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Abstract

The generalized Born (GB) approximation is introduced in the context of the implicit solvent framework.
The physical foundations of the model and its derivation from the underlying Poisson-Boltzmann model are
presented in detail. Examples of various flavors of the basicGB model are discussed, followed by examples
of recent applications of the approximation in molecular modeling and simulations. Several practical issues
such as the accuracy/speed trade-offs, and specific computational advantages of GB-based molecular simula-
tions relative to those based on the explicit solvent model are explored. Limitations of the model and future
methodological directions and challenges are discussed.
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1 Introduction. The implicit solvent framework.

An accurate description of the solvent environment is essential for realistic biomolecular modeling. Within

the explicit solventframework movements of individual water molecules are explicitly calculated. While ar-

guably the most realistic of the current theoretical approaches, this methodology suffers from considerable

computational costs, which often becomes prohibitive, especially for molecular systems undergoing significant

structural transitions, such as those involved in the folding of proteins. Other problems with the approach in-

clude the difficulty, and often inability to calculate relative free energies of molecular conformations; problems

arise due to the need to account for the very large number of solvent degrees of freedom.

An alternative that is becoming more and more popular — theimplicit solvent framework1–7 — is based

on replacing the real water environment consisting of discrete molecules by an infinite continuum with the

dielectric and “hydrophobic” properties of water. The implicit solvent framework has several advantages over

explicit water representations, especially in molecular dynamics simulations. These include the following.

i) Lower direct computational (CPU) costs for many molecular systems.

ii) Enhanced sampling of conformational space: in contrastto explicit solvent models, solvent viscosity that

often slows down conformational transitions can be drastically reduced or even turned off completely within

implicit representations.

iii) Effective ways to estimate free energies; since solvent degrees of freedom are taken into account im-

plicitly, estimating free energies of solvated structuresis much more straightforward than with explicit water

models.

iv) Instantaneous dielectric response from the solvent which eliminates the need for lengthy equilibration of

water that is typically necessary in explicit water simulations. This feature of implicit solvent models becomes

key when the charge state of the system changes many times during the course of a simulation, as, for example,

in constantpH simulations.

v) Implicit averaging over solvent degrees of freedom eliminates the “noise” – an astronomical number of

local minima arising from small variations in solvent structure. Energy landscapes of molecular structures are

no longer dominated by the noise and start to make sense.

Availability of all of these advantages depends criticallyon the availability of practical computational mod-
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els based on the implicit solvent framework. One such model that has become particularly popular recently is

the generalized Born approximation, or simply the “GB”. The model provides a relatively simple, computa-

tionally robust and effective way to estimate the long-range electrostatic interactions in biomolecular structures

– currently the bottle neck for calculations of energy and force estimates in classical all-atom simulations.8

The main goal of this article is to introduce the GB model and to present an overview of its current use in

molecular modeling. Special emphasis will be given to the discussion of approximations that the model rests

upon. The chapter is organized as follows: after a brief introduction into the key approximation of the general

implicit solvent framework, I will review the Poisson-Boltzmann model of continuum electrostatics as the

foundation of the GB approximation. A derivation of the GB approximation will then be presented, followed

by a discussion of the various “flavors” of the model. I will then give examples of some recent uses of the

model in molecular modeling. Several issues pertaining to practical aspects of the model will be touched upon

in relative detail, including relative computational speed-up and enhancement of conformational sampling that

can be achieved via the use of the GB approximation. Limitations of the model will also be discussed, followed

by concluding remarks and outlook.

1.1 Key approximations of the implicit solvent framework

In many molecular modeling applications, one needs to compute the total energy of the molecule in the presence

of solvent. This energy is a function of molecular configuration, and its gradients with respect to atomic

positions determine the forces on the atoms. The total energy of a solvated molecule can be conveniently

written asEtot = Evac + ∆Gsolv, whereEvac represents molecule’s potential energy in vacuum (gas-phase),

and∆Gsolv is defined as the free energy of transferring the molecule from vacuum into solvent,i.e. solvation

free energy. The above decomposition is already an approximation made by most classical (non-polarizable)

force-fields, as it assumes this specific separability of theHamiltonian. In practice, once the choice of the

gas-phase potential function, or force-field,Evac is made, its computation is relatively straightforward.9 The

difficulty comes from the need to estimate the effects of solvent, encapsulated by the∆Gsolv term in the above
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equation. At present, one often makes the following simplifying approximation to estimate∆Gsolv:

∆Gsolv = ∆Gel + ∆Gnonpolar, (1)

where∆Gnonpolar is the free energy of solvating the molecule from which all charges have been removed

(i.e. partial charges of every atom are set to zero), and∆Gel is the free energy of first removing all charges

in the vacuum, and then adding them back in the presence of a continuum solvent environment. That Eq. 1

holds only approximately can be seen from the fact that the absolute values of solvation energies of ions of the

same size and opposite charge (and the same magnitude) are not identical.10 It should be noted that Eq. 1 is

not an absolutely necessary assumption within the general implicit solvent framework,11, 12 but is the one that

most current practical models make. Within this approximation, one needs practical methods of computing

both∆Gel and∆Gnonpolar. Computing the non-polar term has not so far been the computational bottleneck

of molecular modeling, perhaps in part due to the simplisticnature of the approximations used to compute it.

We will briefly touch upon some of these issues below. Our mainfocus will be∆Gel that is presently the most

time-consuming part. Accuracy of∆Gel estimates is of paramount concern since the underlying long-range

interactions are critical to function and stability of manyclasses of biological and chemical structures. To

understand the physical basis ofanalytical approximations to∆Gel such as the GB model, one needs to start

with the more fundamental underlying approximation – the Poisson-Boltzmann (PB) model. Below is a brief

introduction to the PB theory, geared towards our present goal of deriving the GB approximation from it.

1.2 The Poisson-Boltzmann model

If one accepts the continuum, linear response dielectric approximation for the solvent, then, in the absence of

mobile ions, the Poisson equation (PE) of classical electrostatics provides an exact formalism for computing

the electrostatic potentialφ(r) produced by an arbitrary charge distributionρ(r).

∇[ǫ(r)∇φ(~r)] = −4πρ(r). (2)
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Here, ǫ(r) represents the position-dependent dielectric constant which equals that of bulk solvent far away

from the molecule, and is expected to decrease fairly rapidly across the solute/solvent boundary. For now, we

only considerρ(r) produced by a set of “fixed” atomic chargesqi at positionsri inside the dielectric boundary,

ρf (r) =
∑

i qiδ(r− ri). A common simplification is to assume an abrupt dielectric boundary, that isǫ(r) takes

only two values:ǫin inside the dielectric boundary andǫout outside – the so called “two-dielectric” model.

However, even with this assumption, analytical solutions of the PE for arbitraryρ(r) are available only for a

handful of highly symmetric geometries, such as the sphere.13 At the same time the PE can be solved by a

variety of standard numerical methods for essentially any realistic dielectric boundary and arbitraryǫ(r). The

situation becomes more complicated if one is to consider theeffect of mobile ions (salt). Not only will the total

charge density on the right-hand side of Eq. 2 depend on the potential, but it will contain non-trivial correlations

between ions of finite size which are difficult (though not impossible) to take into account computationally.14

These correlations may be particularly strong for multi-valent ions. Neglecting all such correlations via a mean-

field treatment leads to the Poisson-Boltzmann (PB) equation. Namely, using the Boltzmann distribution for

the density of mobile ions inside the potential fieldφ(r), we can represent the total charge density as

ρ(r) = ρf (r) + |e|
∑

j

njzjexp(−φ(r)|e|zj/kT ), (3)

wherenj andzj are the bulk density and charge of each ion speciesj, and|e| is the elementary charge. Sub-

stitutingρ(r) from Eq. 3 into the right-hand side of the Poisson yields the full non-linear Poisson-Boltzmann

equation, or NLPB. The non-linear nature of the NLPB leads toseveral unusual properties ofφ(r) derived

from it, including the fact that unlike solutions of the PE, the NLPB potential is non-additive: potential due to

a collection of charges is not, in general, the sum of individual potentials due to each charge. This property can

make some practical calculations, in particular those involved in pK estimates,15 rather cumbersome. Several

more subtle consistency problems exist: a discussion of these issues, including a derivation of the correspond-

ing expression for the electrostatic free energy can be found in Ref. 16. Analytical solutions of the NLPB are

not available for arbitraryρf (r), even for a sphere. However, a variety of numerical algorithms for solving the

NLPB equation exist, many of them implemented in software packages designed specifically for biomolecular

modeling, for exampleAPBS17 or DELPHI.2, 18, 19 In this very brief discussion we omit the details of these
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numerical procedures along with all of the related technical issues that are discussed in detail elsewhere, see

e.g. Ref. 20 or Ref. 21 which also contains a comprehensive list ofthe popular software packages that solve

the NLPB equation and its more commonly used linearized version in a variety of contexts.

The complexity of the NLPB equation can be drastically reduced, and the familiar properties of the PE

restored if the exponential in Eq. 3 is linearized. The corresponding linear Poisson-Boltzmann equation, or

simply thePB equation, is commonly used in biomolecular simulations:22

∇[ǫ(r)∇φ(~r)] = −4πρf (r) + κ2ǫ(r)φ(r). (4)

Here the electrostatic screening effects of (monovalent) salt enter via the second term on the right-hand side

of Eq.4, where the Debye-Huckel screening parameterκ ≈ 0.1[Å
−1

] at physiological conditions. Once the

potentialφ(r) is computed, the electrostatic part of the solvation free energy is given by the familiar expression

of classical electrostatic:

∆Gel =
1

2

∑

i

qi[φ(ri) − φ(ri)|vac], (5)

whereφ(ri)|vac is the electrostatic potential computed for the same chargedistribution in the absence of the

dielectric boundary,e.g. in vacuum. Note that this simple formula is only valid for thelinearized PB equation.

