. Gener-
ally, one may consider that a cylinder of heighth and radius
r circumscribes the molecule in question. The formula 1/A
=1/2f1/r +1/s1/2dhg gives back the radius of the sphere for
a spherical molecule andr for a long cylindrical one. To use
this heuristics in practice on realistic structures, we first de-
fine a trend line to act as the axis of rotation for the cylinder.
Next, the radius of the cylinder is calculated by computing
the distance from each atom to the axis. We find that defining
the radius to include only 75% of the atoms within the cyl-
inder gives better results compared to the rigorous electro-
static estimates ofA. The top and bottom sides are defined so
as to include all atoms, thus defining the cylinder heighth.

The arguments and the formula above are not meant to
be precise, but to give a quick way of estimatingA. How-
ever, when compared to the correct PEP values, the results
are reasonable, as shown in Table I. TheDGel values are
computed usingein=1 andeout=80, with either the numerical
PB or GBe fEq. s18dg using the heuristic values ofA.

IV. RESULTS AND DISCUSSION

The goal of this section is to assess the accuracy of the
GBe model relative to the PB treatment, and compare its
performance with the conventional GB model. To this end,
the electrostatic part of the solvation free energy is calculated
for realistic molecules representing various structural classes:
DNA, myoglobin, thioredoxin, lysozyme, andb-hairpin, as
well as an artificial perfectly spherical “molecule” of radius
15 Å ssphere-15 Åd. All the structures and details of the cal-
culations were described in the “Methods.” We use the fol-
lowing naming convention here when referring to the GB
models considered here:sid GBesexactd—the method based
on Eq.s21d sfor b,1d or Eq.s23d sfor b.1d. Strictly speak-
ing, the model is only exact for a perfect sphere, in the limit
of infinite number of terms kept. In practice, the terms are
summed up until the result is essentially exact on a spheresto
within 10−6 of the exact solutiond; sii d GBe—the approxima-
tion given by Eq. s18d swith a=0.57 unless otherwise
statedd; and siii d the conventional GB methodfEq. s1dg.

A. Effect of parameter a on GB e accuracy

Before applying the GBe model to the various structures
described above, we want to see how the value of the param-
eter a, theoretically found to bea<0.57 in the limit of an
infinitely large molecule fsee Appendix A, Eqs.
sA13d–sA15dg, works for a realistic biomolecule of finite
size—myoglobinssee Fig. 4d. In particular, we explore the
sensitivity of the solvation energy to variation ofa. As sug-
gested by Eq.s14d, reasonable values ofa may be between
0.5 and 1. For comparison, we also computeDGGB using
GBesexactd and conventional GB, the latter being equivalent
to GBe with a=0.

The resultssFig. 4d indicate that GBe with a<0.57 gen-
erates a plot very close to both the numerical PB and
GBesexactd. Over a range ofb values the difference between
GBe and PBsMEADd is comparable to the difference be-
tween solvation energies predicted by two different PB solv-
ers: DELPHI-II and MEAD, especially aroundb=1/80 cor-

TABLE I. Exact sPB-basedd and heuristic electrostatic radii of some mol-
ecules and respective solvation energies.

A DGel

Molecule PEP Heuristic PB HeuristicA

Myoglobin 19.0 18.5 −2969.2 −2969.4
DNA 13 13.3 −4701.8 −4701.0
Thioredoxin 17.7 15.3 −1559.5 −1559.7
Lysozyme 18.2 24.3 −2053.1 −2051.6

FIG. 4. Solvation energies for myoglobin: difference between various meth-
ods and the particular numerical PB used as referencesMEADd. sad–sdd
GBe: sad a=0.75,sbd a=0.65,scd a=0.57,sdd a=0.50;sed GBesexactd, sfd
another popular PB solversDELPHId, sgd conventional GB.
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responding to the typical case of aqueous solvation. At the
same time, the conventional GB shows considerable devia-
tion form the PB.

A conclusion can be made that our “first principle” value
of a<0.57 is a reasonable choice for globular molecules.
This result is confirmed by further analysis presented below.

