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ABSTRACT Structure and function of macro-
molecules depend critically on the ionization states
of their acidic and basic groups. Most current struc-
ture-based theoretical methods that predict pK of
ionizable groups in macromolecules include, as one
of the key steps, a computation of the partition sum
(Boltzmann average) over all possible protonation
microstates. As the number of these microstates
depends exponentially on the number of ionizable
groups present in the molecule, direct computation
of the sum is not realistically feasible for many
typical proteins that may have tens or even hun-
dreds of ionizable groups. We have tested a simple
and robust approximate algorithm for computing
these partition sums for macromolecules. The
method subdivides the interacting sites into inde-
pendent clusters, based upon the strength of site–
site electrostatic interaction. The resulting parti-
tion function is factorizable into computationally
manageable components. Two variants of the ap-
proach are presented and validated on a representa-
tive test set of 602 proteins, by comparing the pK1/2

values computed by the proposed method with those
obtained by the standard Monte Carlo approach
used as a reference. With 95% confidence, the rela-
tive error introduced by the more accurate of the
two methods is less than 0.25 pK units. The algo-
rithms are one to two orders of magnitude faster
than the Monte Carlo method, with the typical
settings. A graphical representation is introduced
that visualizes the clusters of strong site–site inter-
actions in the context of the three-dimensional (3D)
structure of the macromolecule, facilitating identifi-
cation of functionally important clusters of ioniz-
able groups; the approach is exemplified on two
proteins, bacteriorhodopsin and myoglobin. Proteins
2006;63:928–938. © 2006 Wiley-Liss, Inc.
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INTRODUCTION

Electrostatic interactions are often a key factor determin-
ing properties of biomolecules1–7 including their biological
functions such as catalytic activity,8,9 ligand binding,10

complex formation,11 proton transport,12 as well as struc-
ture and stability.13–15

The electrostatic properties of a molecule can change
dramatically depending on the ionization (protonation)

states of its titratable groups. The protonation of a group
depends on the group’s type, location within the macromol-
ecule, ionization state of other titratable sites, and the pH
and ionic strength of the surrounding solvent. There are
suggestions that link such dramatic changes to the associ-
ated protein function.16

A wide range of theoretical methods exists that predict
pKa and protonation states of ionizable groups,17–31 to cite
just some. Apart from the very early approaches17,32 which
represented the molecule as a low dielectric sphere, and
made mostly qualitative predictions, all modern methods
use atom-detail information from high resolution Protein
Data Bank (PDB) structures; generally, higher resolution
data yields more accurate predictions. While these meth-
ods vary in the underlying physical models and accuracy,
they share one common feature—computational intensity.
For most of the approaches, this computation intensity
stems, in general, from two sources: the need to accurately
estimate charge–charge interactions inside an arbitrarily
shaped molecule, and the need to compute the appropriate
partition function (statistical sum) over all possible mi-
crostates. In this work, we focus on reducing the computa-
tional intensity of the second step, and assume that the
free energy of each microstate can be calculated by the now
standard continuum electrostatics methods described else-
where.33 Recent advances in the implicit solvent methodol-
ogy, in particular the Generalized Born approximation,
have significantly reduced the computational costs of
estimating charge–charge interactions.34

To be specific, consider a molecule with n titratable
sites. Assume, as is typical in the field, that the protona-
tion microstate of any individual site is binary, that is
either protonated (1) or de-protonated (0). A protonation
state of the entire molecule can therefore be represented
by a state vector x� � (x1, x2, . . ., xn) where each titratable
site i is specified by its protonation state xi � 0, 1. The total
number of protonation microstates is therefore 2n. The
probability for a given site to be protonated is related to
the appropriate Boltzmann average over all possible mi-
crostates. Because proteins may have tens or even hun-
dreds of interacting sites, the straightforward summation
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involved in the estimation of the partition function be-
comes a serious problem, in general insurmountable by
performing the brute-force addition over all possible states.
Without additional approximations, the computational
complexity of the problem is exponential, the computation
time � 2n. To solve the problem, various approaches were
proposed. In one of the first techniques, the reduced site
approximation (REDTI) of Bashford and colleagues,33 the
sites that do not change their protonation significantly at a
given pH are regarded as fixed, and the partition function
sum is taken over the reduced set of sites whose protona-
tion does change considerably at this pH. The method is
highly accurate, but is still exponentially complex,33 with
computation time � 2n. As a result, realistic computations
with this method are limited to molecules with no more
than � 30 sites. A practical solution to the problem was
proposed by Beroza and colleagues,20 who developed a
Monte Carlo estimation whose computational cost scales
with the number of sites as n2. A different type of approach
was proposed by Gilson35: the groups are separated to
form clusters of strongly interacting sites, and their parti-
tion functions are calculated exactly, while the interaction
between clusters is treated approximately, in a mean-field
way. The procedure is initiated by setting each group in its
fully ionized state, and then proceeds iteratively to self-
consistency. The method was reported to be highly accu-
rate, but the iterations slowed down significantly as the
cluster size grew beyond � 10 groups.35 A similar ap-
proach was also developed by Yang and colleagues.22

Approaches that used subsets of titratable groups were
also proposed by Lee and coworkers36 and later by
Nielsen.37 Recently, Spassov and colleagues27 proposed a
very general clustering approach (iterative mobile cluster-
ing) to treat additional complexity introduced by conforma-
tional flexibility.

