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Abstract: We describe the development, current features, and some directions for future development of the Amber
package of computer programs. This package evolved from a program that was constructed in the late 1970s to do
Assisted Model Building with Energy Refinement, and now contains a group of programs embodying a number of
powerful tools of modern computational chemistry, focused on molecular dynamics and free energy calculations of
proteins, nucleic acids, and carbohydrates.
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Introduction

Molecular dynamics simulations of proteins, which began about 25
years ago, are by now widely used as tools to investigate structure
and dynamics under a variety of conditions; these range from
studies of ligand binding and enzyme reaction mechanisms to
problems of denaturation and protein refolding to analysis of
experimental data and refinement of structures. “Amber” is the
collective name for a suite of programs that allows users to carry
out and analyze molecular dynamics simulations, particularly for
proteins, nucleic acids and carbohydrates. None of the individual
programs carries this name, but the various parts work reasonably
well together, providing a powerful framework for many common
calculations.1 The term amber sometimes also refers to the empir-

ical force fields that are implemented here. It should be recognized,
however, that the code and force fields are separate; several other
computer packages have implemented the amber force fields, and
other force fields can be used within the Amber programs.

A history of Amber’s early development was presented about
10 years ago;2 here we give an overview of more recent efforts.
Our goal is to provide scientific background for the simulation
techniques that are implemented in the Amber programs and to
illustrate how certain common tasks are carried out. We cannot be
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exhaustive here (the Users’ Manual is 310 pages long!), but we do
try to give a sense of the trade-offs that are inevitably involved in
maintaining a large set of programs as simulation protocols, force
fields, and computer power rapidly evolve. There are certain tasks
that Amber tries to support well, and these are our focus here. We
hope that this account will help potential users decide whether
Amber might suit their needs, and to help current users understand
why things are implemented the way they are.

It should be clear that this is not a primer on biomolecular
simulations, for there are many excellent books that cover this
subject at various levels of detail.3–7 More information about
Amber itself, including tutorials and a Users’ Manual, is available
at http://amber.scripps.edu.

Overview of Amber Simulations

Amber is not a single program, but is rather a collection of codes
that are designed to work together. The principal flow of informa-
tion is shown in Figure 1. There are three main steps, shown top to
bottom in the figure: system preparation, simulation, and trajectory
analysis. Encoding these operations in separate programs has some
important advantages. First, it allows individual pieces to be up-
graded or replaced with minimal impact on other parts of the
program suite; this has happened several times in Amber’s history.
Second, it allows different programs to be written with different
coding practices: LEaP is written in C using X-window libraries,
ptraj and antechamber are text-based C codes, mm-pbsa is imple-
mented in Perl, and the main simulation programs are coded in
Fortran 90. Third, this separation often eases porting to new
computing platforms: only the principal simulation codes (sander
and pmemd) need to be coded for parallel operation or need to
know about optimized (perhaps vendor-supplied) libraries. Typi-
cally, the preparation and analysis programs are carried out on
local machines on a user’s desktop, whereas time-consuming sim-
ulation tasks are sent to a batch system on a remote machine;
having stable and well-defined file formats for these interfaces
facilitates this mode of operation. Finally, the code separation
shown in Figure 1 facilitates interaction with programs written by

others. For example, the NAMD simulation program8 can take
advantage of Amber tools and force fields by virtue of knowing
how to interpret the information in Amber’s prmtop files; simi-
larly, the VMD graphics tools9 can read our trajectory format to
prepare animations. The toolkit from the Multiscale Modeling
Tools for Structural Biology (MMTSB) project10 can be used to
control many aspects of Amber simulations (see Fig. 1). Other
users have written tools to improve upon LeAP’s preparation
interface, sometimes using a portion of the LEaP code and some-
times bypassing it entirely.

Of course, there are also disadvantages in the code fragmenta-
tion implied by Figure 1. There is generally no consistent user
interface for the various components, which makes it more difficult
to learn. Furthermore, there is no (easy) way for code in one
section to modify the results of another section. For example, atom
types or charges (which are established in the preparation phase)
cannot be modified as the simulation proceeds; similarly, the
simulation cannot decide which trajectory data to archive based on
the sort of analysis to be done, because it does not have any
information about that. Despite these limitations, breaking up of
the code into distinct pieces has generally served the user and
developer communities well.

Preparation Programs

The main preparation programs are antechamber (which assem-
bles force fields for residues or organic molecules that are not part
of the standard libraries) and LEaP (which constructs biopolymers
from the component residues, solvates the system, and prepares
lists of force field terms and their associated parameters). The
result of this preparation phase is contained in two text files: a
coordinate (prmcrd) file that contains just the Cartesian coordi-
nates of all atoms in the system, and a parameter-topology (prm-
top) file that contains all other information needed to compute
energies and forces; this includes atom names and masses, force
field parameters, lists of bonds, angles, and dihedrals, and addi-
tional bookkeeping information. Since version 7, the prmtop file
has been written in an extensible format that allows new features
or user-supplied information to be included if required.

LEaP incorporates a fairly primitive X-window graphics inter-
face that allows for visual checking of results and for some
interactive structure manipulation. Most users, however, find other
programs better suited to inspection of PDB files and construction
of initial coordinates, and primarily use LEaP in a text mode
(tLEaP) to assemble the system from a “clean” PDB-format file
that contains acceptable starting coordinates. The nucleic acid
builder (NAB) program integrates well with Amber to construct
initial models for nucleic acids,11 and the Amber/GLYCAM con-
figurator tool (http://glycam.ccrc.uga.edu/Amber) serves a similar
purpose for carbohydrates. Tools for manipulating protein struc-
tures (e.g., for constructing homology models) are widespread, and
the resulting PDB-format files can generally be processed by LEaP
with little or no modification.

Simulation Programs

The main molecular dynamics program is called sander; as with
“Amber,” the original acronym is no longer very descriptive. This
code is written in Fortran 90, and uses the Fortran namelist syntax

Figure 1. Information flow in the Amber program suite.

Amber Biomolecular Simulation Programs 1669



to read user-defined parameters as label-value pairs. As one might
imagine, there are many possible options, and about 150 possible
input variables. Of these, only 32 (identified in boldface in the
Users’ Manual) generally need to be changed for most simulations.
As much as possible, the default options have been chosen to give
good quality simulations.

Sander is a parallel program, using the MPI programing inter-
face to communicate among processors. It uses a replicated data
structure, in which each processor “owns” certain atoms, but
where all processors know the coordinates of all atoms. At each
step, processors compute a portion of the potential energy and
corresponding gradients. A binary tree global communication then
sums the force vector, so that each processor gets the full force
vector components for its “owned” atoms. The processors then
perform a molecular dynamics update step for the “owned” atoms,
and use a second binary tree to communicate the updated positions
to all processors, in preparation for the next molecular dynamics
step. Details of this procedure have been given elsewhere.2,12

Because all processors know the positions of all atoms, this
model provides a convenient programming environment, in which
the division of force-field tasks among the processors can be made
in a variety of ways. The main problem is that the communication
required at each step is roughly constant with the number of
processors, which inhibits parallel scaling. In practice, this com-
munication overhead means that typical explicit solvent molecular
dynamics simulations do not scale well beyond about eight pro-
cessors for a typical cluster with gigabit ethernet, or beyond 16–32
clusters for machines with more efficient (and expensive) inter-
connection hardware. Implicit solvent simulations, which have
many fewer forces and coordinates to communicate, scale signif-
icantly better. For these relatively small numbers of processors,
inequities in load-balancing and serial portions of the code are not
limiting factors, although more work would have to be done for
larger processor counts.

To improve performance, Bob Duke has prepared an exten-
sively revised version of sander, called pmemd, which communi-
cates to each processor only the coordinate information necessary
for computing the pieces of the potential energy assigned to it.
Many other optimizations were also made to improve single-
processor performance. This code does not support all of the
options found in sander, but has a significant performance advan-
tage for the most commonly used simulation options. Some pmemd
performance numbers may be found at http://amber.scripps.edu/
amber8.bench2.html. A similar communications strategy is being
added to development versions of sander by Mike Crowley.

The normal mode analysis code, nmode, is by now quite old,
but is still useful for certain types of analysis. It is limited to
nonperiodic simulations and, as a practical matter, to systems with
fewer than 3000 atoms. Its primary use now is to compute esti-
mates of thermodynamic quantities (in particular, vibrational en-
tropies) for configurations extracted from molecular dynamics
simulations, as in the mm-pbsa scheme discussed below. Its orig-
inal purpose, to compute vibrational properties of small molecules
used in force-field parameterization, is still relevant as well. The
code supports the Amber polarizable potentials, but not (yet) the
generalized Born model; second derivatives of GB energies are
available in the NAB program (see http://www.scripps.edu/case/
nab.html), which has a GB parameterization identical to that of
Amber.

Analysis Programs

The task of analyzing MD trajectories faces two main obstacles.
First, trajectory files may become very large, and the total time
course may need to be assembled from pieces that were computed
in different runs of the simulation program. Second, the types of
analyses that can be carried out are quite varied, and change with
time, as simulation science progresses and as new ideas are de-
veloped. The ptraj analysis program (see http://www.chpc.
utah.edu/�cheatham/software.html) was designed with these ob-
stacles in mind, although it provides only a partial resolution to
them. It can process both Amber and CHARMM trajectories,
parsing their respective prmtop or psf files to atom and residue
names and connectivity, and can assemble trajectories from partial
ones, often stripping out parts (such as solvent) that might not be
needed for a particular analysis. After this, a variety of common
analysis tasks may be carried out; some of these are illustrated
below. The command syntax is designed to allow users to add new
tasks, but this requires knowledge of C programming, and is not as
straightforward as it might be. But it does provide a powerful
framework for adding new commands, and the ptraj repertoire
continues to grow; recent additions include a variety of clustering
algorithms and variants of principal component analysis.

Our eventual goal is that ptraj will support analyses based on
energies as well as structures, but this is not the case in the current
codes. Rather, a variety of programs are used to estimate energies
and entropies from the snapshots contained within trajectory files.
The calculations are organized and spawned by a Perl script,
mm-pbsa, which also collects statistics and formats the output in
tabular form. As its name suggests, the analysis is primarily based
on continuum solvation models.13–15

Overall Strengths and Weaknesses

An overall view of our perception of Amber’s strengths and
weaknesses is given in Table 1. In brief, the suite is good at
carrying out and analyzing “standard” MD simulations for pro-
teins, nucleic acids, and carbohydrates, using either explicit sol-
vent with periodic boundary conditions or an implicit solvent
model. Our aim is to make it easy for users to carry out good-
quality simulations, and to keep the codes up to date as standards
and expectations evolve. However, some desirable options are
missing, and changing the way in which the calculations are
performed can require the user to understand and modify a core
code that has varying standards of readability. As we prepare new
versions of the code, our goal is to ameliorate some of the weak-
nesses, and to continue to incorporate new simulation techniques,
especially those that accelerate convergence of conformational
sampling, or which allow us to use force fields that have a greater
underlying physical realism.

