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A generalized Born(GB) model is proposed that approximates the electrostatic part of
macromolecular solvation free energy over the entire range of the solvent and solute dielectric
constants. The model contains no fitting parameters, and is derived by matching a general form of
the GB Green function with the exact Green’s function of the Poisson equation for a random charge
distribution inside a perfect sphere. The sphere is assumed to be filled uniformly with dielectric
medium ¢;,, and is surrounded by infinite solvent of constant dielectgg This model is as
computationally efficient as the conventional GB model based on the widely used functional form
due to Stillet al.[J. Am. Chem. Soc112, 6127(1990], but captures the essential physics of the
dielectric response for all values ef, and €, This model is tested against the exact solution on

a perfect sphere, and against the numerical Poisson—Boltzr{RaBn treatment on a set of
macromolecules representing various structural classes. It shows reasonable agreement with both
the exact and the numerical solutions of the PB equdtidrere availableconsidered as reference,

and is more accurate than the conventional GB model over the entire range of dielectric values.
© 2005 American Institute of Physid©OI: 10.1063/1.1857811

I. INTRODUCTION AGg=AGg( €, €oy) Calculated via the GB formula above

corresponds to the electrostatic free energy of transferring

An accurate description of the solvent environment isye molecule from a medium with the same dielectric con-

essential for realistic biomolecular simulations, but may besnt as the interior of the molecule,, into the medium of

come very expensive computationally. The analytic generalyiq|ectric €,y See Fig. 1. The most commonly used form of
ized Born(GB) approximation is a computationally effective ¢cs is the one due to Stift:

way to calculate the main contribution to the total solvation
free energy of the molecule—its electrostatic ph@,. The fGB = [rﬁ +RR; exp(- fﬁ/4Ra R)IY2, 2)
methodology has become poputal® especially in molecu-
lar dynamics applicatiot2* due to its relative simplicity although other expressions have been propdSéayhich
and computational efficiency, compared to the more standar@Pproach the same limits as the above formula;fer- 0 and
numerical solution of the Poisson—Boltzmai#B) equation.  Iij— . For a hypothetical molecule with a single chage
Both the GB and linear PB approximations share the
same underlying physics of the continuum dielectric model
in which discrete solvent molecules are replaced by an infi-

nite continuum medium with the dielectric properties of the €in €
solvent: despite the fundamental nature of the approxima- 0
——

tion, the model has enjoyed considerable success in calculat-
ing various macromolecular properti&
Since the first publications on the GB modei, has

almost invariably been written in the form GEn ,Sout_l A\ AG(Ein ,sm_z)
1/ 1 1 qid; o
AG zEAG.GB:__(___)E i ,
“ ij ! 2\ €n  Eur/ jj fGB(rieriaRj) 5
(1)

where it is assumed that the molecule is filled uniformly with
material of dielectric constang,, and is surrounded by a
solvent of dielectric value,; (e.g., 80 for water at 300 K
The sum above is over all pairs of atorngnd j, with r;

representing the distance between them, gntbeing the _ _
charge at the center of atdmSo-calleceffective Born radius FIG. 1. The thermtcr)g)s/namlc cycle used to calculate the electrostatic part of
the free energydAG""s{1— 2) of transferring a molecule from a medium

of atomi is_der_10t_ed byR;; it is re_lated FO the _degree of the yith dielectric constank;, into a medium of dielectric constarmt,. The
atom’s burial inside the low dielectric region. Note that interior of the molecule has dielectrig,.

0021-9606/2005/122(9)/094511/15/$22.50 122, 094511-1 © 2005 American Institute of Physics

Downloaded 09 May 2005 to 128.173.54.52. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.1857811

094511-2 Sigalov, Scheffel, and Onufriev J. Chem. Phys. 122, 094511 (2005)

atr;, Eq. (1) takes on a particularly simple form depend org,, therefore aﬁecting&Gglanskl—Q). (The only
) exception is a spherical ion with a single charge in its center,
AGE ~ AG@B:_}(i _i)q_i. (3) in which case the Born formula corresponds to the exact
" " 2\ €, €u/ R solution of the Poisson equationThis argument is con-

) ) firmed by the numerical calculationsee below, which

Here the reader can recognize the fa_mous_ expression due dfow a large discrepancy between the,(e;,, €,,) values
Born for the solvation energy of a smgle_lon of rgdlas computed within the GB models based on Et). and PB
Reasonable agreement of this formula with experiment fof,,qels. The purpose of this work is to introduce the correct
simple monovalent ions was arguably one of the first suctnctional dependence afG, upon both the internal and
cesses of the implicit solvent model based on continuumyyiernal dielectrics, based on rigorous physical principles.
elect_rostatéf:s. The key premise of the GB approximation is  kormally, the key principle of the GB model can be writ-
that if AG" [and henceR; via the inverse of EQ(3)] IS (gn in terms of the Green functidhof the corresponding

available for every atomin the molecule, one can use these p,isson equatiofwe do not consider the effects of salt Here
effective radii in Eq(1) to get an estimate afG,,. Note that

for a molecule ofN atoms, a computation via Eql) in- V[e(r) VG(ri,rj)]=—-4mdr;-ry), (4)
volves estimation oﬁN(N+1) terms:N diagonal self-energy
terms AGS® and N(N-1) off-diagonal “cross” terms
AGEP=AGS®. Thus, knowledge of onl self-energy terms Glrr) = _1r . F(riry), (5)
AG%B, or equivalently, values dR; for each of theN atoms Iri= i|

in the molecule gives, via E¢l), an estimate of the remain- \yhere the effects of the nontrivial molecular boundary are

. 1 ; . e GB
ing ~3N? charge-charge interaction energi#&;™. In our  empedded in the reaction field component of the Green func-
view, this is the key assumption and the essence of the GByp, F(r;,r;). The latter can be used to finkiG,, via

model. It was shown earligr that if the self-energiedG¢'
and henceR, are computed accurately enough using the PB AG. = 1 E(r 10 6
approach, then Eqgl) and(3) give very reasonable, relative Ce 2E (Far;)aic- ©
to the PB treatment, estimates of the cross-tet@g® for

whose solution is

ij

biomolecules in watete,=1,€,,=80). We now postulate the generalized Born model in its most
There are many situations when it is desirable to have ageneral form
efficient estimate ofAG,, as well as of all of the charge- F(rry) = FGB(AGﬁ',AGﬁ-'Ju) 7)