2 The generalized Born model

The need for computationally facile approximations for∆Gel requires further trade-offs between accuracy and

speed, especially in dynamical applications where speed and algorithmic simplicity is paramount. One such

approximation is the generalized Born (GB) model. The analytical GB method is an approximate, relative to

the PB model, way to calculate the electrostatic part of the solvation free energy,∆Gel. The methodology has

become particularly popular in molecular dynamics (MD) applications,23–29and lately in many other areas that

will be discussed below.
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2.1 Theoretical foundation of the GB model

We will begin by re-casting the Poisson equation 2 in an equivalent form for the Green function:30

∇[ǫ(r)∇G(ri, rj)] = −4πδ(ri − rj), (6)

Within the two-dielectric model, the solution inside the dielectric boundary is

G(ri, rj) =
1

ǫin|ri − rj |
+ F(ri, rj), (7)

The first term in the Green function has the familiar form of the Coulomb potential due to a single charge

source, while the second term satisfies the Laplace equation∇2
F(ri, rj) = 0. Here,F(ri, rj) corresponds to

the reaction field due to polarization charges induced at theboundary;F(ri, rj) 6= 0 only in the presence of the

boundary. ComparingG(ri, rj) with Eq. 5 we see that

∆Gel =
1

2

∑

ij

F(ri, rj)qiqj (8)

Of course, computingF(ri, rj) for an arbitrary charge distribution inside an arbitrary molecular boundary is

as hard as solving the original Poisson equation, and can only be done numerically as mentioned in the previous

section. To make progress towards our goal—finding a simple,closed form formula for∆Gel— we need to

make further approximations. We will pursue the following strategy: use a known analytical solution of the PE

for some very simple dielectric boundary to get a specificanalytical form of F(ri, rj). Since for biomolecular

modeling we need to consider arbitrary distribution of partial charges inside the dielectric boundary, our choice

is essentially limited to just one shape: the sphere, for which an exact solution of the PE exists.13 We follow

Ref.31 and separate the self-contribution,F(ri, ri), from the interaction part,F(ri, rj):

F(ri, ri)
sphere = −

(

1

ǫin
−

1

ǫout

)

1

A

∞
∑

l=0

tlii
1 + l

l+1β
(9)

F(ri, rj)
sphere = −

(

1

ǫin
−

1

ǫout

)

1

A

∞
∑

l=0

tlijPl(cos θ)

1 + l
l+1β

(10)
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wheretij = rirj/A
2, ri = |ri| is the atom’s position relative to the center of the sphere,A is the molecule’s

radius,θ is the angle betweenri andrj, andβ = ǫin/ǫout (see Fig. 2).

i
q

j
q

εinεout

θ

r

r

i

j
A

Figure 1:

Figure 2: Illustration for Eqs. 9, 10: a sphere of dielectricǫin and radiusA with two charges,qi andqj at positions
ri andrj relative to the sphere’s center. The sphere is surrounded byinfinite medium of uniform dielectricǫout.

The expression forF(ri, rj), Eq. 10, is extremely valuable because it isexact. However, its use in prac-

tical computational problems is limited because the corresponding infinite series converges slowly whentij

approaches one.32 The latter is the typical case for biomolecules where largest charges are likely to be found

near molecular surface. However, under certain assumptions the series in Eq. 10 can be summed to produce

simple, finite expressions.31, 33 Here is an outline of the derivation. Consider the typical case of aqueous solva-

tion ǫout ≫ ǫin ≥ 1. After making the approximationǫout → ∞, which in this case is equivalent toβ = 0, the

dependence onl in the denominators of the fractions in Eq. 10 disappears, and we can use the well-known iden-

tity for the sum of Legendre polynomials31 along with the geometrical identitycos θ = (r2
i + r2

j − r2
ij)/2rirj (

rij is the distance between the charges ) to obtain forF(ri, rj)
sphere:

F(ri, ri)
sphere = −

1

ǫin

1

A − r2
i /A

(11)

F(ri, rj)
sphere = −

1

ǫin

1
√

r2
ij +

(

A −
r2
i

A

) (

A −
r2
j

A

)

(12)
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The above equations along with Eq. 8 solve the problem of finding a simple, analytical formula for∆Gel,

albeit in theǫout → ∞ limit. However, it is not yet clear what parameters such asA, and especially “distance

to center”ri, Fig. 2, mean in the case of realistic molecular shapes. Fortunately, the specific form of Eqs.

11 and 12 provides a solution that is one of the cornerstones of the GB theory. Note that both the cross-

termF(ri, rj)
sphere and the self-termF(ri, ri)

sphere of the Green function depend only on(A − r2
i /A) – the

quantity we will callthe effective Born radiusRi of atomi. Thus, if we are somehow able to compute the self-

term F(ri, ri), or equivalently∆Gel
ii, for every atom in the molecule, then we can invert Eq. 11 to calculate

(A − r2
i /A)(A − r2

j /A) = RiRj , insert these into Eq. 12, and hence obtain the cross-termsF(ri, rj) as a

function ofRi, Rj, andrij . For realistic biomolecular shapes the specific form ofF(ri, rj) currently used by

the generalized Born is slightly more complicated thanF(ri, rj)
sphere of Eq. 12:

Ri = −
1

2

(

1

ǫin
−

1

ǫout

)

q2
i

∆Gel
ii

(13)

∆Gel =
1

2

∑

ij

F(ri, rj)qiqj ≈ −
1

2

(

1

ǫin
−

1

ǫout

)

∑

i,j

qiqj
√

r2
ij + RiRj exp

(

−γ
r2
ij

RiRj

)

(14)

The above form ofF(ri, rj) with γ = 1/4 is due to Stillet al.34 and is the most common form ofF(ri, rj)

used in practice today, although alternatives such asγ = 1/2 or γ = 1/10 have also been explored. The Still’s

formulae, which we will refer to as the GB model or “canonical” GB, differ from the exact sphere-based Eqs.

11 in two respects: the use ofγ 6= 0∗, and slightly different dependence on the dielectrics via the pre-factor
(

1
ǫin

− 1
ǫout

)

. Unless the charge is positioned exactly in the sphere’s center the specific dependence of Eq. 14 on

ǫin, ǫout is approximate even for a perfect sphere: the correspondingerror increases with decreasingǫout.31, 35

Ways to improve the approximation are considered in Sec. 2.5. To better understand the effect of non-zero

γ, note that settingγ → 0 in the Still’s formula recovers the sphere limit of Eq. 12; the use ofγ 6= 0 leads

to more accurate estimates of∆Gel for non-spherical geometries of realistic molecules. Thisis likely due to

the fact that, for a non-spherical molecule, many pairs of charges exist for which more of the electric field

lines between the charges go through the high dielectric region, effectively reducing the pairwise interaction

∗As a result,F(ri, rj) from Eq. 14 does not satisfy the Laplace equation.
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compared to the purely spherical, everywhere convex molecular boundary. The Still’s form ofF(ri, rj) takes

this effect into account, at least to some extent, by allowing for steeper decay of the charge-charge interaction

with the distance. To perform practical computations basedon Eq. 14 one needs the effective Born radiiRi

for every atom. The effective radius represents the atom’s degree of burial within the low dielectric solute. By

definition, the effective radius can be obtained by computing ∆Gel
ii for each atomi, and then inverting Eq. 13.∗

In fact, Eq. 13 is simply the inverse of the the famous Born formula for the solvation energy of a single ion.

The idea of “generalization” of the Born formula to account for solvation energy of small molecules dates back

at least 50 years,36 although the term “generalized Born” did not seem to appear in literature until about 25

years ago.37 Assuming that effective Born radii can be computed efficiently for every atom in the molecule,

computational advantages of Eq. 14 relative to numerical PBtreatment become apparent: knowledge of only

N self-energy terms∆Gel
ii , or equivalently, values ofRi for each ofN atoms in the molecule gives, via the

GB Eq. 14, a quickanalytical estimate of the remaining∼ 1
2N2 charge-charge interaction contributions to

the total electrostatic solvation energy. Not less important is the fact that the GB formula is very simple, its

analytical derivatives with respect to atomic positions provide the forces needed in dynamical applications.

Two immediate questions arise: (i) how can the effective radii be computedaccuratelyand efficiently to fully

utilize these advantages? and (ii) even if theRis are computed very accurately, will the GB formula, Eq. 14,

yield reasonably accurate estimates of the electrostatic solvation energies forrealistic molecular shapes? A

positive answer to the second question came from an analysisof the GB accuracy in the case where∆Gel
ii and

henceRis are computed by solving the Poisson equation directly via highly accurate numerical techniques.

The resulting sets ofRis—the so-called “perfect radii”—were shown to yield estimates of individual pairwise

solvation cross-term energies∆Gel
ij = qiqjF(ri, rj) in a reasonable agreement with numerical results based on

solving the PE directly,38 Fig. 4.

The PE-based perfect effective radii are very helpful in theanalysis and further development of the GB

model as they probe the limits of Eq. 14 and provide a natural reference point for approximated effective radii.

The perfect radii may also be useful in some practical cases,for example in MD simulations of proteins in their

native states, if one assumes that the effective radii can beheld constant through the simulation.38 However, in

∗In case of homogeneous solvent of constant dielectric, the correct procedure is to compute the radii in theǫout → ∞ limit, which

eliminates the error due to approximate nature of the
(

1

ǫin
− 1

ǫout

)

prefactor, see Ref. 31 for details.
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Figure 3:

Figure 4: Comparison of individual cross terms between the perfect-radii GB model (ij terms of Eq. 14) to the
corresponding cross terms computed directly from PE equation for the native state of myoglobin. The linex = y

represents a perfect match between the GB and PE theories.

most cases the overhead costs of performing a full PE calculation every time the radii need to be computed are

prohibitive. Thus, the development of approximate methodsfor estimation ofRi becomes critical for the GB

field. In fact, since all of the current GB models use the same basic equation 14, the differences between the

many GB “flavors” currently available mostly reflect the differences between the particular procedures used to

compute the effective Born radii. In what follows we will introduce the basic ideas behind these procedures.