No program can hope to do all tasks well, and subjective
choices usually need to be made about which capabilities are most
needed, and which ones can be supported by the developers. These
choices may be expected to change with time, as computers
become more powerful, and as algorithms evolve and experience
is gained about which sorts of calculations provide the greatest
amount of physical realism. Over the years, Amber has discarded
a number of features that were once viewed as important parts of
its feature set. Some comments about what we no longer support
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(or support well) may help users better know what to expect from
Amber. Some of the features that are now missing are these:

1. “Vacuum” simulations: Amber is strongly aimed at simulations
of biomolecules in water. Although it is still possible to use the
codes in situations where there is no solvent environment, we
no longer implement this capability in a manner that is as
efficient or robust as in earlier versions of the code. The
generalized Born (or numerical Poisson–Boltzmann) contin-
uum solvent models allow for more realistic (albeit more ex-
pensive) simulations for cases where an explicit treatment of
solvation is not appropriate. This lack of full support for sol-
vent-free simulations can be a genuine limitation for cases
where coarse-grained, statistical, or other “effective” potentials
are appropriate, and future versions of Amber may reintroduce
some of this older functionality.

2. Simulations with nonbonded cutoffs: simulations that ignore
long-range nonbonded interactions (particular for electrostatics)
often exhibit biased behavior and artifacts that are difficult to
predict or correct for. For many types of simulations, it is
feasible to include all long-range electrostatics by means of a
particle-mesh Ewald (PME) scheme (discussed below), with a
simulation cost that is comparable to (or even less than)
schemes that do include cutoffs. Given this, Amber neither
needs nor implements cutoff-based switching or smoothing
functions. In the generalized Born model, electrostatic effects
are much less long ranged (especially when a nonzero concen-
tration of added salt is modeled), and Amber can use cutoffs for
this situation, although recommended cutoffs are still fairly
large (ca. 15 Å).

3. Free energy simulations for pairwise-decomposable potentials:

classical molecular mechanics potentials allow the energy to be
written as sums of terms that primarily depend upon two atoms
at a time. Free energy calculations that involve changes to only
a small part of the system (such as a single amino acid side
chain) can exploit this feature by calculating only the small
number of terms that change when accumulating free energy
differences. This efficiency comes at the expense of some
complex bookkeeping, and in any event breaks down when the
energy is not written in this pairwise form; the latter, however,
is the case for GB or PB theories, for polarizable potentials, and
for the “reciprocal space” portion of PME simulations. Because
these more modern techniques are the ones we recommend, we
have dropped development of the gibbs module that imple-
mented free energy calculations for pairwise potentials. With
perhaps less justification, we have also dropped support for free
energy perturbation (FEP) calculations, in favor of thermody-
namic integration (TI) techniques that are (in most cases) more
robust and efficient, and are certainly easier to program and
debug.

Force Fields for Biomolecular Simulations

It has long been recognized that the accuracy of the force field
model is fundamental to successful application of computational
methods. The Amber-related force fields are among the most
widely used for biomolecular simulation; the original 1984 arti-
cle16 is currently the 10th most-cited in the history of the Journal
of the American Chemical Society, and the 1995 revision17 has
been that journal’s most-cited article published in the last decade.
But this widespread use also means that some significant deficien-

Table 1. Strong and Weak Points of the Amber Biomolecular Simulation Programs.

Strengths Weaknesses

Amber implements efficient simulations with periodic boundary
conditions, using the PME method for electrostatic interactions
and a continuum model for long-range van der Waals interactions.

One cannot do good simulations of just part of a system, such as the
active site of an enzyme: stochastic boundary conditions for the
water-continuum interface are missing, as are efficient means for
handling long-range electrostatics and a reaction field.

Non-periodic simulations are supported, using a generalized Born or
numerical Poisson-Boltzmann implicit solvent model.

The component programs lack a consistent user interface; there is
only limited scripting capability to support types of calculations
not anticipated by the authors.

Explicit support is provided for carbohydrate simulations, as well as
for proteins, nucleic acids and small organic molecules.

There is limited support for force fields other than those developed
by Amber contributors.

Free-energy calculations use thermodynamic integration or umbrella
sampling techniques, and are not limited to pairwise decomposable
potentials.

Missing features include: “dual topology” free energy calculations,
reaction-path analysis, Monte Carlo sampling, torsion angle
dynamics, and interactive steered molecular dynamics.

Convergence acceleration can use locally-enhanced sampling or
replica exchange techniques.

QM/MM simulations are limited to semiempirical Hamiltonians, and
cannot currently be combined with the PME or generalized Born
solvation options.

There is a extensive support for trajectory analysis and energetic
post-processing.

The codes were written by many authors over many years, and much
of it is difficult to understand or modify.

Restraints can be very flexible, and can be based on many types of
NMR data.

Efficient parallel scaling beyond about a dozen processors may
required access to special hardware or the adoption of an implicit
solvent model.

There is a large and active user community, plus tutorials and a
User’s Manual to guide new users. The source code is portable
and is available for inspection and modification.

Users are required to compile the programs themselves, and it can be
tedious to assemble the needed compilers and libraries.
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cies are known, especially in terms of the relative stabilities of
�-helical vs. extended conformations of peptides.18–20 There are
good recent reviews of the Amber force fields for proteins21 and
for nucleic acids.22 These discuss some of the trade-offs that were
made in constructing the force fields, and provide comparisons to
other potentials in common use. For this reason, we will not
summarize this information here. Rather, we will focus on two
more recent aspects of the Amber force fields: applications to
carbohydrates, and the facilities for defining a model in which part
of the system is treated as a quantum subsystem, embedded in a
(generally) larger environment described by molecular mechanics
force fields.

Amber also supports a more generic force field for organic
molecules, called GAFF (the general Amber force field).23 The
antechamber program takes a three-dimensional structure as input,
and automatically assigns charges, atom types, and force field
parameters. Given the wide diversity of functionality in organic
molecules, it is not surprising that the resulting descriptions are
sometimes not optimal, and “hand-built” force fields are often
required for detailed studies. Nevertheless, the tables that drive the
antechamber program continue be improved as we gain experience
with their weak points. The primary application so far of the GAFF
potentials has been to the analysis of complexes of small mole-
cules with proteins or nucleic acids, especially for the automated
analysis of diverse libraries of such ligands. The QM/MM facility
described below can also be used to describe fairly arbitrary
organic molecules in the presence of a receptor described in terms
of molecular mechanics potentials.

It is worth noting that the next generation of force fields for
proteins and nucleic acids is likely to be significantly more com-
plex than the ones we use today. These coming implementations
will certainly have some representation of electronic polarizabil-
ity,24–26 and are also likely to include fixed atomic multipoles or
off-center charges to provide more realistic descriptions of the
electron density. There may also be more complex descriptions of
internal distortions (especially for the peptide group27) and terms
beyond Lennard–Jones 6–12 interactions to represent exchange–
repulsion and dispersion. A key goal for future development of
Amber is to support efficient and parallel simulations that track
these new developments.

Applications to Carbohydrates

In eukaryotes, the majority of proteins are glycosylated, that is,
they have carbohydrates covalently linked to their surfaces, either
through the amido nitrogen atom of asparagine side chains (known
as N-linked glycosylation) or through the hydroxyl oxygen atoms
of serine or threonine side chains (O-linked). These modifications
serve a multitude of roles, spanning the purely structural, such as
protecting the protein from proteolytic degradation, to the func-
tional, such as enabling cell adhesion through carbohydrate-protein
binding. Computational methods can assist in the interpretation of
otherwise insufficient experimental data, and can provide models
for the structure of oligosaccharides and insight into the mecha-
nisms of carbohydrate recognition.

Oligosaccharides frequently populate multiple conformational
families arising from rotation about the glycosidic linkages (see
Fig. 2). As a result, they do not generally exhibit well-defined
tertiary structures. A simulation time scale that may be adequate
for establishing the performance of a force field for folded proteins
cannot be expected to be appropriate for oligosaccharides, whose
conformational lifetimes are on the order of 5–10 ns. In this regard,
oligo- and polysaccharides behave more like peptides, and force
field validation must be based on properties computed from struc-
tural ensembles.

The GLYCAM force field introduced to Amber all of the
features that were necessary for carbohydrate conformational sim-
ulations, with the key focal points being treatment of glycosidic
torsion angles and nonbonded interactions.28 Many valence terms,
with the exception of those directly associated with the anomeric
carbon atom [notably R(C1–O5), R(C1–O1) and �(O5–C1–O1)],
were taken from the parm94 parameter set, as were all van der
Waals terms. The force constants for the newly introduced valence
terms were derived by fitting to quantum data at the HF/6-31G*
level.

To address the electrostatic properties unique to each monosac-
charide, as fully as possible in a nonpolarizable framework, all
releases of GLYCAM have employed residue-specific partial
atomic charges. In versions of GLYCAM up to and including
GLYCAM04, these charges were computed by fitting to the quan-
tum mechanical electrostatic potential computed at the HF/6-31G*
level for the methyl glycoside of each residue in each anomeric
configuration. For example, the partial charges on the atoms in the
glucopyranose methyl �-D-glcp are distinct from those on the
atoms in methyl �-D-glcp (see Fig. 3).

Similarly, the structures and partial charges in glucopyranose
are distinct from those in mannopyranose (manp) and galactopy-

Figure 2. Illustration of 3 of the 10 possible disaccharides generated
from linking two �-D-glucopyranosyl residues (�-D-glcp): (a) �-D-
glcp-(136)-�-D-glcp (iso-maltose), (b) �-D-glcp-(134)-�-D-glcp
(maltose), and (c) �-D-glcp-(131)-�-D-glcp (�,�-trehalose). Confor-
mation-determining glycosidic torsion angles are indicated in (a).

