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The analytic generalized Born approximation is an efficient electrostatic model that describes molecules in
solution. Here it is modified to permit a more accurate description of large macromolecules, while its established
performance on small compounds is nearly unaffected. The modified model is also adapted to describe
molecules with an interior dielectric constant not equal to unity. The model is tested by computations of pK
shifts for a number of titratable residues in lysozyme, myoglobin, and bacteriorhodopsin. In general, except
for some deeply buried residues of bacteriorhodopsin, the results show reasonable agreement with both
experimental data and calculations based on numerical solution of the Poisson-Boltzmann equation. A very
close agreement between the two models is obtained in an application to the prediction of the pK shifts
associated with conformational change. The calculations based on this version of the generalized Born
approximation are much faster than finite difference solutions of the Poisson-Boltzmann equation, which
makes the present method useful for a variety of other applications where computational time is a critical
factor. The model may also be integrated into molecular dynamics programs to replace explicit solvent
simulations which are particularly time-consuming for large molecules.

1. Introduction

Over the past ten years classical electrostatic models based
upon numerical solution of the Poisson-Boltzmann (PB)
equation have been successfully applied to compute various
properties of macromolecules.1-9 However, since solving a
system of partial differential equations is a computationally
costly procedure, the method may become quite time-consum-
ing, especially if applied to a large set of independent conforma-
tions of a macromolecule, or if it is incorporated into molecular
dynamics programs.

Recently, several fast analytic versions of the so-called
generalized Born (GB) approximation have been proposed as
an alternative to the computationally intensive Poisson-
Boltzmann approach.10-15 For small molecules, the method has
been shown to reproduce solvation energies and individual
charge-charge interactions very well when compared to solu-
tions of the Poisson-Boltzmann equation.11,12,14-16 However,
in similar comparisons on larger molecules, the agreement has
not been as close, the discrepancy generally being more pro-
nounced for molecules having large interior regions.15,16There,
the generalized Born approximation tends to overestimate the
solvation energy of deeply buried atoms and to underestimate
the interaction between them, as compared to numerical solution
of the Poisson-Boltzmann (PB) equation.15,16 This appears to
be a general property of this type of GB approximation, in-
dependent of a particular parametrization. The resulting error
in the calculation of solvation energies is often acceptable, since
the atoms contributing the most to the solvent polarization
energy are the ones on the surface, and they are the most
accurately treated. Also, for an overall neutral molecule, the
individual errors in like-charge interactions largely cancel those
coming from opposite-charge ones.15 However, when an ac-
curate estimate of the interactions between individual atoms
becomes important, such as in calculations of pK shifts, the

method is likely to show poorer performance.12 For example,
the GB approximation was recently applied17 to the estimation
of pK shifts of the active-site aspartic dyad in HIV-1 protease.
It was found that the set of atomic radii that worked well for
small molecules did not produce accurate estimates for the two
residues considered, and had to be adjusted. Proteins represent
a significant challenge to the GB approximation as they
generally contain biologically important functional groups which
may lie both on the surface and deep in the molecular interior.
Hence, a simple adjustment of atomic radii that may improve
the method’s performance for buried residues is likely to be
inadequate for the well-exposed ones, and vice versa. The theory
clearly needs to be improved to correctly describe interior
regions of large molecules while preserving its remarkable
accuracy already established for small compounds.

In this work we develop an analytic GB theory which is
suitable for proteins. We begin by re-deriving the GB ap-
proximation for the general case of a molecular interior dielectric
that is not necessarily equal to unity. We then formulate a simple
criterion which any GB theory must satisfy in order to correctly
describe interior atoms. Application of the criterion to the
pairwise GB method leads us to introduce a single new
parameter into the model, to account for the nonzero size of
solvent molecules. We optimize its value by comparing the
charge-charge interactions in myoglobin calculated by the GB
model with those obtained by numerical solution of the PB
equation. We then study the performance of the modified GB
model by computing pK1/2 values for ionizable groups in
lysozyme, myoglobin, and bacteriorhodopsin. The predicted
values agree reasonably well with both experiment and calcula-
tions based upon solution of the PB equation. The agreement
between the two models becomes even better when the GB
approach is used to evaluate the difference in titration behavior
associated with conformational change. We also show that the
corrections have little effect on GB accuracy for small mol-
ecules, allowing one to use the same set of parameters for all* Corresponding author. E-mail: case@scripps.edu.
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compounds, regardless of size. Our current implementation of
the GB method is significantly faster than its finite-difference
PB counterpart when applied to titration calculations on
medium-sized proteins such as lysozyme.

2. Theory

The continuum electrostatic model,1 which is the starting point
for both the GB and PB models, subdivides the entire space
into two regions separated by a dielectric boundary: the solute,
characterized by a low dielectric value, and the solvent, which
has a high dielectric value. The electrostatic potential can then
be calculated directly, without any other approximations, by
solving the Poisson-Boltzmann equation numerically to a
desired degree of accuracy. Alternative methods, such as the
modified generalized Born model considered below, are based
on various further approximations that allow one to obtain an
analytical form of the potential or the electrostatic component
of the solvation free energy for a complex molecule. The
accuracy of the GB approximation can be assessed by comparing
its predictions to the corresponding PB results.