In this work, we have asked the following question: can a
very simple algorithm based on general clustering ideas
lead to estimates of pK values of protein ionizable sites
well within the generally accepted accuracy of the con-
tinuum solvent based approaches? If yes, such an algo-
rithm is likely to be fast and robust, and may therefore be
very useful in situations when a large number of struc-
tures need to be processed quickly, as in bioinformatics
applications, or if an estimation needs to be done in “real
time”, for example, via a web server. Two such algorithms
are considered here. In both cases, the clusters are formed
according to the strength of electrostatic site–site interac-
tions: a cluster includes all sites whose interaction with at
least one other site is above a predefined threshold. All
interactions below the threshold are set to zero. In the first
method, global clustering, all pairs of sites are considered
on an equal footing. Depending on the particular value of
the threshold and details of site–site interactions, there
may be one or many disjoint, noninteracting clusters in the
molecule. The partition function is therefore reduced to a
product of sums over a smaller number of states. Alterna-
tively, one focuses on a particular site and considers only
the interactions that involve this site, an approach termed
local clustering. A single cluster is formed in this case, but

the procedure must be repeated independently for each
titratable site in the molecule. In either case, the computa-
tional complexity of the problem is reduced to � n2nmax,
where nmax is the maximum cluster size allowed.

This article begins with a brief review of the continuum
electrostatic methods used for calculating the energies of
the protonation states. The computation steps of the two
clustering methods, global and local, are then formalized.
An evaluation of the accuracy and computational efficiency
of the methods is presented. The details of the methodol-
ogy and its use in the implementation and testing of the
clustering methods are also described.

THEORY

The association reaction for a protonation microstate x� is
defined as

A � H�x� �3 AH�x� � (1)

where A is the fully deprotonated form of the macromol-
ecule, H(x�) represents the protons in x�, and AH(x�) is the
macromolecule in protonation state x�.33 The free energy of
the given state x� is evaluated using the following equation:

�G�x� � � �
i�1

n

xi2.303�pH � pKint,i�

�
1
2 �

i,j�1

n

Wi,j�qi
0 � xi��qj

0 � xj� (2)

Here, pKint,i is the intrinsic pKa value of the ionizable site
i, that is, the pK value that site i would have if all other
titratable sites were in the reference state (usually the
uncharged state); Wi,j is the matrix of the electrostatic
interactions between unit charges placed at sites i and j.
Also, qi

0 and qj
0 define the reference charge values of the

associated sites. The equilibrium fractional protonation of
site i is

�i �
��x� 	xie
��G�x� �

��x� 	e
��G�x� � (3)

where � � 1/kT, and {x�} indicates summation over all
states of the protonation vector x�. The values �i (pH) define
the titration curve of site i, which is often characterized by
its pK1/2, which is the pH value at which �i � 1/2. For an
arbitrary set of non-zero Wij, the sums in Equation 3 must
be performed over all 2n possible protonation states, hence
the computational complexity of the problem discussed
above. However, suppose that for a given i, a certain subset
of Wij can be assumed to be negligible, Wij � 0. Then, the
corresponding terms in both the numerator and denomina-
tor factor out and cancel, leading to a summation over a
reduced number of states. Physically this means that sites
which do not interact with the site in question do not affect
its protonation state and can be ignored. Below we present
the details of the two methods to form clusters of such
noninteracting sites.
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Global Clustering

Clusters are defined as subsets of titratable sites based
on pairwise interaction strength between members greater
than a threshold value. With a threshold value Wth

defined, a cluster is a subset of titratable sites such that
there exists a path between every pair of titratable sites in
the cluster where every interaction strength along the
path is greater than the threshold. If there does not exist a

path of interactions between two sites such that every
interaction strength is greater than the threshold, the two
sites do not exist in the same cluster. Sites belonging to
different clusters are considered as noninteracting (Fig. 1).
The calculation of protonation for a site i in a cluster  is
done via:

�i� �

��x�	xiexp��j�xj2.303�pH � pKint,j� �
1
2 ��,��W�,��q�

0 � x���q�
0 � x���

��x�	exp��j�xj2.303�pH � pKint,j� �
1
2 ��,��W�,��q�

0 � x���q�
0 � x��� (4)

where {x�} is the set of all possible vectors over the cluster of
sites  and W is a matrix where W�,� is the interaction
strength between titratable sites � and �. The size of each
cluster controls both the accuracy of the approximation and
the computational speed, see below. After the global clusters
are defined, the free energy and titration curves are calcu-
lated for the set of sites in each cluster independently.