Figure 3. Numbering and anomeric configuration in (a) methyl �- and
(b) methyl �-D-glucopyranoside. In GLYCAM, anomeric carbon atom
C1 is atom type AC in (a) and atom type EC in (b); in GLYCAM04
both are atom type CG.
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ranose (galp) etc. Due to the potential for rotations of the hydroxyl
groups to influence the electrostatic properties, beginning in
200029 the partial charges were no longer computed from the
neutron diffraction structures of the methyl glucosides, but from an
ensemble of 100 configurations extracted from solvated MD sim-
ulations of the glycosides. The charges were computed at the same
quantum level as earlier, consistent with the philosophy of AM-
BER, but were based on the HF/6-31G* optimized geometries of
the ensemble of conformations. It should be noted that the torsion
angles of the exocyclic groups were restrained during the geometry
optimizations in the solvation preferred orientations. Although the
charges were derived at the HF/6-31G* level, the fitting was
performed with a larger RESP restraint weight (0.01) than that
employed in fitting the charges for the amino acids in AMBER
(0.001). Simulations of the crystal lattices of monosaccharides led
to the inescapable conclusion that the HF/6-31G* ESP charges
were too polar and required the larger damping afforded by the
higher restraint weight.30 Although affecting the strengths of direct
hydrogen bonds, this damping has negligible effect on molecular
dipole moments and ensuing long-range electrostatics.

As in the case of peptides, the interresidue rotational properties
(the positions of minima, their relative energies, and interconver-
sion barriers) have a direct influence on the 3D structure and
dynamics of an oligosaccharide. In the majority of carbohydrates
these rotational properties are associated with only three atomic
linkages, emanating from the anomeric carbon atom (Fig. 2).

The first of these is known as the �-angle, and has been the
subject of extensive theoretical and experimental examination be-
cause of its unique rotameric properties. In pyranosides, the �-an-
gle refers to the orientation of the exocyclic O5–C1–O1–Cx se-
quence. The hyperconjugation associated with the O–C–O
sequence imparts a preference for this linkage to adopt gauche
orientations, rather than populating all three potential rotamers.
This preference is known as the exo-anomeric effect.31 The pop-
ulation of the gauche rotamers differs in �- and �-pyranosides
because of further steric effects introduced by the pyran ring
system. For this reason, in GLYCAM the rotational properties of
the �-angle were incorporated with a separate torsion term for �-
and �-pyranosides. Each term was individually derived by fitting
to the rotational energy curves for 2-methoxytetrahydropyran (2-
axial serving as a model for �-pyranosides and 2-equatorial for
�-pyranosides). All torsion terms associated with the �-angle,
other than those for the O5–C1–O1–Cx sequence, were set to zero.
This approach necessitated the introduction of two new atom types
for the anomeric carbon in pyranosides, one for use when the
linkage was present in an equatorial configuration (atom type EC,
generally corresponding to �-pyranosides) and one for axial (AC,
generally corresponding to �-).

The second important torsion angle, the �-angle, is associated
with the C1–O1–Cx–Hx sequence and does not exhibit any pro-
found stereoelectronic properties that are unique to carbohydrates.
As such, it was treated with the parameters applicable to ether
linkages of this type.

The most problematic carbohydrate-specific torsion term for
hexopyranoses is that associated with the exocyclic rotation of the
hydroxymethyl group. This O6–C6–C5–O5 linkage is known as
the �-angle, and plays a crucial role in defining the 3D structures
of any oligosaccharide containing a 16 linkage. The tendency for
the O–C–C–O sequence to preferentially adopt a gauche orienta-

tion has been associated with the more general gauche effect.32 In
the gas phase it arises primarily from hydrogen bonding between
the vicinal hydroxyl groups; however, there is a small contribution
from hyperconjugation that is further stabilizing. In the condensed
phase, its origin is more complex.33 In solution, in pyranosides in
which both C6 and O4 are equatorial (most notably in gluco- and
mannopyranose), the O6–C6–C5–O5 torsion angle adopts nearly
exclusively one or the other of the two gauche orientations, known
as gauche–gauche (gg) or gauche–trans (gt); labels that refer to
the orientation of the O6–C6–C5–O5 and O6–C6–C5–C4 angles,
respectively. Remarkably, when O4 is axial (as in galactopyr-
anose) all three rotamers are populated, with a significant amount
of the trans (tg) rotamer being observed.34 To address these issues
much computational focus has been given to the O–C–C–O link-
age.35–37 In gas phase quantum calculations it is only when in-
tramolecular hydrogen bonding is disallowed that the rotational
energy curves agree even qualitatively with the experimental data
(see Fig. 4).37 In a combined quantum and simulation study it was
concluded that the gauche effect in carbohydrates arose solely
from the attenuation of internal hydrogen bonding by interactions
with explicit solvent.37

To parameterize this property into the GLYCAM force field it
was necessary to ensure that the quantum mechanical rotational
properties of the O–C–C–O linkage, in the presence and absence of
internal hydrogen bonding, could be reproduced. This presented a
more serious challenge than might first be expected, largely be-
cause of the difficulty in achieving a balance between the strengths
of the internal nonbonded energies associated with interactions
between O6, O5, and O4. In pyranosides, the O6 . . . O4 interaction
is a 1–5 type, while the O6 . . . O5 is a 1–4. Yet, geometrically, the
relevant interatomic distances, both in the presence and absence of
internal hydrogen bonding are similar for each case. Thus, the
practice in AMBER of damping the magnitude of 1–4 non-bonded
interactions relative to all others by applying a scale factor (of
between 0.5–0.83) introduced an artificial imbalance in the
strengths of the O6 . . . O4 and O6 . . . O5 interactions in carbo-
hydrates. It was only when the GLYCAM parameters were derived
in the absence of 1–4 scaling that quantitative agreement with the
experimental solution rotamer populations for the �-angle could
be achieved.37

Although adequate for a great variety of carbohydrate systems,
the presence in GLYCAM of a unique atom type for the anomeric
carbon in �- and �-glycosides meant that it was not possible to
simulate processes, such as ring flipping, in which the substituents
at the anomeric center changed configuration. This is irrelevant to
most pyranosides, which populate only one chair form in solution,
but some (like the monosaccharide idopyranose, present in hepa-
rin) exist as an equilibrium between the 4C1 and 1C4 chair forms.
Further, many carbohydrate processing enzymes are believed to
distort the 4C1 chair so as to lower the activation energy. To study
these systems it was necessary to derive a parameter set that
employed the same atom type for the anomeric carbon in all
pyranosides. This was the motivation behind the development of
GLYCAM04. Recalling that new anomeric carbon atom types had
been introduced to facilitate parameterization of the rotational
�-angle energy curves, it was these parameters that were again the
focus of the parameter development. To achieve adequate repro-
duction of the quantum rotational curves, it was no longer possible
to employ only torsion term for the O5–C1–O1–Cx linkage. To
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employ a single atom type for C1 in GLYCAM04, it was necessary
to introduce torsion terms for each of the relevant linkages asso-
ciated with the �-angle, namely for the O5–C1–O1–Cx, C2–C1–
O1–Cx, and H1–C1–O1–Cx linkages. Unambiguous partitioning
of the rotational energies into contributions from each of these
sources necessitated a detailed study of the underlying sequences
in model structures. This undertaking ultimately led to a com-
pletely new set of valence and torsion terms, each fit to quantum
data, largely now at the B3LYP/cc-pVTZ level. Partial atomic
charges remain as computed earlier. In the course of the develop-
ment of GLYCAM04, it was decided to remove all default torsion
parameters and introduce quantum-derived torsion terms for all
linkages found in carbohydrates. This is a paradigm shift that has
many advantages; most notable being that it results in a transfer-
able and generalizable force field that enables the introduction of
functional groups and chemical modifications into a carbohydrate,
without the need to develop a large number of new parameters.
However, for a given linkage, the sum of the general torsion terms
employed in GLYCAM04 may not be as precise as the explicit
fitting employed in GLYCAM. Nevertheless, the accuracy of the
GLYCAM04 rotational curves can be rationally tuned, and the
parameters extended in ways that were all but impossible in
GLYCAM. Whereas the GLYCAM parameters augmented the
PARM94 AMBER parameters, the GLYCAM04 parameters are
self-contained. To maintain orthogonality with the AMBER pro-
tein parameter sets, atom type CT was renamed in GLYCAM04 to
CG. In principle, the GLYCAM04 parameters could be extended
to generate a completely generalizable force field for proteins.

Currently under development, in both the GLYCAM and GLY-
CAM04 formats, are TIP5P compatible parameters that include
TIP5P-like lone pairs on the oxygen atoms, and polarizability
parameters that employ quantum-derived atomic polarizabilities.
An interactive tool (http://glycam.ccrc.uga.edu) has been intro-

duced that greatly facilitates the preparation of the files necessary
for running MD simulations with AMBER of proteins, glycopro-
teins, and oligosaccharides. Further intergration of this facility into
the Amber codes is planned, as is continued work on testing and
improvement of the GLYCAM force fields.

The QM/MM Approach

Prior to AMBER 8, the QM/MM module was called Roar. This
coupled an earlier version of the Amber energy minimization/MD
module with Mopac 6.0. As a part of modernization efforts, we
wanted to merge more things into the sander program, and we
recognized that semiempirical technology had advanced well be-
yond what was available in Mopac 6.0, particularly in the area of
linear-scaling approaches. Because the theory and application of
the QM/MM approach38,39 has been extensively reviewed,40–42

we only give a brief description of our approach.
The combination of quantum mechanics and molecular me-

chanics is a natural approach for the study of enzyme reactions and
protein–ligand interactions. The active site or binding site is
treated by the ab initio density functional theory or semiempirical
potentials, whereas the rest of the system is calculated by the force
fields based on molecular mechanics. In the current version of
sander, one can use the MNDO, AM1, or PM3 semiempirical
Hamiltonian for the quantum mechanical region. Interaction be-
tween the QM and MM regions includes electrostatics (based on
partial charges in the MM part) and Lennard–Jones terms, de-
signed to mimic the exchange-repulsion terms that keep QM and
MM atoms from overlapping.

Standard semiempirical molecular orbital methods are widely
used in QM/MM applications because they are able to provide fast
and reliable QM calculations for energies and molecular proper-
ties. However, these methods are still hampered by the need for

Figure 4. HF/6-31G(d), B3-LYP/6-31��G(2d,2p), and GLYCAM �-angle rotational
curves for methyl �-D-glucopyranoside, without (a) and with (b) internal hydrogen bonding;
and methyl 6-O-methyl-�-D-glucopyranoside, without (c) and with (d) internal hydrogen
bonding.
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repeated global matrix diagonalizations in the SCF procedure,
resulting in computational expense scaling as O(N3), where N is
the number of basis functions. If the QM part is extended to several
hundred atoms, it becomes increasingly difficult to apply the
standard semiempirical MO method for QM/MM calculation.

