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Analytical electrostatics for biomolecules: Beyond the generalized
Born approximation
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The modeling and simulation of macromolecules in solution often benefits from fast analytical
approximations for the electrostatic interactions. In our previous work �G. Sigalov et al., J. Chem.
Phys. 122, 094511 �2005��, we proposed a method based on an approximate analytical solution of
the linearized Poisson-Boltzmann equation for a sphere. In the current work, we extend the method
to biomolecules of arbitrary shape and provide computationally efficient algorithms for estimation
of the parameters of the model. This approach, which we tentatively call ALPB here, is tested
against the standard numerical Poisson-Boltzmann �NPB� treatment on a set of 579 representative
proteins, nucleic acids, and small peptides. The tests are performed across a wide range of solvent/
solute dielectrics and at biologically relevant salt concentrations. Over the range of the solvent and
solute parameters tested, the systematic deviation �from the NPB reference� of solvation energies
computed by ALPB is 0.5–3.5 kcal/mol, which is 5–50 times smaller than that of the conventional
generalized Born approximation widely used in this context. At the same time, ALPB is equally
computationally efficient. The new model is incorporated into the AMBER molecular modeling
package and tested on small proteins. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2177251�
I. INTRODUCTION

In numerous problems of computational chemistry and
structural biology, including but not limited to the modeling
of structure, dynamics, and interactions of proteins and
nucleic acids, protein folding, drug/ligand docking, and so
on, the free energy of biomolecules in solution must be cal-
culated. Since the electrostatic forces are the strongest long-
range interactions on the atomic scale, these interactions are
a major part of the solvation energy. Numerical
Poisson-Boltzmann1–11 �NPB� methods are routinely used to
calculate the electrostatic part of the solvation free energy
and other electrostatic properties. They provide the most ac-
curate estimates when the computation expense is not an
issue. However, they often have to be replaced by analytical
methods such as the generalized Born �GB� ap-
proximation1,12–23 when large or fast-changing systems are
involved. Phenomenological by its nature but much more
effective computationally than NPB, the GB approximation
proves useful and has become widespread, especially in mo-
lecular dynamics �MD� applications24–36 where the high
speed of calculations is a prerequisite.

In the conventional GB theory, a molecule is considered
as a continuous region with dielectric constant �in surrounded
by infinite solvent with dielectric �out. Charges qi are located
at positions ri inside the molecule. Their interaction in the
presence of a polarized solvent contributes to the electro-
static part of the solvation energy �Gel, which is commonly
calculated as follows:12
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where Ri are the effective Born radii of the atoms. An
established12 form of f ij is

f ij =	rij
2 + RiRj exp�−

rij
2

4RiRj
� . �2�

While various forms of Eq. �2� were proposed over the years,
the foundation of the GB model—Eq. �1�—remained un-
changed; in what follows we call the models based on Eq.
�1� “conventional GB” model. We have recently shown37 that
Eq. �1� misses some important physics. One of the manifes-
tations of this shortcoming of the GB model is that it fails to
correctly reproduce the dependence of �Gel on the solute and
solvent dielectrics.37 This deficiency of the approximation
stems from the incorrect functional dependence of �Gel on
�in and �out. It is easy to see from Eq. �1� that, in GB theory,
swapping �in and �out only changes the sign of the solvation
energy: �Gel��in ,�out�+�Gel��out ,�in�=0. Meanwhile, such
symmetry does not actually exist in nature, as can be shown
by theoretical consideration or NPB calculations. Even at
�in /�out=1/80 �aqueous solvation�, the GB model can be no-
ticeably improved, as we will show below.

Practical considerations of computational ease and speed
play a major role in theory development. In particular, it is
often imperative for an algorithm that computes the energy
within an MD application to be expressed by an analytical
equation simple enough to be implemented effectively. To

calculate the forces acting on atoms, one typically needs
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computationally facile forms of the derivatives of the pair-
wise atomic interaction terms with respect to atomic coordi-
nates.

Even for a shape as trivial as a sphere, the exact closed-
form solution of the linearized Poisson-Boltzmann �LPB�
equation turns out to be cumbersome and, in its original form
due to Kirkwood,38 unsuitable for numerical implementation
because of the slowly converging infinite series it contains.37

However, as our recent study shows,37 the infinite series
solution can be regularized and summed up approximately,
leading to the following equation:

�Gel � −
1

2
� 1

�in
−

1

�out
� 1

1 + ��
�
ij

qiqj� 1

f ij
+

��

A
� , �3�

where f ij is same as in Eq. �2�, �=�in /�out, ��0.571412, and
A is the electrostatic size of the molecule. The latter provides
a relationship between the molecule’s global shape and its
electrostatic energy.37

In spite of its functional simplicity and resemblance to
the conventional GB theory, Eq. �3� it is not a GB theory,
even in the most general sense: the solvation free energy
depends, via f ij, not only on local parameters of each pair of
atoms such as their effective Born radii, but also, via A, on
the over-all shape and size of the structure. Also, the prefac-
tor in Eq. �3� is different from that in the GB Eq. �1�. To
distinguish the new approximation from the GB model, we
tentatively call it the analytical linearized Poisson-
Boltzmann �ALPB� approach. The ALPB is free from the
deficiencies of Eq. �1� mentioned above, and, in particular,
Eq. �3� has correct physical asymptotics in both limits �
→0 and �→�.

The goals of the present paper are as follows: �1� Pro-
vide a fast, efficient way to estimate the key new parameter
of the ALPB model, A. We provide an analytical, unambigu-
ous, parameter-free, and numerically effective method to cal-
culate the electrostatic size A of an arbitrarily shaped mol-
ecule. This step will complete the construction of an
approximate analytical solution to the linearized Poisson-
Boltzmann equation for molecular applications. �2� Exten-
sively test Eq. �3� on a large, representative set of realistic
biomolecules. �3� Verify that the ALPB can be used in real-
istic molecular dynamics applications and produce stable tra-
jectories.

The paper is organized as follows. We present an ana-
lytical algorithm to calculate the electrostatic size of a mol-
ecule in Sec. II. Methodological details and the description
of the test sets are presented in Sec. III. In Sec. IV we estab-
lish the accuracy of the new approach by comparing ALPB
with the NPB on a large set of representative molecular
structures. The accuracy comparison of the ALPB with the
GB is also included. We then introduce the salt dependence
into the model and establish the algorithmic stability and
efficiency of the ALPB in molecular dynamics simulation of
a folded protein; possible applications to other scenarios
such as the folding/refolding of proteins is discussed. Con-

clusions are presented in Sec. V.
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II. THEORY

A. Definition of the electrostatic size of a molecule

The definition of the effective electrostatic size of the
molecule follows directly from Eq. �3�:

A = 
 lim
�in→�

q2

2�Gel



�out=1

. �4�

So, if �Gel in this limit is known �e.g., from the numerical
solution of the PB equation�, A is easily found from Eq. �4�.
The following considerations clarify the definition of the
electrostatic size and suggest ways of computing it in prac-
tice. Imagine that the molecule is filled with an infinite di-
electric, �in→�, while �out=1. Due to infinite polarizability,
all buried charges are exactly compensated by polarization
charges, and so only the induced surface charges remain
uncompensated—their sum is equal to the net charge of the
molecule, and their distribution is completely independent of
the distribution of the original fixed charges qi inside. This is
because the electric field E=0 in the interior, and the system
is therefore equivalent to a conductor. A conducting sphere
of size �radius� A with a single charge q stores electrostatic
energy �Gel=q2 /2A irrespective of the charge location. For a
charged �q�0� molecule of arbitrary shape, the same func-
tional dependence �Gel�q2 holds. By analogy with a
sphere, we can write it down as �Gel=q2 /2A, only now A is
the effective electrostatic size of the molecule. This formula
is mathematically similar to the definition of the effective
Born radius,