charge interaction energieAGﬁ', as a function of both the
internal and external dielectric constants. For examplpKin  where AGﬁ' and AGE—' are self-energy contributions to the
calculations, a value for the;, larger than 1 may be electrostatic part of the solvation free energy of charmges
appropriaté? e.g., €n,=4. This higher value takes into ac- andg; in the molecule. The goal of this study is to propose a
count, albeit very approximately, the polarizability of the functional form ofFgg that would incorporate a realistic de-
molecular interior. The external dielectric constant may alsgendence on dielectric environments.
be different from its commonly used value of 80 for water at ~ Our strategy is as follows: start with the exact Green
room temperature: the temperature may be different or théunction for a simple geometry and then use it on the left-
solvent may not be pure water. Another situation when ondand side of Eq(7) to suggest a computationally facile form
may needAGg(€pn, €5y IS in calculations of the free energy of Fgg. A natural choice of the model geometry for globular
of transfer AG"@™' of the molecule between two different molecules is a perfect sphere with point charges distributed
media with dielectricsey 1 and e, 5, respectively, since inside—the exact solution of the Poisson equation for this
AGq, is a part ofAG"™"f (along with the nonpolar contribu- system was found a long time ago by Kirkwotdand will
tions). The value ofAG""s'can be directly measured experi- serve as a starting point for this model.
mentally and therefore used in testing and parametrizing of In this study we assume that the self-energy contribu-
an implicit solvent model such as the GB. Since neiygr,  tions AGﬁ' can be computed accurately and in a way that
nor ey, » May not, in general, be equal &y, Eq.(1) needs to  does not depend upon any particular choice of the functional
be used twice in order to compute the electrostatic compoform for Fgg in Eq. (7). While a number of approximate
nent of AG"@! First, one computeAG,(ei, €,ut 1) and then  strategies exist to compute this quantity, or equivalently the
AGg((€n, €out ) t0 Obtain AGY™(1—2)=AG,(e, 60t )  effective Born radius, we use the essentially exact numerical
—AGg((€&n, €out 2); refer to the thermodynamic cycle in Fig. 1. solution of the Poisson equation for this purpose. While ex-
The explicit dependence of theG,, on the value of the pensive, and hardly practical in applications, this approach
internal dielectric constang,, is in the prefactor in Eq(1),  was found to be useful in theoretical studiéss it elimi-
and so when it is combined with E¢2) to calculate the nates one possible source of error and allows us to focus on
transfer energy, this dependence cancels out, leading the functional form of the GB equation.
AGI${1 - 2) being independent of;, (providing that the This paper has the following structure. Our GB method
effective Born radii depend only on the molecular geometry(GBe) is derived from Kirkwood’s exact solution of the Pois-
which is the usual assumptiprirhe following simple argu- son equation for a sphere in Sec. Il. We show how the perfect
ment shows that this cannot generally be true: the distribusphere solution can be transferred to the case of an arbitrary
tion of the polarization charge on the molecular surface doeglobular molecule by expressing the appropriate variables
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B. Local geometry approach for arbitrarily shaped

molecules

The Kirkwood equation$§Egs. (8) and(9)] are exact for
a hypothetical molecule with a perfectly spherical boundary.
However, they cannot be immediately used for realistic mol-
ecules. The problem is that it is not at all obvious how the
values ofA andr;, and therefore;; and 6, should be defined
for a nonspherical molecule. While the distance between the
atomsrij:|ri—rj| can be easily computed for any pair of
atoms in the molecule, the definition of individual(Fig. 2)
requires the knowledge of the molecule’s center, which may
not be defined unambiguously for a molecule of irregular
shape. As long as andr; are not clearly defined, the angle
between them¢, is not known, either. Last but not the least,
via local geometry parameters. Most mathematical details o& suitable definition of the “electrostatic radiud”must be
the derivation are placed in the Appendixes, while physics igiven in the general case of nonspherical geometries. Our
discussed in Sec. Il. The GBmethod is tested on a set of strategy is to express these key quantitids—and
structures described in Sec. lll. The accuracy and perforr,—through the precomputed vaIuesszﬁ'.
mance of the method are compared to those of the existing To this end, we consider two separate limiting cases of
PB and conventional GB methods in Sec. IV. The physicaKirkwood’s solution for the self-energy part, E¢8): 8
origin of unusually high effective dielectric values some-—«~ and8— 0. In the first case only the=0 term survives,
times observed in both the PB and the GB models is diswhile in the other limit we have a geometric series that does
cussed. We also explore the question of whether or not efaot depend or and can be summed exactly. Recalling that
fective Born radii should be considered as dependent on thAGﬁ':éF(ri,ri)qiz, we can formally expres8 andr; via the
solvent or solute dielectrics. The conclusion is given incorresponding&Gﬁ'(,Baoc) andAGﬁ'(,B—>0):

FIG. 2. lllustration for Eqs(8) and(9): a sphere of dielectrig;, of radiusA
with two chargesg; and g; at positionsr; andr; relative to the sphere’s
center. The sphere is surrounded by infinite medium of dieleegic

Sec. V. TP
AGH(B— ) == q—i(— - —)—, (10
2\€n  €u/ A
o @1 1 1

Il. THEORY: e-DEPENDENT GENERALIZED BORN AG;(B—0)=- E —_——-— r

METHOD €n  €u/ Al —t;)
2

A. Kirkwood’s solution for an ideal sphere __ Q_.(i B i) 1 (11)
2\€, €/ A- riZ/A'

We begin by recasting Kirkwood's well-known

solutior?® of the Poisson equation for a spherical molecule inOnce the value of is determined from Eq(10), r; can be
terms of its Green’s function. For further convenience, wWecomputed for every atom via E¢L1), and we can then use

separate the self-contributiof(r;,r;) from the interaction
partF(ri,r)):

°0 |
F(r,ry)sPhere= - : _BE :

A€in 1=0 1 +|_ ! (8)
| + 1'8
gl i
F(ri,rj)sphere: _ ]'-A\ :82 t||P|(COSl9)’ ©)
€in 1=0 |
1+—p

wheret;=r;r;/A% r;=|r;| being the atom’s position relative
to the center of the spherd, is molecule’s radiusg is the
angle betweem; andr;, and B=¢j,/ €, (s€€ Fig. 2

the cosine rule to uniquely define

cosO=(rf+r7=rf)2rr;. (12)

To summarize, we define the effective local geometry
around every pair of charges, based on the known self-
energy of each charge embedded in the molecule. Therefore,
provided thatAGE(8— ) and AGS(8— 0) are known, we
can express all of the input parameters of E®). through
these quantities, and compute all the pair interactions
AG®(€pn, €4y, Which is the goal of the GB theory. This is in
the spirit of, but going beyond, the conventional GB model
in which the key quantity—the effective Born radius—is
computed from the self-energy via E®). To follow the GB
convention of expressingGﬁ' via quantities with the dimen-
sion of length, we compare E() with Eq. (11) to relater;

This solution isexactfor a sphere, and may be expected directly to the corresponding effective Born radius:
to be reasonably accurate for many realistic globular mol-

ecules. The dependence upon the internal dielectric constant riZ:A(A—NRi),

enters in a nontrivial wayin the denominator of the sum-

(13

mand, viagB), and, unlike in the case of the traditional GB where we us® to denote the effective Born radii computed
theory based upon Edql), this dependence does not simply in the limit 8=¢;,/ €,,;— 0. Note that this quantity is close,

cancel out when the transfer energy is computed.

but not exactly equal to the effective radius computed at the
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2000 ' globin. The distribution of effective radii foe,/ e,,=10" is
strongly peaked around the electrostatic radhss19.72 A,
1500 | with the small spread likely due to numerical uncertainties.