2.1. GB Model with Variable Interior Dielectric. We
represent each atom in the molecule as a sphere of radiusFi

with a chargeqi at its center; the interior of the atom is assumed
to be filled uniformly with dielectric material of low dielectric
constantεp. The molecule is surrounded by a solvent of a high
dielectric valueεw. The electrostatic component of the free
energy is the workW of creating a given charge distribution.
Its calculation is made nontrivial by the presence of surface
polarization that develops at the dielectric boundary between
the solute and the solvent ifεp * εw. We single out the part of
W that is due to the polarization charges by considering a process
in which the molecule is transfered from a uniform medium of
dielectric valueεp into the solvent with dielectric constantεw:

whereW0 is the energetic cost of creating the charge distribution
in a uniform dielectricεp and ∆W is the energy cost of the
transfer, i.e., the solvation energy. The evaluation ofW0 is
straightforward since no surface polarization is present; it is
simply the Coulomb charge-charge interaction:

An efficient way to compute∆W is given by the generalized
Born model which is conventionally applied10,14-16 to the case
εp ) 1. The theory is, however, not specific19 to this particular
value ofεp, and one can easily modify it to describe the more
general case ofεp * 1:

where fij
gb is a certain smooth function which is assumed to

depend only upon atomic radiiFi and interatomic distancesrij.
A detailed analysis of the approximations on which the model
is based is presented in ref 19. Here we motivate eq 3 by
considering the exact analytical form of∆W for a pair of atoms
i andj in the limiting cases ofrij f ∞ andrij f 0, and requiring
that fij

gb interpolate between the two extremes.
When the atoms are far apart, the work done on transferring

the pair from the medium of dielectric constantεp into the one

of εw must be

The first term is the Born solvation energy of transferring
the two independent spherical ions between the two media, and
the second term corresponds to the difference in the interaction
energy of two point charges in the two media. In the other
extremerij f 0, the two spheres merge into one, and if we also
assume thatFi ≈ Fj, the system may be approximated by a sphere
of radius (FiFj)1/2 with total charge (qi + qj). Therefore,∆W in
this case is just the Born solvation energy of transferring the
sphere between the two media:

The functionfij
gb in eq 3 should hence be such thatfii

gb ) Fi. As
rij f ∞, we requirefij

gb f rij, and asrij f 0, fij
gb f (FiFj)1/2. The

fact that these requirements onfij
gb depend only on the geom-

etry of the system and not on the dielectric constant allows us
to use exactly the samefij

gb here as in the standard formulation
of GB with εp ) 1, which is conventionally considered in
literature. This is important, sincefij

gb and the associated set of
atomic parameters have already been optimized by others. The
standard11 form of fij

gb(rij) is particularly simple:

where Ri g Fi is the so-called effective Born radius which
replacesFi and accounts for the fact that atomsi and j may be
surrounded by neighbors that displace the solvent and therefore
decrease the polarization energy. A method to estimateRi, which
is the crux of our modification to the GB theory, is presented
in section 2.2. Larger effective radii result in smaller contribu-
tions to∆W; their values reflect the extent of burial and depend
only on the mutual positions, radii, and types of the surrounding
atoms. In the limiting cases described above, and with other
neighbors far away, we require thatRi f Fi, and one can check
that eqs 4 and 5 are satisfied withfij

gb from eq 6.
Given ∆W from eq 3, the total electrostatic workW of

creating the given charge distribution in the solvent is

2.2. Evaluation of Effective Radii.One way to estimate the
effective Born radiusRi is to consider the change∆Wi in the
self-energy of atomi upon solvation. According to eqs 3
and 6:

On the other hand, this quantity can also be calculated directly
on the basis of classical electrostatics.18,20 The work done on
creating a given charge distribution in an arbitrary dielectric
environment is
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whereDB(rb) is the dielectric displacement vector, andε(rb) is the
position-dependent dielectric constant. Therefore, the work∆Wi

of transferring the atomi from a medium of uniform dielectric
constant,εp, to the two-dielectric solute/solvent system is

whereDBi(rb) is the total dielectric displacement due to chargei,
and

is the Coulomb field created by point chargeqi in the uniform
dielectric environment. For convenience we have placed the
origin of the coordinate system at the center of atomi. So far,
eq 10 is an exact result. We now make the approximation:

The validity of the approximation above is considered in detail
in refs 19 and 20. On substitutingDBi(rb) from eq 12 into eq 10,
the integrals over the solute volume cancel, while the solvent
volume integrals combine:

whereRi is an effective radius defined by

The integration domain in the above equation can be changed
to the solute volume, which is computationally more convenient.
Note that

whereθ(|rb| - Fi) is the step function. Therefore, the effective
Born radiusRi is also given by