�Gii
el = −

1

2
� 1

�in
−

1

�out
�qi

2

Ri
. �5�

However, since unlike Ri, A is independent of the positions
of charges in the molecule, one can write


 lim
�in→�

qi
2

2�Gii
el


�out=1

= � lim
�in→�

Ri��out=1 = A �6�

and so, in principle, one can put a single probe charge any-
where inside the structure and obtain A by computing �Gii

el

or Ri in the appropriate limits. We find, however, that due to
numerical artifacts and finite-grid representation, Ris ob-
tained via common NPB solvers form a distribution of finite
width even at �in�103–106. Therefore, a large enough num-
ber of Ri ��→�� needs to be calculated to provide a statis-
tically reasonable estimate of A. This procedure that relies on
the NPB is similar to the one used to obtain the “perfect”

effective Born radii and is arguably the best approach for a
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theoretical analysis.39 However, since even a single NPB run
may take appreciable time, such procedure is extremely time
consuming and therefore is not suitable for use in MD appli-
cations, where A might have to be recalculated often.

On the other hand, since A appears to be similar to the
effective Born radii in the GB model, one can, in principle,
compute it by integrating the electric field �displacement�
density around the molecule. However, unlike in the GB
theory, we find that the approaches such as the Coulomb field
approximation �CFA� widely used to compute the effective
Born radii are not applicable here due to the nature of the
electric field in the �in→� regime. The approach that we
have developed is very different and is outlined below.

Note that the electrostatic solvation energy of a molecule
in the limit �in→� does not depend on the particular spacial
arrangement of the charges inside but only on the total
charge q and the shape and dimensions of the body through
its electrostatic size A. This means that A is a characteristic
on the geometry of the molecule. Therefore, it might be pos-
sible to find A using relatively simple geometric consider-
ations. In an attempt to provide such considerations, and
keeping in mind that our goal is to develop a fast analytical
method that could be used in MD applications, we will ap-
proximate the molecule by a simple shape for which
�Gel��in→� ,�out=1� is found exactly, and then use it to find
A via Eq. �4�. While the simplest shape—a sphere—is a pos-
sibility, we would like to consider the next step in
complexity—an ellipsoid, which encompasses spherical mol-
ecules as a particular case, but goes beyond that to account
for prolate and oblate shapes as well. Our strategy is as fol-
lows. For a given molecular structure, we first find the cor-
responding best fit ellipsoid, defined by its semiaxes. Next,
we find the exact solvation energy of this ellipsoid, in the
limits of Eq. �4�; since this quantity is a unique function of
the ellipsoid’s geometry �semiaxes�, we automatically obtain
the molecule’s approximate electrostatic size via Eq. �4�.

B. Approximation of a molecular shape
by an effective ellipsoid

Let us determine the semiaxes of an effective ellipsoid
that best approximates the shape of an arbitrary molecule.

Consider the molecule as a complex body made of
spherical atoms with their centers at ri and radii ai. Actual
atomic weights are ignored because A should not depend on
the mass distribution inside the molecule. Instead, we con-
sider atoms as hard balls of a constant specific weight. An
atom’s “mass” is defined as mi=ai

3; the mass of the molecule
is then M =�imi.

We start with finding the center of mass of the molecule,
r0=M−1�imiri. Then we move the origin to the center of
mass, ri�=ri−r0. Below we drop the prime in ri�
= �xi� ,yi� ,zi�� for the sake of brevity. Now, the components of

the molecule’s inertia tensor I are found as follows:
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mixizi,

I23 = I32 = − �
i
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The principal moments of inertia are equal to the eigenvalues
�i of the tensor I and are found from the following equation:

Det
I11 − � I12 I13

I21 I22 − � I23

I31 I32 I33 − �
� = k3�3 + k2�2 + k1� + k0 = 0,

�8�

where the coefficients ki are written down as follows, due to
the tensor’s symmetry:

k0 = Det I = I11I22I33 + 2I12I23I13 − I11I23
2 − I22I13

2 − I33I12
2 ,

�9�

k1 = − I11I22 − I22I33 − I11I33 + I12
2 + I23

2 + I13
2 , �10�

k2 = Tr I = I11 + I22 + I33, �11�

k3 = − 1. �12�

Because of its physical nature, the cubic equation ��8�–�12��
is guaranteed to have three real roots, therefore the trigono-
metric method of solution40 is most appropriate. We reduce
Eq. �8� to the incomplete cubic equation �3+ p�+q=0,
where

p = −
k2

2

3
− k1, q = −

2k2
3

27
−

k1k2

3
− k0. �13�

Two auxiliary parameters are then introduced,

s = − 2	−
p

3
, � = arccos�−

4q

s3 � . �14�

Finally, the eigenvalues of the tensor of inertia I are found as
follows:

�1 = s cos
�

3
+

k2

3
, �2,3 = − s cos�� ± �

3
� +

k2

3
. �15�

The principal moments of inertia of the molecule Ixx, Iyy, and
Izz are equal to the eigenvalues �i chosen so that Ixx� Iyy
� Izz.
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Now let us find the semiaxes a, b, and c of a solid
ellipsoid that has the same weight M and principal moments
of inertia I�� as the molecule under consideration. The prin-
cipal moments of inertia are expressed through the ellip-
soid’s semiaxes as follows:

Ixx =
1

5
M�b2 + c2�, Iyy =

1

5
M�a2 + c2�,

�16�

Izz =
1

5
M�a2 + b2� ,

therefore

a =	 5

2M
�− Ixx + Iyy + Izz� ,

b =	 5

2M
�Ixx − Iyy + Izz� , �17�

c =	 5

2M
�Ixx + Iyy − Izz� .

The above ellipsoid, with semiaxes a, b, and c, provides the
simplest nontrivial approximation—beyond a spherical
one—to the shape of a biomolecule under consideration.

C. Electrostatic size of an ellipsoid

A charged conducting ��in→�� ellipsoid with semiaxes
a, b, and c is known41 to store electrostatic energy,

�Gel
ell =

q2

4
�

0

� d	

	�a2 + 	��b2 + 	��c2 + 	�
, �18�

in vacuum ��out=1�. Compare Eq. �18� to the definition of
the effective electrostatic size, Eq. �4�, to obtain for the elec-
trostatic size of an ellipsoid,

Aell =
q2

2�Gel
ell = 2��

0

� d	

	�a2 + 	��b2 + 	��c2 + 	��−1

. �19�

In the particular case of a sphere, a=b=c=A, the integral in
Eq. �19� is equal to 2/a, therefore Aell=a, as expected.

Equation �19� reduces to an elliptic integral of the first
kind, which can only be calculated numerically. To use an
integration scheme such as Simpson’s method, the upper in-
finite limit must be eliminated as shown in Appendix A.

To calculate A in numerical applications where compu-
tation speed is critical and numerical integration should be
avoided, the integral in Eq. �19� is approximately expressed
through elementary functions. Note that in the case of a pro-
late ellipsoid with rotational symmetry, b=c, Eq. �19� gives

Ãell = 2a
�log
1 + 


1 − 

�−1

, �20�

where 
=	1−b2 /a2. In the general case of b�c, we only

need to redefine 
, e.g., as
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 =	1 −
�b + c�2

4a2 . �21�

Equations �20� and �21� provide a simple approximation that
exactly coincides with Eq. �19� when b=c and is accurate
enough in most other cases, as shown below in Sec. IV A.
A similar estimate is possible for the case a�b�c, which
is rare among realistic biomolecular shapes. Given the
complexity of Eq. �19�, it is unlikely that a useful expres-
sion is derivable for shapes with even less symmetry than
ellipsoidal.