B. Solvation energies for an ideal sphere

Since Kirkwood’s equation is exact for a sphere, we can
use the model molecule sphere-15 Å described above to test
not only the GB but also the numerical PB solvers. In this
section,DGel is calculated using the GBe method as well as
two conventional numerical PB packages: MEAD and
DELPHI-II. Note that GBesexactd is actually exact for a
sphere because it is mathematically equivalent to Kirkwood’s
equation swithin the desired accuracyd. Therefore, the
GBesexactd data set is used here as a reference. The results
are shown in Fig. 5. All methods exhibit good agreement
with the exact solution in theeout.einsb−1.1d domain. The
conventional GB deviates from the exact solution in the op-
posite limit, which is best seen in Fig. 5sbd. The physically
important asymptoticsDGsolv,sSqid2/A in the limit b→`
is not met by conventional GB equation. Curiously, both of
the numerical PB methods used hereswith the reasonable
input parameters and default convergence criteriad fail to

produce even a qualitative correspondence with the exact
solution in this limit. Exploring the origins of this behavior is
beyond the scope of this paper; it is possible that modifica-
tions to the corresponding algorithms can alleviate the prob-
lem. At the same time, the GBe curve can only be distin-
guished from the exact solution on the fine-scale plotfsee
Fig. 5sbdg. The GBe plot coincides with GBesexactd at b
→0, b=1, andb→`, and is closer to the exact solution than
any other method—including numerical PB—considered
here in the entire possible range ofb. Of course, one should
keep in mind that this strong statement is only valid for a
perfectly spherical molecule.

C. Performance of the GB e model on realistic
molecules

We continue to explore the performance of the GBe
model on realistic biomolecules, Fig. 6. Since no exact solu-
tion of the PB equation is available for arbitrarily shaped
biomolecules, we use numerical PBsMEADd as reference.
For each structure, we computeDGel with GBe using the first
principle a=0.57, as well as the value ofa that gives the
best agreement with the numerical PB for the given mol-
ecule. We also compare GBe and GBesexactd, which allows
us to answer the following important question: is it likely
that we can improve GBe for an arbitrary realistic molecule
by keeping higher order terms in Kirkwoods’s exact solution
before making the key approximation that allowed us to sum
the corresponding infinite series and arrive at Eq.s18d?
Needless to say, GBesexactd is not exact in this case, but it is
the best one can do assuming underlying spherical geometry.

As seen from Fig. 6, the GBe methods give equally good
agreement with the numerical PB for both very largeb−1 and
for b→1. sNote that since we have found that the reference
PB solvers we use here are inadequate forb.1, we do not
consider this domain for the realistic molecules.d The curves
resulting from the best choice ofa for the given molecule are
close to those obtained with the first principlea=0.57, sug-
gesting that the latter is suitable for the generic case. Setting
a to certain particular value for all structures makes the GBe
model parameter-free.

Meanwhile, the conventional GB method gives a large
error in the range of 2&b−1&20. Note that while for three
of the four structures the GBesexactd method is most accu-
rate of the three GB methods tested, it is not the case for
lysozyme, Fig. 6sdd. This may not be so surprising given that
among the four structures lysozyme differs most from the
underlying model: while the other three structures are basi-
cally convex, lysozyme has a distinct binding pocket. The
important conclusion here is that we are reaching the limit of
the accuracy here, at least within the GB model based on
Green’s function derived for a perfect sphere: the extra com-
putational expense of the more elaborate GBesexactd sum-
mation may not pay off. However, the GBesexactd method
has a clear way of controlling its accuracy, at least for mol-
ecules whose shape is close to spherical: the more terms in
the series Eqs.s21d are retained, the higher is the accuracy,
albeit at a larger computational cost. Still, while the
GBesexactd method is mathematically equivalent to Kirk-

FIG. 5. Solvation energy for sphere-15 Å:sad calculated bys1d conventional
GB, s2d the exact solution and GBe with a=0.57 sthe curves virtually co-
incided, s3d MEAD, s4d DELPHI with 5000 maximum iterations,
s5d DELPHI with 1000 maximum iterations;sbd difference between exact
values ands1d conventional GB,s2d GBe with a=0.57,s3d MEAD.
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wood’s original solution, the series in Eqs.s20d–s23d con-
verge much faster than those in Eqs.s8d and s9d, especially
for small or largeb. Therefore, a relatively small number of
terms may be sufficient, leading to reasonable computational
costs.