As expected,Ri ) Fi if the solute consists of only one atomi.
2.2.1. Integration Domain.Up until this point, the derivation

has not depended on the exact definition of the solute or solvent
volume. To proceed with the evaluation of the effective Born
radius, we need to specify the boundaries of the integration
domain in eq 16. In the PB calculations, it is common to define
the low dielectric solute as the region bounded by the molecular
surface.21 With this definition, most small crevices between the

van der Waals (VDW) spheres of protein atoms fall in the solute
region because a solvent-sized probe cannot fit into them. This
implies that one could implement eq 16 by numerical integration
over the volume bounded by the molecular surface.11,22 The
procedure would, however, undermine the main advantages of
the analytic GB model that were outlined in the Introduction,
as it would involve finding the molecular surface and performing
a costly numerical integration. To circumvent the problem, the
analytic GB method performs the integral in eq 16 over the
VDW spheres of atoms. This implies a definition of the solute
volume in terms of a set of spheres, rather than the molecular
surface, and allows one to obtain14 an analytical form forRi.
The approach is known to work well in the case of small
molecules, but for large compounds such as proteins it has been
shown15,16to overestimate the solvation energy of deeply buried
atoms as well as to underestimate the interaction between them,
as compared to the PB calculations that use the molecular
surface-based definition of solute. One plausible reason for this
behavior is that, in the sphere-based GB method, only the inside
of each sphere has a low dielectric value and all crevices in
between are filled with high dielectric solvent. For small
molecules, this distinction is unimportant, but for large mac-
romolecules that have considerable interior regions from which
solvent is completely expelled, it results in the effective dielectric
constant of the molecular interior being too high. In other words,
the effective Born radii are underestimated for deeply buried
atoms. The theory apparently needs to be modified to correctly
describe, within the accuracy of the continuum approximation,
the electrostatics of the interior regions of large molecules, while
retaining its good performance for small molecules.

2.2.2. Packing Correction Factor. We begin by analyzing
the correct behavior of the effective Born radius as an atom
becomes buried deep inside the solute, and then modify the
analytic GB model to reproduce it. Consider a large macro-
molecule and assume that its interior is totally inaccessible to
the solvent, the situation corresponding to the molecular surface-
based definition of solute volume. The effective Born radius of
any buried atomi must then be no smaller than the shortest
distance Li between the atom and the molecule-surface
interface. For the roughly spherical molecular surface of Figure
1, the integral in eq 16 can be approximated analytically and
we obtainRi ≈ Li. For a nonspherical molecule, the total volume
of the low dielectric region around atomi is always larger than
that corresponding to the inscribed sphere of radiusLi, and
therefore the generalized Born radius of the atom must satisfy
the condition
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Figure 1. Schematic of a macromolecule, with the circles representing
the atomic VDW spheres.Li is the shortest distance from the atomi to
the molecular surface. For a roughly spherical molecule with the atom
i in its center, the generalized Born radius should beRi ≈ Li.
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Physically this condition implies that ifLi f ∞ the atom does
not “see” the solvent and its Born solvation energy∆Wi in eq
13 must tend to zero. Any GB theory must satisfy this general
criterion in order to correctly describe large, densely packed
molecules.

A GB approximation does not satisfy eq 17 if the integral in
eq 16 is taken only over the solute volume based on VDW
spheres, instead of the molecular surface-based volume; we miss
the interatomic spaces inaccessible to solvent in Figure 1,
resulting in an underestimation ofRi. To correct this, we
introduce a new parameterλ > 1 into eq 16:

where the integral is now taken over the VDW volume of the
spheres (shaded regions in Figure 1), and theλ factor compen-
sates for the missing volume. For an initial guess ofλ, consider
the hypothetical case of a very large molecule made up of
identical atoms, the atomi being in its center, as in Figure 1.
Since even in the densest packing (without overlaps) of identical
spheres, only three-fourths of the total space is occupied,
choosingλ ∼ 4/3 should approximately compensate for the
missed volume, and bring eq 18 in better accord with condition
eq 17. The assumption of the dense packing is, in fact, a very
reasonable one for proteins.23,24 Physically, the value of the
packing correction factorλ > 1 accounts for nonzero size of
the solvent molecule.

As for the effect of this correction on surface atoms and small
molecules, note that dRi/dλ ∼ Ri(Ri/Fi - 1) for λ ∼ 1, so that
only large effective radii of deeply buried atoms change
significantly, while the small ones of the surface atoms change
only slightly, since for themRi ≈ Fi. Therefore, for our
calculations we can use nearly the same set of atomic parameters
as in earlier works, such as in ref 15, while making the GB
model more suitable for interior regions by optimizing the value
of λ; see below.