D. Analytical differentiable estimate
of the electrostatic size of a molecule

To use Eq. �3� in MD applications, one needs to find
analytical derivatives of A with respect to atomic coordi-
nates, �iA= ��A /�xi ,�A /�yi ,�A /�zi�. In principle, this can be
done for A given by Eq. �19� with semiaxes from Eq. �17�.
Note, however, that A is expressed through the effective el-
lipsoid’s semiaxes a, b, and c via an elliptic integral, and the
semiaxes are, in turn, functions of the roots of a cubic equa-
tion with cumbersome coefficients. Therefore, the exact de-
rivatives �iA would contain elliptic integrals and generally
would have a complicated form that may not be suitable for
fast calculations. An algorithm based on Eq. �19� may also
be prone to numerical instabilities due to the possible degen-
eration and branching of the solutions of the cubic equation
if the molecule’s symmetry changes during conformational
dynamics.

Therefore, one wonders if the final formula for A could
be simplified by providing an approximate expression in lieu
of the exact one based upon an elliptic integral �19�. Since
the calculation of A is already approximate by its nature and
A itself is meant for use in another approximate method of
solvation energy calculation, it is possible that simplifying
Eq. �19� would not add much to the error already made or
even compensate part of that error.

We use the inertia tensor’s invariants to find an approxi-
mate electrostatic size. Comparison shows that the best re-
sults are provided by the tensor’s determinant k0 given by
Eq. �9�. We rewrite Eq. �9� using the principal moments of
inertia and Eq. �16� to obtain

Det I = IxxIyyIzz =
M3

125
�a2 + b2��b2 + c2��c2 + a2� . �22�

For a spherical molecule of size a=b=c=A, Eq. �22� yields
Det I=8a6M3 /125. Therefore, by dimensional analysis,

ADet =	 5

2M
	6 Det I =	 5

2M
�I11I22I33 + 2I12I23I13

− I11I23
2 − I22I13

2 − I33I12
2 �1/6. �23�

The derivatives of ADet are found with the help of Eq. �7� as
shown in Appendix B.

Thus, both ADet and �iADet are found directly from the
coordinates of the atoms, via Ijk, in a computationally effi-
cient manner. The number of machine operations required is

O�N�, where N is the number of atoms. Through the use of
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an invariant of the inertia tensor, the electrostatic size is ap-
proximated without the danger of numerical instabilities as-
sociated with the solving of the cubic equation, Eq. �8�.

In what follows, we establish the accuracy of approxi-
mations �19�, �20�, and �23� against the NPB reference on a
large set of biomolecular structures.

III. METHODS

A. Numerical Poisson-Boltzmann „NPB… solvers used

We have chosen the finite-difference NPB solver PEP
�Ref. 42� to serve as a reference for all other electrostatic
models discussed in this work. While PEP is extremely com-
putationally expensive, it is arguably one of the more accu-
rate among finite-difference NPB solvers of comparable de-
gree of sophistication. The PEP package is particularly well
suited for calculating individual pairwise interactions and ef-
fective Born radii. In all calculations, we use four levels of
focusing with the finest grid size of 0.0625 Å. The solvent
probe radius is 1.4 Å, the ion exclusion �Stern� radius is 2 Å.
We have modified the original PEP package by changing the
machine representation of some variables from single to
double precision. These calculations are always referred to as
“reference NPB” in this work.

We also use another established NPB solver, DELPHI-II,2

to provide a way to access the inherent variation of the NPB
reference due to algorithmic details such as approximations
to the molecular surface. A cubic box of 251 grid points in
each dimension and grid size 0.5 Å is used except in Sec.
IV B where 0.25 Å grid spacing has been set. In this case,
the consensus set had to be reduced to 395 structures: run-
ning DELPHI-II on the other, larger structures caused segmen-
tation fault on our 2.4 GHz Pentium IV machine with 1 G of
random access memory �RAM�.

B. Structures: Consensus benchmark set

To test our approximate models against the NPB refer-
ence described above, we have constructed a benchmark set
of representative biomolecular structures, that we have called
the consensus benchmark set. The set is intended to mini-
mize the numerical artifacts of the NPB procedures. We start
with a set of �600 representative structures used by Feig
et al. in a similar context.42 We have expanded the set by
several other structures, including A and B form DNA
decamers, � hairpin, myoglobin, and lysozyme in standard
protonation states. We then have calculated the electrostatic
solvation energy �Gel for these biomolecules using two NPB
solvers described above, PEP and DELPHI. The distribution
of the relative difference ��Gel

DELPHI−�Gel
PEP� /�Gel

PEP is
shown in Fig. 1 for �in=1 and �out=1000. The distributions
computed with �out= 8, 20, 40, 80, and 1000 are almost iden-
tical. The structures with the values of ��Gel

DELPHI

−�Gel
PEP� /�Gel

PEP�2.5% form the consensus benchmark set.
The above threshold leaves us with 579 structures with di-
mensions varying from 9 to 32 Å, or 247–8254 atoms per
structure. The range of the absolute values of the total charge
in the consensus set is from 0 to 28�e�. The consensus set
along with the computed �Gel is available from the authors

upon request.
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C. Calculation of the reference electrostatic sizes
by the NPB

The electrostatic size A has been calculated for each
molecule of the consensus benchmark set using our reference
NPB solver, see Sec. III B. These values are referred to as
ANPB.

Physical considerations discussed above dictate that all
effective Born radii Ri→A as �=�in /�out→�, irrespective of
the location of charge i in the structure. Direct NPB calcula-
tion with various � corroborate this conclusion within ac-
ceptable error bounds. Indeed, we found that the width of the
Ri distribution for a given molecule decreases as � increases
in the range �=100–10 000. However, even at �=10 000
this width is not negligible, and its decrease in going from
�=1000–10 000 is very small to expect it to decrease sub-
stantially further with even higher values of �. To reduce
these numerical artifacts of NPB in ANPB, we have used the
following averaging procedure. For each molecule, all effec-
tive Born radii Ri are calculated at �out=1, �in=1000. The

average R̄ and standard deviation 
 are found. Then we drop

all Ri such that �Ri− R̄��
 and calculate the average R̄� and
standard deviation 
� for the “trimmed” distribution. The

trimmed average R̄� is adopted as ANPB. The distribution
width 
� is normally about half of the original 
; for most of
the structures tested, 
��0.2–0.4 Å.

IV. RESULTS AND DISCUSSION

A. Accuracy of the analytical methods of calculation
of the electrostatic size

We have calculated the electrostatic sizes Aell �Eq. �19��,
Ãell �Eqs. �20� and �21��, and ADet �Eq. �23�� for each mol-
ecule from the benchmark set and compared them to the
corresponding NPB reference values, Table I. Each of the
three analytical methods considered here provide a reason-

FIG. 1. Definition of the consensus set used in this work to test the approxi-
mate analytical models. The plot shows the distribution of the relative dif-
ference of the electrostatic solvation energy calculated by the NPB solver
DELPHI relative to the reference NPB solver PEP, ��Gel

DELPHI

−�Gel
PEP� /�Gel

PEP. Energies are calculated for a set of 595 biomolecules by
both solvers at �in=1, �out=1000. The main peak of the distribution is
bounded by value of �2.5% �shown by vertical dashed line� and encom-
passes 579 proteins and nucleic acids which form the consensus benchmark
set.
able approximation to ANPB, with ADet being the most accu-
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rate of them, on average. Note that the reference values ANPB

are themselves defined to within a standard deviation, nor-
mally 0.2–0.4 Å, due to the finite width of distribution of the
Born radii computed by an NPB solver, see Sec. III. It is
important to realize that A is ultimately used to calculate the
electrostatic solvation energies and charge-charge interac-
tions via Eq. �25�. So it is the accuracy of these estimates and
not the accuracy of the calculation of A itself that is key. A
comparison of �Gel calculated by various methods is pre-
sented below. As we shall see, the ALPB equation, Eq. �3�, is
rather insensitive to reasonable variations in A, and so errors
of an order of a few angstroms in the estimate of the elec-
trostatic size are acceptable for most practical purposes.