1000 |

C. GBe: Improved GB model with  e-dependent

number of atoms

500 | ] Green'’s function
P One of the key advantages of the GB method is that it is
L T 20 ananalyticalformula, which is important when computation
Effective Born radius [A] time is critical, in particular, in molecular dynamics applica-

T _ ; o _ tions. In what follows, we present an effective, accurate, yet
FIG. 3. Distribution of perfect effective Born radii for myoglobin in media P y

With €/ eoy=10° (solid ling) and e/ eq,=1/80 (dashed ling Whene, ~ SIMPlE enough approximation to Kirkwood's solutipBds.
> e, all effective radii are essentially the same and equal to the molecule'$8) and 91
electrostatic radius. Let us rewrite the series in EP) in the following way:

standard solvation conditions,=1, €,,=80, as often used

in the GB literature. We will see later that it Bthat should = = |
be used in the GB formulas of the kind given by Etj. To Tl -1 "'mﬂ

= [+1
sum up, ifA andR; have been computed, the valueg;pénd

i tl. P(cos6) . +§ tl. P(cos6)

cosf needed in the Green functigigs.(8) and(9)] can be 1+ t!j P,(cosh) 1
express_ed through t_hem by simple algebra. _ ~1+ = 1+ap 1 +af
While the meaning and the ways of computing of the
effective Born radii have been extensively discussed in the 1 ” |
literature, in this work we introduce the concept of #lec- =1 rap %tij P(cost) +ap |, (14)

trostatic radius A A discussion about its physical meaning is
therefore required. The defining equation, EL0), is quite
curious, as it effectively states thAG,(B8— =) is indepen-
dent of the charge distribution within the molecule. For a
perfect sphere this result follows directly from Kirkwood’s
solution, and for an arbitrary shape can be qualitatively ex
plained as follows. In the;,— < limit (molecule filled with

where we have made an approximatiddl + 1) = a=const.
This approximation is reasonable flor O, since in this case
[/(I+1) only varies between 1/2 and 1. A value that mini-
mizes the mean-square error of this approximation for a large
spherical molecule has been analytically found to de
~0.57%0.01, the spread being due to weak dependenae of

conductoy the electric field of the charges inside must be ; _ ;
completely screened out by the polarization charges in thgn'8 (see_Appendlx A We later show thar=0.57 is also a
good choice for realistic molecules.

immediate vicinity, to ensure that the electric field inside the : : : , .
bulk of the molecule is zero. Therefore, the polarization Using the well-knqwn identity for Legepdres polynpml—
charges that build up on the dielectric boundary do not “see’als [Eq_. (B8), Appendix B to sum the Series on the .”gr_'t'
the charges inside, their distribution is determined by thé1and side of Eq(14), we obtain the following expression:

geometry of the molecular boundary only, and is completely

independent of the positions of the atomic charges. The only F(r,r)sPhere~ — 1 1-p

relationship between them follows from the overall neutrality ) Aen,1l+ap

of the dielectric, which necessitates thaipolarization 1

charge$=2,q;. The total electrostatic energy of the system is — +aB|. (15
expressed through the volume integral of the electric field, V1 +1tj - 2t; cosd

and since the electric field inside is zero, only the outside

field due to polarization charges on the boundary will con-We now use;;, r;, and cos as defined by the local geometry
tribute. Therefore, the solvation energy of sutlypotheti-  consideration§Egs. (10)~(12)] along with Eq.(13) to ex-

cal) molecule will depend only on its total charge and not onPress the arguments of the above equation through the elec-
how this charge is distributed inside. Note that the electrotrostatic radiusA and the set of effective Born rads;:

static radius of the molecule is nothing else but the limiting

value of the effective Born radii of its atoms in the limit 2,2

€.,/ €ou— . However, whileN separate computations have ~ AX(1 = 2t cosf+ ;) = A= 2rr; cosd+ IXzL

to be performed to compute all of effective Born radii for a

molecule ofN atoms, only one computation is, in principle, 5 (A— r_?)(A_ f)
necessary to estimatg since this quantity is independent of T

the position of the probe chargg inside the molecule. The
point is illustrated in the Fig. 3 below, where the distribution =rij tRR;, (16)
of perfect® i.e., PB-based, effective radii is shown in the

€nl €01 ande,/ ;> 1 limits for a realistic protein myo- which leads to
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1 1 1 1 1 2
F(r,l’-)Spherez—(___) AG |:2AGGI—>—E qq:—(z q) y
v €n  €ut/ Ltap ¢ ij ! 2A€qt ij i 2A€qut\ l
X[—%ﬂf]- (17) B (19
rﬁ +RR This agrees with our earlier observation that in this limit the

The functional form fﬁphef% NFFTRF\’, in the above electrost'c_mc_ par_t of_so_lvatlon energy does not depend on the
] charge distribution inside the molecule.

equation has been derived from Green'’s function of the Pois- While Eq.(17) is an approximation to the exact solution

son equation for a sphere, and is theretotiee best form for ) .

) : for a sphere, one can showee Appendix Bthat it agrees
a hypothetical perfectly spherical molecule. However, for reith the exact formula given b Eq21) in the limits
alistic molecules, we find it to be slightly inferior to the B<1, g>1, and, quite tri\?iall fo?lﬁ—liPerha S itis then
conventionalStill's) form of fi?B from Eq.(2). This is likely ’ ’ + Y, e PS,

due to the fact that, for an elongated molecule, more of then(.)t S0 SUrprising th_at Ed17) gives an e.xcellent agreement
DL . . . with the exact solution for a sphefeee Fig. #)], while Eq.
electric field lines between a pair of distant charges go

through the high dielectric region, effectively reducing the(18) provides a realistic approximation for globular mol-

pairwise interaction. The conventional formf(fﬁE takes this ecules over the entire range gf(see Sec. I. At the same

; . time, the computational expense associated with(E§). is
into account, at least to some extent, by allowing for steeper . )

. . . : not expected to be noticeably different from that of the con-
decay of the interaction with charge-charge distance. In what

follows we will be using the conventional form 6§° from ventional formula, Eq(L). o
Eq. (2), unless otherwise specified. The current model is expected to be effective in molecu-

) . i lar dynamics(MD) calculations. While Eq(18) is more ac-
To summarize, we suggest the following form G . o o
=1, r)a to be used for realistic molecules: e curate than the conventional Ed), it differs from it in only
=~ r) GG, ’ two aspects: the constant prefactor, which has no effect at all

on the computation speed, and the tew8/A. The latter
term depends only on the global shape of the molecule