2.2.3. Parameterization of the Model. We employ the
approach of Hawkins et al.14 and approximate the effective Born
radius of atomi by calculating analytically the contribution of
each atomj to the integral in eq 18 and adding the contributions
together. Since the procedure ignores overlaps among the atoms
surrounding atomi, we follow Hawkins et al.15 and introduce
empirical scaling factorsSj that partially account for this
behavior. Here we adopt the model that theSj’s depend only
on the identity of atomj, with values given elsewhere.15

Following Still et al.11 we begin the calculation of effective Born
radii with atomic radii reduced slightly from those used in the
corresponding numerical PB calculations; the offset isF0 ) 0.09
Å. We have already mentioned that settingλ ∼ 1.33 is expected
to have very little effect on individual charge-charge interac-
tions in a small molecule. However, since all of the effective
radii increase withλ, and since we also wish to retain the
remarkable accuracy of the GB in solvation energy calculations,
we shift all of the effective radii calculated via eq 19 downward
by a small termδ ) 0.15 Å in the end of the calculation:Ri f
Ri - δ. This term is purely empirical and allows us to avoid
complete reparametrization of the model, such as readjustment
of Sj or F0. Note that settingδ ) 0.15 Å has little effect on the
large radiiRi . 1 Å of buried atoms.

Introducing the sum overi and j and the above parameters
into eq 18, we write

whereH(rij,Sj(Fj-F0)) represents the result of integration (scaled
by r-4) over the VDW volume of atomj; its analytical form is
given in ref 14 and we use it here.

We model the effects of ionic strength by simple substitution

in eq 7, whereκ is the Debye-Hückel screening parameter.
This approximation was introduced earlier15 and was shown to
work reasonably well. Finally, we notice that since the free
energyW in eq 7 is a quadratic function of charges, we can
express it in terms of the GB analogue of the electrostatic
potentialφ(rbi) defined at the position of each atomi:

These potentials enter into the titration calculations described
below. Unless otherwise specified, we useεw ) 80 andεp ) 4.
To model physiological conditions in our test calculations, we
setκ-1 ) 10 Å which corresponds to about a 0.1 M solution of
a monovalent salt. The present form of the GB approximation
permits straightforward introduction of a cutoff, where only the
atoms within a specified cutoff distance are taken into account
when computing both the effective Born radius and the atom-
atom interactions for a given atom.

2.2.4. Titration Calculations. The approach used here to
calculate the electrostatic contributions to titration in proteins
has been described in detail elsewhere.2,29-31 It is assumed that
the difference in the titration behavior of an ionizable group in
a protein and in a model compound can be accounted for by
calculating the difference in the electrostatic work of altering
the charges from the unprotonated to the protonated state in
the protein and the work of making the same alteration in the
model compound. In its original formulation for the PB model,
this quantity is expressed through the values of the electrostatic
potential at the atoms’ positions. Therefore, the same formalism
can be applied verbatim for the GB method once the GB
potential analogue is defined via eq 21.

The protonation fraction of each site at any particular value
of the pH can be obtained by considering a Boltzmann-weighted
sum over all possible protonation states of the protein, or in
the case of a large number of sites, by a suitable approximation
method. In the present work, either the reduced site method32

or a Monte Carlo method33 is used. The pH at which the
protonation fraction of a site is 0.5 is then reported as the
calculated pK (or pK1/2) of the site.

We have incorporated the GB method into the MEAD suite
of programs,26,31where it optionally replaces the finite difference
solver for calculating electrostatic interactions. The codes and
input files necessary to reproduce the calculations presented in
this work will be made available for download through the Web
site, http://www.scripps.edu/bashford, with the next public
release of MEAD.

3. Results and Discussion

3.1. Optimization of λ. We begin by optimizing the value
of the correction factorλ introduced above by comparing the
charge-charge interaction matrixWij calculated by the GB
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approach with the one obtained by solving the PB equation using
the same set of coordinates, charges, radii, and internal dielectric
constant. The interaction is calculated as

whereφj(rbi) is the electrostatic potential due to atomj at the
position of atomi; for the GB model it is given by eq 21 with
a fixed value ofj.

We choose myoglobin as a test case, since it has a large
interior. The methodology used for obtaining the pairwise
interactions by the PB approach is identical to that of ref 15.
As in the previous work, we use the partial atomic charges
from the AMBER force field27 and the standard Bondi radii.28

Atomic coordinates are taken from the 1.5 Å X-ray structure.34

The interior dielectric constantεp is set to 1.0. The GB
calculations for different values ofλ are performed, and the
root-mean-square deviation (rmsd) between the PB and GB
values for theWij are calculated (Figure 2). The two models
are in the best agreement whenλ ≈ 1.4, which is close to our
initial guess of λ ) 1.33 derived from simple packing
considerations

3.2. Pairwise Interaction Energies.We have assessed the
accuracy with which the modified GB model reproduces the
PB results for charge-charge interactions in small molecules.
Figure 3 illustrates the performance of theλ ) 1.4 GB model
relative to the PB calculations by plotting the charge-charge
interaction energies in aspartic acid calculated using the GB
theory vs those calculated using the PB model for the same
pairs of atoms. The numbers predicted by the two methods are
nearly identical. Similar results for the original (λ ) 1) GB
model were reported earlier.15 Solvation energies of small
molecules calculated using the modified GB theory approximate
those obtained by the PB model reasonably well: for aspartic
acid, glutamic acid, and a GLU-GLU dipeptide in a standard
extended conformation the relative differences are 5%, 4%, and
2.5% respectively.