As expected, the analytical methods for calculating A
that are exact for ideal, highly symmetric shapes yield the
largest errors for irregularly shaped molecules. The molecule
that gives rise to the absolute largest error among all of the
579 structures in the consensus benchmark set is a protein
shown in Fig. 2 �left�. Clearly, this structure is anything but
an ellipsoid; it is not even globular. So it is not surprising
that the deviation of its electrostatic size from the NPB ref-
erence is about 50%. What is, perhaps, unexpected is that
even for this structure the error of the ALPB solvation energy
is only about 0.1% ��Gel

ALPB−�Gel
NPB=3.27 kcal/mol,

�Gel
NPB=−2643.22 kcal/mol for �out=80�. At the same time,

the approximate methods are capable of providing estimates
of the effective electrostatic sizes that are much closer to the
corresponding NPB reference values for structures that are
more or less globular but still far from being ellipsoidal. An
example of such structures is a small DNA fragment, Fig. 2
�right� for which A is approximated within 5% of its NPB
value. Not surprisingly, the error in �Gel

ALPB is smaller,
0.005% �−0.22 kcal/mol� relative to the NPB value. While
the general trend is present, we find the correlation between
the accuracy of the approximate effective electrostatic size
estimates and the accuracy of ALPB itself is too weak to be
of practical use, and we do not pursue its quantification. A
thorough analysis of the ALPB accuracy will be presented
below.

The analytical methods of estimating the electrostatic
size presented above are computationally fast, especially the
most straightforward ADet estimate. For example, the code
used in this work computes A for all 579 benchmark set
molecules �total of ca. 106 atoms� in about 60 s on a standard
2 GHz personal computer. The time of each calculation is
directly proportional to the number of atoms N in the struc-

TABLE I. Differences between the effective electrostatic sizes calculated by
various approximate analytical methods and the NPB reference. Average
difference over the consensus benchmark set and the corresponding standard
deviation for each pair of methods are shown.

Method Reference Difference �Å�

Aell ANPB 2.23±2.56

Ãell
ANPB 2.24±2.58

ADet ANPB 0.55±1.71

Ãell
Aell 0.011±0.022
ture and therefore is negligible compared to the typical cost
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of many other applications, which scale as N�, ��1. A C��

implementation of the algorithms described in this section is
freely available from http://people.cs.vt.edu/~onufriev/
software.html .

B. Accuracy of the solvation energy calculation

The goal of this section is to show that the ALPB ap-
proximation given by Eq. �3� provides a statistically signifi-
cant improvement over the conventional GB approach �Eq.
�1�� in calculating the electrostatic part of the solvation en-
ergy of realistic biomolecules. To evaluate the accuracy of
the approximations the ALPB method is based upon, it is
compared to the numerically exact Poisson-Boltzmann treat-
ment; both models share the same underlying physics of the
continuum solvation. To provide statistically significant esti-
mates, we have generated reference NPB �Gel data for all
579 molecules from our consensus benchmark set �see Sec.
III� using a range of values for the solvent dielectric, see Fig.
3 and Table II. The accuracy of various approximations to
the effective electrostatic size discussed above is also tested
in this context. For each method of �Gel estimation, relative
error ��Gel= ��Gel−�Gel

NPB� is computed for each molecule,
and then its average and standard deviation are calculated
over the consensus benchmark set.

The main conclusion from Table II is that for all reason-
able values of �out the accuracy of ALPB method remains
equally high. Moreover, when looking at the range of error
compared to the NPB treatment, ���Gel−
��G� to ���Gel

+
��G�, where 
��G is the standard deviation of ��Gel

value, the ALPB range always contains the zero error point,
while this is mostly not the case for the conventional GB
method. The mean error of the GB method at �out=80 is
almost five times larger than that of ALPB and increases with
decreasing �out. The absence of a systematic ALPB error and

FIG. 2. �Left� The structure out of the consensus benchmark set for which
the analytical methods of electrostatic size estimation are least accurate, a
viral protein �Protein Data Bank �PDB� ID: 1esx�. For this irregular, clearly
nonglobular structure ANPB=20.49±0.36 Å, ADet=31.24 Å. �Right� An ex-
ample of a globular but nonellipsoidal molecule for which the analytical
value ADet is quite accurate, B-DNA �10 base-pair duplex�; ANPB

=14.03±0.23 Å, ADet=14.68 Å.
its presence in the GB model is particularly well illustrated
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in Fig. 3. Since in this analysis we use the same perfect
effective Born radii in both the GB and ALPB, it is clear that
the systematic error of the conventional GB model ultimately
stems from its functional form, Eq. �1�, which obviously
misses some important physics. This point is further illus-
trated in Fig. 4, where the electrostatic part of the free energy
of transfer between water and a low dielectric medium is
computed and compared to the NPB reference for a typical
medium-size protein in the biologically most relevant range
of solvent dielectrics.

It is also noteworthy that the difference in solvation en-
ergies produced by the ALPB and our reference NPB solver
PEP is comparable to that between two different NPB solv-
ers, DELPHI and PEP. Namely, at �in=80 the average dis-
agreement between DELPHI and PEP is 5.99±6.94 kcal/mol.
So, the DELPHI solvation energies �0.25 Å grid resolution is
used here, see Sec. III� are more shifted off the PEP refer-
ence, on average, than the ALPB energies �average error
2.21±17.12 kcal/mol, see Table II�, though the standard de-

FIG. 3. Relative errors ��Gel= ��Gel−�Gel
NPB� in electrostatic solvation en-

ergies of ALPB �using ADet, Eq. �23��, and conventional GB methods for the
consensus set of 579 biomolecules computed at �in=1, �out=8. Each data
point represents the difference in energies for a particular molecule. The
ALPB data points �circles� are uniformly distributed around zero error line,
while the GB data points �crosses� exhibit a systematic error roughly pro-
portional to the corresponding solvation energy.

TABLE II. Accuracy of the ALPB Eq. �3� is compared to that of the con-
ventional GB method, Eq. �1�, on a consensus benchmark set of 579 pro-
teins, nucleic acid, and small peptide structures. Each entry is the difference,
in kcal/mol, between the approximate electrostatic solvation free energy and
the corresponding NPB reference, averaged over the consensus benchmark
set. The error margin is computed as the standard deviation. In all of the
calculations �in=1.

�out

ALPB with different A

GBANPB Aell ADet

8 −3.45±31.40 −1.07±31.35 −2.79±31.62 −113.73±76.73
20 −3.81±23.38 −2.73±23.23 −3.51±23.43 −53.70±41.68
40 −0.67±19.04 −0.11±18.94 −0.51±19.06 −26.63±26.33
80 2.13±17.11 2.42±17.06 2.21±17.12 −11.11±19.17
Downloaded 19 May 2006 to 128.173.54.52. Redistribution subject to
viation of the ALPB error is larger than that of DELPHI �but
still smaller than that of the GB method�. The disagreement
between the two NPB solvers most likely reflects the subtle
differences in their respective approximations of molecular
surface as well as a different size of the finest grid, due to
different computer memory requirements.