Because it is the maximum cluster size nmax that
directly controls the computational speed, we use this
parameter, rather than the interaction energy threshold,
to define global clusters. In practice, the threshold is
initially set infinitely small to allow for all titratable sites
to exist in a single cluster. The threshold is then incre-
mented to separate the titratable sites into distinct clus-
ters; the procedure stops when the maximum cluster size
has reached the desired threshold. A brute-force computa-
tion of the titration curve via Equation 3 can then be
applied to the individual clusters, the calculation time will
be exponentially proportional to each cluster size, which is
less than nmax by construction. In practice, we apply the
reduced site approximation (REDTI) to evaluate Equation
3; this approximation effectively decouples sites that ti-
trate at very different pK, thus reducing the computa-
tional time even further.

Figure 1 illustrates the idea behind the global cluster-
ing. In this example, there are six titratable sites which
yields 26 � 64 possible protonation microstates. The lines

between each site represent the electrostatic interaction
strength between the sites. Here, two clusters are formed
where the electrostatic interactions are strong between all
the sites within each cluster and weak between all the
sites in different clusters. In this example, a partition
function computation on the entire set of sites would
require 64 evaluations. The global cluster approximation
requires two sets of evaluations each of size 23, which sums
to only 16 total evaluations. With the maximum cluster
size nmax fixed, the time savings become dramatic for
systems with a large number of sites.

Local Clustering

The second method of clustering considered here, referred
to as local clustering, defines each individual cluster around
the site of interest, and is used only to evaluate the titration
curves of this site. To estimate protonation states of all sites
in the molecule, the procedure must be repeated for each site.
Again, only those sites whose pairwise interactions with the
given site are above the threshold are kept in the cluster, and
all other interactions are ignored. The procedure used to
construct the cluster is similar to that for the global cluster-
ing described above, except there is only one cluster per site
and clusters centered around different sites may overlap (see
an example in Fig. 2). The calculation of protonation for site i
is based exclusively on the sites defined in the cluster
associated with site i, cluster i.

Figure 1. Global clustering. Definition. Each cluster contains only
pairs of sites with pair interaction strength (solid short lines) above a
predefined threshold. Sites with weak interactions (long dashed lines)
between them belong to different clusters.

Figure 2. Local clustering. Definition. The dashed and dotted titratable
sites are two sites around which the two distinct local clusters are formed.
All pairwise interactions above the preset threshold value are shown by
thick short lines, thin lines represent interactions below the threshold.
Each site whose (direct, pairwise) interaction strength with the chosen site
is above the threshold belongs to the given local cluster. In this example
the size of the local cluster is 3, and only the nearest neighbor titratable
sites form clusters. Note that local clusters may overlap.
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�i �

��x�i	xiexp��j�ixj2.303�pH � pKint,j� �
1
2 ��,��iW�,��q�

0 � x���q�
0 � x���

��xi	exp��j�ixj2.303�pH � pKint,j� �
1
2 ��,��iW�,��q�

0 � x���q�
0 � x��� (5)

Later we will see that a very reasonable accuracy can be
achieved with a maximum cluster size set less or equal to
20, making the associated computational costs negligible
compared to the typical costs involved in estimating the
charge–charge interactions. In practice, we use the cluster-
ing method in conjunction with REDTI to further reduce
computational time.

RESULTS AND DISCUSSION

To estimate the accuracy of the clustering methods
discussed above, we compute pK1/2 values for every titrat-
able site in a test set of 602 proteins, representing a wide
variety of protein sizes and folds.34 The total number of
titratable sites analyzed is � 20,000. The resulting pK1/2

values are compared to the reference values obtained by
the established Monte Carlo methodology20 developed by
P. Beroza and colleagues, conveniently available as the
software package MCTI. Note that a direct comparison
with the exact partition sum, Equation 3, is not only
impractical, but computationally unrealistic for molecules
with more than � 35 titratable sites. In what follows we
assume that the site–site interaction matrix, Wi,j, and the
pKintr values that enter Equation 2 for each test structure
have been precalculated. We use the continuum electrostat-
ics methodology (see Computational Methods section) for
these computations, although the algorithms proposed
here can be used with any other method of estimating the
terms in Equation 2.

Details of how the maximum cluster size nmax affects
the average accuracy of the pK1/2 computations are pre-
sented in Figure 3. Both methods show curves of increas-
ing accuracy as the maximum cluster size is increased. The
local method is the more accurate of the two: if the five
largest proteins (with more than 120 titratable sites) out of
602 tested are excluded, the average error of the method is
less than 0.15 pK units for a maximum cluster size of 20. If
all tested proteins (a total of � 20,000 sites) are taken into
account, the average error is still only about 0.25 pK units.
A more detailed analysis, Figure 4, reveals that within the
95% confidence interval, the error introduced by the local
method at nmax � 20 is guaranteed to be no larger than
0.25 if five largest proteins are excluded. If all 602 proteins
are included, this error is no larger than 0.3. This number
is a statistical upper bound and is much larger than the
errors one can expect for a “typical” medium-size protein:
Table I shows estimated pK1/2 for a set of ionizable
residues in lysozyme (HEWL) and BPTI. These proteins
were used many times before in the analysis of the
accuracy of pK1/2 predicting methodology.38 Some titrat-
able groups exhibit considerable shifts in pK1/2 relative to
the model compound values, and were proposed39 to serve