AGgl =- l(i - i>ﬂl— throughA, which varies slowly and may need to be recalcu-
2\€n €yt 1+ae/ ey lated only once in a while, if at all. It may not even be
1 € €out unrea§onable to assunw?\/dr;; =0, an_d leave the corre-
cB. = = A , (18) sponding term out of the force calculations completely, espe-
fi (rij R Ry) cially in the case of aqueous solvatigh<1. Thus, MD

based on Eq(18) may only be insignificantly slower, while
GB_\/ Sy == Py . o essentially more accurate, than that utilizing the conventional
where fi7"=\rj+RR; exp(-r{j/4RR) for anyi andj, in-  GB of Eq.(1).
cludingi=j. It has not escaped our notice that, while the GB
theory itself has undergone considerable evolution since the
early nineties when this particular form &f® was first in-
troduced by Stillet al, the function itself appears to remain . .
: D. Exact solution for a spherical molecule
superior or equally good compared to other forms that have
been proposed in the literature. We have so far been able to sum the infinite series of the
Parametew has been found by rigorous derivation and Kirkwood equation in an approximate fashion. While we will
therefore it isnota free model parameter; it should be kept inshow in Sec. IV that this approximation is reasonable not
mind though that the value=0.57 minimizes the approxi- only for a sphere but for realistic molecules as well, it is still
mation error for very large spherical molecules with randomdesirable to see if one could obtain a well-behaved analytical
charge distribution. For smaller molecules of complex shap&reen’s function without any approximations, or within such
or with peculiar charge distribution the value@that brings  an approximation that allows full control of its accuracy and
about the best results may be slightly different. However, abecomes exact in some parameter limit. Such a solution
will be shown below, Eq(18) is not very sensitive tax,  would provide a reference point for the current model, and is
thereforea=0.57 is a reasonable estimate for a generic casevaluable even if its computational cost is relatively high. The
The key difference between the traditional form of obvious choice is to retain a large number of terms in the
AGi‘fB, Eqg. (1), and our GB model based on expression Eq. infinite series corresponding to Kirkwood'’s equatid8sand
(18) is that the latter has an extra prefactor and an additional9). In principle, the more terms that are kept, the closer the
term proportional to the rati=¢;,/ 5, and inversely pro- partial sum is to the exact one. However, E. and (9)
portional to the electrostatic radius The presence of this cannot be used in this very form for this purpose because the
term reflects the qualitative difference between the two modseries involved converge too slowly wheérapproaches 1,
els and explains why the traditional formulation does notwhich happens when the atoms are close to the molecular
capture the right dielectric dependence, especially when thsurface(taken to coincide with the dielectric boundaryn
ratio B8 is large. In fact, while the conventional formula fact, both of the Green functions in the original Kirkwood
agrees with the current model in the lint—0, it is very  form of Eqgs.(8) and(9) diverge in the limitt— 1. One can
much different in the other extremg,— «. In the latter case understand the origin of this divergence by invoking the im-
Eq. (18) provides the correct physical asymptotics: age charge considerations: as the charge approaches the di-
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electric boundary, its image approaches the same boundasgries converge for ang, 6, and anyt; <1, and can be well
from the other side, causing the interaction between them tapproximated by partial sums with a reasonable number of

diverge.

terms kept. Varying the number of terms retained, one can

It is therefore critical to improve convergence of the se-adjust the accuracy or time of computation. The singularities
ries by resumming them in an appropriate manner. A possiblef Kirkwood’s original formulag Egs.(8) and(9)] are now
solution is given below, the derivation being detailed in Ap-localized within the first two terms of the each regularized

pendix B[see Eqs(B13) and(B15)]:

1 1‘,3[ G B

F ri,r sphere:_ |n 1_t
(risre) cALLTp| 1ot 148 (1-t;)
o0 ﬂ )n .
+ gz <_1 Ay Lin(ti) |, (20)
F(ri!rj)sphere: - 1 1 _IB [ tIJ
€nAtj 1+ B 1~ 2t cosg+t]
!/—2
. B n tjj —cosf+ V1 - 2t; coso +
1+ 1-cosé
+ i (i)nQ (ti;,cosb) (21)
- 1+B ni\tigs 1

where polylogarithm function Lit) and its generalization
Q,(t,x) are defined in Appendix BEgs.(B6) and(B7)]. It is
shown in Appendix B that Eq$20) and(21) coincide when
i=j. Though Eq.(20) is a particular case of Eq21), the
former is worth keeping for numerical implementation.

equation. Both of these terms are given by simple, closed-
form expressions, well suited for numerical computations.
The functions Lj (t), Q, (t,X), andQl (t,x) do not have any
singularities forn=2 [see Eq(B20)] and can be computed
numerically with any desirable accuracy via recursive rela-
tionships, Eqgs.(B10) and (B23). We find that estimating
AGg through Egs(20) and (21) [or Egs.(22) and (23)] is
only a few times more costly than through the conventional
GB formula, Eqg.(1), but captures the key physics of the
dielectric response missed by the conventional model. The
existence of well-converging equations proves critical for
obtaining a fast yet accurate numerical solution.

I1l. METHODS
A. Structures

We have carried performance tests on macromolecules
representing different structural classes: native myoglobin
(PDB ID 2MB5), thioredoxin (2TRX), hen egg lysozyme
(0LZ5), B-hairpin (2GB1), and B-DNA (10 base-pair du-
plex). We have also used an artificial spherical molecule re-
ferred to as “sphere-15 A.” This is a sphere of radius 15 A
filled with uniform dielectrice;, with 11 chargeg}=+1 lo-

Series(20) and(21) converge forny g, the convergence cated at points(+6,0,0, (0,+6,0, (0,0,8, (£12,0,0,
being fastest for smalp. This case corresponds to low- (9, +12 0, and (0,0,+12 (all coordinates are in ang-

e.g., a protein in water. In the opposite case of lgggehich

are able to use sphere-15 A as a benchmark to test both the

meanse, > €,,, @ computationally efficient series represen-GB and PB numerical methods.

tation also exist$see Appendix B, Eq4B25) and(B27)]:

) _shere__i 1_'8 — ’8 —t..
F(r|,r|) P - einA(l+B)2[B+l_tii 1+,8|n(1 tII)
- - (_ 1)” 1 ..
B2 s g n(t..)} : (22)
1 1-8 1
= . \sphere— _ _—
rury) €nA (1 +B)2[ ' V1- 2t cosg+t2
__B | 1-tjcoso+ V1 -2 cosf+t;
148" 2
s DT
Bn% i B)nQn(tij,cose)], (23)

where function QE (t,x) is defined in Appendix B[Eq.
(B19)]. Equations(22) and (23) are optimized for larges
and converge for any positivg. Again, Egs.(22) and (23
coincide fori=j.

B. Poisson—Boltzmann calculations

Numerical Poisson—-Boltzmann solvers are used in two
ways here. To calculate the electrostatic part of solvation free
energy of each test molecule, MEADRef. 3§ and
DELPHI-II (Refs. 25 and 3)7have been used, with a cubic
box and 0.25 A grid spacing. The convergence criterion used
by MEAD is set to its default value. lonic strength is zero.
Unless otherwise stated, all of the GB vs PB comparisons are
done using MEAD energies as reference.

To compute the perfect effective Born radii of each atom
in the test structure, a Poisson problem is set up and solved
having the dielectric boundary shape of the full molecule
present, but keeping only the charge of that particular atom.
The van der Waals radii of Boritfiand a solvent-probe ra-
dius of 1.4 A are used to define molecular surfabehich is
taken as the dielectric boundary. The accumulation of these
solutions gives the necessary Green’s function information
for use in Eq.(6) for the full Poisson solvation energy and
Eqg. (3) for the perfect effective Born radii. The computer
program PEP developed by BeroZ4 and available via the

No approximations have been made so far in derivatiorinternet(ftp://ftp.scripps.edu/case/beroza/pé&pused for the

of the optimized equations. Both pairs of E¢®0), (21) and

setup and solution of these Poisson problems. The finest grid

(22), (23) are still exact and mathematically equivalent to spacing used in all calculations is 0.07 A, decreasing from
Egs.(8) and(9) for a spherical molecule. The corresponding4 A in eight steps of focusing on the atom in question. We
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TABLE |. Exact (PB-baseyland heuristic electrostatic radii of some mol-
ecules and respective solvation energies.