We emphasize that in these tests of the ALPB and GB
we use perfect �NPB-based� effective Born radii. This choice
eliminates the uncertainty associated with computing the ef-
fective radii and tests the quality of the ALPB formalism
�Eq. �3�� directly. A great number of different ways to esti-
mate effective Born radii have been developed over the past
decade and a half, ranging from the very approximate to high
quality, near perfect estimates.19 As with the GB model, the
choice of a particular approximation for the effective radii to
be used in ALPB is dictated by practical considerations and
trade-offs between accuracy and speed: the point in dis-
cussed in some length in Ref. 43.

Finally, from Table II one can see that the ALPB method
is equally accurate whether ANPB, Aell, or ADet is used in Eq.

�3�. The numbers for Ãell �not shown in Table II� are the same
as those for Aell within 0.01 kcal/mol. Note that the approach
that leads to ADet is the simplest and provides straightforward
analytical derivatives, Appendix B. In Appendix C, we
present a procedure used to optimize the computation of data
shown in Table II.

C. Incorporating the effects of salt

A typical biological environment contains electrolytes,
whose electrostatic screening effects are often important to
consider. A rigorous derivation of an ALPB equation that
takes into account these effects is beyond the scope of this
paper and will be published elsewhere. For immediate prac-
tical purposes it is possible to modify Eq. �3� so that it retains
its simplicity and yet accounts for the screening effects of
monovalent salt in the same manner and at the same level of
accuracy as in the GB model.44 Note that the GB formula Eq.
�1� is the limiting case of the ALPB Eq. �3� with �→0. Now

FIG. 4. Electrostatic part of the transfer energy between water and a me-
dium of variable dielectric �out �at constant �in=1� computed for the protein
myoglobin using ALPB �with ADet, Eq. �23��, conventional GB, and the
reference NPB methods.
consider the salt-dependent GB equation,
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�Gel
GB��� = −

1

2�
ij

qiqj� 1

�in
−

e−�f ij

�out
� 1

f ij
, �24�

where �=0.3163	�salt� is the Debye-Hückel screening pa-
rameter of dimension Å−1 when salt concentration is ex-
pressed in �mol/l�. Clearly, a natural, albeit heuristic, candi-
date for a salt-dependent extension of the ALPB is

�Gel
ALPB��� = −

1

2�1 + ����ij qiqj� 1

�in
−

e−�f ij

�out
�

�� 1

f ij
+

��

A
� . �25�

The average errors of the salt-dependent ALPB and GB
methods relative to the NPB reference, ��Gel

ALPB���
= ��Gel

ALPB���−�Gel
NPB���� and ��Gel

GB���= ��Gel
GB���

−�Gel
NPB����, are shown in Table III. Similar to the no-salt

case considered above, the average error of ALPB amended
with the salt prescription is smaller than the GB error by a
factor of 3–4 at �out=80 and by a factor of 6–7 at �out=20.
These differences are close to the ones we have seen when
comparing the ALPB and GB without salt: the similarity
indicates that the GB prescription for handling the salt effect
works in the ALPB at the same level of accuracy as in the
GB itself, and the accuracy improvement seen in Table III is
due to Eq. �3� being more physically rigorous than Eq. �1�
�Fig. 5�.

D. Accuracy of per atom energy contributions

In many applications, such as MD simulations or pK
estimates, it is essential that not only the total solvation en-
ergy �Gel but also the individual terms that sum up to it are
calculated correctly. It may happen that the errors in �Gij

el

terms cancel upon summation, yielding the total energy that
would appear quite accurate despite substantial errors in the
individual �Gij

el—a problem that is known to occur in earlier
GB models.39 Quantities such as the contribution to the force
acting on ith atom �−�� j�Gij

el� may therefore contain an un-
compensated error. To assess the accuracy of ALPB from this
angle and to see if such deceptive error cancellation is actu-
ally taking place, we compute the per atom contributions to
the solvation energy Ei=� j�Gij

el by each of the approximate
methods, ALPB and conventional GB. For each given mol-
ecule from the consensus benchmark set, the errors of
the approximate methods relative to the NPB reference
�Ei= �Ei−Ei

NPB� are computed for each atom. Then they are
averaged over all atoms to produce a set of average ��E� for
each molecule. These error values form fairly symmetric dis-
tributions; their averages over the consensus benchmark set
represent systematic deviations of the corresponding models
from the NPB reference, see Table IV. The systematic error
of the ALPB method is three to a few hundred times lower
than that of the GB method, depending on the solvent dielec-
tric value.

E. Using ALPB in MD simulations

Given the mathematical similarity of the GB and ALPB

models, it is hard to expect that the latter will prove to be
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unstable in molecular dynamics simulations where the GB
model has been widely and successfully used for this pur-
pose. Still, tests are needed. Since ALPB can use the effec-
tive Born radii already computed by many MD packages, the
implementation of ALPB is particularly straightforward. We
have incorporated ALPB into a prerelease version of
AMBER9.45 In the course of an MD simulation, the electro-
static solvation energy �Eq. �3�� is typically calculated every
time step. A natural question arises, should A be calculated at
every time step, too, or could one save computer resources
and reduce the algorithmic complexity even further by recal-
culating A only once in a while? To address this question and
test the stability of ALPB in a typical MD simulation, we
have produced �7 ns long MD simulation of protein ubiq-
uitin, with Eq. �3� replacing the conventional GB model to
describe implicit solvation. This protein was used before for
testing the GB models.30 The MD protocol used here is the
same as in the above reference, except for the value of the
solvent dielectric, see below, and the use of ALPB instead of
the GB. Electrostatic size ADet is calculated using Eq. �23�.
For select equidistant time points, reference ANPB values are
also computed. To explore the regime of maximum differ-
ence between the ALPB and GB, we set �out=20 which may
correspond to solvation in concentrated water/alcohol mix-
tures; lower values of �out, although technically possible, are
probably unreasonable for the case of protein solvation. Al-
though we do not know if ubiquitin remains in its native state
under the corresponding experimental conditions, it is un-
likely that any global unfolding occurs over the course of
7 ns. It is therefore reassuring that the ALPB based simula-
tion produced a stable trajectory, with the maximum back-
bone rmsd from the x-ray structure not exceeding 1.6 Å �ex-
cluding three C-terminal residues�. Very similar numbers for
this protein were obtained with one of the latest GB models
in AMBER �Ref. 46� under the conditions of aqueous
solvation,30 �in=80.

The evolution of the electrostatic size of ubiquitin in the
course of the MD simulation is shown in Fig. 6. It is easy to
see that Aell only slightly overestimates the reference NPB-
based values: �Aell−ANPB�=0.32±0.07 Å, whereas ADet un-

TABLE III. Accuracy of the ALPB with salt dependence added via Eq. �25�
is compared to that of the conventional GB method with salt, Eq. �24�, on
the consensus benchmark set of 579 structures. The monovalent salt con-
centration is set to 0.1M. In both ALPB and GB calculations we follow the
scaling prescription �→0.73� due to Srinivasan et al.44 that is intended to
mimic the effects of nonzero ion exclusion radius. Each entry is the differ-
ence, in kcal/mol, between the approximate electrostatic solvation free en-
ergy and the corresponding NPB reference, averaged over the consensus
benchmark set. The error margin is computed as the standard deviation. In
all of the calculations �in=1. Here we do not consider media with lower
dielectric values as salt is unlikely to dissolve in them to any appreciable
extent.