as discriminative benchmarks for testing of the pK-
prediction methods. Note the maximum difference of only
0.032 for BPTI and 0.083 for HEWL in pK1/2 predicted by
the local clustering (maximum cluster size � 17) methods
relative to the Monte Carlo standard. In fact, for all 261
proteins in the test group with 20 to 39 titratable sites per
protein, the maximum error is 0.10, averaged over the
entire group. The advantage offered by the local clustering
method is a two orders of magnitude shorter run time.
Note that the error introduced by the (local) clustering
approach is considerably smaller than the overall devia-
tion of the predicted pK1/2 s from experiment. While the
predicted values still compare reasonably well to experi-
ment, this agreement (or disagreement) characterizes the
method of estimating the free energy terms in the funda-
mental Equation 2 rather than the algorithms for comput-
ing the protonation partition function discussed here. For
illustration purposes, here we have used the relatively
simple single-conformation continuum solvent methodol-
ogy to estimate the relative free energies of protonation
microstates. The use of more sophisticated methods, ex-
ample multiconformer models30 or semimicroscopic ap-
proaches25 that go beyond the continuum approximation,
is likely to improve the accuracy of the computed free
energies and hence the agreement with the experiment.
The clustering algorithms developed here may still be
useful in this case as the postprocessing step if a fast
evaluation of the partition function is desirable. The
accuracy of the local clustering approach may, perhaps, be
unexpected, given that the approximation neglects a large
number of site–site interactions. This can be explained by
the fact that the electrostatic interactions removed from
consideration by the local clustering algorithm have rela-
tively small values. For example, when the local clustering
algorithm with nmax � 20 is applied to the largest group of
proteins in the test set—those with the number of titrat-
able sites in the range 20 to 39—the maximum interaction
Wij ignored is only 0.014 kcal/mol �� kT � 0.6 kcal/mol.
For the largest proteins tested, those in the group with 80
to 179 titratable sites, the strongest interactions neglected
are still less than 0.21 kcal/mol. However, the accuracy of
the computed pKs is becoming worse as larger interaction
are being neglected; the method may become impractical
for the few largest proteins tested, Figure 4. See Methods
for details of how these values have been computed. The
global clustering method is reasonably accurate for pro-
teins with the number of titratable sites fewer than 40
(test subgroups 1 and 2): the upper error bound is � 0.3 in
this case, Figure 4. The result is in a qualitative agreement
with the conclusions of Nielsen and colleagues,37 who
earlier proposed and tested a method which appears
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similar to the global clustering approach of the current
work. The test cases used by Nielsen and colleagues were
lysozyme (33 sites) and xylanase (40 sites). Our analysis
shows, Figure 4, that the global clustering algorithm does
not perform as well for larger proteins: the upper bound of
the error can be larger than 1 pK unit for many proteins,
and even exceed 4 units for some (subgroup with number
of sites � 120.). We therefore do not recommend it as a
substitute for the local clustering or Monte Carlo approach
when accurate estimates are required for proteins with
number of titratable sites � 40; however we will see later
that the global method may be useful in a very different
context.

The execution time of the clustering algorithms for any
protein depends on two factors: the number of titratable
sites and the maximum cluster size allowed, Figures 5 and
6. The relative execution times of the two clustering
methods and the Monte Carlo method in terms of the
number of titratable sites are presented in Figure 6. The
execution time is the total run time it takes to obtain the

pK1/2 values for each titratable site in a given protein,
starting from the precalculated values of the site–site
interaction matrix W and intrinsic pKintr values. The time
includes the (almost negligible) time of forming the clus-
ter(s) and the execution time of running REDTI on every
cluster.

As seen in Figure 6, the time it takes to compute a set of
pK1/2 values using the clustering methods increases signifi-
cantly with the number of sites in the protein, but both the
global and the local clustering methods run substantially
faster than the reference Monte Carlo method (with typi-
cal settings) for the same number of sites. The relative
speed-up is significant, almost 2 orders of magnitude for
proteins with less than 70 titratable sites, and at least 1
order of magnitude for the very large proteins with a
number of sites greater than 70. Note that 90% of the
proteins tested have fewer than 70 titratable groups, and
because the test set we have used is rather large and
representative, in most cases one can expect a speed-up of
about 100 (relative to Monte Carlo method) for a randomly
selected protein.