For larger compounds, we expect15 larger deviations between
the GB and PB approaches, and this is indeed seen in Figure 4
(left panel); but as one would expect from Figure 2, the modified
GB model (Figure 4, right panel) agrees with the PB calculations
more closely than the original GB model. The distribution of

points around thex ) y line (perfect match) is narrower,
especially for larger energies, in the caseλ ) 1.4 than for the
original model corresponding toλ ) 1.0.

It is also instructive to compare the values of the so-called
effective dielectric constantεij between two atomsi and j,
computed using different models. This quantity is defined so
thatWij ) qiqj/(εij rij). Smaller values ofεij correspond to buried
atoms characterized by larger charge-charge interactions. We
compute this quantity using the same set ofWij as before, and
plot the resultingεij as a function of charge-charge separation
(Figure 5). As expected, the original GB model withλ ) 1.0
significantly overestimatesεij (underestimates the charge-charge
interactions) for buried atoms relative to the PB calculations,
while theλ ) 1.4 theory shows considerable improvement. Note,
however, that settingλ ) 1.4 does not necessarily bring the
GB model into exact agreement with the general criterion
formulated earlier, eq 17. This value ofλ merely represents the
optimum for the current model. Increasingλ even further toλ
) 1.7 (Figure 5, bottom left) brings the charge-charge
interactions of the most deeply buried atoms (lowεij) closer to
the corresponding PB values, but worsens the overall agreement
between the two models, as shown in Figure 2. This is most
likely due to an overestimation of the effective Born radii of
surface atoms; the GB model originally was parametrized to
perform well only on small molecules.

3.3. pK Calculations.We have assessed the performance of
the modified GB model by calculating titration curves for a
number of individual residues in lysozyme, sperm whale
carbonmonoxymyoglobin, and bacteriorhodopsin. All of these
proteins have titratable groups both on the surface and in the
interior regions, and in the case of bacteriorhodopsin some of
the residues exhibit extremely large pK shifts. Theoretical pK
calculations based on the PB model for these proteins have been
reported previously,2,30,31and we follow the general methodol-
ogy presented in those references. Our primary objective is to
assess the performance of the modified GB model, mainly
relative to the established PB approach. The results are reported
in terms of a single number for each residue, the pK1/2, which
is the midpoint of its titration curve.31

In all titration calculations we use the standard Bondi radii
set, and useεp ) 4.0, εw ) 80.0. Unless otherwise specified
we chooseλ ) 1.4, δ ) 0.15 in the GB calculations, and a
probe radius of 1.4 Å to compute the dielectric boundary in the
PB method. Only single-conformer calculations are performed
for each structure.

3.3.1. Lysozyme. A first set of calculations was made using
the coordinates of the triclinic form of hen egg lysozyme as
determined by neutron scattering35 (PDB Accession No. 0LZ5).
Since hydrogen atom positions are available in this case, we
perform no further manipulation on the structure and assign
atomic charges according to the standard AMBER classification
scheme. In contrast to the original lysozyme pK calculations,
which used a single-charge model of the titrating sites,2 we use
a full set of partial charges for both the protonated and
deprotonated forms of the sites. We calculate pK1/2 values for
21 titratable residues in lysozyme using the GB model, and
compare the results with experimental data and PB calcula-
tions in Figure 6a. The GB method gives a good overall
agreement with experiment. It correctly predicts the pK1/2

values for most residues and reproduces the trends in the
experimentally observed pK1/2 shifts, such as the pronounced
downward shift for ASP-48 and ASP-66 or an upward shift of
TYR-53. It is also important to notice that the GB pK1/2 values
are highly correlated with the PB ones for all residues, even

Figure 2. rmsd between charge-charge interaction energiesWij in
myoglobin calculated within GB and PB models for different values
of λ. The rmsd is computed as ((1/N)∑ij(W(ij )

GB - W(ij )
PB)2)1/2 over a

randomly selected set ofN ≈ 30 000 pairs of atoms.

Wij ) qiφ
j( rbi) (22)
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where the calculated results deviate from experiment.36 To bet-
ter illustrate the point, we plot (pK1/2 - pKmod) (pK shifts rela-
tive to the corresponding model compound) for both methods
in Figure 6b. The correlation between the PB and GB models
is rather good, even for residues showing pK shifts as large as
5. These observations strongly suggest that the GB approach
presented here is comparable in accuracy to the accepted PB
method in predicting the titration properties of triclinic lyso-
zyme, while the deviations from experiment point out the
limitations of the single conformer continuum electrostatic
model itself.37-39 Introduction of a 12 Å cutoff does not affect
the predicted values of pK shifts significantly: the standard
deviation over 21 residues between the two calculations is
0.34 pK units, and all trends in pK shifts are preserved, while
the speed of the computation is doubled. Although the 12 Å
cutoff has not introduced any significant error into these
calculations, in other contexts the use of cutoffs may be
problematic.