This expense can be greatly reduced with a linear scaling
approach43,44 based on the density matrix divide and conquer
(D&C) method.45 In this approach, global Fock matrix diago-
nalization and cubic scaling are avoided by decomposing a
large-scale electronic structure calculation into a series of rel-
atively inexpensive calculations involving a set of small, over-
lapping subregions of a system. Each subsystem consists of a
core, surrounded by inner and outer buffer regions, and an
accurate global description of the system is obtained by com-
bining information from all subsystem density matrices. When
the system is large enough, the so-called crossover point is
reached, the D&C calculation becomes faster than the standard
MO calculation. The accuracy of the D&C approximation can
be controlled by the two buffer sizes. According to our expe-
rience, the subsetting scheme with the inner and outer buffer
layers of 4.0 � 0.5 Å and 2.0 � 0.5 Å, respectively appear to
be a good compromise between speed and accuracy.46

Figure 5 shows SCF cycle timings for standard and D&C
calculations for different QM region sizes studied in the bovine
�-chymotrypsin system complexed with 4-fluorobenzylamine. The
crossover point occurs at about 170 QM atoms. After this point,
the D&C calculation is significantly faster than the standard cal-
culation.

In some cases, the partitioning of the whole system into QM
and MM parts involves the cutting of covalent bonds and raises the
question of how to best model the interface between the classical

and quantum subsystems. Although many approaches have been
proposed to answer this question,47,48 the link atom method is still
the most commonly used due to its simplicity. Generally hydrogen
atoms are added in the QM part at the covalent bonds cut by the
QM/MM interface. Although the link atom approach is subject to
the criticism that it partitions the systems in an unphysical manner,
results from the link atom approach, if carefully selected, are not
so different from other approaches.49 Moreover, because the lin-
ear-scaling D&C QM treatment is available, we can readily make
the QM part so large that the link atom effect is negligible for the
region of interest.

Amber versions under development will allow QM regions to
be present when the PME or generalized Born options are chosen,
and will be significantly faster, at least for small quantum regions.
For protein–ligand complexes, it is natural to treat the ligand and
associated residues in the binding site as the QM part, and the rest
as the MM part,50 and this facility will be further integrated into
the codes.

Treating Solvent Effects

Explicit Solvent Models

Amber provides support for the TIP3P,51 TIP4P and TIP4P-
Ew,52–54 TIP5P,55 SPC/E,56 and POL357 models for water, as well
as solvent models for methanol, chloroform, N-methylacetamide,
and urea/water mixtures. General triclinic unit cells can be used,
although some of the analysis and visualization tools are limited to
the most common (rectangular and truncated octahedron) shapes;
there is no support for symmetry elements (such as screw axes)

Figure 5. Timings for semiempirical calculations of chymotrypsin, as a function of the size of the QM
region.
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that involve rotations. By default, electrostatic interactions are
handled by a particle-mesh Ewald (PME) procedure, and long-
range Lennard–Jones attractions are treated by a continuum model.
This gives densities and cohesive energies of simple liquids that
are in excellent agreement with more elaborate methods,54 at a
computational cost that is often less than that of cutoff based
simulations.

The PME is, as the name suggests, a modified form of Ewald
summation that is inspired by and closely related to the original
Hockney–Eastwood PPPM method.58 Ewald summation is a
method to efficiently calculate the infinite range Coulomb interac-
tion under periodic boundary conditions (PBC), and PME is a
modification to accelerate the Ewald reciprocal sum to near linear
scaling, using the three dimensional fast Fourier transform
(3DFFT).

Because the Coulomb interaction has infinite range, under PBC
particle i within the unit cell interacts electrostatically with all
other particles j within the cell, as well as with all the periodic
images of j. It also interacts with all of its own periodic images.
The electrostatic energy of the unit cell, and related quantities such
as forces on individual particles, are found by summing the result-
ing infinite series. This latter converges (slowly) to a finite limit
only if the unit cell is electrically neutral, and furthermore, the
limit is found to depend on the order of summation (conditional
rather than absolute convergence). Ewald59 applied a Jacobi theta
transform to convert this slowly, conditionally convergent series to
a pair of rapidly, absolutely convergent series, called the Ewald
direct and reciprocal sums. The conditional convergence of the
original series is expressed in a third term60 as a quadratic function
of the dipole moment of the unit cell, whose form depends on the
order of summation. It is standard to assume that the whole
assembly of unit cells is immersed in an external dielectric. Most
commonly this dielectric is assumed to be fully conducting (“tin-
foil” boundary conditions), in which case the third term vanishes
and the order of summation becomes irrelevant. A more elemen-
tary derivation of the Ewald sum, using compensating Gaussian
charge densities together with Poisson’s equation under PBC in
place of the Jacobi theta transform, can be found in the appendix
to Kittel.61

The Ewald direct sum resembles the standard Coulomb inter-
action, but with the term qiqj/rij, representing the Coulomb energy
of interaction between particles i and j, replaced by qiqj erfc(�rij)/
rij, where � is the so-called Ewald convergence parameter. This
latter term involving erfc converges rapidly to zero as a function of
the interparticle distance rij, allowing the use of a finite cutoff. In
the sander and pmemd programs the Ewald direct sum is calcu-
lated together with the van der Waals interactions. The default
value of the direct sum cutoff is 8 Å, independent of system size.
Accordingly, � is chosen to be �0.35 Å�1, leading to a relative
RMS force error due to truncation below 5 � 10�4.

The Ewald reciprocal sum is the sum, over all reciprocal lattice
vectors m, (m � 0), of a Gaussian-like weight factor exp(��2m2/
�2)/(2�m2) multiplied by �S(m)�,2 where the so-called structure
factor S(m) is given by the sum of qjexp(2�im � rj) over all
particles j in the unit cell (rj is the Cartesian coordinate vector of
particle j). A cutoff can also be applied to the reciprocal sum. With
the above choice of �, the number of reciprocal vectors needed so
that the relative RMS force error due to truncation is below 5 �
10�4 is typically several times the number of particles in the unit

cell. Because the computational cost of calculating S(m) is of order
N for each such vector m, the cost of the reciprocal sum is thus of
order N.2 Unfortunately, this cost becomes prohibitive for systems
containing tens of thousands of particles as is typical today.

What the PME algorithm does is to accurately approximate the
structure factors S(m) using the 3DFFT. The essential idea is to
first note that exp(2�im � rj) can be factored into three one-
dimensional trigonometric terms (even in triclinic unit cells). One
can then simply apply table lookup to these terms, approximating
the trigonometric functions (evaluated at the crystallographic frac-
tional coordinates of particle j) in terms of their values at nearby
grid points. By this means the structure factors are approximated as
sums over regular grid points, that is as a discrete Fourier trans-
form that can be rapidly calculated using the 3DFFT, delivering all
the needed structure factors at order Nlog(N) computational cost.

The original version62 of the PME utilized Lagrange interpo-
lation to do the table lookup of trigonometric functions. The Ewald
reciprocal sum forces were approximated separately from the
energy. The smooth PME (SPME)63 replaced Lagrange polyno-
mials with cardinal B-splines, which are better behaved at higher
order, and which can be differentiated via recursion, allowing
forces to be derived analytically. Thus, in SPME, the forces are
obtained from the gradient of the energy, unlike in the original
PME. It is also possible to use B-splines to separately approximate
the forces, and used in this mode, PME becomes essentially
identical to PPPM as implemented by Pollock and Glosli64 (orig-
inally we used B-spline interpolation, but least-squares B-spline
approximation, advocated by Pollock and Glosli, yields superior
accuracy, so we adopted it beginning with version 6 of Amber65).
Separate force approximation has the advantage that the resulting
forces satisfy Newton’s 2nd law, thus conserving momentum. The
accuracy is also better than that of SPME. However, the discrep-
ancy in momentum conservation with SPME is of the order of the
force error, which so far appears to be adequate for typical bio-
molecular simulations (there may yet be situations in which more
precise momentum conservation is important). Furthermore,
SPME requires half as many 3DFFTs, and thus when used with the
standard defaults in sander or pmemd is more efficient than the
method of separate force approximation. Finally, the SPME ap-
proach of differentiating the approximate reciprocal sum electro-
static potential using the properties of B-splines is critical for
efficient approximation of Ewald sums involving atomic dipoles
and multipoles (see below). For these reasons we have pursued the
SPME approach in recent sander versions and in pmemd.

Over the last 25–30 years objections have sometimes been
raised to the use of Ewald summation in liquid state simulations.
In the early 1980s, it was demonstrated that simulations of liquids
such as water, using Ewald summation, led to calculated properties
in quantitative agreement with those of similar simulations using
reaction field boundary conditions.60 This alleviated many of the
early concerns. More recently, Hummer et al.66 demonstrated that
ionic charging free energies could be calculated accurately using
Ewald summation, and that the finite size effects, due to limited
unit cells, could be accounted for. The picture emerged that sim-
ulations of biomolecules in water, using Ewald summation in
sufficiently large unit cells, accurately represented the idealized
state of the isolated biomolecule in solution. Poisson–Boltzmann
calculations under PBC vs. nonperiodic boundary conditions have
been used67,68 to estimate the artifacts in conformational free
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energy due to finite unit cell size (that is, artificial preference for
certain conformations due to the imposition of strict PBC within a
limited unit cell). From these it is clear that small but nonnegligible
finite size artifacts exist, which would be particularly important in
protein folding studies and systems containing a low dielectric
region (such as lipid bilayers). The cure within Ewald summation
(or any modified Ewald method such as PME) is to enlarge the unit
cell, which, of course, incurs more computational cost. A number
of alternative treatments of long-range electrostatics have been
proposed. These typically involve a modified form of cutoff of
standard Coulombic interactions, possibly including an approxi-
mate treatment of the field due to charges outside the cutoff, as in
reaction fields type methods. None of these alternative approaches
have been demonstrated to be reliably superior to Ewald summa-
tion. Because Ewald summation in a large unit cell is known to be
correct, superiority would mean that the alternative method gave
the same results as Ewald summation in a large unit cell, using,
however, a smaller unit cell. Notably, these alternative treatments
all lead to spherically isotropic interaction potentials [An excep-
tion, for slab boundary conditions, is the recent method of Wu and
Brooks (X.W. Wu, personal communication)]. This spherical isot-
ropy can be expected to be problematic in membrane simulations
and other cases involving nonisotropic dielectric media.69,70

Force fields designed for macromolecules have until recently
modeled the electrostatic interaction between molecules using
fixed atomic point charges. This approximation is thought by many
to be the principal limitation in current macromolecular force
fields. Recent AMBER forcefields have begun to advance beyond
this electrostatic model by introducing off-center charges and
inducible atomic dipoles71,72 to account for the nonisotropy of the
electron density near atoms and for the inductive response of that
density to the local electric field, which changes dynamically as a
function of the changing configuration of the system.