D. Effective dielectric constant: Can it be larger
than eout?

Consider two charges immersed in low dielectric me-
dium ein surrounded by high-dielectric mediumeout. Part of
the electrostatic field lines are located completely within the
low-dielectric medium, while the other lines lie partly be-
yond it. Then it could be expected that the Coulomb interac-
tion energy of these charges should be betweenqiqj / r ijeout

and qiqj / r ijein. In other words, it seems natural for the
charges to “feel” some effective medium with dielectric con-
stanteeff such thatein,eeff,eout.

It has been observed,8 however, that in PB calculations
eeff may be larger thaneout for some charge pairs. Figure 7
illustrates the reason for such a behavior. Ifein!eout, the
electric field lines are “drawn” into the surrounding high-
dielectric medium, thus shiftingeeff towards higher values. In
addition, the lines go a much longer way ineout medium,
which makes the charges feel as if they were farther apart
than they actually are.

The ability of an approximate theory to reproduce this
nontrivial behavior may be used as a test of the theory’s
physical consistency. Let us compare conventional GB and
GBe methods in this respect. Based on Coulomb’s law, we
defineeeff as follows:

FIG. 6. Solvation energy forsad b-hairpin,sbd DNA, scd lysozyme, andsdd thioredoxin calculated by conventional GB, GBesexactd and GBe methods, relative
to numerical PB.

FIG. 7. Electric field lines between two charges, +q and −q, located inside
a spherical “molecule” with dielectricein surrounded by medium with di-
electriceout. Solid lines,b=1/80; dashed lines,b=1, e.g., infinite uniform
medium.
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qiqj

eeffr ij
=

qiqj

einr ij
+ DGij =

qiqj

einr ij
+ qiqjFsr i,r jd, s24d

where we note that the full interaction energy is a sum of the
vacuum and solvation parts.

If the conventional GB method is usedfsee Eq.s1dg, then

eeff =
ein

1 − s1 − bdv
, v =

r ij

f i j
GB. s25d

Sincer ij ø f ij
GB fsee Eq.s2dg, it follows that vø1 and there-

fore eefføeout. So, the conventional GB method cannot yield
valueseeff.eout, in principle.

Meanwhile, whenFsr i ,r jd is calculated using Eq.s17d or
Eq. s18d,

v = S r ij

f i j
GB + ab

r ij

A
D/s1 + abd

=
r ij

f i j
GB +

ab

1 + ab
S r ij

A
−

r ij

f i j
GBD . s26d

So, if f ij
GB.A, it may happen thatv.1. This means that

GBe method may exhibiteeff.eout in contrast to conven-
tional GB. For example, the highesteeff for a sphere is
achieved when the two atoms are at the largest possible sepa-
ration of r ij =2A, in which case

eeff

eout
= S1 − a

1 − b

1 + ab
D−1

. s27d

In the typical case ofein=1, eout=80, and witha=0.57, the
maximum value ofeeff predicted by the GBe is ca. 180. The
fact thateeff may exceedeout within the GBe model has also
been confirmedsresults not shownd by direct calculations for
the realistic test molecules described above.

E. Do effective Born radii depend on dielectric?

The key premise of the GB method is that it yields a
good estimate of the electrostatic part of the solvation free
energy provided that the effective Born radiiRi are correct.31

However, when one calculates the solvation energy as a
function of the solvent/solute dielectric, a natural question
arises: should the effective radii depend onein and eout? As
we have already seen, the derivation of the GBe theory in-

troduced here implies that the effective radiiR̃ need to be
computed only once atb=ein /eout→0, and using an
e-dependent set of effective radii would be wrong. Still, one
may wonder if the use ofe-dependent radii may rescue the
conventional GB theory based on Eqs.s1d and s2d, yielding
an approximation forDGel over the entire range ofein and
eout as good as the GBe, but without the extra physics of
GBe? To answer this question we have computedDGel for a
perfect sphere using GBe methodfEq. s17dg and the conven-
tional theoryfEq. s1dg with e-dependent set of effective radii,
comparing both results to the exact solution available in this
casessee Fig. 8d. To obtain the explicit dependence of theRi

on the dielectric constants, we first compute the exactDGii
el

via Kirkwood’s solution and then use this value to obtain
Ri sbd from Eq. s3d.