Next, we have tested the performance of the GB model for
evaluating the change in titration behavior associated with
conformational change. We have calculated the pK1/2 values
for the same set of 21 residues using coordinates taken from
the X-ray structure40 of the tetragonal crystal form of lyso-
zyme (PDB Accession No. 193L). Since hydrogen atom
positions are not available, we use the LEAP utility of the
AMBER package to add them. The goal is to see how structural
differences between the two forms of the same protein affect
the calculated pK1/2 values. Although the backbone rmsd
between the two structures, 0.71 Å, is small, the calculated
(pK1/2

tetr - pK1/2
tric) is quite significant for some residues, as shown

in Figure 7. This sensitivity of calculated pK values to local
conformational changes has been noted previously.2,30 As seen
in Figure 7, the GB predictions follow the PB ones very closely,
the correlation coefficient being 0.994. The agreement between
GB and PB theories is better for calculating the difference in
pK1/2 between conformers than for finding the absolute values
of pK1/2.

As has already been mentioned, the analytic GB model is
considerably faster than the PB one. Although a direct com-
parison is somewhat arbitrary since it depends on the adjust-
able accuracy of the numerical computations, we find41 that a
pK calculation on lysozyme as described above takes≈8
min by the GB method, vs≈86 min by the PB method which
uses successive over-relaxation algorithm to solve the finite-
difference representation of the PB equation on two levels of

focusing, each having 81 lattice points in each dimension.
Introduction of a 12 Å cutoff into the GB model roughly doubles
its speed.

3.3.2. Myoglobin.We have performed titration calculations
on the sperm whale carbonmonoxymyoglobin 1.5 Å X-ray
structure34 (PDB Accession No. 1MBC), and compared the GB
and PB results to each other and to available experimental data.
We have used the AMBER charges, and the methodology of
the calculation follows the earlier work on myoglobin presented
in ref 30; we treat all ARG, LYS, TYR, GLU, and ASP residues
plus C and N termini as titratable groups, and we account for
theε andδ tautomers of all histidine residues. To make a direct
comparison with available42 experimental data, we list the results
for histidines in Table 1. A noteworthy feature of the experi-
mental results is that three histidine residues (HIS-24, -64, and
-82) do not titrate in the pH range in which the protein is stable.
In the native myoglobin these residues are poorly exposed to
solvent, and their protonation is coupled to unfolding of the
protein, which occurs below pH 4. The GB calculation shows
the best agreement with experiment forλ ) 1.4, with all pK1/2

values being within two pK units from experimental values, and
most within one unit, which is better than the corresponding
PB result shown in the first column of Table 1. Notably, the
PB and GB values deviate from experiment in the same
direction, as in the case of lysozyme considered above. All major
trends in the pK shifts are correct.

For comparison, we have performed GB calculations with
different values of the packing correction factorλ. Theλ ) 1.0
model, corresponding to the original GB formulation, incorrectly
predicts near-normal pK1/2 values for HIS-24, -64, and -82, while
both experiment and the PB calculations show considerable
downward shift for these residues. Such behavior ofλ ) 1.0
model is expected since the original GB model underestimates
the effect of burial. Settingλ ) 1.7, on the other hand, brings
the pK1/2 of the nontitratable buried histidines closer to the PB
values, but results in too low pK1/2 values for HIS-12, -48, -113,
and -119 which are known experimentally to have near-normal
pK1/2 values. Overall, theλ ) 1.4 model appears to be optimal
for myoglobin, in agreement with our analysis in the previous
section.

It is also interesting to see see how the size of a water
molecule (i.e., the solvent probe radius) in the PB model affects
the pK calculations. This parameter is absent from the original
GB theory, and we expect that theλ ) 1.0 GB model should
be closest to the PB model with the probe radius set to zero.
To this end, we compare the pK1/2 values obtained using the
default probe radius of 1.4 Å to those obtained with zero probe
radius (Table 1). The zero-probe-radius PB model produces
much smaller pK shifts, comparable to those predicted by the
GB λ ) 1.0 model. This is not surprising since in the latter
case both models assume that all space beyond the atomic radii
is filled with solvent, including small internal crevices. When
a nonzero probe radius is used in the PB model, there are pockets
of free space in the protein interior that are not filled with
solvent, and that therefore have a low dielectric constant. This
enhances charge-charge interactions resulting in larger pK shifts
from their model compound values. Settingλ > 1 in the GB
model tends to mimic, in an average sense, this enhancement
of charge-charge interactions characteristic of the PB model
with nonzero probe radius.