A AG =4

el g

Molecule PEP Heuristic PB HeuristicA 8

~

Myoglobin 19.0 18.5 -2969.2 -2969.4 Q "
DNA 13 13.3 -4701.8 -4701.0 g

Thioredoxin 17.7 15.3 -1559.5 -1559.7 (2

Lysozyme 18.2 24.3 -2053.1 —-2051.6 3(-:)

<

have verified, by comparison with the exact solution on a
perfect sphere, th@erbased calculations do produce physi-
cally reasonable results even in the cage> €,,, Where the
two other methods failed. However, tirep algorithm is so
computationally intense that we did not use it as a reference ‘ _ o _
for all values Offin and €, FOr a perfect sphere of given FIG. 4. Solvation energies for myoglobin: difference between various meth-

| . B . ods and the particular numerical PB used as referéMieAD). (a)—(d)
radius A, the effective radii are computer exactly via GBe (a) «=0.75,(b) «=0.65,(c) «=0.57,(d) a=0.50:(e) GBe(exad), (f)

M T v T
10 ¢ je 100 1000

out' ~in

Eqg. (13). another popular PB solvéDELPHI), (g) conventional GB.
C. Simple estimation of the effective electrostatic IV. RESULTS AND DISCUSSION
radius

o ) ] The goal of this section is to assess the accuracy of the

The principal way of calculating the effective electro- Gge model relative to the PB treatment, and compare its
static radii is given by Eq(10), and this is how they are performance with the conventional GB model. To this end,
computed in this workA is the limiting value of the effec-  the electrostatic part of the solvation free energy is calculated
tive Born radii for 3>1). However, thepEp calculations in-  for realistic molecules representing various structural classes:
volved are intense, and it would be useful to have an analytipna myoglobin, thioredoxin, lysozyme, ang-hairpin, as
cal way of estimatingh. That will involve the same kind of \ye|| a5 an artificial perfectly spherical “molecule” of radius
derivation, based on the expressions for the electrostatic eqg g (sphere-15 A All the structures and details of the cal-
ergy density, that leads to a closed form expression for thgyations were described in the “Methods.” We use the fol-
effective Born radif’ Here we do not attempt to make the |owing naming convention here when referring to the GB
formal derivations; rather, we propose a simple and quickpodels considered heré) GBe(exac)—the method based
albeit heuristic way to obtain a rough estimate of the effec, Eq.(21) (for B<1) or Eq.(23) (for B> 1). Strictly speak-
ti\{e electrost.atic radius ba§ed on simple phys'ical considermg, the model is only exact for a perfect sphere, in the limit
ations. We will also show directly that, at least in the case ofyf infinite number of terms kept. In practice, the terms are
aqueous solvation of realistic biomolecules, the resulting sols;mmed up until the result is essentially exact on a spitere
vation energy is rather insensitive to variatior!séin within 1076 of the exact solutiop (i) GBe—the approxima-

For a typical globular molecule, the solvation energy de+jgn given by Eq.(18 (with @=0.57 unless otherwise

pends on its overall radiu&Ge~ 1/R. In contrast, for athin  giateq; and(iii) the conventional GB methddg. (1)].
and long cylindrical structurée.g., the DNA, the character-

istic length scale is the cylinder radiuAG,,~ 1/r. Gener-
ally, one may consider that a cylinder of heighand radius
r circumscribes the molecule in question. The formul& 1/ Before applying the GBmodel to the various structures
=1/2[1/r+1/(1/2)h] gives back the radius of the sphere for described above, we want to see how the value of the param-
a spherical molecule andfor a long cylindrical one. To use eter «, theoretically found to bex=0.57 in the limit of an
this heuristics in practice on realistic structures, we first deinfinitely large molecule [see Appendix A, Egs.
fine a trend line to act as the axis of rotation for the cylinder.(A13)—(A15)], works for a realistic biomolecule of finite
Next, the radius of the cylinder is calculated by computingsize—myoglobin(see Fig. 4. In particular, we explore the
the distance from each atom to the axis. We find that definingensitivity of the solvation energy to variation @f As sug-
the radius to include only 75% of the atoms within the cyl- gested by Eq(14), reasonable values @f may be between
inder gives better results compared to the rigorous electrdd.5 and 1. For comparison, we also compi&©® using
static estimates oA. The top and bottom sides are defined soGBe(exac) and conventional GB, the latter being equivalent
as to include all atoms, thus defining the cylinder height to GBe with a=0.

The arguments and the formula above are not meant to  The resultgFig. 4) indicate that GB with «~0.57 gen-
be precise, but to give a quick way of estimatiAgHow-  erates a plot very close to both the numerical PB and
ever, when compared to the correct PEP values, the resulGBe(exac). Over a range of values the difference between
are reasonable, as shown in Table |. Th€, values are GBe and PB(MEAD) is comparable to the difference be-
computed using;,=1 ande, =80, with either the numerical tween solvation energies predicted by two different PB solv-
PB or GBe [Eqg. (18)] using the heuristic values . ers: DELPHI-II and MEAD, especially aroung=1/80 cor-

A. Effect of parameter « on GB € accuracy
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1500 9 produce even a qualitative correspondence with the exact
a solution in this limit. Exploring the origins of this behavior is
10007 beyond the scope of this paper; it is possible that modifica-
— 500 tions to the corresponding algorithms can alleviate the prob-
g lem. At the same time, the GBcurve can only be distin-
T o guished from the exact solution on the fine-scale péate
g ; J Fig. 5(b)]. The GEe plot coincides with GB(exac}) at 8
G 500 R’ —0, B=1, andB— 0, and is closer to the exact solution than
RS ] g ’ . . . .
S any other method—including numerical PB—considered
000 ! here in the entire possible range @f Of course, one should
1.0 -7 keep in mind that this strong statement is only valid for a
1500 HF-=mrrree r v r : perfectly spherical molecule.
1E-3 0.01 0.1 1 10 100 1000
8out/8in
609 _____ C. Performance of the GB € model on realistic
] RN b molecules
S 401 \‘\‘ We continue to explore the performance of the é&GB
£ ] \ model on realistic biomolecules, Fig. 6. Since no exact solu-
3 \ tion of the PB equation is available for arbitrarily shaped
:‘. 0 BN biomolecules, we use numerical RBIEAD) as reference.
‘%@ } 3 t--—T For each structure, we compul&,, with GBe using the first
3 -20- principle «=0.57, as well as the value af that gives the
Qg best agreement with the numerical PB for the given mol-
-40- ecule. We also compare GBind GBe(exac}, which allows
us to answer the following important question: is it likely
-60 r r vy r ooy that we can improve G8for an arbitrary realistic molecule
B3 001 04 gm‘"/gin 10 10 1000 by keeping higher order terms in Kirkwoods's exact solution

before making the key approximation that allowed us to sum
FIG. 5. Solvation energy for sphere-15 &) calculated by(1) conventional  the corresponding infinite series and arrive at Etg)?
GB, (2) the exact solution and GBwith «=0.57 (the curves virtually co- Needless to say, G&exacy is not exact in this case, but it is
incide), (3) MEAD, (4) DELPHI with 5000 maximum iterations, . . .
(5) DELPHI with 1000 maximum iterationgb) difference between exact the best one can d(_) assuming underlylng .sphencal geometry.
values and1) conventional GB(2) GBe with «=0.57,(3) MEAD. As seen from Fig. 6, the GBmethods give equally good

agreement with the numerical PB for both very lagjé and

responding to the typical case of aqueous solvation. At th&r 8— 1. (Note that since we have found that the reference

same time, the conventional GB shows considerable devid2B Solvers we use here are inadequateforl, we do not
tion form the PB. consider this domain for the realistic molecujeBhe curves