The results shown in Fig. 8 clearly indicate that the use
of e-dependent radii set does not improve the performance of
the conventional GB formula—its accuracy in computing
DGel is far worse than that of the GBe. If anything, using

R̃i =Rsb→0d in the conventional formula gives better results
than thee-dependentRi’s sdashed-dotted curve in Fig. 8d,
although still far from GBe and the exact solution. As previ-
ously stated, this is because the conventional formulafEq.
s1dg lacks some essential physics. In fact, one can easily see
that Eq.s1d is the asymptotic case of the GBe fEq. s17dg in
the limit ein /eout→0, but asein /eout becomes finite, the con-
ventional theory deviates from the exact solution. In contrast,
GBe is always close to it, coinciding with the exact solution
in both limits ein /eout→` andein /eout→0.

While e-independent effective Born radii is the correct
choice for globular molecules and one dielectric boundary,
this may or may not be the case in systems of more complex
geometry or more than two dielectric media. In particular, a
GB theory withe-dependentRi’s was reported as being suc-
cessfully applied to modeling of peptides and proteins in
presence of a membrane.16,40

V. CONCLUSION

In this work we have proposed a generalized Born model
GBe applicable in the entire range of solvent/solute dielec-
trics. The model contains no fitting parameters, and its main
formula is derived as an approximation to the exact Green
function for a perfect sphere. Relative to the conventional
GB model based on Still’s equation, the present approxima-
tion has only one extra term. However, unlike the conven-
tional GB model, our model captures the essential physics of
the dielectric response for all values ofein andeout.

The GBe model is first tested on a charge distribution
inside a perfect sphere of 15 Å radius: the solvation energies
agree to within 3 kcal/mol with the exact values obtained
from the Kirkwood solution over the entire range of solute
and solvent dielectrics. Curiously, we have found that some
conventional PB solvers, such as MEAD or DELPHI, predict

FIG. 8. Solvation energies for sphere-15 Å relative to exact treatment:s1d
GBe, s2d conventional GB withe-dependent set of effective radii,s3d con-
ventional GB with the same set of fixed effective radii as ins1d scomputed
exactly forein=1, eout→`d. Since GBe curve almost coincides with the axis,
same curves are presented in the inset to show details.
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unphysical solvation energies in the domaineout,ein. We
have continued testing the current GB model against numeri-
cal PB on realistic molecules representing various structural
classes: myoglobin, B-DNA,b-hairpin, lysozyme, and
thioredoxin. In all cases, the current GB model has outper-
formed the conventional model considerably. Notably, in the
most important regioneout@ein, the error in the calculated
solvation energy, relative to the PB solver used as a reference
sMEADd, is comparable to the difference between the values
predicted by another common solversDELPHId and the
same reference.

Another line of evidence in support of the claim that
some essential physics has been introduced into the current
model comes from the fact that, unlike the conventional GB
formula, the GBe model is capable of reproducing the un-
usually high values of effective dielectric constants. It has
been known for a long time that the PB equation predicts,
somewhat counterintuitively, values of the effective dielec-
tric constantsbetween some pairs of charges in moleculesd to
be larger than that of the solvent dielectric. The inability of
the conventional model to account for that behavior often
served as a basis of critiques of its underlying physical prin-
ciples. We have shown how these high effective values are
generated within the current GBe model, and explained their
physical origin.

Finally, we note that the current model is particularly
well suited to be the basis of the implicit solvent representa-
tion in molecular dynamics simulations. Its formula is no
more computationally complex than the conventional GB
formula which has been successfully used in many popular
MD packages.
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APPENDIX A: DERIVATION OF OPTIMAL a

Let us find thebest, in a sense described below, valuea
to be used in approximate Eq.s17d or Eq. s18d. Denote the
exactsed and approximatesad series in Eq.s14d as

gij
sed = o

l=0

`
tij
l Plscosud

1 +
l

l + 1
b

,

sA1d

gij
sad =

1

1 + ab
Fo

l=0

`

tij
l Plscosud + abG .