�out

ALPB with different A

GBANPB Aell ADet

20 6.47±21.33 7.57±21.63 6.77±21.57 −43.68±36.49
80 2.52±17.05 2.80±17.00 2.59±17.06 −10.74±18.97
derestimates the reference NPB values by �ANPB−ADet�
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=0.62±0.05 Å �the differences in A are averaged over the
trajectory�. The differences are of the order of one to two
standard deviations of ANPB values themselves. Note that the
variations in all three values of A are well correlated to each
other over the time course of the simulation. Given the in-
sensitivity of ALPB to variations in A discussed above, we
conclude that the approximate methods provide useful esti-
mates of A in this case. Another practically important obser-
vation is that in the course of the above simulation A changes
by only a few tens of an angstrom; the amplitude of fluctua-
tions of the electrostatic size is smaller than the error margin
of the reference NPB values ANPB. This conclusion is likely

TABLE IV. Systematic errors in the calculation of the on-site potentials
�analytical methods vs NPB�. Each number is the difference �Ei−Ei

NPB�,
where Ei=� j�Gij

el �kcal/mol�, averaged over all atoms of each molecule and
then averaged again over all molecules from the consensus benchmark set.
ALPB is using ADet, Eq. �23�, for the effective electrostatic size.

�out ALPB GB

20 −0.000 16 −0.032 16
40 0.000 58 −0.016 08
80 0.001 53 −0.006 96

FIG. 5. The dependence of the electrostatic part of the free energy of solvat
models is exemplified on four structures from the consensus benchmark set:
base-pair duplexes�, �c� native myoglobin �PDB ID: 2mb5�, and �d� thiored
in all of the calculations �in=1, �out=80.
Downloaded 19 May 2006 to 128.173.54.52. Redistribution subject to
to hold true for any MD simulation of proteins in or near
their native states: since the electrostatic size characterizes
the molecule’s global shape, it will unlikely be changing ap-
preciably in these types of simulations. Therefore, one does
not need to recalculate A often; it is even acceptable to find A
at the beginning of the simulation and then keep it constant.

Large structural transformations of a biomolecule such
as protein folding or unfolding constitute a challenge to any
analytical theory. To test our analytical approximations under
these conditions, we use snapshots from an unfolding-
refolding trajectory of protein-A. This trajectory was gener-
ated earlier30 and samples a wide range of states, from the
native, folded state �marked by F in Fig. 7� to the completely
unfolded state at 450 K �U in Fig. 7�. At each time step, the
number of residue-residue contacts, which serves as a mea-
sure of protein’s proximity to its folded state, and the elec-
trostatic size ADet are calculated; ANPB is computed for select
snapshots using the reference NPB solver. As expected, the
electrostatic size of the protein correlates with the number of
residue-residue contacts, i.e., with the degree of its compact-
ness, see Fig. 7. One can also see that the solvation energy
calculated by ALPB �Eq. �3�� correlates with NPB better

n the salt concentration within the ALPB �using ADet, Eq. �23�� and the GB
small protein, leucine zipper acidic chain �PDB ID: 1fmh�, �b� A-DNA �10

�PDB ID: 2trx�. The NPB reference values are also shown for comparison;
ion o
�a� a

oxin
than conventional GB values �Eq. �1�� at all times, even dur-
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ing drastic structural changes. The average �along dynamic
trajectory� differences in the solvation energy values are as
follows: ��Gel

GB= ��Gel
GB−�Gel

NPB�=−44.98±5.67 kcal,
��Gel

ALPB= ��Gel
ALPB−�Gel

NPB�=11.57±4.97 kcal. Thus, the
systematic error of the analytical approximation based on the
ALPB approach is four times smaller than the error of the
conventional GB method for this protein in very different
structural states.

While an offset in energy that remained a constant
throughout the entire trajectory would obviously not be a
problem for MD applications, a bias towards certain struc-
tural states would. We have computed this bias towards the
folded states of protein A within both the ALPB and the GB
models, �= ���Gel�F− ���Gel�U. The definitions of the states
are shown in Fig. 7, and the results are summarized in Table
V. The artifactual bias of the ALPB method is 1 kcal/mol
and is almost an order of magnitude smaller than that pro-
duced by the GB model.

While the approximate analytical estimate of the electro-
static size deviates from the NPB reference values by as
much as 30% over some parts of the protein A unfolding/
refolding trajectory, Fig. 7, the variation of ANPB itself is only
about 15%. This suggests that using a constant A=A�t=0�
may not be completely unreasonable even if one expects sub-
stantial conformational changes to occur, as in this example.

Macromolecular complex formation and receptor-ligand
docking are another important class of problems, especially
in practical applications such as rational drug design.
Implicit solvation approaches, such as the widely used
molecular mechanics PB �GB�/solvent accessibility,
�MMPB�GB�/SA� scheme,47 are particularly advantageous
here—they allow one to estimate free energies of many con-
formations in a computationally facile manner. In a typical
scenario one estimates the free energy of complex formation
as the difference between free energies of the complex and
the state in which the ligand and the receptor are completely

48,49

FIG. 6. Evolution of the electrostatic size of protein ubiquitin during MD
simulation under the following conditions: T=300 K, �in=1, and �out=20.
Solid lines show Aell, ADet, and ANPB found at select points using procedure
described in Sec. III C. Error bars �shown sparsely� correspond to the stan-
dard deviation 
� of NPB-based values of the electrostatic size of ubiquitin
molecule.
separated. The ALPB approach can serve to represent the
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electrostatic solvation effects in this case. In the “docked”
state, the components of the complex form one continuous
structures, and so the ALPB can be used as described above
to provide an increased accuracy over the GB treatment. In
the other state, each molecule is treated by the ALPB sepa-
rately, each characterized by its own value of the effective
electrostatic size. Since the ligand-receptor separation dis-
tance is assumed to be infinite in this state, there are no
ligand-receptor interactions to account for.

F. Note on parameter � of the ALPB equation

As was mentioned earlier, the ALPB model is parameter-
free. We would like to stress that the coefficient � used in
ALPB calculations in this work, Eq. �3�, was not obtained by

TABLE V. The artifactual bias towards the folded states in the folding/
unfolding of protein A produced by the two approximations: ALPB �using
ADet, Eq. �23�� and GB. Average �along dynamic trajectory, see Fig. 7�
values of the energy offset relative to the NPB reference ��Gel

GB= ��Gel
GB

−�Gel
NPB� and ��Gel

ALPB= ��Gel
ALPB−�Gel

NPB� are calculated separately for the
folded state, 0� t�9.3 ns, and unfolded state, 9.6� t�12.3 ns. The bias is
defined as �=��Gel�F−��Gel�U.

Method Bias � �kcal/mol�

ALPB −0.97
GB 7.21

FIG. 7. �Top panel� Variation of electrostatic size A computed via the ap-
proximate method of effective ellipsoid �ADet, Eq. �23�� is compared to the
NPB reference �ANPB� during the unfolding and refolding of protein A �PDB
ID: lbdd� at �in=1, �out=8. Details of the unfolding protocol are found in
Ref. 30. �Middle panel� Proximity to the folded states of the protein during
the simulation is characterized by the number of residue-residue contacts.
Ranges of the folded state �F ,0� t�9.3 ns� and unfolded state �U ,9.6� t
�12.3 ns� are shown by arrows. �Bottom panel� The difference between
electrostatic solvation energies computed by ALPB and NPB, ��Gel

ALPB

=�Gel
ALPB−�Gel

NPB, and between conventional GB and NPB, ��Gel
GB

=�Gel
GB−�Gel

NPB. Electrostatic size A=ADet is used in ALPB Eq. �3�.
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fitting to a massive set of NPB solvation energies. Instead,
the value