The introduction of atomic dipoles necessitates a generalization
of the standard Ewald sum, and hence, of the PME algorithm. The
generalization of Ewald summation was provided by Smith,73 who
gave explicit formulas for Ewald summation of atomic multipoles
up to quadrupole level. Smith’s methodology was utilized by
Toukmaji et al.74 for performing the Ewald sum involving fixed
atomic charges and inducible dipoles, and is implemented in this
form into sander. More recently, it was used by Ren and Ponder75

for the AMOEBA force field that includes fixed atomic multipoles
up to quadrupole level as well as inducible atomic dipoles using a
Thole damping model.76 We have now implemented Ewald sum-
mation as well as SPME for atomic Cartesian multipoles up to
hexadecapole level,77 using the McMurchie Davidson recursion78

for the Ewald direct sum in place of Smith’s formalism.
Generalizing the SPME to the case of Cartesian multipoles is

straightforward. One notes that the Ewald reciprocal sum structure
factors now involve a sum of products of Cartesian multipole
moments of particle j multiplied by the appropriate derivative, with
respect to rj, of the function exp(2�im � rj). Again, these moments
and derivatives can all be reexpressed in terms of the crystallo-
graphic fractional coordinates of particle j. The function
exp(2�im � rj) as well as its successive derivatives with respect to
fractional coordinates are approximated in terms of B-splines and
their successive derivatives. In practice these derivatives, multi-
plied by the corresponding transformed moments, are summed
onto the PME grid. This grid is then passed to the 3DFFT,

modified in reciprocal space, and passed to the inverse 3DFFT
precisely as in the standard charge-based SPME algorithm. The
reciprocal electrostatic potential is then obtained at an atom i
precisely as in the charges only case, and derivatives of this with
respect to fractional coordinates of i are multiplied against trans-
formed Cartesian atomic multipole moments of i for all atoms i to
get the energy and forces. Due to the above mentioned factoriz-
ability of the B-spline approximation, the SPME for atomic mul-
tipoles is very efficient. Indeed, for the same grid density and
spline order, calculating reciprocal sum interactions up to hexade-
capole–hexadecapole order is only twice as expensive as calcu-
lating charge–charge interactions (note, however, that the hexade-
capole–hexadecapole case generally requires a greater grid density
and higher spline order than the charge–charge case). The SPME
for atomic multipoles up to quadrupole is currently being imple-
mented into sander and pmemd along with the AMOEBA force
field of Ren and Ponder.75,79

Calculating the inductive response of the electron density,
modeled by a set of inducible atomic dipoles, usually requires the
solution of a set of linear equations relating the electric field to the
induced dipoles. In the sander code we have implemented several
variants of an iterative scheme for solving these, as well as
Car–Parrinello-like extended Lagrangian scheme, wherein the in-
duced dipoles are given a fictitious mass and evolved dynamically
along with the atoms. In practice, this latter method is quite
efficient, requiring, however, a 1-fs time step and gentle temper-
ature control for stability. We have found that the AMBER ff02
force field, having atomic point charges and induced dipoles leads
to stable trajectories using the extended Lagrangian scheme, with
some improvement over previous force fields, at least for DNA
simulations.80 However, stability problems can occur with force
fields involving extra points in addition to inducible dipoles, due to
occasional close approaches of the unshielded extra point charges.

Implicit Solvent Models

An accurate description of the aqueous environment is essential for
realistic biomolecular simulations, but may become very expen-
sive computationally. For example, an adequate representation of
the solvation of a medium-size protein typically requires thousands
of discrete water molecules to be placed around it. An alternative
replaces the discrete water molecules by “virtual water”—an infi-
nite continuum medium with some of the dielectric and “hydro-
phobic” properties of water.

These continuum implicit solvent models have several advan-
tages over the explicit water representation, especially in molecu-
lar dynamics simulations:

1. Implicit solvent models are often less expensive, and generally
scale better on parallel machines.

2. There is no need for the lengthy equilibration of water that is
typically necessary in explicit water simulations; implicit sol-
vent models correspond to instantaneous solvent dielectric re-
sponse.

3. Continuum simulations generally give improved sampling, due
to the absence of viscosity associated with the explicit water
environment; hence, the macromolecule can more quickly ex-
plore the available conformational space.

4. There are no artifacts of periodic boundary conditions; the
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continuum model corresponds to solvation in an infinite volume
of solvent.

5. New (and simpler) ways to estimate free energies become
feasible; because solvent degrees of freedom are taken into
account implicitly, estimating free energies of solvated struc-
tures is much more straightforward than with explicit water
models.13,14

6. Implicit models provide a higher degree of algorithm flexibility.
For instance, a Monte Carlo move involving a solvent exposed
side chain would require nontrivial rearrangement of the nearby
water molecules if they were treated explicitly. With an implicit
solvent model this complication does not arise.

7. Most ideas about “landscape characterization” (that is, analysis
of local energy minima and the pathways between them) make
good physical sense only with an implicit solvent model. Try-
ing to find a minimum energy structure of a system that in-
cludes a large number of explicit solvent molecules is both
difficult and generally pointless: the enormous number of po-
tential minima that differ only in the arrangement of water
molecules might easily overwhelm an attempt to understand the
important nature of the protein solute.

Of course, all of these attractive features of the implicit solvent
methodology come at a price of making a number of approxima-
tions whose effects are often hard, if not impossible, to estimate.
Some familiar descriptors of molecular interaction, such as solute–
solvent hydrogen bonds, are no longer explicitly present in the
model; instead, they come in implicitly, in the mean-field way via
a linear dielectric response, and contribute to the overall solvation
energy. However, despite the fact that the methodology represents
an approximation at a fundamental level, it has in many cases been
successful in calculating various macromolecular properties.81–83

In many molecular modeling applications, and especially in
molecular dynamics (MD), the key quantity that needs to be
computed is the total energy of the molecule in the presence of
solvent. This energy is a function of molecular configuration, its
gradients with respect to atomic positions determine the forces on
the atoms. The total energy of a solvated molecule can be written
as Etot � Evac � 	Gsolv, where Evac represents molecule’s energy
in vacuum (gas phase), and 	Gsolv is the free energy of transfer-
ring the molecule from vacuum into solvent, that is, solvation free
energy. To estimate the total solvation free energy of a molecule,
one typically assumes that it can be decomposed into the electro-
static and nonelectrostatic parts:

	Gsolv � 	Gel 	 	Gnonel, (1)

where 	Gnonel is the free energy of solvating a molecule from
which all charges have been removed (i.e., partial charges of every
atom are set to zero), and 	Gel is the free energy of first removing
all charges in the vacuum, and then adding them back in the
presence of a continuum solvent environment. The above decom-
position, which is yet another approximation, is the basis of the
widely used PB/SA scheme.14 Generally speaking, 	Gnonel comes
from the combined effect of two types of interaction: the favorable
van der Waals attraction between the solute and solvent molecules,
and the unfavorable cost of disturbing the structure of the solvent
(water) around the solute. Within the PB/SA, 	Gsurf is taken to be

proportional to the total solvent accessible surface area (SA) of the
molecule, with a proportionality constant derived from experimen-
tal solvation energies of small nonpolar molecules.84,85 Some
more complex approaches have been proposed,86,87 but Amber
currently follows this simple way to compute 	Gnonel, and uses a
fast LCPO algorithm to compute an analytical approximation to
the surface-accessible area of the molecule.88 This part is relatively
straightforward, and is not the bottleneck of a typical MD simu-
lation. The most time-consuming part is the computation of the
electrostatic contribution to the total solvation free energy, mainly
because the forces involved are long ranged, and because screen-
ing due to the solvent is a complex phenomenon.

Within the framework of the continuum model, a numerically
exact way to compute the electrostatic potential �(r) produced by
molecular charge distribution 
m(r), is based on the Poisson-
Boltzman (PB) approach in which the following equation (or its
equivalent) must be solved; for simplicity we give its linearized
form:


��r�
��r� � �4�
m�r� 	 �2��r���r�. (2)

Here, �(r) represents the position-dependent dielectric constant
that equals that of bulk water far away from the molecule, and is
expected to decrease fairly rapidly across the solute/solvent bound-
ary. The electrostatic screening effects of (monovalent) salt enter
via the second term on the right-hand side of eq. (2), where the
Debye–Huckel screening parameter � � 0.1 Å�1 at physiological
conditions. Once the potential �(r) is computed, the electrostatic
part of the solvation free energy is

	Gel �
1

2 �
i

qi��ri�  ��ri��vac�, (3)

where qi are the partial atomic charges at positions ri that make up
the molecular charge density 
m(r) � �i�(r � ri), and �(ri)�vac is
the electrostatic potential computed for the same charge distribu-
tion in the absence of the dielectric boundary, for example, in
vacuum. Full accounts of this theory are available elsewhere.85,89

Numerical Approaches to the Poisson–Boltzmann Equation

The computational expense and difficulty of applying a Poisson–
Boltzmann (PB) model to biomolecules have sparked much inter-
est in developing faster and better numerical methods. Many
different numerical methods have been proposed. The finite-dif-
ference method (FDPB) is one of the most popular and mature
methods for biomolecular applications.90,91 Recently, its numeri-
cal efficiency has been dramatically enhanced, especially for dy-
namics simulations of biomolecules: the overhead of FDPB nu-
merical solver is reduced from higher than explicit water
simulations to comparable to vacuum simulations. The Amber
package implements this improved FDPB method.92

A typical FDPB method involves the following steps: mapping
atomic charges to the finite difference grid points; assigning non-
periodic boundary conditions, (electrostatic potentials on the
boundary surfaces of the finite difference grid); and applying a
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molecular dielectric model to define the boundary between high-
dielectric (water) and low-dielectric (molecular interior) regions,
sometimes with the help of a dielectric smoothing technique to
alleviate the problem in discretization of the dielectric boundary.93

These steps allow the partial differential equation to be converted
into a sparse linear system Ax � b, with the electrostatic potential
on grid points x as unknowns, the charge distribution on the grid
points as the source b, and the dielectric constant on the grid edges
and salt-related terms wrapped into the coefficient matrix A, which
is a seven-banded symmetric matrix in the usual formulation. The
linear system obtained is then solved with an iterative procedure.