2.2 Computing the effective Born radii

In practice, the effective radius for each atomi can be calculated by approximately evaluating the electrostatic

part of solvation free energy∆Gel
ii in Eq. 13 via an appropriate volume integral,39–45 see below. Equivalent

formulations based on surface integrals also exist.46, 47 Two main challenges have to be overcome on the way to

developing accurate and facile methods for computing the effective radii: (i) finding a computationally simple,

physically justified integral representation for∆Gel
ii , and (ii) developing numerical routines to perform the

integration over specific volume/surface corresponding toa physically realistic dielectric boundary between

the solute and the solvent.
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2.2.1 The integral approaches

The goal is to find an approximation for computing the effective Born radius for a given atomi inside a

molecule. Classical electrostatics provides an approach for calculating the work done to create a given charge

distribution within the molecule:

G =
1

8π

∫

R3

[ ~D(~r)]
2

ǫ(~r)
d3~r (15)

where ~D(~r) is the dielectric displacement vector, andǫ(~r) is the position-dependent dielectric constant. Now

let’s zero out all of the charges inside the molecule except for the one on the atom in question. Consider a

process in which this molecule is transferred from a medium of uniform dielectric constantǫin equal to that of

the solute into the uniform solvent mediumǫout. The process creates the dielectric boundary which coinsides

with the molecular bondary. Then, the electrostatic part ofthe solvation free energy∆Gel of the charge, that is

the work of transferring this one chargei from a medium of uniform dielectric constantǫin equal to that of the

solute, into the two-dielectric solute/solvent medium is:

∆Gel
ii =

1

8πǫout

∫

solvent
[ ~Di(~r)]

2
d3~r +

1

8πǫin

∫

solute
[ ~Di(~r)]

2
d3~r

−
1

8πǫin

∫

solvent
[ ~D0

i (~r)]
2
d3~r −

1

8πǫin

∫

solute
[ ~D0

i (~r)]
2
d3~r (16)

where~Di(~r) is the total dielectric displacement due to chargei, ǫout in the dielectric of the solute, and

~D0
i (~r) ≡

qi

r3
~r, (17)

is the Coulomb field created by point chargeqi in the uniform dielectric environment. The above equation is

an exact result that would lead to perfect effective radii if~Di(~r) were known. Since for an arbitrary molecular

shape it is unknown, one makes approximations to~Di(~r) to make progress. The Coulomb field approximation

– CFA – is historically the first approximation of that nature. It makes what appears to be a fairly drastic

assumption,

~Di(~r) ≈
~D0

i (~r) ≡
qi

r3
~r, (18)
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that is the electric field generated by the atomic point charge is assumed unaffected by the dielectric boundary.

With this assumption, the integrals over the solute volume in Eq. 16 cancel, while the solvent volume integrals

combine, to yield just one integral over the region exteriorto the molecule:

∆Gel
ii =

1

8π

( 1

ǫout
−

1

ǫin

)

∫

ext

[ ~D0
i (~r)]

2
d3~r

=
( 1

ǫout
−

1

ǫin

)qi
2

8π

∫

ext

1

r4
d3~r (19)

Comparing the above with the definition of effective radius in Eq. 13, we arrive at the following expression

for the inverse effective radius in the CFA approximation:

α4 = R−1
i =

1

4π

∫

ext

1

|r − ri|4
dV = ρ−1

i −
1

4π

∫

r>ρi

|r|−4dV (20)

where in the first expression the integral is taken over the region outside of the molecule. The second formula in

the equation above is often used for computational convenience:42 the origin is moved to the atom of interest,

and the integration region is the interior of the molecule outside of the atom’s VDW radiusρi. Effective ways

to compute the integral will be discussed below.

The CFA is exact for a point charge at the center of a perfectlyspherical solute, but it overestimates effective

radii for realistic molecular geometries48 as well as for spherical regions when the charge is off center.33 How-

ever, many practical routines available today still use theCFA, with a few notable exceptions discussed below.

A fortuitous cancellation of errors38 enhanced by elaborate parametrizations, plus computational efficiency of

the approximation have contributed to its success so far. Still, the limitations of the CFA were known for quite

some time, and a search for better approximations toRi continued. In particular, a class of models exists that

approximates the effective radii via integral expressionssimilar to Eq. 20, but with the integrand different from

the CFA’sr−4, namely

αN =





1

4π
(N − 3)

∫

ext

dV

|r− ri|N





1
(N−3)

=



ρ3−N
i −

1

4π
(N − 3)

∫

r>ρi

dV

|r − ri|N





1
N−3

, (21)
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whereN > 3, and the additional prefactor and exponentiation are needed to preserve the dimension ofαN

to be inverse length. Empirical corrections to the CFA basedon a simple linear or a rational combination ofαN

expressions have lead to significant improvements in accuracy of the GB model.43, 44 Several GB flavors termed

“GBMV” based on these approximations have been implementedin CHARMM , such expression involvingα4

and α5,48 and later an even more accurate expression—“GBMV2” — based on α4 and α7 respectively,44

R−1 = (1 −
√

2
2 )α4 +

√
2

2 α7. While all N 6= 4 expressions in Eq. 21 may appear purely heuristic, at least

one of them has a rigorous foundation:N = 6 yields theexacteffective radius for any charge inside a perfect

spherical boundary,33 not just at its center as is the case with the CFA. More precisely, theα6 expression is exact

in the ǫout → ∞ limit, that is ∆Gel
ii = −1

2
qiα6

ǫin
Numerical tests show, see Ref. 49 for important details, that

if accurately computed “R6” radii are used in the GB equation14 the resulting electrostatic solvation energies

can, on average, be as accurate (relative to the PE reference) as the ones obtained with the use of the perfect

radii. An important conclusion made in Ref. 49 was that the following expression based on just one integral

α6 = R−1
i =





3

4π

∫

ext

dV

|r − ri|6





1
3

=



ρ−3
i −

3

4π

∫

r>ρi

|r|−6dV





1
3

(22)

represents a sufficient solution to the problem of calculating effective radii: further attempts to increase

their agreement with PB results would unlikely succeed in improving the accuracy of the GB model itself

in its canonical version due to Still, Eq. 14. The above claimmakes even more sense if we recall that the

“canonical” GB Eq. 14 has the same underlying physical basisas theR6approximation for the effective radii:

the Kirkwood spherical model. Although the R6 radii can sometimes deviate significantly from the perfect radii,

the deviations occur for those geometries where the sphere-based canonical GB, Eq. 14, is itself not expected

to work. It remains to be seen whether the potential advantages of Eq. 22 will translate into practical gains

once its implementations, which are beginning to appear, will have been extensively tested by the modeling

community. Note that in practical GB models, the accuracy ofthe R6 prescription may be significantly reduced

by approximations made by fast routines employed to computethe integral in Eq. 22 or its equivalents. In

general, computing theαN integrals over a physically realistic representation of molecular interior (or surface

) is a challenge in its own right that we will discuss next.
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2.2.2 Representations of the dielectric boundary

Exactly what geometrical object most closely approximatesthe solute/solvent dielectric boundary is still an

unsettled question. Traditionally, PE or PB calculations employed the molecular (Connolly) surface for this

purpose,15 although a boundary with a “smooth” transition between the two dielectrics is coming into use as

well.7, 50 The question is even more critical for the development of theGB model than for numerical PB solvers:

not only will the precise position of the boundary determinethe numerical values of the integrals in Eqs. 20,

21 or 22, and thus the accuracy of the effective Born radii, but the mathematical form of the boundary will also

determine how hard it is to find analytical approximations tothe integrals.

The two limiting case representations of the dielectric boundary commonly used for the purpose of comput-

ing the effective radii are shown in Fig. 5. On the low end of the complexity spectrum, one has the simple and

efficient model in which the solute is represented by atomic spheres of the appropriate (VDW) radii for each

atom type; the dielectric boundary is taken to coincide withthe surface of the spheres. In the other limiting case

the dielectric boundary is taken to be coincident with the molecular surface, and thus the integration volume

is the intricate molecular volume (MV). Comparisons with explicit solvent calculations show that the latter is

a closer approximation to physical reality51 for macromolecules, but the higher degree of realism comes at a

high price: the complexity of molecular volume makes it veryhard to approximate the corresponding volume

integrals analytically. Practical routines for computingthe effective radii often make additional modifications

to the two basic volume definitions; for example the sharp dielectric boundaries in both representations can

be “smoothed out”,e.g. via the use of atom-centered Gaussian functions. Existing GB flavors can be further

classified by the specific dielectric boundary representations that the flavor is based upon. For example, the

integral in Eq. 20 can be computed numerically without further approximations over any reasonable volume

representation, including the exact MV.6 The GB flavors based on such numerical quadratures6, 34, 44, 46, 48, 52

are in some sense similar to the “perfect” radii flavor introduced before – they play a significant role in the

development of the theory, but their applicability domain is limited, particularly in dynamics where the GB

model can be expected to offer most advantages over the PB treatment and explicit solvent.

On the other end of the “volume approximation spectrum” are GB flavors that use the VDW-based dielectric

boundary to compute integrals such as Eqs. 20 or 21 in an efficient manner. One such flavor, GBSW52 available
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MolecularVdW

Figure 5: The two limiting cases of computational approximations for the solute–solvent dielectric boundary.
In the simpler vdW-based approach (left), the boundary coincides with the surface of atomic spheres, and the
interstitial space is treated as high dielectric solvent. The other approximation utilizes molecular surface (MV)
for the boundary: all space inside the surface is consideredlow dielectric solute.

in CHARMM , uses a smooth dielectric boundary based on the VDW volume definition, with the integrand being

a rational combination ofα4 andα7. Recently, VDW-based approximations for theR6 GB (based onα6, Eq.