Of course, computation of the partition function is just
the last step in a typical pK1/2 predicting protocol: comput-

Figure 3. The average absolute error in pK1/2 values produced by the
two clustering methods as a function of the maximum cluster size (top,
global clustering; bottom, local clustering). The errors are computed
relative to the corresponding pK1/2 values obtained by the Monte Carlo
method used as a reference. The test set of 602 proteins is broken into
subsets based on the number of titratable sites found in each protein;
these are shown in the legend box, along with the number of proteins in
each subset (in parenthesis).

Figure 4. The 95% confidence error range for the global method (top)
and local method (bottom) for each protein as a function of the maximum
cluster size. The errors are computed relative to the corresponding pK1/2

values obtained by the Monte Carlo method. The proteins are grouped in
subsets by the number of titratable sites as in Figure 3.
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ing the terms in Equation 2 may also be time-consuming,
depending on the particular methodology employed. Still,
the use of a clustering method may offer a significant
advantage. For example, for the largest subgroup of our
test proteins (20–39 sites), the average execution time of
the Monte Carlo step is 93 s, while finite-difference PB
calculations of Wij and pKintr by MEAD package take 76 s
on average. Reducing the time of the first step by an order
of magnitude or more will half the total run time. The
speed-up is even larger if the finite difference routine is
replaced by one of the faster implicit solvent methods such
as the generalized Born.40 the time it takes to estimate Wij

and pKintr is then reduced to 24 s, and the overall speed-up
is about a factor of 5 on average for the above group of
proteins.

The practical usefulness of a computational method is
largely determined by two factors: its accuracy and the
associated computational costs. For the clustering ap-
proach considered here, the computational time for any
protein is directly related to the maximum cluster size
allowed, Figure 5. For the local method, the dependence
is clearly monotonic and seemingly exponential, as
expected. The execution time also grows fast for the
global clustering, although the dependence on the maxi-
mum cluster size is not always monotonic, Figure 5(b).
This is likely because the global algorithm does not
necessarily produce clusters of maximum allowed size;
depending on the distribution of sites and the interac-
tion strengths, the largest cluster may happen to be
smaller than the maximum allowed.

TABLE I. An Example of the Local Clustering Algorithm Performance Detailed for Two
Typical Proteins (BPTI and hen Egg-White Lysozyme) Often Used for the Purpose of

Testing pK Predicting Methods

BPTI Speed Up: 69

Site Local Cluster pK1/2 Monte Carlo pK1/2 Difference Experimental pK

Nter1 6.301 6.304 0.003 8.1
Asp3 3.453 3.460 0.007 3.4
Glu7 5.671 5.671 0.000 3.7
Lys15 10.385 10.384 0.001 10.6
Lys26 10.423 10.423 0.000 10.6
Lys41 10.182 10.214 0.032 10.8
Lys46 9.768 9.772 0.004 10.6
Glu49 4.158 4.156 0.002 3.8
Asp50 2.404 2.402 0.002 3.0
Cter58 3.788 3.792 0.004 2.9

HEWL Speed Up: 110

Site Local Cluster pK1/2 Monte Carlo pK1/2 Difference Experimental pK

Nter1 6.771 6.742 0.029 7.90
Lys1 9.646 9.630 0.016 10.80
Glu7 3.344 3.330 0.014 2.85
Lys13 10.438 10.434 0.004 10.50
His15 5.605 5.582 0.023 5.36
Asp18 1.652 1.602 0.050 2.66
Tyr20 15.723 15.760 0.037 10.30
Tyr23 10.673 10.650 0.023 9.80
Lys33 11.000 10.991 0.009 10.60
Glu35 5.119 5.061 0.058 6.20
Asp48 
0.629 
0.660 0.031 1.60
Asp52 2.095 2.012 0.083 3.68
Tyr53 26.156 25.184 0.028 12.10
Asp66 
2.218 
2.247 0.029 0.90
Asp87 0.967 0.926 0.041 2.07
Lys96 11.092 11.088 0.004 10.80
Lys97 10.816 10.789 0.027 10.30
Asp101 4.603 4.582 0.021 4.09
Lys116 9.154 9.159 0.005 10.40
Asp119 3.318 3.293 0.025 3.20
Cter129 3.640 3.631 0.009 2.75

The pK1/2 values of the ionizable groups are computed by the proposed local clustering algorithm (nmax � 17)
and compared to those calculated by the conventional Monte Carlo based (MCTI) method: the two methods
produce nearly identical values (the difference is shown in the fourth column), while the clustering algorithm
is 60 to 100 times faster. The speed-up is estimated as ratio of the corresponding execution times. The pKintr

and Wij values required to compute pKint,i via Equations 2 and 3 have been precomputed using the standard
continuum solvent based methodology (MEAD), see Methods. For reference, corresponding experimental pKs
are listed where available.
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So far, it has not been clear which of the two clustering
methods is more useful, from a practical standpoint, in
calculating protein titrating curves, especially for smaller
proteins. To decide, we compare Figures 5 and 4. The
execution of the local method with maximum cluster size of
17 produces results which are both more accurate and
require less execution time than the execution of the global
method with maximum cluster size of 25. Therefore, if the
goal is accurate calculation of the titration curves (or pK1/2

values), the local clustering method appears to be more
practical. The only exception may be small proteins, for
which the error of the global method, although still larger
than that of the local one, is still quite small compared to
other errors involved. At the same item, the global cluster-
ing method may become useful for addressing other impor-
tant questions, as illustrated in the next section.