In the Amber implementation, a standard trilinear mapping of
charges is used. The boundary potentials may use a sum of
contributions from individual atom charges,94 from individual
residue dipolar charges,95 from molecular dipolar charges,94 or
from individual grid charges. Here a grid charge is the net charge
at a grid point after the trilinear charge mapping. A previous study
shows that the last option (using grid charges) gives the best
balance of accuracy and efficiency for electrostatic force calcula-
tions when electrostatic focusing is used. The dielectric model
requires a definition of molecular volume; the choices offered in
the Amber implementation are van der Waals volume and solvent
excluded (molecular) volume. (Note that the van der Waals option
is based on an improved definition as discussed in detail else-
where.95 Briefly, the radii of buried atoms have been increased by
solvent probe before they are used for van der Waals volume
calculation.) The linear system solver adopted in Amber is the
Eisenstat’s implementation of preconditioned conjugate gradient
algorithm. Care has been taken to utilize electrostatic update in
potential calculations for applications to molecular dynamics and
minimization. Once the linear system is solved, the solution can be
used to compute the electrostatic energies and forces.95

The Amber PB implementation offers two methods to compute
electrostatic energy from a FDPB calculation. In the first method,
total electrostatic energy is computed as 1/2 �iqi�i, where qi is the
charge of atom i and �i is the potential at atom i as interpolated
from the finite difference grid. This energy includes not only the
reaction field energy, but also the finite-difference self energy and
the finite-difference Coulombic energy. To compute a reaction
field energy in the first method, two runs are usually required: one
with solvent region dielectric constant set as its desired value, and
one with solvent region dielectric constant set to that in the solute
region. The second run is used to compute the finite-difference
self-energy and the finite-difference Coulombic energy so that the
difference between the total electrostatic energies of the two runs
yields the reaction field energy. However, if there is no need to
compute reaction field energy directly, for example, as in a mo-
lecular dynamics simulation, the finite-difference total electrostatic
energy can be corrected to obtain the analytical total electrostatic
energy.95 In doing so, the overhead in second FDPB run can be
avoided. This approach is the same as that implemented in UHBD.
In the second method, FDPB is only used to calculate reaction field
energy, which can be expressed as half of the Coulombic energy
between solute charges and induced surface charges on the solute/
solvent boundary. The induced surface charges can be computed
using Gauss’s law with the knowledge of FDPB electrostatic
potential. This method is the same as that implemented in Delphi.

The Generalized Born Model

There exists an alternative approach to obtain a reasonable, com-
putationally efficient estimate of the electrostatic contribution to
the solvation free energy, to be used in molecular dynamics sim-
ulations. The analytic generalized Born (GB) method is an approx-
imate way to calculate 	Gel. The methodology has become pop-
ular, especially in MD applications, due to its relative simplicity
and computational efficiency, compared to the more standard
numerical solution of the Poisson–Boltzmann equation.82,96

Within the GB models currently available in Amber, each atom in
a molecule is represented as a sphere of radius 
i with a charge qi

at its center; the interior of the atom is assumed to be filled
uniformly with material of dielectric constant of 1. The molecule
is surrounded by a solvent of a high dielectric �w (78.5 for water
at 300 K). The GB model approximates 	Gel by an analytical
formula,82,97

	Gel � 	GGB � 
1

2 �
ij

qiqj

f GB�rij, Ri, Rj�
�1 

e�kfij
GB

�w
� (4)

where rij is the distance between atoms i and j, Ri is the so-called
effective Born radii of atom i, and fGB is a certain smooth function
of its arguments (Fig. 6).

A common choice97 of fGB is

fGB � rij
2 	 RiRjexp��rij

2 /4RiRj��
1/ 2, (5)

although other expressions have been tried.98,99 The effective Born
radius of an atom reflects the degree of its burial inside the
molecule: for an isolated ion, Ri is equal to its VDW radius 
i, and
eq. (4) takes on a particularly simple form:

	Gel � �
1

2 �1 
1

�w
� q2


i
� 166

q2


i
kcal/mol�, (6)

where we assumed �w � 78.5 and � � 0 (pure water). The reader
can recognize in eq. (6) the famous expression due to Born of the

Figure 6. The effective Born radius of an atom reflects the degree of
its burial inside the low dielectric region defined by the solvent
boundary.
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solvation energy of a single ion. For simple monovalent ions,
substituting q � 1 and 
 �1.5 Å yields 	Gel ��100 kcal/mol, in
reasonable agreement with the experiment. This type of calculation
was probably the first success of the implicit solvent model based
on continuum electrostatics. The function fGB in eq. (5) is designed
to interpolate, in a clever manner, between the limit rij3 0, when
atomic spheres merge into one and eq. (6) holds, and the opposite
extreme rij 3 �, when the ions can be treated as point charges
obeying the Coulomb’s law. In fact,100 without the exponential
term in Eq. 5, Eq. 4 corresponds to the exact (in the limit �w3 �)
solution of the Poisson equation for an arbitrary charge distribution
inside a sphere. However, in the case of realistic molecules, the
exponential factor in eq. (5) appears to be necessary. This is
probably because, compared to a sphere, the electric field lines
between a pair of distant charges in a real molecule go more
through the high dielectric region, effectively reducing the pair-
wise interaction. The traditional form of fij

GB eq. (5) takes this into
account, at least to some extent, by allowing for steeper decay of
the interaction with charge–charge distance. For deeply buried
atoms, the effective radii are large, Ri �� 
i, and for such atoms
one can use a rough estimate Ri � L, where L is the distance from
the atom to the molecular surface. Closer to the surface, the
effective radii become smaller, and for a completely solvent ex-
posed side chain one can expect Ri to approach 
i. Note that the
effective radii depend on the molecule’s conformation, and these
need to be recomputed every time the conformation changes.

The efficiency of computing the effective radii is therefore a
critical issue, and various approximations are normally made that
facilitate an effective estimate of 	Gel. In particular, the so-called
Coulomb field approximation is often used, which approximates
the electric displacement around an atom by the Coulomb field
D� i

0(r) � qir/r3. Within this assumption, the following expression
for Ri can be derived:82,101

Ri
�1 � 
i

�1 
1

4��
solute

� ��r��  
i� 
1

r4 d3r�. (7)

where the integral is over the solute volume, excluding a sphere of
radius 
i around atom i. For a realistic molecule, the solute bound-
ary (molecular surface) is anything but trivial, and so further
approximations are often made to obtain a closed-form analytical
expression. The Amber programs have adopted the pairwise de-
screening approach of Hawkins, Cramer, and Truhlar,102,103 which
leads to a GB model termed GBHCT. The electrostatic screen-
ing effects of (monovalent) salt are incorporated104 into eq. 4
via the Debye–Huckel screening parameter �[Å�1] � 0.316
�salt�mol/L]. Note, that within the implicit solvent framework,
one does not use explicit counterions unless these are known to
remain “fixed” in specific positions around the solute. To set up an
MD simulation based on an implicit solvation model, one requires
a set of atomic radii {
i}, which is an extra set of input parameters
compared to the explicit solvent case. Over the years, a number of
slightly different radii sets have been proposed, each being optimal
for some class of problems, for example, for computing solvation
free energies of molecules. A good set is expected to perform
reasonably well in different types of problems, that is, to be
transferable. One example is the Bondi radii set originally pro-
posed in the context of geometrical analysis of macromolecular

structures, but later found to be useful in continuum electrostatics
models as well.105

Because the GB model shares the same underlying physical
approximation—continuum electrostatics—with the Poisson–
Boltzmann approach, it is natural, in optimizing the GB perfor-
mance, to use the PB model as a reference. In particular, it has
been shown that a very good agreement between the GB and PB
models can be achieved if the effective Born radii match those
computed exactly using the PB approach.99 Therefore, by improv-
ing the way the effective radii are computed within the analytic
generalized Born, one can improve accuracy of the GB model.
However, agreement with PB calculations is not the only criterion
of optimal GB performance; other tests include comparisons to
explicit solvent simulations results, and to the experiment. Also, to
ensure computational efficiency in molecular dynamics simula-
tions, the analytical expressions used to compute the effective
Born radii, which enter eq. (4), must be simple enough, and the
resulting electrostatic energy component 	Gel “well-behaved,” so
as not to cause any instabilities in numerical integration of New-
ton’s equations of motion. The versions of the GB model currently
available in Amber reflect various stages of the evolution of this
approach; an analysis of these and other popular GB models has
recently appeared.106 Historically, the first GB model to appear in
Amber was GBHCT. It was later found that the model worked well
on small molecules, but not so well on macromolecules, relative to
the PB treatment. Note that in the GBHCT, the integral used in the
estimation of the effective radii is performed over the VDW
spheres of solute atoms, which implies a definition of the solute
volume in terms of a set of spheres, rather than the more complex
but realistic molecular surface commonly used in the PB calcula-
tions. For macromolecules, this approach tends to underestimate
the effective radii for buried atoms,101 arguably because the stan-
dard integration procedure treats the small vacuum-filled crevices
between the VDW spheres of protein atoms as being filled with
water, even for structures with large interior.99 This error is ex-
pected to be greatest for deeply buried atoms characterized by
large effective radii, while for the surface atoms it is largely
canceled by the opposing error arising from the Coulomb approx-
imation, which tends82,107,108 to overestimate Ri.

The deficiency of the GBHCT model described above can, to
some extent, be corrected by rescaling the effective radii with the
empirical parameters that are proportional to the degree of the
atom’s burial, as quantified by the value I of the integral in eq. (7).
The latter is large for the deeply buried atoms and small for
exposed ones. Consequently, one seeks a well-behaved rescaling
function, such that Ri � (
̃i

�1 � I)�1 for small I, and Ri � (
̃i
�1 �

I)�1 when I becomes large; here, 
̃I � 
 � 0.09 Å. One would also
want to have a “smooth” upper bound on Ri vs. I to ensure
numerical stability, see eq. (8) and Fig. 7). Although there is
certainly more than one way to satisfy these constraints, the
following simple, infinitely differentiable rescaling function was
chosen to replace the GBHCT original expression for the effective
radii:

Ri
�1 � 
̃i

�1  
i
�1tanh���  ��2 	 ��3� (8)

where � � I, and �, �, and � are treated as adjustable dimen-
sionless parameters that were optimized using the guidelines men-
tioned earlier (primarily agreement with the PB).
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Currently, Amber supports two GB models (termed GBOBC)
based on eq. (8). These differ by the values of {�, �, �}, and are
invoked by setting igb to either 2 or 5. The details of the optimi-
zation procedure and the performance of the GBOBC model rela-
tive to the PB treatment and in MD simulations on proteins is
described in the original article.109

Enhancing Conformational Sampling

As described above, the use of continuum solvents can improve
sampling due to reduced solvent viscosity. This section describes
several other methods implemented in Amber to improve confor-
mational sampling. The reader is also encouraged to read articles
in a recent special journal issue dedicated to conformational sam-
pling techniques.110

Locally Enchanced Sampling

Locally enhanced sampling (LES)111 is a mean-field approach that
has proven useful in improving sampling through a reduction in
internal barrier heights. In brief, the LES method provides the
opportunity to focus computational resources on the portion of the
system of interest by replacing it with multiple copies. The copies
do not directly interact, and the system responds to the average
force felt through interaction with all of the copies. The mean-field
effect obtained from this averaging provides a smoothing effect of
the energy landscape,112 improving sampling efficiency through
reduction of barrier heights. In this manner, one also obtains
multiple trajectories for the region of interest without repeating the
entire simulation.