22) also appeared.53, 54 Another example of the VDW-based approach is one of the first,and still widely used,

GB flavor— theHCT model39, 40— that employs the sharp VDW-based dielectric boundary to compute the

CFA integral in Eq. 20 in an efficient manner. Namely, the integral for each atomi is represented as a pairwise

sum of integrals over spherical volumes of individual atomsj 6= i:

α4 = R−1
i ≈ ρ−1

i −
1

4π

∑

j

∫

|rij−r|<ρi

|r|−4d3
r (23)

The key advantage of the above approximation is that simple analytical expressions are available for it, as

well as for the more general case of
∫

|rij−r|<ρi

|r|−Nd3
r for anyN , thus providing analytical expressions forαN

in Eq. 21. Variants of the HCT are available in many modeling packages includingAMBER55 andTINKER.56

One relatively minor problem with the VDW-based pair-wise approximation such as Eq. 23 is that it

neglects possible overlaps between neighboring atoms outside of the atom of interest. In practice, the resulting

over-counting of volume can be partially compensated by scaling the intrinsic radiiρj by a set of empirically

adjusted scaling factorsρj → ρj ∗ fj wherefj ≤ 1 typically depend on atom type.

A more serious problem with Eq. 23 based directly on the VDW definition of solvent volume, Fig. 5, is
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the neglect of interstitial spaces between the atomic spheres in the interior of the molecule. In other words,

these crevices are treated as if they belonged to the solventspace, that is filled with high dielectric. As a re-

sult, the effective radii are underestimated. For molecules with little interior the error is small, which probably

explains why the original HCT model worked so well for small molecules. Also, the use of CFA leads to a

certain cancellation of errors in this case since the CFA tends to overestimate the effective radii. However,

for biopolymers, such as proteins or DNA, the neglect of interstitial space leads to appreciable underestima-

tion of the effective radii, compared to the “perfect” radiibased on numerical PE estimates that use molecular

surface for the dielectric boundary.38 Efforts to correct this deficiency while preserving the algorithmic sim-

plicity and computational efficiency of the pairwise approximation have led to a series of GB flavors. In one

of them,GBOBC (available, for example, inAMBER , NAB andTINKER packages), an empirical correction

is introduced45 that modifies the pairwise integration method, Eq. 23, to reduce the effect of interstitial high

dielectrics. The procedure is designed to leave the small radii almost unaffected while larger radii are scaled

up, with the scaling factor depending on the magnitude of theradius. The parameters of the re-scaling function

were determined based on a training set that included several proteins, both in their folded and unfolded states.

Since the VDW-based pair-wise HCT approach is already knownto give rather accurate effective radii for

surface atoms, but substantially underestimates the larger effective radii for deeply buried atoms, the rescaled

radii in GBOBC improve agreement with PB solvation free energies. The computational expense of the rescal-

ing function is minimal so that the efficiency of the HCT method is retained. In addition, effective radii are

smoothly capped at about 30̊A , avoiding potential problems with numerical stability. Without the capping,

stability problems may arise when the sum of volume integrals in Eq. 23 becomes very close toρi
−1, making

the value of the corresponding effective radius very sensitive to tiny structural variations.

However, by design, theGBOBC rescaling function with tabulated parameters compensatesfor interstitial

high dielectric only on average, in a geometry-independentmanner. The problem becomes transparent in the

limiting case of just two atoms that move relative to each other: while parameters of the re-scaling procedure

can in principle be so tabulated as to produce the correct answer for one inter-atomic distance, the method will

completely miss changes in molecular volume associated with the relative motion of the atoms. To address

this deficiency, an additional correction to the pair-wise procedure was introduced57 that brings in elements
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of molecular volume, in a pair-wise sense. Namely, an additional term is added to Eq. 23 that re-introduces

the molecular volume between each pair of atoms missed by theoriginal approximation. The integral over this

neck-shaped region can be approximated by a simple analytical function that carries only a small computational

overhead relative toGBOBC . At the same time, compared to its predecessors, the resulting GBn flavor, was

found to be a noticeably more faithful approximation of electrostatic solvation effects in proteins, not only by

comparisons with the PE, but also with explicit solvent MD simulations.57 The flavor is now also available in

AMBER ,

The “high interstitial dielectric” is not the only problem that needs to be addressed within the pair-wise

VDW approach. An approach to better approximate variationsin the integration volume associated with

changes in molecular geometry—an all-important issue in MDsimulations—is presented byAGB andAGNPB

flavors28 available ine.g.IMPACTmodeling package.58 These two approximations are currently also based on

the pair-wise sphere-based CFA, Eq. 23. However, unlike theoriginal HCT, the scaling factors that multiply

the VDW radii are made explicitly geometry-dependent, rather than set constant. As mentioned above, the

scaling of VDW radii is designed to compensate for the over-counting of volume which in the pairwise ap-

proximation results from multiple overlaps between atomicspheres. InAGB these overlaps are computed for

each pair of atoms; the scaling factors are approximated from two-sphere overlap volumes. For computational

efficiency, the atomic volumes are described by Gaussian density functions. Yet another GB flavor based on

pair-wise CFA approximation isACE25, 59 available ine.g. TINKER56 package. The approach uses a set of

pre-tabulated atomic volumes—for example Voronoi volumes—to represent the total molecular volume. Each

atom’s contribution is described by a Gaussian density function which leads to reasonably simple analytical

expressions for the integrals in Eq. 23. A completely different approach, not based on the pair-wise approxima-

tion and the CFA, is employed by GBMV flavors43, 44 and its variations.60 Rather than augmenting the VDW

representation to approximate the integrals over molecular volume, Leeet al. found an analytical approxima-

tion of the the appropriate integrals computed over a “smooth boundary” molecular volume that closely mimics

the volume used in typical numerical PE calculations. The superior accuracy of these GBMV flavors, relative to

the routines based on VDW and pair-wise representations, comes at a price of noticeably higher computational

costs.61
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The above examples represent several important problems and their solutions in the development of the

GB field, but by no means give an exhaustive account of all of the variant or “flavors” of the GB model

currently available. Among the relatively new developments is “residue pair-wise” GB,62 the Gaussian GB,63

andFACTS64 GB flavors. Interestingly, unlike all of the GB flavors discussed above,FACTS approach does

not rely on integral representations such as Eqs. 21 to compute the effective radii. Instead, it uses an empirical

relationship between the effective radius of an atom and thedistribution of other atoms around it. Work to

improve the accuracy and efficiency of computational routines for estimation of effective Born radii continues.

2.3 Accounting for salt effects

When salt is present in the solvent, the GB formalism must be amended to include screening effects of the ionic

atmosphere. In principle, one could envision repeating therigorous derivations presented in Section 2.1 starting

from the Poisson-Boltzmann equation instead of just the Poisson equation, but to the best of our knowledge

the strategy has not yet been carried through. Part of the problem may be that the mathematical structures

of the solution of the PB equation inside and outside the dielectric boundary are significantly more complex

and substantially different from each other, unlike in the PE case. Instead, the screening effects of monovalent

salt are currently introduced into the GB model via an approximate, yet very simple and computationally

inexpensive empirical correction65 to the main formula, Eq. 14:

∆Gel = −
1

2

∑

i,j





1

ǫin
−

exp
(

−0.73κfGB
)

ǫout





qiqj

fGB
(24)

wherefGB =

√

r2
ij + RiRj exp

(

−γ
r2
ij

RiRj

)

as before, andκ is the Debye-Huckel screening parameter

κ[Å−1 ] ≈ 0.316
√

[salt][mol/L]. The above expression can be rationalized as follows. Notice that the solution

of the PB equation for a single point charge has the formφi ∼
exp(−κr)

ǫout
× ( qi

r ), and the role of“r” in the GB

formula is played byfGB, which suggests the above ansatz
(

1
ǫin

− 1
ǫout

)

→

(

1
ǫin

−
exp(−κfGB)

ǫout

)

. The 0.73

prefactor was found empirically to give best agreement withthe numerical PB treatment.65
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2.4 The non-polar contribution

Although the goal of the GB model is to approximate the electrostatic part of solvation only, a comment is due

on how the non-polar part is currently handled in practical calculations. A common approximation widely in

use today55 assumes∆Gnonpolar to be proportional to the total solvent accessible surface area (SASA ) of the

molecule,∆Gnonpolar ≈ σ × SASA, with the proportionality constant derived from experimental solvation

energies of small non-polar molecules. Substantial uncertainty exists in what appropriate value of the surface

tensionσ should be used in simulations, which perhaps reflects the limitations of this approximation itself.

Strong arguments for the use of less drastic approximationsfor ∆Gnonpolar, e.g. those that treat solute-solvent

van der Waals interactions (“volume term” ) separately fromthe surface area term, have also been made.28, 66

Practical models based on these ideas have already emerged.For example, the AGBNP28 approximation men-

tioned above combines the basic GB framework with a model for∆Gnonpolar that goes beyond the surface area

approximation.

At the same time, it is clear that, at least in some cases the∆Gnonpolar ≈ σ × SASA approximation is

not as critical to the over-all accuracy of∆Gsolv, compared to the quality of approximating the electrostatic

part ∆Gel. For example, in a study25 aimed at assessing the performance of various implementations of the

ACE GB flavor in MD simulations of small proteins, it was found that the over-all structural deviations were

insensitive to variations of the surface tensionσ in a wide range from0 to 50cal/mol/Å
2
. Some researchers

choose to neglect the hydrophobic term altogether in MD simulations, especially if no large conformational

changes are expected.

2.5 GB for non-aqueous solvents

To the extent that solvation in non-aqueous media can be attributed to the change in the dielectric properties

of the solvent, it is appropriate to seek a modification of theGB formalism to approximate the corresponding

∆Gel. In the simplest case of uniform solvent dielectric and arbitrary ratioǫin/ǫout, one can develop a rigorous

formalism similar to the one used to derive the canonical GB model valid in theǫin/ǫout ≪ 1 case, Section 2.1.