While a may be found exactly for every particular pairsi , jd
from equationgij

sed=gij
sad, all sucha’s will be different in a

general case. Since we need one universal constant value
instead, we will seeka such that the square-average error

ksgij
sed−gij

sadd2l is minimized. The average is taken on a sphere
of unit radius with a weight functionw st ,ud=ps1−t2dsinu
to take into account the system’s geometry and symmetry:

ksgij
sed − gij

sadd2l = pE
0

1

dtE
0

p

dus1 − t2dsinusgij
sed − gij

sadd2.

sA2d

Atom sizes are neglected in this derivation, which makes the
result exact in the limit of a large molecule:
smolecule sized / satom sized→`. It should be therefore a
reasonable approximation for large biomolecules such as
proteins or DNA.

To find the error’s minimum, we differentiate the penalty
function:

]

]a
fsgij

sed − gij
sadd2g = − 2sgij

sed − gij
sadd

]

]a
gij

sad = − 2sgij
sed − gij

sadd

3F b

1 + ab
−

gij
sads1 + abdb
s1 + abd2 G

=
2b

1 + ab
sgij

sed − gij
saddsgij

sad − 1d

= 0. sA3d

In the explicit form

gij
sed − gij

sad = o
l=1

`

tij
l Plscosud1 1

1 +
l

l + 1
b

−
1

1 + ab2 , sA4d

gij
sad − 1 =

1

1 + ab
o
m=1

`

tij
mPmscosud, sA5d

therefore the master equation fora takes the following
closed form upon dropping constant multipliers:

E
0

1

dtE
0

p

dus1 − t2dsinu3ol=1

`

o
m=1

`

tl+mPlscosudPmscosud

31 1

1 +
l

l + 1
b

−
1

1 + ab24 = 0. sA6d

Since the variablest and u are separable, one can easily
integrate to find

E
0

1

dts1 − t2dtl+m =
1

l + m+ 1
−

1

l + m+ 3

=
2

sl + m+ 1dsl + m+ 3d
, sA7d

TABLE II. Values of a for selectb.

b 1/1000 1/80 1/10 1/2 2 10 80 1000
a 0.580 112 0.579 941 0.578 725 0.574 613 0.567 834 0.561 772 0.559 536 0.559 200
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E
0

p

duPlscosudPmscosudsinu =
2

l + m+ 1
dlm, sA8d

wheredlm is the Kronecker’s delta. Thus, the double sum in
Eq. sA6d is reduced to a single series

o
l=1

`
2

s2l + 1ds2l + 3d
2

2l + 11 1

1 +
l

l + 1
b

−
1

1 + ab2 = 0.

sA9d

Let us rewrite this equation asS sbd−s/ s1+abd=0, where

Ssbd = o
l=1

`
1

s2l + 1d2s2l + 3d
1

1 +
l

l + 1
b

= o
l=1

`
l + 1

s2l + 1d2s2l + 3dsl + 1 + lbd

=

s1 − bdFs+ bS3s+
4

3
D + b2G + bs1 + bdFcS1

2
D − cS 1

1 + b
DG

s1 − bd2s1 + 3bd
, sA10d

s= o
l=1

`
1

s2l + 1d2s2l + 3d
=

p2

16
−

7

12
< 0.033 516 9, sA11d

andc szd is the logarithmic derivative of gamma function,c szd=G8szd /Gszd. Finally we obtain

a =
1

b1 ss1 − bd2s1 + 3bd

s1 − bdFs+ bS3s+
4

3
D + b2G + bs1 + bdFcS1

2
D − cS 1

1 + b
DG − 12 . sA12d

In the key limit cases the above expression is simplified as

asb → 0d =
32s3 ln 2 − 2d

3p2 − 28
− 1 < 0.580 127, sA13d

asb → 1d =
4s3p2 − 28d

42zs3d + 3p2 − 76
− 1 < 0.571 412, sA14d

asb → `d =
3s3p2 − 28d

164 − 9p2 − 96 ln 2
< 0.559 170, sA15d

where z snd is Riemann’s zeta function. Functiona sbd is
monotonous and has no singularities. More numerical values
are presented in Table II. As one can see,a varies only
slightly over the entire range ofb values.