In Amber, the addles module is used to prepare a LES simu-
lation (see Fig. 1). Addles reads files generated by Leap, and
outputs the corresponding files with the LES copies as defined by
the user in the input. In addition to replicating atoms, the force
field parameters are modified; the LES energy function is con-
structed so that the energy of a LES system when all copies occupy
identical positions is the same as the energy of the original system
with the same coordinates. This maintains proper balance between
interactions between LES and non-LES atoms, and also maintains
an exact correspondence between the global minima in the LES
and non-LES systems.112 This makes LES particularly useful for
global optimization problems such as structure refinement. For
example, LES simulations applied to optimization of protein loop
conformations are nearly an order of magnitude more efficient than
standard MD simulations.113

LES can be employed with several solvent models. Explicit
solvent models with PME are supported, and this approach has
been used to successfully refine structures of proteins and nucleic
acids.114,115 One potential drawback to the use of LES with
explicit solvent is that the solvent molecules are typically not
placed in the set of atoms that are replicated with LES. Thus, the
solvent will interact with all of the copies, and moving the copies
apart can require the creation of a larger solvent cavity. This results
in a free energy penalty analogous to the hydrophobic effect, and
tends to reduce the independence of the copies through an indirect
coupling. In addition, the solvent molecules surrounding the group
of copies may not be able to simultaneously provide ideal solva-
tion for each of the copies.

Because it is desirable to maximize the independence of the
replicas during the simulation to increase both the amount of phase
space that is sampled and the magnitude of the mean-field smooth-
ing effect, Amber also supports the use of the GB solvent model in
LES simulations. This GB� LES approach has been described in
detail.116 Each LES copy is individually solvated, avoiding the
caging effect described above and providing more realistic solva-
tion of the LES atoms. We have observed that GB � LES permits
observation of independent transition pathways in a single simu-
lation.

A drawback to the GB � LES approach (in addition to the
approximations inherent to the GB models) is that the calculation
of effective Born radii becomes more complex, requiring multiple
effective radii for each of the non-LES atoms. Increased compu-
tational overhead is associated with the use of these extra radii, but
this can be significantly reduced through the use of a radii differ-
ence threshold that allows atoms to be assigned a single radius if
the set of radii differ by less than the threshold. The details of this
approximation have been described,116 and a value of 0.01 Å is
recommended.

Addles provides flexibility to the definition of LES regions,
with the ability to arbitrarily choose the number of LES copies and
the atoms included in the LES region. In addition, multiple LES
regions can be defined, with the copies in each region interacting
in an average manner with all of the copies in other regions.
However, this flexibility presents the user with choices that can
complicate the application of LES. These options are described in
detail elsewhere.113 In general, we have found that the use of three
to five copies works well, but the choice of LES region is highly
dependent on the type of enhanced motion that is desired. Repli-
cation of single residues is sufficient to improve protein side-chain

Figure 7. Graphical representation of different expressions used to
compute the effective Born radius from the scaled volume �. The
broken lines correspond to eq. (8) of the GBOBC model, with param-
eters corresponding to igb � 2 (dashed) and igb � 5 (dotted). The
GBHCT model (corresponding to igb �1 in Amber) is shown as a solid
line. All curves are computed for 
i � 1.7 Å.
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or nucleic acid base rotamer sampling, while at least three to four
residues should be included in each LES region to sample alternate
backbone conformations. Some experimentation may be necessary
to find the optimal choices. In the ideal case, the copies should
converge to the same conformation even when the simulation was
initiated with different coordinates for each copy. If multiple
low-energy states are present, the copies should all interconvert
between these states. If the copies occupy different local minima
and do not interconvert, then one can assume that they are kinet-
ically trapped. Thus, a single LES simulation has built-in measures
of simulation convergence.

Replica Exchange Molecular Dynamics

Another approach to improving conformational sampling is to
increase the temperature of the system, providing more kinetic
energy to overcome barriers to transitions. Simulated annealing117

can be performed in Amber by changing the target temperature
during an MD simulation. A drawback to this approach is that a
cooling schedule must be chosen in advance, and this approach is
generally limited to locating low-energy states rather than calcu-
lation of thermodynamic properties of the system.

In replica exchange molecular dynamics (REMD),118–121 sev-
eral noninteracting copies (replicas) are independently and simul-
taneously simulated at different temperatures. At periodic inter-
vals, conformations of the system being sampled at different
temperatures are exchanged based on a Metropolis-type criterion
that considers the probability of sampling each conformation at the
alternate temperature. If the exchange is accepted, the bath tem-
peratures of these replicas will be swapped, and the velocities will
be scaled accordingly. Otherwise, if the exchange is rejected, each
replica will continue on its current trajectory with the same bath.
In this way, REMD is hampered to a lesser degree by the local
minima problem, because the low temperature simulations (repli-
cas) have the potential to escape kinetic traps by jumping to
minima that are being sampled by the higher temperature replicas.
On the other hand, the high energy regions of conformational
basins often sampled by the high-temperature replicas can be
relaxed in a way similar to the temperature annealing method.
Moreover, the transition probability is constructed such that the
canonical ensemble properties are maintained during each simu-
lation, thus providing potentially useful information about confor-
mational probabilities as a function of temperature. Due to these
advantages, REMD has been widely applied to studies of peptide
and small protein folding.10,18,118,119,122–126

In Amber 8, a single sander run can initiate the entire set of
simulations, each with a different bath temperature and set of
input/output files that can be specified in a single script. Each
replica is run as a separate MD simulation, and multiple MPI
communicators are used to enable transfer of data between the
simulations. This allows the use of multiple processors for each of
the replicas with the same scaling properties that would be ob-
tained for a normal sander MD run. The choice of temperatures
requires careful consideration. We typically use a temperature
range of approximately 280–600 K. The high value is needed to
ensure rapid escape from local minima during the simulation. The
number of replicas needed to cover this range is determined by the
desired probability of accepting the attempted exchanges between
replicas. Too large a gap will result in rare exchange and a loss of

the advantages of REMD. Obtaining a reasonable acceptance ratio
relies on maintaining similarity in the magnitudes of the replica
temperature gap and energy fluctuations in each replica simulation;
therefore, the acceptable temperature gap between neighboring
replicas decreases with larger systems, and more simultaneous
simulations are needed to cover the desired temperature range. For
large systems with thousands of degrees of freedom, this presents
a practical problem. For smaller systems, particularly with implicit
solvent models, REMD simulations are more tractable and may
require �10 replicas.

Trajectory Analysis

Molecular dynamics (MD) simulations provide information on
molecular mobility on an atomic level, although one has to keep in
mind that only recently multiple nanosecond-to-microsecond sim-
ulation times can be reached that are comparable to time scales of
biologically relevant motions. Information about these relevant
motions must then be extracted from the “jiggling and wiggling of
atoms,” the time scale of which is governed by the fastest motions
occurring in the system (usually on the order of 1 fs).

To consolidate a wide variety of different programs, scripts,
and tools written by different people and available for analyzing
MD trajectory data created by Amber (in various languages and
locations), the ptraj program was created in the early 1990s. A
goal was to provide a common interface to the commonly needed
analysis tools. Written in C (with some Fortran code), ptraj ex-
tended the earlier rdparm program, which reads in an AMBER
parameter/topology file (prmtop) and allows a user to interactively
inspect the information within, such as lists of bonds, angles,
dihedrals, and other parameters. The code in rdparm was not
particularly well organized, and inhibited modification and exten-
sion of the (minimal) built-in analysis tools. To facilitate reusabil-
ity of code, to make the program more modular, and to make it
more easily extensible and modifiable, completely new code (ex-
cept for the core prmtop reading routines) evolved. This was
primarily accomplished via two significant changes: (1) The de-
velopment of common/reusable routines, such as routines for pars-
ing command line arguments into keywords and data, routines to
select specific atoms (based on the atom selection syntax imple-
mented in Midas127), and (2) the development of a core structure
that modularizes the functions. At the time rdparm morphed into
ptraj, C�� was not a reliable standard (as different compilers
required different code) and therefore the code retained a core C
functionality. Documentation was added and a common frame-
work for performing analysis commands and extending the code
was added. In addition, although the commands can be run inter-
actively (interpreting commands line by line), the preferred mode
of operation was changed from interactive toward parsing of
commands from a file. The flow of the program is shown in Figure
8. This highlights the four major operations: (1) reading in (and
checking of) coordinates (in various auto-detected formats) a sin-
gle frame at a time, (2) performing various “actions” on the
coordinates a single frame at a time (unless coordinates are buff-
ered internally), (3) output of the modified coordinates, and (4)
possible analysis of derived data. Adding a new action routine to
perform analysis or modification of coordinates in a frame is
relatively straightforward [as described in a prototype actionTest()
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routine]. The intent with all of the action routines is to make them
as general as possible with respect to their functionality yet acces-
sible to outside programmers. Overall, the ptraj program has
proven widely useful to the Amber user community.

Despite its utility and extensibility there is one notable defi-
ciency with the current implementation, specifically that only a
single pass through the coordinate data is supported. This limita-
tion is overcome where necessary by loading parts of, or the entire,
trajectory into memory (such as with the 2Drms command, which
requires pairwise comparisons between all frames). This, however,
is not a general solution as it is an extremely memory intensive
task. To overcome this deficiency will require implementation of a
means to buffer the data to files or allow (potentially expensive)
multiple reads through the raw trajectory data. In addition to
overcoming this limitation, future additions to the general release
include a general purpose clustering facility (based on pairwise
RMSd or distance comparisons), further development of the rou-
tines for automated analysis of correlations, and a facility to
smooth trajectories via wavelet transform lifting schemes. Other
goals include a more direct interface capability to sander for
energy analysis, greater support for CHARMM and other file
formats, and the ability to convert AMBER parameter/topology
formats to other formats.