Namely, the summation of the infinite series that representsthe exact Green function for the sphere, Eq. 10,

can be performed for any ratioǫin/ǫout, leading to the following expression:31
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∆Gel ≈ −
1

2

(

1

ǫin
−

1

ǫout

)

1

1 + αβ

∑

ij

qiqj

(

1

fGB
+

αβ

A

)

(25)

wherefGB is same as above,β = ǫin/ǫout, α = 32(3 ln 2−2)
3π2−28 − 1 ≈ 0.580127, and andA is theelectrostatic size

of the molecule. The latter provides a relationship betweenthe molecule’s global shape and its electrostatic

energy.31 Roughly speaking,A is the over-all size of the structure; a rigorous definition and a way to compute

it analytically is presented in Refs. 31, 35. Whether or not Eq. 25, termed “ALPB” in Ref. 35, can be referred

to as a “GB model” may be a matter of debate: unlike the canonical GB formula 14, Eq. 25 contains an extra

parameterA and its dependence on the solute and solvent dielectric constants is different. However, the model,

currently available inAMBER package, is as efficient computationally as the Still’s formula 14 and can also

be used in MD simulations35 to describe solvation effects. Extensive comparisons withthe PE reference on

realistic biomolecular structures show31 that the use of Eq. 25 instead of the canonical GB to compute∆Gel

removes a systematic bias present in the canonical GB35 that becomes especially pronounced outside of the

ǫin/ǫout ≪ 1 regime.

Despite the simplicity and conceptual appeal of a rigorous physical basis, the ALPB formalism of Eq. 25

has one serious drawback: in its present form it is only applicable to the case of uniform solvent dielectric.

To describe the effects of essentially heterogeneous dielectric environment of biological membranes and wa-

ter/membrane interface, several groups proposed various empirical modifications to the canonical GB. The

resulting approximations are currently used in practical simulations of proteins and peptides interacting with

biological membranes. The key idea behind these approximations is to keep the main GB formula 25 intact,

but to modify the effective Born radii to account for the presence of additional dielectric boundaries. In one

such flavor,67 GBSA/IM (implicit membrane), the membrane is modeled as a homogeneous, low dielectric

membrane “slab” that has a finite thickness in one dimension,and extends to infinity in the other two, Fig. 6.

For each atom of the solute, the CFA pair-wise summation in Eq. 23 is then split into two parts: one

represents the polarization energy of the atom in the presence of the dielectric slab alone, and the other describes

the contribution of the solute atoms outside of the slab. Thefirst contribution is tabulated via a relatively simple
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Figure 6: A schematic illustrating two different approaches to approximating the distributions of dielectric in the
solute/membrane/solvent system used by some of the available GB flavors to compute the effective Born radii.
Left: the two-dielectric model used by the GBSA/IM flavor. The low dielectric slab is assumed infinite in the X
and Y dimensions.Right: the multi-dielectric model of HDGB.

analytical function whose parameters are set by fitting to numerical PE solutions. An obvious limitation of the

approach is the assumtion that the membrane environment canbe represented by a single dielectric constant

which is equal to that of the solute. Recently, the model was modified to account for heterogeneity of the

membrane.68

A different approach based on the same general idea of incorporating the electrostatic effects of a membrane

into appropriately modified effective Born radii was developed in Refs. 60, 69. The resulting heterogeneous

dielectric generalized Born (HDGB) flavor is an extension ofthe GBMV approach discussed above. The

first few terms in the infinite series Kirkwood solution 9 wereused to suggest a specific form for the self-

energy∆Gel
ii as a function ofǫin andǫout, which in turn is used to modify the original (α4, α7)-based GBMV2

expression for the effective Born radii to include an explicit dependence onǫin andǫout in the analytical formula

for Ri: Ri = Riǫin, ǫout). The theory69 then proceeds by partitioning the membrane “slab” into several

regions of constant dielectric, Fig. 6, approximating a realistic scenario in which the dielectric properties of

the membrane vary continuously across the bi-layer. The actual geometry of the slab and the variation of

the dielectric constant perpendicular to the membrane plane, ǫ(z), mimic that predicted for a DPPC bi-layer.

This partition is used to define the dielectric environment for each solute atom embedded in the membrane;

the corresponding effective radius is computed via theRi(ǫin, ǫout) prescription. Both GBSA/IM and HDGB

flavors are available inCHARMM70, 71 package, along with another membrane-GB flavor based on the same

general principle but derived from GBSW mentioned in the previous sections.72
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3 Applications of the GB model

The algorithmic simplicity and reasonable accuracy of the GB approximation, combined with its availability in

popular modeling packages, have made it the method of choicein many practical applications of the implicit

solvent methodology. The list is expanding; below are some representative examples.

3.1 Protein Folding and Design

Exploring large conformational transitions is one of several areas where the advantages of implicit solvent

framework, and specifically of the GB model, become particularly useful. Recent molecular simulations of

the protein folding process, which used all-atom, physics-based potentials to obtain correctly folded structures

starting from extended conformations, are arguably one of the most spectacular achievements attributable to

the GB model. Examples include small proteins such as 20-residue “trpcage”,73, 74 a 23-residue mixedα/β

protein,75 and a 36-residue villin headpiece.76 Successful folding simulations of even larger proteins arealso

beginning to appear.77, 78 In these simulations the folded state is typically predicted to within about 2Å from

experiment (Cα rmsd), and in some cases73, 79 within about 1Å. Energy landscapes computed within the

implicit solvent framework were used to gain insights into the folding mechanisms.76, 79 The GB model can

also be used to explore the influences of temperature, friction, and random forces on the folding of proteins.80

An example of a “protein design” study in which changes of protein stability associated with point mutations

were explored with the GB model can be found in Ref. 81. Another relevant example is the use of the model

in the prediction of protein loop conformations.82

3.2 “Large-scale” motions in macromolecules.

The conformational search speed-up allows one to study large-scale motions in proteins and protein complexes.

The use of the methodology to understand large conformational changes in proteins is exemplified by a recent

study of the motions of active site flaps in HIV protease:83 it is unlikely that a comparable explicit solvent

study would currently be computationally feasible. Another relevant example is a recent work that explored

conformational dynamics of avian flu virus.84
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Compared to proteins, implicit solvent MD simulations of nucleic acids are relatively new, and not as

numerous. A number of methodological issues still need to beresolved. So far, the GB methodology has

been employed to model free DNA in solution,85, 86 binding between proteins and nucleic acids,87–89as well as

for energetic analysis of conformational changes such as the A → B transition.26 A recent all-atom study of

the nucleosome and its 147- bp DNA free in solution90 has demonstrated usefulness of the GB for exploring

dynamics of “large” DNA fragments and protein-DNA complexes.

3.3 Peptides and proteins in the membrane environment.

Membranes are large structures, translocation of molecular structures through membranes may involve signifi-

cant molecular movements and conformational changes, and so these systems are natural candidates for implicit

solvent simulations based on the GB model. The GB flavors described in Section 2.5 have been used in mod-

eling of small peptides,72, 91 membrane spanning helices in proteins,92 and in simulation of whole membrane

proteins,68, 69, 91and protein complexes, as large and complex as the bacteriorhodopsin trimer.93

3.4 pK prediction and constantpH simulations.

Traditionally, quantitative prediction ofpKs and protonation states of ionizable groups in macromolecules has

been based on numerical PB solvers, seee.g.Refs. 15,94–97. While development of PB-based approaches for

pK prediction continues, GB-based calculations begin to emerge. First applications of the GB model to compute

the energetics of proton transfer in proteins were encouraging,42 although the reference PB calculations were

still definitely more accurate. However, a very recent GB-based model for prediction of proteinpKs was found

competitive with the latest PB-based and empirical approaches.98

Up until recently, physics-basedpK calculations assumed limited or no coupling between protonation and

conformational degrees of freedom. Likewise, charge states of all ionizable groups were considered fixed

throughout the course of a typical MD simulation, regardless of the conformational changes that the structure

may undergo. In reality, changes in protonation state and conformational changes are strongly coupled. Full

and consistent accounting for this coupling may be necessary for further improvement of the accuracy ofpK

estimates;99 in dynamics, it may lead to non-trivial effects.100 The GB model is an ideal candidate to intro-
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duce the coupling into dynamical simulations: its instantaneous dielectric response makes possible on-the-fly

estimates of relative energies of protonation microstates. Several GB-based approaches have recently been

been developed to fully couple protonation and conformational degrees of freedom in molecular dynamics –

the so-calledconstant pH MD. One of the methods employs a continuous protonation state model,101 in which

equations of motion are used to time-evolve the protonationcoordinate; convergence to physical protonation

state of 1 or 0 is enforced by an adjustable potential barrier. An example of recent use of the methodology

is a study ofpH dependence of folding landscapes of several peptides whichprovided insights into protein

aggregation that occurs in Alzheimer’s disease.102 An alternative approach103 operates directly in the physical

protonation space: protonation states are accepted or rejected on the fly, according to a Metropolis criterion,

during the course of the MD simulation. The approach was recently combined with the replica exchange tech-

nique to study pH-dependent mechanism of nitric oxide release in nitrophorin proteins.104 The accuracy ofpK

predictions based on the constantpH dynamics is becoming competitive99 with that of the more traditional

PB-based models that do not fully account for the structure-protonation coupling.

3.5 Other uses

The use of the GB approximation in molecular modeling is not limited to the general areas outlined above. Ap-

plications of the model to the analysis of the energetics of protein-ligand binding have been reported.45, 105–107

Several GB flavors have been implemented in the popularDOCK ligand docking program.108, 109 Another

emerging area where the GB has been found useful is “hybrid” explicit/implicit approaches to the treatment

of the solvent effects. Examples of the latter include a recent model110 in which the immediate hydration of

the solute is modeled explicitly by a layer of water molecules, and the GB model describes the electrostatics

of the bulk continuum solvent outside the explicit simulation volume. A similar idea has recently been found

very effective in the context of replica-exchange simulations;111 a detailed account of this methodology can be

found in Ref 112. Finally, we will mention recent application of the GB in QM/MM simulations.113, 114
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4 Some practical considerations.