A conclusion can be made that our “first principle” value resulting from the best choice effor the given molecule are
of @~0.57 is a reasonable choice for globular moleculesC0Se 0 those obtained with the first principie=0.57, sug-

This result is confirmed by further analysis presented belowdesting that the latter is suitable for the generic case. Setting
« to certain particular value for all structures makes theeGB

model parameter-free.

Meanwhile, the conventional GB method gives a large

Since Kirkwood’s equation is exact for a sphere, we carerror in the range of Z 8~1<20. Note that while for three
use the model molecule sphere-15 A described above to tesf the four structures the GdBexacl method is most accu-
not only the GB but also the numerical PB solvers. In thisrate of the three GB methods tested, it is not the case for
section,AG, is calculated using the GBmethod as well as lysozyme, Fig. &). This may not be so surprising given that
two conventional numerical PB packages: MEAD andamong the four structures lysozyme differs most from the
DELPHI-II. Note that GBi(exac}) is actually exact for a underlying model: while the other three structures are basi-
sphere because it is mathematically equivalent to Kirkwood'sally convex, lysozyme has a distinct binding pocket. The
equation (within the desired accuragy Therefore, the important conclusion here is that we are reaching the limit of
GBe(exac) data set is used here as a reference. The resultie accuracy here, at least within the GB model based on
are shown in Fig. 5. All methods exhibit good agreementGreen’s function derived for a perfect sphere: the extra com-
with the exact solution in the,,> €,(87*>1) domain. The putational expense of the more elaboratee@&ac) sum-
conventional GB deviates from the exact solution in the op-mation may not pay off. However, the G&xac) method
posite limit, which is best seen in Fig(t5. The physically has a clear way of controlling its accuracy, at least for mol-
important asymptoticAGs°V~ (2q;)?/A in the limit 3—%  ecules whose shape is close to spherical: the more terms in
is not met by conventional GB equation. Curiously, both ofthe series Eq921) are retained, the higher is the accuracy,
the numerical PB methods used hdveth the reasonable albeit at a larger computational cost. Still, while the
input parameters and default convergence critefd@@ to  GBe(exac) method is mathematically equivalent to Kirk-

B. Solvation energies for an ideal sphere
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FIG. 6. Solvation energy fdia) B-hairpin,(b) DNA, (c) lysozyme, andd) thioredoxin calculated by conventional GB, @Bxac) and GBe methods, relative

to numerical PB.

wood’s original solution, the series in EgR0)—(23) con-
verge much faster than those in E¢8) and (9), especially
for small or largeB. Therefore, a relatively small number of

terms may be sufficient, leading to reasonable computational

costs.

D. Effective dielectric constant: Can it be larger
than eqy?

Consider two charges immersed in low dielectric me-
dium g, surrounded by high-dielectric mediugy,. Part of
the electrostatic field lines are located completely within the
low-dielectric medium, while the other lines lie partly be-
yond it. Then it could be expected that the Coulomb interac-
tion energy of these charges should be betwae rjj e,
and qg;/rjjen. In other words, it seems natural for the
charges to “feel” some effective medium with dielectric con-
stanteg; such thate, < e < oyt

It has been observédhowever, that in PB calculations
€1 May be larger thar,, for some charge pairs. Figure 7
illustrates the reason for such a behavior.elf<e,,, the
electric field lines are “drawn” into the surrounding high-
dielectric medium, thus shifting.s towards higher values. In
addition, the lines go a much longer way &g, medium,
which makes the charges feel as if they were farther apart
than they actually are.

The ability of an approximate theory to reproduce this
nontrivial behavior may be used as a test of the theory’s

¢

physical consistency Let us compare conventional GB anEIG. 7. Electric field lines between two charges, and -g, located inside

GBe methods in this respect. Based on Coulomb’s law, wi

define ey as follows: m

edium.

a spherical “molecule” with dielectrie;,, surrounded by medium with di-
Glectric € Solid lines,3=1/80; dashed lineg3=1, e.g., infinite uniform
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ﬂ:%+AG”=%+qiqu(ri,rJ), (24)
Eetlij  €infjj €inlij

where we note that the full interaction energy is a sum of the

vacuum and solvation parts.
If the conventional GB method is usgsee Eq(1)], then

_ €in _ T
€=, W= ) (25)
T1-(1-Bo £o8
Sincer;; < f® [see Eq(2)], it follows thatw=1 and there-

fore e.=< €, SO, the conventional GB method cannot yield
valuesegs> €y, IN principle.

Meanwhile, wherF(r;,r;) is calculated using Eq17) or
Eq. (18),

w= (f_,?% + a,B—Al>/(l +ap)

(%-3)

So, if f?®>A, it may happen thato>1. This means that
GBe method may exhibite.;> €,,; In contrast to conven-
tional GB. For example, the highests for a sphere is

Mj _Nj

_ T ap
" A fCB
ij

= 26
fﬁB 1+aB (26)

achieved when the two atoms are at the largest possible sep

ration of rjj=2A, in which case

eeﬁ_( 1—[»')‘1
—=|1l-« .
€out l+ap

In the typical case o§,=1, €,,=80, and withe=0.57, the
maximum value ofe.; predicted by the GBis ca. 180. The
fact thate. may exceeds,,; within the GBe model has also
been confirmedresults not shownby direct calculations for
the realistic test molecules described above.

(27)

E. Do effective Born radii depend on dielectric?

J. Chem. Phys. 122, 094511 (2005)
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FIG. 8. Solvation energies for sphere-15 A relative to exact treatniént:
GBe, (2) conventional GB withe-dependent set of effective radiB) con-
ventional GB with the same set of fixed effective radii aglijp(computed
exactly fore,, =1, e, — ). Since GE: curve almost coincides with the axis,
same curves are presented in the inset to show details.

The results shown in Fig. 8 clearly indicate that the use
of e-dependent radii set does not improve the performance of
e conventional GB formula—its accuracy in computing

G is far worse than that of the GB If anything, using

R =R(B8— 0) in the conventional formula gives better results
than thee-dependentR’s (dashed-dotted curve in Fig.),8
although still far from GRB and the exact solution. As previ-
ously stated, this is because the conventional fornhEkg
(1)] lacks some essential physics. In fact, one can easily see
that Eqg.(1) is the asymptotic case of the GBEq. (17)] in
the limit €,/ e, ,— O, but ase;,/ €,,; becomes finite, the con-
ventional theory deviates from the exact solution. In contrast,
GBe is always close to it, coinciding with the exact solution
in both limits €,/ eq,y— % and €,/ €q+— 0.