As an example, in the following sections we describe the
analysis of fluctuations and correlations of biomacromolecular
motions using the program ptraj. Internal motions are important
for the function of biomacromolecules. As such, correlated mo-
tions have been suggested to influence enzyme catalysis, and
molecular machines like the ribosome or RNA–polymerase show
collective hinge-bending or domain rearrangement motions. Fur-
thermore, (macro-)molecular association may change internal mo-
tions of the binding partners, which influences binding thermody-
namics or plays a role in allosteric regulation. Here, the dynamics

of the Ras-binding domain of the protein C-Raf1 will be investi-
gated, which is influenced by binding to the H-Ras protein. For
this, snapshots saved at 100 fs intervals along 10 ns production
runs for the Ras–Raf complex and unbound Raf will be used.128

For all analyses presented below the trajectories need to be aligned
against a reference structure to remove global translational and
rotational differences between snapshots, which has been done
using the rms command of ptraj. (Note that the choice of the atom
set used for fitting can have an important influence on the picture
of the internal motion.129,130)

Root-Mean-Square Atomic Fluctuations

To determine the influence of macromolecular association on the
magnitude of motions, the root-mean-square amplitude of motion
of atoms about their mean positions can be determined from the
MD trajectory by the atomicfluct command in ptraj. Results for C�

atoms of unbound Raf (“unbound”) and the Raf structure bound to
Ras (“in cplx”) are given in Figure 9. Because in both cases
snapshots have been aligned against the starting structures of the
trajectories, respectively, the fluctuations for complexed Raf de-
scribe not only internal motions of the binding partners, but also
include information about (rigid-body) motions of the two proteins
with respect to each other. Least-squares fitting of bound Raf only,
which has been extracted from the complex structure (“extracted”)
provides information solely about internal motions of the protein
in the bound state. Not unexpectedly, restrictions of C� atomic
fluctuations upon complex formation are observed for residues in
the protein–protein interface (marked by 
). In contrast, loop L1 of
Raf shows considerably increased fluctuations upon formation of a
complex. As indicated by the differences in the “in cplx” and
“extracted” curves, however, rigid-body motions contribute to
these fluctuations. It should be noted that information about cal-

Figure 8. Information flow in ptraj. [Color figure can be viewed in the online issue, which is available at http://www.interscience.wiley.com.]
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culated atomic fluctuations can be compared to experimentally
determined fluctuations (e.g., obtained from crystallographic tem-
perature factors), remembering that the time scales of averaging
differ by orders of magnitudes between experiment and MD sim-
ulations and that calculated and experimental fluctuations include
additional contributions to the atomic motions.

Equal-Time Crosscorrelations of Atomic Fluctuations

In addition to changes in the magnitude, binding may also influ-
ence the direction of motions. This will be reflected in the equal-
time crosscorrelations of atomic fluctuations, which are deter-
mined by

C�i, j� � �	xi�tk� � 	xj�tk�/�	xi�tk�
2�1/ 2�	xj�tk�

2�1/ 2� (9)

where �. . .� indicates an average over the sample period.129 For
completely correlated motions, C(i,j) � 1, and for completely
anticorrelated motions, C(i,j) � �1. With ptraj, this correlation
matrix is obtained by the matrix correl command.

The results are displayed in color-coded form in Figure 10,
where dark blue represents C(i,j) � 1 and dark red C(i,j) � �1.
The upper left triangle corresponds to motions of C� atoms of
unbound Raf, whereas the lower right triangle shows correlations
of motions in the bound but extracted protein. By comparing both
parts, changes in internal motions due to complex formation are
revealed. As such, orientational correlations become more pro-
nounced in the bound state, as indicated by the more deepened red
and blue colors. Particularly intense couplings can be observed for
the �-sheet of Raf, where the strands show strongly correlated
movements. In turn, loop L1 moves in an anticorrelated fashion
with respect to the �-sheet.

Quasiharmonic Analysis

From a more coarse-grained perspective, proteins can be consid-
ered to be constructed by quasi-rigid bodies (secondary structure
elements and domains) that are connected by flexible loops.
Hence, the motions of these molecules can be characterized in
terms of variables that describe the relative coordinates of these
quasi-rigid elements, leading to a considerable reduction in the
number of variables compared to that required to describe the
dynamics in atomic detail.131 One way to determine these collec-
tive variables (also termed “effective modes”) is by quasiharmonic
analysis, where effective modes are computed such that the second
moments of the amplitude distribution match those found in the
MD simulation,132,133 that is, the Hessian (matrix of second de-
rivatives) Hquasi is determined by

Hquasi � kT �	xi�tk� � 	xj�tk���
�1 (10)

Compared to harmonic (normal mode) analysis, quasiharmonic
analysis thus includes effects of anharmonic terms in the force
field. In ptraj, quasiharmonic analysis is performed by a sequence
of two commands. First, the mass-weighted covariance matrix is
determined by matrix mwcovar. Subsequently, this matrix is di-
agonalized by the analyze matrix command, which results in
eigenvectors and frequencies Qi and �i that satisfy

M�1/ 2HquasiM
�1/ 2Qi � �i

2Qi (11)

with M being a diagonal matrix of atomic masses. Ptraj also
implements principal component analysis (using nonmass-
weighted covariance matrices) in Cartesian and distance space134

as well as Isotropically Distributed Ensemble (IDE) analysis.135

The latter is particularly interesting if overall rotational and inter-
nal motions of the system cannot be clearly separated, as is the
case for molecular systems that exhibit rather unrestricted intramo-
lecular mobility.

Effective modes can then be used to calculate root-mean-square
fluctuations, displacements along mode directions in Cartesian
coordinates, or dipole–dipole correlation functions, which are all
available via the analyze modes command in ptraj. These analyses
often show that protein motion is dominated by a relatively small
number of effective modes.131 Using the projection modes com-
mand, in a subsequent “sweep” through the trajectory snapshots
may then be projected onto these “important” modes, which allows
determining the distribution of conformational substates in the
subspace. An example of this is given in Figure 11, which shows
the projection of 104 snapshots onto the two-dimensional space
spanned by the first and second effective mode, together with
distribution functions of the probability of finding the respective
projection value. Interestingly, projections along the first effective
mode show a bimodal distribution, indicating that this mode char-
acterizes strongly anharmonic motions. This can be important in
helping to establish the range of validity of harmonic or quasihar-
monic approximations.136

Finally, quasiharmonic analysis can, in principle, be applied to
determine absolute rotational and vibrational entropies of biomac-
romolecules based on classical statistical mechanics.133 With re-
spect to complex formation, changes in the degrees of freedom of
the binding partners are then reflected as entropic contributions to

Figure 9. C� atom root-mean-square atomic fluctuations of Raf in
unbound (solid line) and bound (using least-squares fitting of bound,
yet extracted, Raf conformations only: dashed line; using least-squares
fitting of the whole Ras–Raf complex: dotted line) state. Residues in
the interface region are marked with ƒ, secondary structure elements
are indicated by bold lines.
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Figure 10. Crosscorrelation map [Eq. (9)] of C� atomic fluctuations of Raf. (a) The two axes refer
to residue indices. Positive correlations are indicated in red, negative in blue. The correlations for the
unbound protein are shown in the upper left triangle, the ones for the bound protein in the lower right
triangle. Residues in the interface region are marked with ƒ, secondary structure elements are
indicated by bold lines. Part (b) schematically shows the anticorrelated motion between the �-sheet
consisting of �1–�5 and the loop L1 region that occurs in the bound state of Raf.
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the binding affinity. To determine entropies with ptraj, the key-
word thermo has to be given in connection with the analyze matrix
command mentioned above. Although this route provides an in-
teresting alternative to calculating entropies by normal mode anal-
ysis, sampling issues have been found to pose a limitation to its
straightforward applicability.15,137,138

Time–Correlation Functions

NMR relaxation experiments provide information on reorienta-
tional global and local dynamics on nanosecond and subnanosec-
ond timescales for proteins in solution. This data can be interpreted
with the aid of motional models suggested by MD simulations. In
particular, time–correlation functions C(�) determined from MD
trajectories characterize the ability of one nucleus (e.g., the amide
H) to relax the spin of another (e.g., the amide 15N) to which it is
attached. Furthermore, insights into reorientational global motions
may be obtained from time–correlation functions even at fairly
short times.139 Finally, by applying the “model-free approach” of
Lipari and Szabo140 to internal motions that are not coupled to
overall tumbling, order-parameters S2 and effective correlation
times of the internal motions can be determined from time–cor-
relation functions.141–143

Within ptraj, time–correlation functions for vectors previously
determined with the vector command can be calculated with the
analyze timecorr command, using an efficient fast Fourier method.
As an example, normalized time–correlation functions for three
NOH vectors in unbound Raf are shown in Figure 12. Two vectors
(Phe6, Leu27) that are located in secondary structure elements of
the protein show typical characteristics of relatively rigid parts of
the protein (i.e., an initial rapid decay due to vibrational motion

followed by a slower decay due to motions of the peptide group as
a whole). In contrast, the correlation function of Lys51 located in
the loop L1 region decays considerably slower and does not reach
a plateau value even after 3 ns, indicating internal motions on the
(sub-)nanosecond time scale.

In addition to autocorrelation functions, ptraj calculates cross-
correlation functions (which may be used for comparison to cross-
correlated relaxation measurements) as well as time–correlation
functions of normal vectors of (least-squares) planes through a
series of atoms. Finally, the Isotropic Reorientational Eigenmode
Dynamics (IRED) analysis144,145 is available; this model does not
require separability of overall tumbling and internal motions and,
hence, is applicable to a wide range of systems, such as folded,
partially folded, and unfolded biomolecules.

Conclusions

For the past decade, new versions of Amber have been released on
a 2-year schedule, and we anticipate that version 9 will become
generally available in the Spring of 2006. It is still too early to say
much about new features, but current development work is con-
centrating on improvements in the QM/MM capabilities, imple-
mentation of the nudged elastic band approach to finding reaction
paths, and the implementation of electrostatic models that include
permanent multipoles on the atoms. Also underway are continued
improvements in code cleanup, with an eye toward maintainabil-
ity, portability, and efficiency. Amber is a code that is heavily used
by its developers, and reflects their interests, but we are also trying
to lower the learning curve for scientists new to the simulation
field. The Amber codes, and the entire field, have changed enor-
mously in the 25 years since version 1 was written for a PDP-11
minicomputer; we look forward to seeing it evolve during the next
quarter century.

Figure 12. Normalized time–correlation functions for three NOH
vectors of unbound Raf after removing overall rotation. Phe6 is located
in �-strand 1 of the protein, Leu 27 in the �-helical region, and Lys51
in loop L1.

Figure 11. Projection qm of 104 snapshots onto the two-dimensional
subspace spanned by the first (m � 1) and second (m � 2) effective
modes (a). Probability distribution functions Pm(qm) for the first (b)
and second (c) effective mode, respectively, where Pm(qm)dqm repre-
sents the probability that the projection is at position qm.
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