The decision to use the GB approximation instead of the more rigorous PB model or the traditional explicit

solvent model may depend on many factors, including the typeof molecular structure, specifics of questions

one asks of the calculation, and even available computational resources. Which of the numerous GB flavors is

an optimal choice for each task also depends on the details. Presented below is a discussion of select aspects of

the GB performance in all-atom molecular modeling that is intended to illustrate several general trends backed

by specific examples.

4.1 The accuracy/speed trade-offs

One of the main motivations behind developing the GB model has always been its computational efficiency,

relative to alternative approximations that describe solvation effects. Since the GB is just an approximation to

the more fundamental PB, and both approximations share the same underlying physical framework of the con-

tinuum electrostatics, performance comparison between the two models appears natural, though not straight-

forward in practice. This is because the results may depend on the type of the problem, size and shape of

the molecular structure, and also on parameters of the specific algorithms involved, such as grid spacing and

specific convergence criteria used in numerical PB solvers.These issues were considered in detail in a re-

cent study61 which presents a performance comparison between several popular GB models and numerical PB

solvers that were commonly available in 2004. The work used the electrostatic solvation energy as the target

quantity to assess both accuracy and speed of the models. Notsurprisingly, it was found that the most accu-

rate of the GB flavors tested (e.g. GBMV andGBOBC ) are still less accurate than the most accurate of the

PB solvers, but appreciably faster. The difference in speedwas up to several orders of magnitude for a small

protein (36 residues, 596 atoms), but only about an order of magnitude for a much larger protein (239 residues,

3628 atoms). The trend reflects the difference in scaling behavior between the GB model, which scales with

the number of charges asO(N2) unless further approximations are made, and a more favorable scaling of the

PB-based algorithms,e.g. O(N3/2) for some algorithms that employ successive over-relaxation to solve the

finite-difference matrix equations.115 We stress that the specific trend is only applicable to compact globu-
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lar structures such as proteins in their native states; a more detailed discussion of the scaling issues will be

presented below in the context of MD simulations. One shouldalso be careful not to over-interpret such com-

parisons between two different models, and focus on generaltrends rather than precise numbers. For example,

the above mentioned comparison study61 also found that some of the less accurate numerical PB solvers were

quite competitive, speed-wise, with the more accurate GB models. Among the GB flavors, the same general

trade-offs were seen: the more accurate approximations were generally slower. For example, the most accurate

of the flavors tested in Ref. 61 – GBMV – was found to be several times slower in MD simulations than the

next one down the accuracy list,GBOBC(II).

The algorithmic simplicity and computational speed of the GB approximation make it particularly attractive

in Molecular Dynamics simulations of biomolecules. Relative to the traditional explicit solvent simulations,

the use of the GB model to represent solvation effects can be expected to accelerate the simulation significantly

in many cases. The corresponding “speed-up” is the combinedeffect of two very different contributions: (i)

the direct speed-up via reduced computational (clock) time; (ii) the indirect speed-up achieved via enhanced

conformational sampling. In what follows we will consider the two contributions separately.

4.2 Computational time relative to explicit solvent

Since MD simulations in explicit solvent require tracking of a large number of water molecules and counterions

placed around the solute of interest, one may expect a considerable reduction in CPU (clock) time once this

need is eliminated via the use of the GB model. The exact amount of this “direct” relative speed-up is not easy

to quantify for the same reasons as in the GBvs. numerical PB comparison outlined above: the algorithms to

be compared are very different. In explicit solvent simulations, the current practice in the field is to use the

so-called Particle Mesh Ewald (PME) approximation9 to speed up the computation of electrostatic interactions.

Within this approach the long-range pair-wise Coulomb interaction energy is represented (via a mathematical

trick that relies on imposing artificial periodic boundary conditions on the system ) as a sum of rapidly converg-

ing series summed in real space, plus a rapidly converging Fourier series. Since both sums converge quickly, an

accurate result can be obtained by retaining only a relatively small number of terms in the sums. An additional

speed-up comes from the interpolation of the potential overa regular mesh. Several adjustable parameters con-
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trol the accuracy and speed of the PME. While any direct comparison of MD simulation timings between the

GB and PME is bound to be implementation-dependent, we can still identify several general important trends

based on the computational complexity of the two algorithmsand types of molecular structures used in the

simulations.

The computational complexity of the basic GB equation 14 is obviouslyO(N2
solute), while for the PME it

is9 O(NtotlogNtot), whereNsolute is the number of atomic charges in the solute, andNtot is the total number

of charges, including those of the solvent,Ntot = Nsolute + Nsolvent. Assuming that one keeps the same

thickness of the solvent shell as the size of the solute grows, for compact globular solutesand largeNsolute

one hasNsolvent ∼ N
2/3
solute, Ntot ∼ Nsolute, and thus the expense of a PME-based computation is effectively

O(NsolutelogNsolute) for large structures. This means that while a reasonable implementation of the “raw” GB

may be expected to be faster than the PME for “small and mediumsize” structures, the advantage is bound

to disappear beyond a certain—implementation dependent—cross-over solute size. We stress that this result

assumes no further approximations or algorithmic improvements to the general GB formalism presented in the

previous sections.

The above trends for the relative speeds of GB- and PME- computations can be very different for non-

compact structures, or simulations where transitions between compact and stretched-out conformations are

expected, for example during the process of protein folding. This is because the number of solute molecules

required to fill the standard simulation box in these cases will scale differently with the solute size than for

the compact globular structures considered above. For example, in the limiting case of a completely stretched-

out polymer chain a cubic bounding box, the total volume of the solvent in the box scales asO(N3
solute),

and henceNtotal ∼ N3
solute, which leads toO(N3

solutelogNsolute) for the PME computational complexity,

compared to justO
(

N2
solute

)

of the “raw” GB. Thus, in contrast to the case of compact globular structures,

GB-based simulations of extended conformations are alwaysexpected to be considerably less expensive than

the corresponding explicit solvent computations that employ the PME.

We now illustrate the above general trends on concrete examples. We will compare single CPU timings

between theGBOBC flavor and the PME, in MD simulations of a set of proteins in their compact, native

states. For this illustration we will be using the models implemented in a popular MD packageAMBER (8).55
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Unless otherwise specified, we choose the default values forthe input parameters such as non-bonded cut-

off ( 9 Å ) in PME. The solvent buffer size is 10̊A . No long-range cut-offs or other approximations will

be applied in the GB-based simulations. The results of the comparison are as follows. For a small protein

villin headpiece (36 residues, 596 atoms), a GB-based simulation proceeds roughly ten times faster than the

corresponding explicit solvent one based on the PME. The timings become about equal for a medium-size

protein ubiquitin (76 residues, 1231 atoms). For a much larger nucleosome structure (8 protein subunits + 146

base-pairs of DNA, about 25,000 atoms in total) it was found earlier90 that the ratio of computational times

is about10 : 1 in favor of the PME, although parameters of that specific simulation were somewhat different

from those used in the single protein examples. Thus, for these specific GB and PME implementations used

to compute electrostatic interactions in all-atom MD simulations of compact globular structures, the cross-

over size beyond which the PME-based simulation becomes faster than those based on the GB is somewhere

between 1000 and 2000 atoms. Note that this result applies tosimulations that use a single CPU. The cross-

over point may be effectively pushed towards larger structures if one has access to a multi-CPU cluster: the

GB-based simulations generally tend to scale better with the number of utilized processors than the PME-based

ones. RecentAMBER (version 9) benchmarks provide some concrete examples: forstructures of about 25,000

atoms, the maximum speed-up – that is the speed-up beyond which doubling the number of CPUs does not

lead to any significant increase in compute speed – is at least7 times higher for the GB-based simulations than

for the PME-based runs. Thus, relative computational speedof the GB model can be substantially increased,

albeit extensively, if one has an access to a large parallel machine. The use of graphics processing units (GPU)

to speed-up GB-based molecular dynamics calculations may also holds considerable promise. For example, a

recent study demonstrated that a two orders of magnitude acceleration vs. a single CPU can be achieved for a

∼ 5, 000 atom protein in an all-atom molecular dynamics running entirely on a GPU.116

Additional approximations can also be used to reduce the associated direct simulation costs in GB-based

simulations.∗ For example, the latest versions ofAMBER offer at least three different strategies to speed up

such simulations: some of these strategies are specific to the GB methodology and some are generic and have

been used in the explicit solvent simulations as well. Amongthe latter is themultiple stepapproach in which

∗Note that the now standard PME approach is not applicable to GB, at least in its current form.
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slow-varying long range forces are not calculated at every step of MD, but only everynrespa > 1 steps.

In addition, the standard long range cut-off schemes may be very useful in GB-based simulations. The cut-off

schemes have become almost obsolete in explicit solvent MD in part due to success of the Ewald method and

in part since it became evident that spherical cut-offs introduce artifacts into explicit solvent simulations,117

affecting particularly strongly the structure and dynamics of water. However, the very absence of explicit water

in the GB-based simulations may make them more amenable to long-range cut-offs— successful long MD runs

have been reported using cut-off values of 24,45 18,85 or even 1288 Å . While for small systems the benefits of

using realistic cut-offs are not very high, the speed-ups may become significant for larger molecules where a

reasonable cut-off may be chosen to be considerably smallerthan the system size. The specific numbers will

necessarily be implementation-dependent. Also, one should always be aware that spherical cut-offs may not

be appropriate for highly charged systems or other situations where long-range electrostatic interactions play

a key role, such as in nucleic acids or the nucleosome. Fortunately, yet another way to cut GB computational

expense is now available which is based on reducing the cost of computing the effective Born radii. This is

achieved by setting a finite upper limit,rgbmax , in the integral Eq. 20, so that only the part of the solvent

within the rgbmax around the given atom is taken into account in computing its effective radius. Atoms

whose associated spheres are farther away thanrgbmax from the given atom will not contribute to that atom’s

effective Born radius. This is implemented in a “smooth” fashion118 so that when part of an atom’s sphere lies

inside thergbmax sphere, that part still contributes to the low-dielectric region that determines the effective

Born radius. As a result, the derivatives of the total energywith respect to atomic coordinates are continuous,

leading to energy conservation, and there is no large spurious force acting on the atoms coming in and out of

this “reaction field cut-off”. Importantly, unlike in the case of the standard cut-off, even if two charges are

separated by a distance larger thanrgbmax they still interact, albeit with a somewhat altered strength.