APPENDIX B: SUMMATION OF KIRKWOOD SERIES

According to Kirkwood,34 the electrostatic energy from a
pair of interacting charges to solvation energy of a spherical
molecule is

DGij
el , o

l=0

`
tlPlsxd

1 +
l

l + 1
b

, sB1d

where t=r ir j /A
2,0, t,1,x=cosu ,u being the angle be-

tween vectorsr i and r j ssee Fig. 2d, and b=ein /eout.0;
Pl sxd is Legendre’s polynomial. In the case of self-term con-
tribution, the series is as follows:

DGii
el , o

l=1

`
tl

1 +
l

l + 1
b

. sB2d

Note that both series diverge att→1, thus precluding effec-
tive numerical implementation of the equations. The goal of
this appendix is to regularize the series in Eqs.sB1d andsB2d
for the purpose of numerical calculations.

1. Case ein <eout

First, consider the caseb=ein /eout,1. Let us develop
the following Taylor’s series:

1

1 +
l

l + 1
b

=
1

1 + b −
b

l + 1

=
1

1 + b

1

1 −
1

l + 1

b

1 + b

=
1

1 + b
o
n=0

` S b

1 + b
Dn 1

sl + 1dn . sB3d

Substitution of Eq.sB3d into Eq. sB2d yields
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o
l=0

`
tl

1 +
l

l + 1
b

=
1

1 + b
o
l=0

`

tlo
n=0

` S b

1 + b
Dn 1

sl + 1dn

=
1

s1 + bdton=0

`

o
l=0

` S b

1 + b
Dn tl+1

sl + 1dn

=
1

s1 + bdton=0

` S b

1 + b
Dn

Linstd, sB4d

where Linstd is the polylogarithm function

Linstd = o
l=0

`
tl+1

sl + 1dn . sB5d

In particular, Li0std= t / s1−td and Li1std=−ln s1−td. For the
pair interaction termDGij

el we substitute Eq.sB3d into Eq.
sB1d to obtain

o
l=0

`
tlPlsxd

1 +
l

l + 1
b

=
1

s1 + bdton=0

`

o
l=0

` S b

1 + b
Dntl+1Plsxd

sl + 1dn

=
1

s1 + bdton=0

` S b

1 + b
Dn

Qnst,xd. sB6d

Here, for the sake of brevity, we have introduced a function

Qnst,xd = o
l=0

`
tl+1Plsxd
sl + 1dn . sB7d

Though there is no general simplification for this series,
Q0st ,xd andQ1st ,xd may be found as follows:

1

t
Q0st,xd = o

l=0

`

tlPlsxd =
1

Î1 − 2xt + t2
, sB8d

which is a well-known relation for Legendre’s polynomials.
Now, note that

d

dt
Qnst,xd = o

l=0

`
tlPlsxd

sl + 1dn−1 =
1

t
Qn−1st,xd, sB9d

therefore

Qnst,xd =E
0

t 1

t
Qn−1st,xddt. sB10d

In particular,

Q1st,xd =E
0

t dt

Î1 − 2xt + t2
= ln

t − x + Î1 − 2xt + t2

1 − x
.

sB11d

Consecutive use of Eq.sB10d allows one to expressQnst ,xd
via elementary functions and Likszd of the order up tok=n.

To summarize, the following equations are obtained:

o
l=0

`
tl

1 +
l

l + 1
b

=
1

s1 + bdton=0

` S b

1 + b
Dn

Linstd sB12d

=
1

s1 + bdtF t

1 − t
−

b

1 + b
lns1 − td

+ o
n=2

` S b

1 + b
Dn

LinstdG , sB13d

o
l=0

`
tlPlsxd

1 +
l

l + 1
b

=
1

s1 + bdton=0

` S b

1 + b
Dn

Qnst,xd sB14d

=
1

s1 + bdtF t
Î1 − 2xt + t2

+
b

1 + b
ln

t − x + Î1 − 2xt + t2

1 − x

+ o
n=2

` S b

1 + b
Dn

Qnst,xdG . sB15d

EquationssB12d andsB14d are valid and converge for anyb.
They are especially computationally efficient for smallb
when the last term proportional tob2 is negligible, and the
first two terms alone may provide the desirable accuracy.