� =
4�3�2 − 28�

42��3� + 3�2 − 76
− 1 � 0.571412, �26�

where ��n� is the Riemann zeta function, originated from
“first principles,”37 through the minimization of the rms error
between the exact38 and the ALPB solutions of the Poisson
equation on a large spherical molecule with a random distri-
bution of charges. A natural question arises: Can this
ab initio � be improved through fitting to the NPB reference
solvation energies on the consensus set? To this end, we have
computed an average error, relative to the NPB, of electro-
static solvation energy as a function of �: ��Gel

ALPB���
−�Gel

NPB�. The results are shown in Fig. 8 for the consensus
benchmark set of 579 molecules that we consider here. It can
be seen that the ab initio � is virtually the same as the best fit
value of �0.5898. Note that the ALPB with �=0 exactly
coincides with conventional GB, compare Eqs. �1� and �3�.
The point corresponding to the difference between two NPB
solvers, DELPHI and our reference solver PEP, is also shown
on the graph. Note that DELPHI does not contain parameter �
and is therefore shown out of the horizontal scale. Calcula-
tions show that not only the average error ��Gel

ALPB is van-
ishing near the ab initio ��0.571412 but also the standard
deviation of the ��Gel

ALPB value, as function of �, has its
minimum at the same point. This means that the ALPB
theory may not be improved by minor adjustments that
would only shift the average error ��Gel

ALPB, such as varying
the parameter �. Since � enters Eq. �3� only in the combi-
nation ��, where �=�in /�out, the electrostatic solvation en-
ergy �Gel is not very sensitive to � for small � such as, e.g.,
�=1/80. For this reason �=0.571412 could be replaced, for
the sake of simplicity, by an easy-to-remember value 4

7
�0.571429, which would not change the final results to a
noticeable extent.

V. CONCLUSIONS

The implicit solvent methodology is widely used to pro-
vide a computationally efficient representation of an aqueous
environment in molecular modeling. Electrostatic interac-
tions are often hardest to account for due to irregular shapes
of realistic molecular structures. Considerable effort has been
spent by the community to develop fast, analytical ap-
proaches to compute these interactions; the most widely used
is arguably the generalized Born �GB� approximation. In this
work we have continued to develop and test a new approach,
the analytical linearized Poisson-Boltzmann �ALPB� that is
introduced in a previous publication by the authors. The ap-
proach goes beyond the GB approximation in its accuracy
and range of applicability but is as computationally efficient
as the GB model. The main goal of the current work has
been the development of effective approximations for the
input parameters of the new model, extensive testing on a
large representative set of biomolecular structures, and
implementation and testing of the model in molecular dy-
namics �MD�.
The main challenge proved to be the development of a
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computationally efficient approximation for the effective
electrostatic size of the molecule—a new physical parameter
that quantifies the relationship of the over-all size and shape
of the molecular structure to its electrostatic contribution to
the solvation free energy. As shown earlier, the effective
electrostatic size reintroduces key physics into the approxi-
mate formalism, which is missing in the conventional GB
theory. Similar to the effective Born radii in the GB model,
the electrostatic size can, in principle, be computed by inte-
grating the electric field �displacement� density around the
molecule. But unlike the GB theory, approaches such as the
Coulomb field approximation �CFA� widely used to compute
the effective Born radii turn out to be not applicable. In this
work we have proposed a different scheme: instead of ap-
proximating the complex electric field produced by an ir-
regularly shaped molecule, we approximate its molecular
surface by that of an ellipsoid and then compute the field
�and the electrostatic size� exactly. While this approximation
may seem like a drastic one for realistic biomolecules, the
extensive tests against the standard numerical Poisson-
Boltzmann �NPB� treatment have shown that it is quite ad-
equate if used in ALPB to compute charge-charge interac-
tions and solvation energies. Namely, the electrostatic part of
the solvation free energy has been computed by ALPB and
compared to NPB for almost 600 realistic biomolecules rep-
resenting various structural classes. This statistically signifi-
cant test reveals that ALPB virtually eliminates the system-
atic error relative to the NPB: the average differences are
within 3.5 kcal/mol. Depending on the solvent dielectric,
these systematic deviations are 5–50 times smaller than those
of the conventional GB theory and, in contrast to the GB
model, remain small over the entire relevant range of solvent
dielectrics. Of course, this does not mean that for an arbitrary
biomolecular structure the ALPB is guaranteed to be more
accurate than the GB, but only that the ALPB is more likely
to be more accurate.

In the aqueous solvation regime, the average deviation

FIG. 8. Average error, relative to the NPB reference, of electrostatic solva-
tion energies of 579 biomolecules from the consensus benchmark set, cal-
culated at �in=1, �out=8 by various methods. Dependence of the ALPB
�using ADet, Eq. �23�� error on parameter � is shown. DELPHI and conven-
tional GB energies shown for comparison do not depend on �.
of the ALPB-computed solvation free energy from the NPB
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reference is of the same magnitude as the difference between
these energies computed by two popular NPB solvers. Since
approximate models such as the ALPB or GB share the same
physical foundations with the numerically exact Poisson-
Boltzmann approach, the latter has been used as a standard
here. Agreement with this standard is an absolutely necessary
condition for any approximate physical model within the
continuum solvent framework. Moreover, the evolution of
the GB approach over the past decade and a half has dem-
onstrated that at least in this particular case of approximate
electrostatic models, a closer agreement with the PB gener-
ally translated into the better accuracy of the method over all.
It can not be overemphasized, however, that agreement with
the PB is only a necessary condition: tests against explicit
solvent methods and ultimately against experiment will
eventually decide the worthiness of our model and its place
among others.

To lay the foundation for these types of tests, and ulti-
mately for the use of ALPB in molecular modeling applica-
tions, we have tested the approximation in the context of MD
simulations. This is where ALPB may be expected to make
most impact due to its computational efficiency and im-
proved accuracy relative to the GB model. Given the meth-
odological focus of this work, we have refrained from apply-
ing the ALPB to full-fledged research problems and
concentrated on testing its stability and computational per-
formance in realistic biomolecular scenarios. To this end we
have obtained the derivatives of the ALPB configurational
energy with respect to atomic coordinates: the expressions
turned out to be simple and well suited for numerical calcu-
lations. The electrostatic screening effects of monovalent salt
have also been introduced into the new formalism, using the
same philosophy as in the GB theory. We have tested the
resulting model in a 7 ns MD simulation of a small protein
ubiquitin, which produced a stable trajectory with virtually
no additional computational overhead relative to an equiva-
lent GB-based simulation. We have also tested the ALPB on
a series of structures representing a temperature unfolding/
refolding trajectory of a small protein. The ALPB provided
consistently better accuracy than GB over the entire trajec-
tory and virtually eliminated the unphysical bias �in solva-
tion energy� towards the folded state that was present in the
GB formalism. Interestingly, while the conformational
changes involved are very large, the changes in the associ-
ated effective electrostatic size are only about 15%. For the
native state simulation of protein ubiquitin these changes are
considerably smaller. In the biologically relevant parameter
regimes, the solvation energy is found to be not very sensi-
tive to changes in the effective electrostatic size. Therefore,
recomputing this quantity only occasionally, or even only
once at the beginning of an MD simulation, appears to be a
decent approximation. The last option is definitely recom-
mended for simulations of native or near-native states and is
probably useful in general: it simplifies the expressions for
the corresponding component of the atomic force and virtu-
ally eliminates any possible overhead associated with the
need to recompute the electrostatic size at every MD step.