3.3.3. Bacteriorhodopsin.Accurate prediction of the titration
properties of biologically important residues in bacteriorhodop-
sin has been a challenge to the theoretical community for almost
a decade, and different models have been proposed.31,43,44The

Figure 3. Comparison of the polarization part of the electrostatic
charge-charge interactions∆Wij in aspartic acid forλ ) 1.4 GB and
PB models, computed over all pairs of atoms. The linex ) y represents
a perfect match between the two models. The results show a very close
agreement over the entire range of energies.
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protein is expected to present a difficult test to the GB model,
as it has a number of significantly buried residues, characterized
by very large pK shifts. We can use the protein to probe the
limitations of the present theory by comparing the PB and GB
predictions to each other. We have used a 1.9 Å resolution X-ray
structure45 of halobacterium bacteriorhodopsin (PDB Accession
No. 1QHJ) which has recently become available, and an older
one obtained by high resolution (3.0 Å) electron cryomicros-
copy47 (PDB Accession No. 1AT9). The all-atom charges as
well as hydrogen coordinates for the retinal group of 1QHJ
structure have been kindly provided by V. Spassov.46 We have
used CHARMM charges and minimized the entire structure
using the CHARMM22 force field. In the case of 1AT9 we
simply use the united-atom representation of the retinal carbon

atoms, keeping them uncharged. The protein charges are taken
from AMBER. For both structures, Bondi radii are used. Results
of the calculations of pK1/2 values for a set of biologically
important groups in bacteriorhodopsin are shown in Table 2.
All residues not shown are kept in a fixed protonation state
according to their model compound protonation at pH) 7.0.
No explicit water molecules are retained in either structure. We
do not use explicit membranes in these calculations, and
therefore do not expect the predicted pK1/2 values to be close
to the ones obtained in the earlier work.31 The general feature
of the GB model, as seen from Table 2, is an underestimation
of the extreme pK shifts of deeply buried residues, compared
to both the PB predictions and the experimental data. For the
1QHJ structure, the GB method correctly predicts an upward

Figure 4. Comparison of the polarization part of the electrostatic charge-charge interactions∆Wij in myoglobin for GB and PB models for
different values ofλ, computed over a randomly selected set ofN ≈ 30 000 pairs of atoms. The linex ) y represents a perfect match between the
GB and PB theories. Compared to the original model (λ ) 1.0), the modifed model withλ ) 1.4 produces a narrower distribution of points around
the x ) y line, especially when the absolute value of energy is above 10 kcal/mol.

Figure 5. Effective dielectric constantεij ) Wijrij/(qiqj) in myoglobin for the GB model with different values ofλ, and for the PB model, computed
over a randomly selected set ofN ≈ 30 000 pairs of atoms.
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shift in pK1/2 for ASP-96 and -115 (model compound pK1/2 )
4.0), but fails to predict the significant downward shift for ASP-
212 and ASP-85, which is correctly described by the PB model.
The four tyrosines are predicted by the GB model to be
nontitratable below pH) 12, in agreement with experiment;
however the absolute numbers are lower than those obtained in
the PB approach. For the 1AT9 structure, the GB approach
correctly predicts the trends in pK shifts for all residues, although
the actual values of pK1/2 for ASP-96 and -115 are underesti-

mated. In general, we observe that the pK1/2 values predicted
by the GB and the PB methods differ most when the shift from
the model compound pK is expected to be very large. The
absolute value of the shifts are larger in the PB method. We
also find that, as in the case of buried residues in myoglobin,
choosing a largerλ value results in better agreement between
the two approaches for these residues (results not shown). This
is consistent with our earlier observation that although for
proteins the size of myoglobin theλ ) 1.4 GB model is closest
to the PB model overall, an even higher value ofλ may be
more appropriate for the deep interior regions.

3.3.4. Small Molecules.Finally, we check that settingλ )
1.4, as opposed toλ ) 1, has little effect on small molecule pK
calculations. We use a GLU-GLU dipeptide in a standard
extended conformation as a model of a small molecule.

We compare the pK1/2 values for the GLU-GLU dipeptide
calculated within PB and GB methods for different values of

Figure 6. (a) pK1/2 values of 21 titratable residue in triclinic lysozyme calculated in GB (circles) and PB (squares) models plotted vs corresponding
experimental results. The linex ) y represents a perfect match between the theory and experiment. (b) pK1/2 - pKmod calculated in the GB model
is plotted vs the same quantity obtained by the PB approach. The linex ) y represents a perfect match between the two models.

Figure 7. pK1/2
tetr - pK1/2

tric calculated in the GB model vs the same
quantity obtained by the PB approach for the set of 21 residues in the
two different (triclinic and tetragonal) crystal forms of lysozyme. The
line x ) y represents a perfect match between the two models.