2. Case ein >eout

Consider now the caseb.1. One can obtain the follow-
ing series forl .0:

1

1 +
l

l + 1
b

=
l + 1

ls1 + bd + 1

= 1 −
lb

ls1 + bd + 1

= 1 −
b

1 + b

l

l +
1

1 + b

= 1 −
b

1 + b

1

1 +
1

ls1 + bd

= 1 −
b

1 + b
o
n=0

`
s− 1dn

lns1 + bdn . sB16d

Substitution of Eq.sB16d into Eq. sB2d yields
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o
l=0

`
tl

1 +
l

l + 1
b

= 1 +o
l=1

`

tlF1 −
b

1 + b
o
n=0

`
s− 1dn

lns1 + bdnG
= 1 +

t

1 − t
−

b

1 + b
o
n=0

`
s− 1dn

s1 + bdno
l=0

`
tl

ln

=
1

1 − t
−

b

1 + b
o
n=0

`
s− 1dn

s1 + bdnLinstd. sB17d

By analogy, we obtain for the pair interaction term

o
l=0

`
tlPlsxd

1 +
l

l + 1
b

= 1 +o
l=1

`

tlPlsxdF1 −
b

1 + b
o
n=0

`
s− 1dn

lns1 + bdnG
= 1 +S 1

Î1 − 2xt + t2
− 1D

−
b

1 + b
o
n=0

`
s− 1dn

s1 + bdno
l=1

`
tlPlsxd

ln

=
1

Î1 − 2xt + t2

−
b

1 + b
o
n=0

`
s− 1dn

s1 + bdnQn
†st,xd, sB18d

where another auxiliary function was introduced,

Qn
†st,xd = o

l=1

`
tlPlsxd

ln
. sB19d

Note that for 0ø tø1 and −1øxø1 the Legendre polyno-
mial is also bounded, −1ø Plsxdø1, and the following in-
equalities hold:

uQn
†st,xdu ø o

l=1

`
tl

ln
= Linstd ø Lins1d = zsnd. sB20d

The same estimate holds forQnst ,xd.
Comparing definitionsB19d with Eq. sB7d, it can be eas-

ily shown by analogy that

Q0
†st,xd = − 1 +

1
Î1 − 2xt + t2

, sB21d

Q1
†st,xd = − lnF1

2
s1 − xt + Î1 − 2xt + t2dG , sB22d

Qn
†st,xd =E

0

t 1

t
Qn−1

† st,xddt. sB23d

Using Eq.sB23d recursively,Qn
†st ,xd may be expressed via

elementary functions and Likszd of the order up tok=n.
Finally, the following equations are obtained:

o
l=0

`
tl

1 +
l

l + 1
b

=
1

1 − t
−

b

1 + b
o
n=0

`
s− 1dn

s1 + bdnLinstd sB24d

=
b

1 + b
+

1

1 + b

1

1 − t
−

b

s1 + bd2 lns1 − td

−
b

1 + b
o
n=2

`
s− 1dn

s1 + bdnLinstd, sB25d

o
l=0

`
tlPlsxd

1 +
l

l + 1
b

=
1

Î1 − 2xt + t2
−

b

1 + b
o
n=0

`
s− 1dn

s1 + bdnQn
†st,xd

sB26d

=
b

1 + b
+

1

1 + b

1
Î1 − 2xt + t2

−
b

s1 + bd2 ln
1 − xt + Î1 − 2xt + t2

2

−
b

1 + b
o
n=2

`
s− 1dn

s1 + bdnQn
†st,xd. sB27d

It is noteworthy that for a pair of charges such thatu
=0, Plscosud;1, and the Kirkwood equationss8d and s9d
coincide. It is easy to see that the optimized series also co-
incide in the limitu→0: Eq.sB14d reduces to Eq.sB12d, and
Eq. sB26d reduces to Eq.sB24d, as expected.

Note that the terms that contain 1/s1−td and lns1−td in
Eqs.sB13d andsB25d have a singularity att→1. Terms that
containÎ1−2t cosu+ t2 in Eqs.sB15d andsB27d only have a
singularity whent→1 and cosu→1 simultaneously, which
can never happen because atoms do not overlap. Functions
Linstd, Qnst ,xd, andQn

†st ,xd are all bounded from above by
the Riemann zeta functionzsnd fsee Eq. sB20dg. Since
zs2d=p2/6 andzsnd decreases withn, the terms proportional
to Linstd, Qnst ,xd, andQn

†st ,xd do not have any singularities
for nù2.
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