Clusters of Strongly Coupled Sites and Biological
Function

Understanding the precise relationships between the
structure of a biomolecule and its function is one of the key

challenges in the biocomputational field. Specific struc-
tural signatures, such as mutual positions of key residues
in active sites, were used to predict molecular func-
tion.41,42 Unusual pKa values and titration curves of
ionizable groups in active sites were correlated with
specific enzymatic activity.16 Here, we put forward a
conjecture that the presence of a (global) cluster of strongly
coupled ionizable groups within a protein may be indica-
tive of the cluster’s importance to the function of the
protein. A proof of this statement would require a detailed
analysis of a large, statistically significant test-set, and is
beyond the scope of this purely methodological work. We
therefore limit ourselves to a relevant example that sup-
ports the above conjecture; the main goal is to present the
tools that can be used for this kind of analysis.

The light-driven proton pump, bacteriorhodopsin, is a
relatively small protein made up of seven membrane-
spanning helices and a retinal chromophore bound to
Lys216 by a Schiff-base linkage in the central part of the
molecule.12 Absorption of a light quantum by the chro-
mophore triggers a series of retinal isomerization changes,
protonation/deprotonation events and protein structural
changes that comprise the bacteriorhodopsin resulting in
the net transfer of one proton from the cytoplasmic side to
the extracellular side of the membrane. A global clustering
analysis for this protein is presented in Figure 7(a), where
we have used the interaction coupling strength of Wth �
2.21 kcal/mol (� 3 kT) as the threshold. The analysis
reveals one large global cluster of eight sites (and a few
isolated clusters, two sites in each). The large global
cluster contains the following sites: Lys-216/Retinal Schiff
Base (Lyr-216), Asp96, Asp115, Asp85, Asp212, Arg82,
Glu194, and Glu204. This happens to be the key, highly
conserved group of residues determining the proton-
pumping function of bacteriorhodopsin. It is also known
that the function of the protein is quite robust to mutations

Figure 6. Average execution time of the calculations based on the two
clustering algorithms and the Monte Carlo method (MCTI) for a set of 602
proteins. The execution time is the total run time it takes to obtain a set of
all pK1/2 values for a given protein, starting from the precalculated values
of the site–site interaction matrix Wij and intrinsic pKintr values. The
maximum cluster size is 17 in all cases. Parameters of the MCTI program
are set to their default values; see Methods.

Figure 5. Computation times of the two clustering methods as a
function of the maximum cluster size. The computational time of the local
clustering algorithm (bottom) grows almost monotonically (exponentially)
with the maximum cluster size, while larger variations in this dependence
are observed with the global clustering method (top). The computation
time is defined as the total run time it takes to obtain a set of all pK1/2

values for a given protein, starting from the precalculated values of the
site–site interaction matrix Wij and intrinsic pKintr values.
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of amino-acids outside of this cluster.43–45 Doubling the
threshold value leaves the cluster almost unaffected
(ASP-96 disappears), while decreasing it by a factor of two
does not bring about new clusters of more than two sites in
each. The strong electrostatic coupling between the above
key groups was shown to be crucial for the function of the
protein;12 the proton transfer mechanism requires that a
change in the protonation state of one residue in the
cluster must have a significant effect on the proton affinity
of others along the proton transport chain.

A very different scenario with respect to global cluster-
ing is found in an oxygen transport protein myoglobin,
Figure 7. At the same value of the site–site coupling

threshold, 2.12 kcal/mol, no large clusters are present. We
note that the biological function of myoglobin does not
require the presence of a strongly coupled chain of titrat-
able groups in the protein.

CONCLUSION

In this article we have addressed the problem of time-
effective computation of partition sums over an exponen-
tially large number of protonation microstates; the prob-
lem arises in most theoretical algorithms that use principles
of statistical thermodynamics to predict pKs of ionizable
groups based on molecular structure. As the number of
protonation microstates depend exponentially on the num-

Figure 7. Global clusters in bacteriorhodopsin (top) and myoglobin (bottom). The thick lines show pairwise electrostatic interactions whose strength
is larger than 2.12 kcal/mol; the width of each line represents the relative strength of each interaction. In bacteriorhodopsin this threshold value defines a
single large global cluster of nine sites, all of which were implicated earlier as important for the vectorial proton transport, which is the function of
bacteriorhodopsin. The strong interaction between these site was found12 critical for the protein function. In contrast, no large cluster of strongly coupled
sites is found in myoglobin when the same threshold value, 2.12 kcal/mol is used to produce the diagram shown at the bottom. The biological function of
myoglobin—oxygen transport and storage—does not depend on the presence of a cluster of strongly coupled groups. The ribbon diagrams are
produced by RasMol.
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ber of ionizable groups present in the molecule, direct
computation of the sum is not realistically feasible for
many typical proteins that may have tens or even hun-
dreds of ionizable groups.