TABLE 1: Values of pK1/2 for Myoglobin Calculated Using
GB and PB Modelsa

calcd pK1/2

PB GB

site
exptl
pK1/2 r ) 1.4 Å r ) 0.0 Å λ ) 1.0 λ ) 1.4 λ ) 1.7

HIS-12 6.3 5.33 5.05 5.63 4.72 3.06
HIS-24 <4 -15.37 5.64 5.57 -7.44 -17.76
HIS-36 8.0 6.08 7.05 6.85 6.69 5.51
HIS-48 5.3 4.60 5.56 6.01 5.42 3.95
HIS-64 <4 -3.73 3.92 5.01 3.76 -0.83
HIS-81 6.6 6.94 7.34 7.13 7.06 6.52
HIS-82 <4 -3.93 3.90 5.56 3.89 -0.07
HIS-97 5.6 6.86 7.55 7.15 7.52 7.94
HIS-113 5.4 3.77 4.84 5.34 4.35 1.70
HIS-116 6.5 6.11 6.39 6.43 6.12 5.43
HIS-119 6.1 2.81 2.40 2.66 4.46 2.29

a In the PB model different probe radiir (Å) are used to compute
solvent/solute boundary. Experimental results from ref 42.

TABLE 2: Values of pK1/2 for Bacteriorhodopsin Calculated
for Two Different Structures (1QHJ 1AT9) Using GB (λ )
1.4) and PB Modelsa

calcd pK1/2

1QHJ 1AT9

site exptl pK1/2 PB GB PB GB

ASP-85 e2.5 3.00 6.85 -4.06 1.22
ASP-96 g9.5 9.59 8.49 12.90 6.29
ASP-115 g9.5 5.68 7.22 14.21 7.32
ASP-212 e2.5 -8.04 4.58 2.74 2.43
GLU-9 N.A. 6.35 8.56 4.736 4.52
GLU-204 N.A. -0.50 7.34 8.917 5.62
TYR-57 g12 >30.000 24.93 >30.00 15.50
TYR-79 g12 28.75 25.08 19.91 13.89
TYR-83 g12 17.16 16.12 22.89 15.74
TYR-185 g12 >30.00 29.08 29.54 14.77
ARG-82 N.A. 21.13 15.29 17.00 12.17

a Experimental results reproduced from ref 31.

TABLE 3: Values of pK1/2 for GLU Dipeptide calculated
using GB and PB models

calcd pK1/2

GB

site PB λ ) 1.4 λ ) 1.0

NTGLU-1 7.94 8.06 8.03
GLU-1 4.96 4.62 4.60
GLU-2 4.24 4.23 4.21
CTGLU-2 2.99 2.94 2.99

Modification of the Generalized Born Model J. Phys. Chem. B, Vol. 104, No. 15, 20003719



λ, Table 3. As expected, all three calculations yield numbers
that are very close to each other. Note that the same change in
λ results in a large qualitative difference in pK1/2 of buried
residues in myoglobin, Table 1.

4. Conclusions

In this work the pairwise, analytic generalized Born ap-
proximation is modified to better describe large interior regions
of macromolecules. The modified model is systematically ap-
plied to the computation of pK1/2 values for a series of residues
in lysozyme, myoglobin, and bacteriorhodopsin. The predicted
values show good overall agreement with experiment and ana-
logous calculations based on numerical solution of the Poisson-
Boltzmann equation, with the exception of some residues in
bacteriorhodopsin that exhibit very large pK shifts. We conclude
that caution must be used when the current method is applied
to deeply buried residues, especially if the expected pK shifts
are greater than 5. It is also worth remembering that the
continuum model itself may break down for some of the systems
considered here.

The agreement between the two models becomes remarkable
when the GB approach is used to evaluate the difference in
titration behavior associated with conformational change: when
applied to the calculation of the variation of pK1/2 values of the
same residues in two different crystal forms of lysozyme, the
GB model predictions are almost identical to those obtained by
the PB method (correlation coefficient 0.994). This feature of
the modified GB model, combined with its computational speed,
makes it particularly attractive in situations when a large number
of conformers need to be processed. In particular, it has recently
become clear37,38,48that multiple conformers of a protein must
be taken into account for an accurate prediction of its titration
properties. Here an effective strategy may involve using the rela-
tively expensive PB method only once, in the beginning of the
calculation, and then applying the fast GB model many times
to evaluate the difference in electrostatic free energy between
various possible conformers. We also note that many proteins,
such as bacteriorhodopsin, are known to have large interior cav-
ities, some containing water. These water molecules must be
carefully treated within the general electrostatic model used here.
In this respect, the GB model may be useful, as it would allow
one to process in a reasonable time a large number of conformers
corresponding to different orientations of the water molecules.

The modified theory gives good performance over a wide
range of titratable residues in proteins, and the modifications
have little effect on the established performance of the GB
model on small molecules. Therefore the same parameter set
can be used for a wide range of molecular shapes and sizes.
The modified method may also be used in rapid calculations
of electrostatic forces in molecular dynamics. In the latter
case one can hope to eliminate the need for explicit solvent
simulations which is particularly time-consuming for large
molecules.
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