While e-independent effective Born radii is the correct
choice for globular molecules and one dielectric boundary,

The key premise of the GB method is that it yields athis may or may not be the case in systems of more complex
good estimate of the electrostatic part of the solvation fred€ometry or more than two dielectric media. In particular, a

energy provided that the effective Born raRjiare correct*
However, when one calculates the solvation energy as

GB theory withe-dependenR;’s was reported as being suc-
gessfully applied to modeling of peptides and proteins in

function of the solvent/solute dielectric, a natural questionPresence of a membrang.

arises: should the effective radii depend gnand €,,? As
we have already seen, the derivation of theeGBeory in-
troduced here implies that the effective raRiineed to be
computed only once atB=¢y,/e,,—0, and using an

V. CONCLUSION

In this work we have proposed a generalized Born model
GBe applicable in the entire range of solvent/solute dielec-

e-dependent set of effective radii would be wrong. Still, onetrics. The model contains no fitting parameters, and its main
may wonder if the use oé-dependent radii may rescue the formula is derived as an approximation to the exact Green

conventional GB theory based on Eq$) and(2), yielding
an approximation foAG over the entire range of,, and
€,ut @S good as the GB but without the extra physics of
GBe? To answer this question we have compulsl, for a
perfect sphere using GBnethod[Eq. (17)] and the conven-
tional theory[Eqg. (1)] with e-dependent set of effective radii,

function for a perfect sphere. Relative to the conventional
GB model based on Still's equation, the present approxima-
tion has only one extra term. However, unlike the conven-
tional GB model, our model captures the essential physics of
the dielectric response for all values §f and €,

The GBe model is first tested on a charge distribution

comparing both results to the exact solution available in thisnside a perfect sphere of 15 A radius: the solvation energies

case(see Fig. 8 To obtain the explicit dependence of tRe
on the dielectric constants, we first compute the exe@§

agree to within 3 kcal/mol with the exact values obtained
from the Kirkwood solution over the entire range of solute

via Kirkwood’s solution and then use this value to obtainand solvent dielectrics. Curiously, we have found that some

R (B) from Eq. (3).

conventional PB solvers, such as MEAD or DELPHI, predict
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unphysical solvation energies in the domain< €,. We <(g(e) (a))2> is minimized. The average is taken on a sphere

have continued testing the current GB model against numeriof un|t rad|us with a weight functiom (t, 6) = (1 -t?)sin 6

cal PB on realistic molecules representing various structurab take into account the system’s geometry and symmetry:

classes: myoglobin, B-DNA,B-hairpin, lysozyme, and 1 .

']Ehloredoxm. In all cases, the current GB model has outper- (g® _gi(ja))z> - WJ dtf do(1 - t?)sin 0(gf]e> _gla))z

ormed the conventional model considerably. Notably, in the 0

most important regiore,,> €,, the error in the calculated

solvation energy, relative to the PB solver used as a reference

(MEAD), is comparable to the difference between the valueg\tom sizes are neglected in this derivation, which makes the

predicted by another common solvéDELPHI) and the result exact in the limit of a large molecule:

same reference. (molecule siz@ (atom sizé— . It should be therefore a
Another line of evidence in support of the claim that reasonable approximation for large biomolecules such as

some essential physics has been introduced into the curreptoteins or DNA.

model comes from the fact that, unlike the conventional GB  To find the error’'s minimum, we differentiate the penalty

formula, the GB model is capable of reproducing the un- function:

usually high values of effective dielectric constants. It has

been known for a long time that the PB equation predicts, i[(g.@ —g®)?]=- 2(9-@ a))

somewhat counterintuitively, values of the effective dielec- . .

tric constan{between some pairs of charges in molecutes B g (@1 4 ap)p

be larger than that of the solvent dielectric. The inability of ! >

the conventional model to account for that behavior often 1+ap (1+ap)

served as a basis of critiques of its underlying physical prin- 28 o @

ciples. We have shown how these high effective values are =1+ ,6,(9.1 -g@ -1

generated within the current GBnodel, and explained their

physical origin. =0. (A3)
Finally, we note that the current model is particularly

well suited to be the basis of the implicit solvent representa-

tion in molecular dynamics simulations. Its formula is no 1 1

more computationally complex than the conventional GB g,(f) g,(f)—ztu P,(cos6) I - , (A4d)

formula which has been successfully used in many popular 1+—p L+ap

MD packages. I+1

(A2)

g =-2g - g))

In the explicit form
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P, (cos6), (Ab)

therefore the master equation fer takes the following

closed form upon dropping constant multipliers:
APPENDIX A: DERIVATION OF OPTIMAL «

Let us find thebest in a sense described below, valae f dtf de(1 -t?)sin @ E E t"MP,(cos6) P,(cosh)
to be used in approximate E¢L7) or Eq. (18). Denote the I=1 m=1
exact(e) and approximateéa) series in Eq(14) as

2 tjPi(cost) X 1 )| =o. (A6)
I01+I_ﬁ +—,3 1+a,8
I+1 l+1

(A1) Since the variable$ and 6 are separable, one can easily
g”a): lzt P,(cosa)+a,8]. integrate to find

1+apB 1
f dt(1 -t3t*m=
0

While @ may be found exactly for every particular péirj)
from equatlongle)—gfla), all sucha’s will be different in a
general case. Since we need one universal constant value — 2 (A7)
instead, we will seeky such that the square-average error (l+m+2)(+m+3)’

1 B 1
l+m+1 [+m+3

TABLE II. Values of « for selectg.

B 1/1000 1/80 1/10 1/2 2 10 80 1000
a 0580112 0.579941 0.578725 0.574613 0.567834 0.561772 0.559536 0.559 200
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0

f d6P,(cosh)P(cosh)sin 6= ——— G, (A8) 2 1 1 =0.
0 l+m+1 = 2|+1)(2|+3)2|+1 | 1+apB
1+—8
[+1
- : - (A9)
where §,, is the Kronecker’s delta. Thus, the double sum in
Eq. (A6) is reduced to a single series Let us rewrite this equation &(8)—s/(1+aB)=0, where
1 1 - I+1
SB)= E T (21 + 1221 +3) | S @+ D22 +3)(+1+1B)
1+—pB
[+1
4\ 1 1
(1-p)|s+B 3S+§ +B° [+ BL+P)| P 5 — Yl 145
= , (A10)
(1-p*1+3B)
- 1 w7
— =z — - — =~ 1 A1l
? 2|+1)2(2|+3) 16 12 0.0335169, (A1)
and ¢ (2) is the logarithmic derivative of gamma functio#,(z)=1"'(z)/T'(z). Finally we obtain
1 1-B)*1+3
@== A= +3H) -1). (A12)
P (1—6){S+,8(3S+ i‘) +/32J +B<1+ﬂ>{w(1) - w( : )J
3 2 1+
|
In the key limit cases the above expression is simplified as * {
AGE ~ > ———. (B2)
(8— 0) 32A3In2-2 1~ 0.580 127 (A13) =1 !
— = = =~ (). , -
p 3m%-28 AT
a(f—1)= 437 - 28) - 1~0.571412, (Al4) Note that poth _series divergem»l, thus pr_ecluding effec-
42((3) + 37° - 76 tive numerical implementation of the equations. The goal of
> this appendix is to regularize the series in H&l) and(B2)
3(37 - 28 i i
(B ) = ( ) 0.559170, (A15) for the purpose of numerical calculations.