We have tested a straightforward and computationally
robust approximate algorithm for computing these sums
for proteins. The algorithm subdivides the interacting
sites into independent clusters, based on the strengths of
precomputed site–site interactions: interactions above a
preset threshold are kept, and all others are completely
neglected. The resulting partition function is factorizable
into computationally manageable components. Two vari-
ants of the approach are discussed. The first approach
forms global clusters in which all titratable sites are
treated on an equal footing; the other variant forms
clusters centered around a chosen site (local clustering),
and the procedure is repeated for each site. A single
parameter—the maximum allowed cluster size—controls
both the accuracy and the computational time of the
procedure. The algorithms are validated on a representa-
tive test set of 602 proteins with the combined total of �
20,000 ionizable sites. The the pK1/2 values computed by
each of the proposed methods are compared with those
obtained by the standard Monte Carlo approach tradition-
ally used in this context. The main, perhaps somewhat
surprising, conclusion is that choosing a fairly modest
maximum allowed cluster size, � 20, is enough to produce
results (local clustering) accurate to within about 0.25 pK
units relative to the Monte Carlo reference for the vast
majority of proteins tested. The corresponding execution
time is between one to two orders of magnitude smaller
than that of the standard Monte Carlo method: for the vast
majority of the tested proteins it is less than 10 s on a
typical desktop computer. Given that the consensus accu-
racy of pK estimates by the continuum solvent methodol-
ogy is � 1pK unit, it makes the proposed local clustering
approximation a reasonable, practical approach to be used
as the end-step of pK predictive methods. The robustness
and speed of the approach stem from its algorithmic

simplicity which in turn is the consequence of complete
neglect of all the site–site interactions bellow a preset
threshold value. While other, more accurate/complex ap-
proaches based on the clustering idea were explored
before, our finding that the very minimal version of it is
accurate enough for practical purposes may be of value to
the computational community. In fact, the local clustering
algorithm described here is already being used in an
automated web-based server46 (http://biophysics.cs.vt.edu/
H��) that predicts the pK of ionizable groups in biomol-
ecules. The speed and robustness of the approach proved
especially beneficial in the context of real-time web-based
computations. While the pK calculations reported here are
based on a particularly straightforward single-conformer
continuum electrostatics approach, the algorithms used to
compute the protonation partition function are general,
and can be use with other, more sophisticated methods of
estimating pKs in macromolecules.

Another observation we have made is that the distribu-
tion of the global clusters in a biomolecule might correlate
with its biological function. The two examples considered
here, bacteriorhodopsin and myoglobin show qualitatively
different behavior in this respect. In bacteriorhodopsin, a
large cluster of electrostatically strongly coupled groups is
found, and all of these groups are known to be important
for the protein’s main function: light-induced proton trans-
port. In contrast, the main biological function of myoglo-
bin—oxygen storage and transport—does not require
strongly coupled clusters, and these are indeed not found
in the protein. The ability to explore electrostatic site–site
coupling visually, in the context of macromolecular struc-
ture, may facilitate understanding of the structure–
function relationships. Clusters of electrostatically coupled
groups, along with the relative strengths of the correspond-
ing interactions, can be easily visualized using standard
structure-viewing packages: we have prepared a set of
programs necessary for such visualization, they are free to
download from http://www.cs.vt.edu/�onufriev/software.
html. While the global clustering algorithm is well suited
for identification of clusters of strongly coupled sites, we do
not recommend to use it for accurate computation of pK in
proteins with more than 40 titratable groups.

COMPUTATIONAL METHODS
Structures

We have used a set of 602 representative proteins34 for
validation of the clustering algorithms presented. Missing
heavy atoms and protons (assuming standard protonation
states of titratable groups) are added, and atomic partial
charges and radii (Bondi) are assigned using the protonate
and LEAP modules of AMBER-8. The structure of bacterio-
rhodopsin (PDB ID 1QHJ) has been prepared as described
in Reference 12, and includes a model of lipid bilayer.

Electrostatic Calculations

The continuum electrostatics methodology widely used
to calculate the energetics of proton transfer is described
elsewhere;9,47 the model is available in the free software
package MEAD.48 The protein is treated as a low dielectric

Figure 8. The maximum cluster size as a function of the interaction
threshold for bacteriorhodopsin (solid line) and myoglobin (dashed line).
The global clustering algorithm is used. The long tail of the curve for
bacteriorhodopsin indicates the presence of a large cluster of strongly
coupled ionizable groups.
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medium �in � 4, while the surrounding solvent is assigned
a high dielectric constant �out � 80. The electrostatic
screening effects of (monovalent) salt enter via the Debye–
Huckel screening parameter � � 0.1Å
1, which roughly
corresponds to physiological conditions.