The implicit solvent methodology is relatively new, and so studies on speeding up MD simulations based

on it are not nearly as many or extensive as is the case with theexplicit solvent MD. However, the limited

available evidence is encouraging. For example,118 MD simulations of several small and medium size proteins,

10 bp duplexes of B-DNA and RNA have shown that, at least on thetime-scales of up to 10 ns, the use of

rgbmax preserves the native structure to the same extent as do simulations in which this approximation was
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Table 1: The effect of several additional approximations onthe speed and accuracy of GB-based MD simulations.
Shown are the deviations from the native structure (backbone rmsd,Å ) and relative computational speed-up
for a set of 8 ns. long MD simulations of a 76-residue protein ubiquitin (PDB 1UBQ), all done withGBOBC

model (igb = 5) of AMBER . Further details of the MD protocol can be found in Ref. 45. Insimulations that
employed the multiple time-step algorithm, that is recomputed the long-range forces only at everynrespa > 1

step, Langevin dynamics was used. The collision frequency was set to a low value ofgamma ln = 0.05ps−1.
The average and max. values of the rmsd were computed over theentire trajectory in each case. The value of
long-range cut-off is specified bycut.

rgbmax cut nrespa 〈rmsd〉 max rmsd relative direct speed-up
40 40 1 1.05 1.6 1
40 18 1 1.3 2.0 1.1
9 40 1 1.1 1.8 1.6
9 18 1 1.28 2.11 1.9
40 40 4 1.6 2.5 2.4
9 40 4 1.23 2.1 4.0
9 18 4 1.08 2.08 4.4

not used, as in Ref. 45. Even fewer tests have been performed that examine the effects of multiple time step

approximation in implicit solvent MD, or a combination of itwith the traditional spherical cut-off and/or the

use ofrgbmax . Still, the limited experience we have is encouraging, see Table 1, where we have summarized

the results of applying such approximations in MD simulations of a 76-residue protein.

A conclusion can be drawn that at least for this particular protein the use of any of the algorithmic im-

provements described above brings about a speed-up, with only modest disruption of the native structure of the

protein. When two or more of the methods are combined, their speed-ups combine too, though not necessarily

in a linear fashion: the use of reasonable values ofrgbmax , the long-range cut-offcut , and multiple time-

stepsnrespa together (last row in Table 1) results in a 4-fold increase incomputational speed compared to the

simulation in which none of the methods have been used (first row). The algorithmic improvements discussed

above are expected to be even more efficient for larger systems. For example, our recent experience90 with the

GB-based MD simulations of the nucleosome core particle (∼ 25,000 atoms, system size∼ 120 Å ) shows

that the use ofrgbmax = 15 Å results in about three-fold increase in speed for the system, while yielding

stable trajectories. Even withrgbmax = 40 Å , the speed up was still more than two-fold. Note that the

use of the standard long-range cut-off would be problematicfor this highly charged compound. At the same
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time, it is clear that the more of the additional approximations are made, the larger are the deviations from the

native structure, and so one has to be very cautious, especially in the yet unexplored regimes. It is also worth

mentioning that, compared to the standard explicit solventsimulations, more careful multi-step equilibration

protocols may be necessary in the regime where solvent viscosity is considerably reduced or even set to zero.45

Over-all, based on admittedly very limited evidence, we conclude that the three approximations to speed-up the

GB-based simulations yield encouraging results, suggesting that these are worth exploring further. Develop-

ment of novel approximations that promise to bring computational complexity of the GB model toO(NlogN)

is underway.119

4.3 Enhancement of conformational sampling

This is one of the most significant advantage that the GB modelhas to offer, although a quantitative analysis of

the effect and its relative contribution to the corresponding “indirect” speed-up of the GB-based MD simulations

is even less straightforward than for the “direct” speed-upconsidered above. Part of the difficulty is that the

sampling enhancement depends on many details of the molecular system and the process studied, and may

also depend on the specifics of the GB model and MD algorithms used. Below we will present a few semi-

quantitative and qualitative observations based on the limited data available in literature.

One can make estimates of the degree of conformational sampling enhancement by comparing kinetics of

specific conformational transitions in the implicit and thecorresponding explicit solvent simulations. Gener-

ally, the enhancement of conformational sampling can be thought of as a combination of at least two effects:

increased sampling due to significant reduction or completeelimination of solvent viscous forces that slow

down the motion of the solute parts, and faster conformational search due to the effective smoothing of energy

landscapes. The interplay of these effects in GB-based MD simulations of small model systems have recently

been considered in detail by Hamelberget al.120 and Feig,121 for specific GB models inAMBER (GBOBC

) andCHARMM (GBMV) respectively. Relevant discussions more focused onthe GB-based protein folding

simulations can also be found in Refs. 76,80.

Hamelberget al. reported a104 increase in the rate of conformational sampling due to the combined

effect of both the landscape smoothing and reduced solvent viscosity, as assessed by comparing thecis ↔
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trans isomerization rate in a di-peptide relative to the corresponding rate in explicit water simulations. When

the solvent viscosity was increased to the levels corresponding to that of water, by appropriately increasing

the collision frequency in Langevin dynamics, the isomerization rate was still found to be about one to two

orders of magnitude higher than that in explicit water. Thus, in this specific model and molecular system, 2

to 3 orders of magnitude enhancement of sampling relative toexplicit solvent comes from the elimination of

solvent viscous forces and the remaining 2 to 1 orders of magnitude are due to the smoothing of the energy

landscape. Thus, it is reasonable to assume that the elimination/reduction of solvent viscosity alone should

result in significant effective speed-up of viscosity-controlled conformational transitions. We hypothesize that

this type of transitions is likely to involve large-scale relative motions of parts of the structure along a relatively

smooth energy landscape. This hypothesis may explain the significant folding rate enhancement observed in

the GB-based MD simulations of folding of some small proteins. For example, note that experimental folding

times for even the fastest folding proteins is of the order ofmicroseconds, whereas in some of the GB-based

protein folding simulations73 described in the previous sections the native state was reached on 10 ns time-

scale. Assuming that the folding rates in explicit solvent are the same order of magnitude as the experimental

ones, the comparison gives a very rough idea of the magnitudeof conformational search speed-ups—at least

two orders of magnitude—that one can expect in these types ofsimulations through the use of the GB model.

We emphasize that the specific numbers may only be applicableto the GB flavors (AMBER ) used in these

simulations, see below. For a relevant general discussion of the interplay of time-scales and friction forces in

protein folding, seee.g. Ref. 122; a detailed analysis of the folding rate dependenceon viscous effects for

20-residue protein is available Ref. 76.

The magnitude of the conformational search speed-up relative to the explicit solvent also depends on the

type conformational rearrangements. In a GB-based simulation of A ↔ B transition in DNA, Tsuiet al.26

reported only a∼ 20 fold increase in the transition speed. We do not know whetherthe more modest transition

rate enhancement observed in this system is indeed due to thefact that the transition involves relatively smaller

structural rearrangements and higher barriers, but it is a plausible hypothesis. A similar amount of a conforma-

tional sampling speed-up was estimated from an analysis of open/close loop transition events in the avian flu

virus protein.84 On the other hand, global bending of the DNA on length-scalescomparable to its persistence
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length appears to occur about a 100 times faster in GB-based simulations90 relative to explicit solvent.123 This

amount of conformational sampling enhancement is more consistent with viscosity-controlled dynamics.

Over-all, while there is no doubt that the use of the GB-modelto represent solvation effects in simula-

tions does bring about appreciable increase in the rate of conformational sampling in many cases, the precise

magnitude of this increase depends strongly on the specificsof the system and processes under study. The rate

increase also appears to depend of the particular implicit solvent model. For example, in contrast to the numbers

discussed above appropriate for the GB flavors inAMBER , considerably smaller acceleration of conformational

sampling— only about a factor of 4 to 5— was observed121 with a GBMV flavor available inCHARMM . More-

over, the zero solvent viscosity limit achieved in the absence of stochastic collisions with the solute (via the

use of Nosé-Hoover thermostat) actuallyslowed downconformational transitions in alanine di-peptide in that

study, relative to the explicit solvent. At least some of theslow-down in this case was attributed to the lack of

thermal “jolts” from stochastic collisions that help crosspotential barriers.

5 Limitations of the GB model.

The generalized Born model is separated from reality by several layers of approximations, Fig. 7, each of them

adding its own limitations to the method. Some of these limitations directly affect the accuracy of the GB

approximation, while others may simply restrict its areas of application. For example, no matter how accurate a

specific flavor of the GB model may be, continuous electrostatic potential can not be defined within its context:

at best one can talk about potential at atomic centers only.42 Thus, unlike the PB model, the GB approximation

proper can not be used to produce the colorful distributionsof electrostatic potential that are now widely used

in structural biology. To have this specific capability within an analytical model one has to go beyond the

GB.32, 124

More important, however, are limitations that directly affect the accuracy of the GB relative to the more

fundamental descriptions of solvation, such as the explicit solvent framework or the PB model.

The most fundamental approximation step, the “discrete→ continuum” approximation obviously elimi-

nates a number of real solvent effects that depend on the finite size of the water molecule, such as de-wetting.
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Figure 7: The hierarchy of representations of solvent effects in molecular modeling. The GB model is separated
from reality by several layers of approximation.