Contrary to what one might expect from a theory derived

on the basis of very simple shapes such as sphere or ellip-

Downloaded 19 May 2006 to 128.173.54.52. Redistribution subject to
soid, we find that the ALPB provides a reasonable approxi-
mation to the exact �or numerical� Poisson-Boltzmann for-
malism for many molecules of irregular shape, including
those with pockets and cavities, and rodlike molecules such
as DNA. Perhaps this is not so surprising given that most
biological structures are globular, topologically equivalent to
a sphere. While it is hard to make this argument precise, we
have noticed that ALPB accuracy is worst �but still better
than that of the GB� on structures that can be loosely de-
scribed as having multiple distinct, distant, but connected
domains of appreciable size. It should also be noted that our
claim of higher accuracy of the ALPB relative to the GB
implies the use of reasonably accurate effective Born radii in
both models. While the “second generation” GB models do
provide quite accurate sets of radii, we do not know how the
ALPB may compare to the GB if older routines were used to
compute these. Some of the original methods of computing
the effective Born radii were notorious for underestimating
them for buried atoms.

As mentioned before, the ALPB is free from parameters
obtained by fitting. That is, all the parameters have a clear
physical meaning and are derived on the basis of rigorous
electrostatics applied to simple shapes. An attempt to opti-
mize one of these parameters �� in Eq. �3��, using the com-
mon practice of fitting to a large set of molecular structures
and their corresponding NPB solvation energies has failed, in
the sense that it has produced a value of the optimized pa-
rameter virtually equal to the original “first principles” value.
This result provides further support for the use of the simple
shapes in rigorous derivations of approximate analytical
models for biomolecular applications. The advantage of the
first principles derivations of the type that led to the ALPB is
that they provide further guidance and physical insights that
are often impossible to deduce from massive fits.

The ALPB theory presented in this paper is noticeably
more accurate but as computationally effective as the GB
model in describing electrostatic effects of macromolecular
solvation within the continuum solvent framework. Molecu-
lar dynamics simulations based on the ALPB model appear
to be stable. While clearly many more tests are needed for a
definitive conclusion, the new model might have the poten-
tial to replace the GB formalism in many of its current ap-
plications. Perhaps even more importantly, it provides a rig-
orous foundation for future development of physics-based
analytical electrostatic models.

APPENDIX A: TRANSFORMATION OF EQ. „19…
FOR NUMERICAL IMPLEMENTATION

To simplify the use of standard numerical integration
techniques such as Simpson’s method, the elliptic integral
found in Eq. �19� can be transformed into a sum of two

integrals with finite integration limits, e.g., as follows:
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�
0

� d	

	�a2 + 	��b2 + 	��c2 + 	�

= �
0

d d	

	�a2 + 	��b2 + 	��c2 + 	�

+ �
d

� d	

	�a2 + 	��b2 + 	��c2 + 	�

= �
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	�a2 + 	��b2 + 	��c2 + 	�

+ �
0

1/	d 2d�

�3	�a2 + �−2��b2 + �−2��c2 + �−2�
, �A1�

where the substitution 	=�−2 is made in the second integral.
A natural choice for parameter d, which breaks down the
original infinite integration interval, is d=a2,

�
0

� d	

	�a2 + 	��b2 + 	��c2 + 	�

= �
0

a2 d	

	�a2 + 	��b2 + 	��c2 + 	�

+ �
0

1/a 2d�

	�1 + a2�2��1 + b2�2��1 + c2�2�
. �A2�

The functions in Eq. �A2� have no singularities within their
limits of integration and are therefore well suited for numeri-
cal integration. In this work, the 1-4-1 Simpson’s method is
used to compute Aell.

APPENDIX B: ANALYTICAL DERIVATIVES
OF THE SOLVATION FREE ENERGY

In ALPB theory �with the heuristic salt prescription�, the
electrostatic part of solvation energy �Gel is expressed as
follows:

�Gel � �
ij

�Gij
ALPB

= −
1

2�1 + ����ij qiqj� 1

�in
−

e−�f ij

�out
�� 1

f ij
+

��

A
�

= −
1

2�in�1 + ���

��
ij

qiqj�1 − �e−�f ij�� 1

f ij
+

��

A
� , �B1�

f ij =	rij
2 + RiRj exp�−

rij
2

4RiRj
� , �B2�

where ��0.571412, �=�in /�out, and A is the electrostatic
size of the molecule. Under the usual molecular simulation
conditions, �, �, �in, and � are constants. The effective Born
radii Ri depend on positions of all atoms. Generally speak-

ing, A also depends upon atomic coordinates.
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For the purpose of MD implementation, analytical de-
rivatives of the free energy �Gel over atomic coordinates
should be supplied, and are given below.

��Gij
ALPB

�xk
=

��Gij
ALPB

�f ij

�f ij

�xk
+

��Gij
ALPB

�A

�A

�xk
; �B3�

��Gij
ALPB

�f ij
=

qiqj

2�in�1 + �����1 − �e−�f ij�
1

f ij
2

− ��e−�f ij� 1

f ij
+

��

A
�� , �B4�

��Gij
ALPB

�A
=

qiqj

2�in�1 + ���
�1 − �e−�f ij�

��

A2 ; �B5�

�f ij

�xk
=

1

2f ij

�

�xk
�rij

2 + RiRj exp�−
rij

2

4RiRj
��

=
1

2f ij
��1 +

rij
2

16RiRj
exp�−

rij
2

4RiRj
�� �rij

2

�xk

+ �1 −
rij

4

16Ri
2Rj

2�exp�−
rij

2

4RiRj
��Ri

�Rj

�xk
+ Rj

�Ri

�xk
��;

�B6�

�rij
2

�xk
= 2��ik − � jk��xi − xj� , �B7�

where �ik is the Kronecker delta. Derivatives over yk �or zk�
are obtained by formal substitution of x by y �or z�. Deriva-
tives of Ri depend on the specific algorithm used to calculate
the effective Born radii. Conventional GB formulas can be
easily obtained from the above equations by substitution
�=0.

For A=ADet given by Eq. �7�, derivatives over atomic
coordinates can be written down as follows:

�ADet

�xi
=	 5

2M

1

6�Det I�5/6

�

�xi
Det I =

125mi

48M3ADet
5

� �xi�I11�I22 + I33� − I12
2 − I13

2 � + yi�I12I33 − I13I23�

+ zi�I13I22 − I12I32�� . �B8�

By analogy,

�ADet

�yi
=

125mi

48M3ADet
5 � �xi�I12I33 − I13I23� + yi�I22�I11 + I33�

− I12
2 − I23

2 � + zi�I11I23 − I12I13�� , �B9�

�ADet

�zi
=

125mi

48M3ADet
5 � �xi�I13I22 − I12I32� + yi�I11I23

− I12I13� + zi�I33�I11 + I22� − I13
2 − I23

2 �� . �B10�

Substituting Eqs. �B8�–�B10� into Eq. �B3� completes the

task of differentiating �Gel over atomic coordinates.
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APPENDIX C: ADDITIONAL COMPUTATIONAL
OPTIMIZATIONS

Finally, we provide the following optimizations for the
calculation of �Gel

ALPB in a variable dielectric environment:
for a molecule with given coordinates and charges of atoms,
parameters

� = �
ij

qiqj

f ij
, � = �

ij

qiqje
−�f ij, � = �

ij

qiqje
−�f ij

f ij
�C1�

can be calculated and used as invariant characteristics of the
molecule. Each of these parameters is independent of the
values of the internal and external dielectrics, and can be
reused when the dielectric values change. Rewriting Eq. �25�
with the new parameters yields a simple formula,

�Gel
ALPB = −

� − �� +
��

A
�q2 − ���

2�in�1 + ���
, �C2�

where q=�iqi is the total charge of the molecule and �
=�in /�out. Note that � and � depend on � and that ���=0�
=q2, while ���=0�=�.
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