The difference between a sidechain’s pKa and the pKa of
the corresponding model compound in free solution is
determined by the combined effect of two distinct contribu-
tions to the total electrostatic (free) energy change. First is
the Born term or desolvation penalty, which always penal-
izes burial of a charge inside a low dielectric medium.
Second is the background term which represents the
electrostatic interactions of the group in question with all
other fixed charges in the molecule not belonging to any
titratable groups. These energy terms, as well as the
matrix of site–site interactions Wij are estimated through
a sequence of finite-difference Poisson–Boltzmann calcula-
tions in which sites in the protein and their corresponding
model compounds have their charge distributions set to
those of the protonated or deprotonated form, and suitable
energy differences are taken. The computations are per-
formed by the multiflex module of MEAD (single-con-
former regime). In the finite difference lattices, two levels
of focusing are used. In the coarsest level the bounding box
is set to twice the molecule’s maximum extent and the grid
points are spaced 2 Å apart. The finest lattice is “focused”
on the region of interest, and the grid points are 0.5 Å
apart. The probe radius for defining the molecular surface,
which is used as the boundary between the interior and
exterior dielectric regions, is set to 1.4 Å. For the proton-
ated states of ASP and GLU, in which the correct location
of the proton is not known a priori a “smeared charge”
representation is employed, in which the neutralizing
positive charge is symmetrically distributed: 0.45 on each
carbonyl oxygen atom, and 0.1 on the carbon atom. The
maximum values of Wij ignored by the local clustering
approach have been computed as follows: for each protein
in the test group, max {Wij} neglected for a given nmax is
computed for all of its titratable sites; the number is then
averaged over all of the proteins in the group.

Calculation of Titration Curves and pK1/2 Values

The electrostatic calculations outlined above provide
(free) energies of each of the 2n protonation microstates12

in the system where n is the number of ionizable sites. As
mentioned above, direct computation of the the partition
sums (and pK1/2) is not feasible for n larger than about 30.
We have therefore relied on the established Monte Carlo
procedure to produce a set of pK1/2 values to be used as
reference when validating the clustering approximation
described here. The Monte Carlo approach is implemented
as the freely available program MCTI due to P. Beroza.49

Each MC run is performed with 1000 full steps, 10,000
reduced steps, an all-inclusive pH range of 
55 to 55, and
a tolerance of 0.000001. These are the default settings for
the code, they were used earlier in the context of pK
calculations.12

Sites whose computed pK1/2 values outside of the � 5
interval around the pH value at which the experimental

structure was obtained (this information is retrieved from
the PDB record) are excluded from the analysis. The
rationale for the exclusion is that the protein structure
outside of this range would most likely be very different
from the original structure used in the calculations, and
the computed pK1/2 values are therefore unrealistic. We
also exclude the sites whose computed titration curves are
non-monotonic: it was shown earlier50 that pK1/2 values
for such curves are either undefined or meaningless. About
200 (out of 20,000 total) sites have been excluded on this
basis.

Implementation Details
Global clustering

The input data (output of the MEAD electrostatic calcu-
lations) is a set of intrinsic pK values for each titratable
site and a matrix Wij of the electrostatic site–site interac-
tion strengths over a set of n titratable sites. The latter can
be viewed as a complete graph where each titratable site is
represented by a vertex i and the interaction between sites
i and j is an edge with an associated strength Wij, see
Figure 1 as an example. We begin by sorting the edges
based on edge strength, from large to small. Using a
disjoint set structure,51 we place each vertex into an
individual set. We then read through the edges from large
to small. For each edge (i,j) encountered, a union of the the
two associated sets is formed, the set that contains i and
the set that contains j. We keep track of the size of each set
during the process of forming the union. If a possible union
between two sets would produce a set with size greater
than the maximum cluster size we terminate the process.
At this point, there exists a set of sets (clusters) where each
cluster has size less than or equal to the maximum cluster
size. For each such cluster, two files are produced: a file
containing the intrinsic pK values for the sites in this set
only, and the associated matrix of interaction strength.
The resulting files are then passed to REDTI for further
processing. The overall time to generate the global clusters
is O[n2 log(n)].

Local clustering

The input data structure is the same as in the previous
section. For each titratable site i, a list of all the site–site
interaction strengths in Wij is formed. The list is sorted
down, from large to small, and the maximum cluster size
number of top elements form a cluster of titratable sites.
The corresponding files containing the intrinsic pK values
and the associated matrix of interaction strength are
produced and passed to REDTI for further processing. The
overall time to generate the local clusters is O[n2 log(n)].

Benchmarks and Timings

All computations are performed on a Dell Dimension
4600 series with a 2.66 GHz Intel Pentium 4 processor,
1024 MB DDR SDRAM at 333 MHz, 80 GB 7200 RPM
Ultra ATA hard drive, and Red Hat 9.0 operating system.

Software

Both of the clustering algorithms described here, along
with additional programs necessary for visualization of
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the global clusters, have been implemented as free soft-
ware packages available to download from http://www.
cs.vt.edu/�onufriev/software.html
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