164-97°-961n2

where £ (n) is Riemann’s zeta function. Functiam (8) is
monotonous and has no singularities. More numerical valuey: Case € <€y

are presented in Table Il. As one can seeyaries only First, consider the casB=e,/ e, <1. Let us develop
APPENDIX B: SUMMATION OF KIRKWOOD SERIES 1 1
According to Kirkwood®* the electrostatic energy from a [ = B
pair of interacting charges to solvation energy of a spherical 1+ mﬁ +B- T+1
molecule is
o P - !
X =
G~ X —— (BD) 1+p, 1 B
1=0
1+— l+11+8
|+ 1B B
5 . 1 B \" 1
where t=rirj/A%,0<t<1,x=cos6,6 being the angle be- = > . (B3)
tween vectorsr; and r; (see Fig. 2, and B= ¢/ €, >0, 14Bnz0\ 148/ (I+1)
P, (x) is Legendre’s polynomial. In the case of self-term con-
tribution, the series is as follows: Substitution of Eq(B3) into Eq. (B2) yields
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> — =l eyl e
= Li, B12
=P 1+ﬁ§ 2\1ep) Teor PR Ey A ey
I+1 [+1
©® n tl+1
(1+B)tnOIEO<1+B> (I+1)" 1 t B gy
1 i( B )n _(1+B)t 1 ( )
= Lin(t), (B4) -
1 —o\1
(L+Plemo 145 +2<1B )Lln(t)] (B13)
where Lj,(t) is the polylogarithm function B
Lin(t) = E (B5) * tIP(X) 1 - g \"
(|+1)n ! = ( ) n(t, B14
EHI_ﬁ A+ piss 1ep) @00 (G20
In particular, Lp(t)=t/(1-t) and Li(t)=-In (1-t). For the [+1
pair interaction tern*AGﬁ' we substitute Eq(B3) into Eq.
(B1) to obtain
o P t*1P(x) S t
> I| _(1+ t22<1+ ) I+I1n (1+At[ V1 -2+t
01, g Btrzoi-o B/ (1+1) —
I+1 . B Int—x+\fl—2xt+t
1 0 g \n 1+8 1-x
= (6. B6 ®
(1 +ﬁ)t,§0<1+ﬁ) Qn(tX) (BO) +E<1Bﬁ> Qq(t, x)] (B15)

Here, for the sake of brevity, we have introduced a function

* ip EquationgB12) and(B14) are valid and converge for ag:
Qn(t,x) :Et '(X)_ (B7)  They are especially computationally efficient for small
i—o (I+1)" when the last term proportional ¥ is negligible, and the

_ o . ~ first two terms alone may provide the desirable accuracy.
Though there is no general simplification for this series,

Qo(t,x) and Q,(t,x) may be found as follows:

2. Case €,> €yt

1 e 1
tQO(t’X) - %t P = V1 - 2xt+12 (B8) Consider now the cagg> 1. One can obtain the follow-
ing series fol >0:

which is a well-known relation for Legendre’s polynomials.

Now, note that 1 [ +1
. | 11+B8)+1
d tP(%) 1+——p
gt = 2 e = Qn 1(tX), (B9) I+1
_ 1B
therefore T Ia+p) +1
_[1 B
Qn(t,x) —fo ;Qn—l(Tyx)dT- (B10) =1 1+, 1
1+
In particular,
o LB 1
(Y dr tex# VIt t T 148 1
Qult X)‘fo ooz ™ 1-x Yiaep
B11 n
(BLY - By Y (B16)
Consecutive use of EqB10) allows one to expres,(t,x) 1+B51"(1+p)

via elementary functions and () of the order up tdk=n.
To summarize, the following equations are obtained:  Substitution of Eq(B16) into Eq. (B2) yields
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ot B oo (1
) — z ¢ [ - B
_ + I"I + n
=P L+Bio"1+p)

O S - G

_1+1—t 1+3nzo(1+,8)“:oln
1 B < (1"
1-t 1+B% @a+p"

Liy(t). (B17)

By analogy, we obtain for the pair interaction term
o P
2 e
I+1
1
1+ ——=-1
V1= xt+t?

B < ()" S tP®X
1+,8n25(1+ﬁ)”|21 "

B (-"
_1+2tP|(x)[1 1+an0|”(1+3)”}

|:Ol+

1
1 -xt+ 12
(=
t, B18
1 +/% gt @
where another auxiliary function was introduced,
tP (x)
Qh(tx) = E e (B19)

Note that for 6=st<1 and —-1=x=<1 the Legendre polyno-
mial is also bounded, - P,(x)<1, and the following in-

equalities hold:
"

Q=S = i = Lin(0) < Lin(1) = £(n).

=1

(B20)

The same estimate holds fQx(t,x).

Comparing definitio(B19) with Eq. (B7), it can be eas-

ily shown by analogy that

1
T —-_ = 2
QoltX * V1 - 2xt+t2 (B21)
QJ{(t,x):—In{%(l—xH V1-xt+t?) |, (B22)
Qh(tx) = J =Qh_y(m,xdr. (B23)

Using Eq.(B23) recursively,Ql(t,x) may be expressed via

elementary functions and |l(z) of the order up tk=n.
Finally, the following equations are obtained:

J. Chem. Phys. 122, 094511 (2005)

gt 1 B (U
g 1+|_ 1-t 1+18n20 (1 +’8)n|-|n(t) (B24)
I+1'B
__B 1 1 _ B )
_1+B+1+ﬁ1—t (1_'_,8)2“’1(1 t)
B < (1"
1 +ﬁn§:"2 (1 +B)nL'n(t)’ (B25)
. t'Py(x) _ 1 B (-1 .
E} l - V”m 1 +Bn20 (1 B)nQn(t!X)
L
(B26)
-k 1 1
T14B 1+B\1-2xt+ 0
__h 1-xt+\1-2xt+t2
(1+ﬂ)2 n 2
. E = Qn(tX) (B27)

144201 +,3)”

It is noteworthy that for a pair of charges such tlsat
=0, P/(cos#) =1, and the Kirkwood equation@) and (9)
coincide. It is easy to see that the optimized series also co-
incide in the limitd— 0: Eq.(B14) reduces to EqB12), and
Eq. (B26) reduces to Eq(B24), as expected.

Note that the terms that contain (1/~t) and I(1-t) in
Egs.(B13) and(B25) have a singularity at— 1. Terms that
containy1-2t cosé+t? in Egs.(B15) and(B27) only have a
singularity whent—1 and co®¥¥— 1 simultaneously, which
can never happen because atoms do not overlap. Functions
Lin(t), Qy(t,x), and Qg(t,x) are all bounded from above by
the Riemann zeta functiod(n) [see Eq.(B20)]. Since
{(2)=72/6 and{(n) decreases with, the terms proportional
to Li,(t), Q,(t,x), and Ql(t,x) do not have any singularities
for n=2.
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