Likewise, the implicit solvent model cannot describe effects of tightly bound water molecules, which may be

a serious limitation when those are important for function or stability of the structure of interest. For example,

in protein-ligand complexes structured water is sometimesfound right at the binding interface. Also, it is not

clear how well the continuum approximation works inside deep binding pockets, where solvent can hardly be

considered as having properties of the bulk. Water–solventhydrogen bonds are present in the implicit solvent

model only approximately, at a mean-field level, which may under- or over- estimate their strengths in specific

cases.

The Poisson-Boltzmann approximation inherits the above generic limitations of mean-field theories and

linear response approximations, and adds its own. In particular, the neglect of correlation between counterions,

especially multi-valent ones such asMg2+, may be a serious problem in the modeling of highly charged

structures such as nucleic acids. ThePB → GB step introduces several additional approximations. Earlier

GB models, as well as models that used uncorrected pairwise schemes based on VDW atom spheres to compute

the effective radii, could be expected to perform worse on larger structures relative to small molecules, see the
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discussion in Section 2.2.2. Fortuitous cancellation of errors often masked this problem in calculations of the

total electrostatic solvation energy.38 The latest generations of the GB models have overcome some ofthese

problems. Still, from the derivation of the GB model presented in Section 2.1, it can be expected that for a

given structure the largest errors relative to the PB treatment will occur in regions whose local shapes deviate

most from spherical. The heuristic correction in the Still’s formula that partially accounts for deviations of

molecular shape from a perfect sphere is uncontrollable. Itis unrealistic to expect that its effect on the over-all

accuracy, even relative to the PB, would be exactly quantifiable a-priori for any biomolecular simulation.

An additional complication is that while there is really only one GB model, any of its practical applications

relies on a specific flavor of the model. There is now well over ten such flavors, and the number is alarmingly on

the rise, especially if one counts in the numerous parametrizations of the same basic “flavor”. There is enough

difference between most of these flavors and their detailed parametrizations74 that specific results obtained with

one flavor/parametrization can not necessarily be expectedto be reproducible with another. This is particularly

true in dynamical applications. Note that in this case it is not only the specifics of the GB flavor that affect the

outcome, but also the way the non-polar contribution is computed. The choice of underlying gas-phase force-

field is also important: one can not automatically assume that a force-field known to outperform its predecessor

within the explicit solvent framework will also show betterperformance when used with a given GB model.125

Here, by “performance” we mean agreement with the explicit solvent and/or experiment.

Even though it may not be possible to make an unambiguous choice of the best performing combination

of GB flavor and gas-phase force-field, one general trend appears to emerge. The latest GB flavors that show

better agreement with the underlying PB model are likely to perform better than older flavors that did not agree

with the PB all that well. Since the PB is also an approximation, a natural question is then how much of the

error seen in GB-based MD simulations is already present at the PB level? For example, it appears that at least

some of the GB flavors do not have the right balance between intra-solute and solvent-solute charge-charge

interactions, resulting in over-stabilization of solventexposed salt bridges.126 However, a careful follow-up

study revealed that not all of the discrepancy (with the reference explicit solvent results) came from the GB

model, with some of it being inherent to the PB. Importantly,even the use of “perfect”38 effective radii in the

GB Eq. 14 does not match the accuracy of the PB in predicting relative energies of conformational states of
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small peptide, see Ref. 127 for important details. In this particular study, the error of the PB itself, relative to

explicit solvent treatment, was found to be smaller, but notnegligible compared to the GB error. Thus, there

still appears to be room for improvement within thePB → GB approximation.

6 Conclusions and outlook

Within the implicit solvent framework, solvation effects are modeled by replacing individual solvent molecules

with a continuous medium that mimics bulk properties of the solvent. Even though the framework makes

several fundamental approximations to reality, it is an attractive alternative to the more conventional explicit

representation which track movements of discrete solvent molecules. Practical models based on the implicit

solvent framework, such as the GB model considered here, offer several significant advantages over the explicit

water representation, including lower computational costs, faster conformational search, and very effective

ways to estimate relative free energies of conformational ensembles.

The generalized Born (GB) model provides a simple analytical formula for molecular electrostatic energy

in the presence of implicit solvent. In the hierarchy of approximations that lead to model, the GB lies below

the more fundamental model based on the Poisson equation (PE) of continuum electrostatics. In fact, apart

from a heuristic correction term, the general mathematicalform of the GB corresponds to the exact PE result

for the electrostatic part of solvation free energy for a hypothetical perfectly spherical molecule surrounded

by uniform dielectric medium in the conductor limit (infinitely high dielectric). Heuristic corrections partially

account for realistic biomolecular shapes, screening effects of monovalent salt, and high, but finite dielectric of

water. Non-homogeneous dielectric environments such as biological membranes require additional corrections.

The accuracy of the GB model depends critically on the accuracy of the so-called effective Born radii that char-

acterize positions of each partial atomic charge relative to molecular surface of the structure. Many practical

algorithms for computing the effective radii have been developed, leading to the many different “flavors” of the

basic GB model available today. Expected trade-offs between accuracy and speed apply. The accuracy of the

effective radii depend largely on how realistic is the representation for the solvent/solute dielectric boundary

used by the specific algorithm: simplified representations are typically more facile computationally, but lead to
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less accurate radii.

In several applications such as molecular dynamics simulations where robustness of the algorithms and

computational efficiency are of paramount concerns, the generalized Born (GB) model has arguably become

the most widely used approximation for molecular electrostatic energy in the presence of implicit solvent.

Perhaps one of the most spectacular achievements of the model is the successful first-principles (physics-based)

simulations of the complete folding process of several small proteins at full atomic level – a fit that is probably

not yet within reach for the corresponding all-atom explicit solvent simulations. Other areas where the model’s

effectiveness is found particularly useful include exploration of large-scale motions in proteins or DNA, protein

design, modeling of the membrane environment, and replica-exchange simulations based on novel “hybrid”

explicit/implicit approaches. For some types of calculations, e.g. constantpH molecular dynamics, models

based on implicit solvation such as the GB appear to be the only ones currently available in practice. Recently,

encouraging results have also been obtained in applying theGB model for prediction ofpK shifts in proteins,

QM/MM simulations, and in the field of protein-ligand docking. While there is no doubt at the moment that

use of the implicit solvent in molecular simulations may bring considerable rewards, it is also associated with

additional uncertainty compared to the more traditional calculations based on the explicit solvent. Less is

known about the domain of applicability of the implicit solvent framework, and so extra care must be taken

when using practical models based on it, including the GB. The decision of whether or not the potential rewards

of using the GB model are likely to outweigh the risks depend on many factors. These may include type of

molecular structure, specifics of the questions one asks of the calculation, and even available computational

resources. For example, the task of exploring large conformational changes in a protein is a good candidate

for GB-based simulations, especially on a parallel machine. At the same time, if one simply needs to generate

an ensemble of near native conformations of the same proteinon a PC, then the tried-and-true explicit solvent

approach (with the electrostatics treated by PME) is probably a better choice. Once the decision of using the

GB model is made, the researcher is typically faced with manyadditional practical issues, including choice of

optimal GB flavor for the specific task at hand. As we have seen above, the flavors may differ substantially

in their accuracy and speed, including the speed of conformational sampling which may be a critical factor in

making the choice. An additional complication is that many of the GB flavors available in popular modeling
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packages deliver optimal performance only in conjunction with a specific gas-phase force-field, including the

associated atomic radii sets used in the calculation of the effective Born radii.

Despite many documented successes of the GB model, situations where it clearly needs improvement are

abundant. These help establish boundaries of applicability of the currently available GB flavors; they also

suggest directions for future improvements of the model. These improvements will likely include progress in

the following areas:

(i) Systematic quantitative exploration of performance ofthe available GB flavors. Development of com-

prehensive consensus test sets and practices.

(ii) Further parameter optimization of the most promising of the existing GB flavors against the PB and

explicit solvent. The challenge here is not to over-parametrize the GB model beyond its natural accuracy

limits. Transferability of the highly parametrized solutions will probably remain problematic.

(iii) Development and testing of novel ways to compute the effective Born radii such as the “R6” pre-

scription that yields exact effective radii in the perfect spherical case. The method is appealing from both the

accuracy and computational facility standpoints, but it remains to be seen how its practical implementations

will perform.

(iv) Development of novel approaches designed specificallyto reduce computational complexity of GB-

based molecular simulations, ideally toO(NlogN), without the loss of accuracy associated with the traditional

spherical cut-off schemes.

(v) Revision of the theoretical foundation of the GB model aimed at bringing its accuracy closer to the

more fundamental PB model, while preserving the appealing simplicity of the canonical GB. It is apparent now

that the Still’s formula has reached its accuracy limits, but developing a superior approximation that is equally

simple and robust is probably the most challenging task on the list above.
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89. Chocholousová, J. and Feig, M. Implicit solvent simulations of DNA and DNA-protein complexes:

agreement with explicit solvent vs experiment. J. Phys. Chem. B 110(34):17240–17251, Aug, 2006.

90. Ruscio, J. Z. and Onufriev, A. A computational study of nucleosomal DNA flexibility. Biophys J

91(11):4121–4132, Dec, 2006.

91. Spassov, V. Z., Yan, L., and Szalma, S. Introducing an implicit membrane in generalized Born/solvent

accessibility continuum solvent models. J. Phys. Chem. B 106:8726–8738, 2002.

92. Zheng, W., Spassov, V., Yan, L., Flook, P., and Szalma, S.A hidden Markov model with molecu-

lar mechanics energy-scoring function for transmembrane helix prediction. Computational Biology and

Chemistry 28(4):265–274, October, 2004.

93. Tanizaki, S. and Feig, M. Molecular dynamics simulations of large integral membrane proteins with an

implicit membrane model. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110(1):548–

556, January, 2006.

94. Beroza, P. and Fredkin, D. R. Calculation of Amino Acid pKas in a Protein from a Continuum Electro-

static Model: Methods and Sensitivity Analysis. J. Comp. Chem. 17:1229–1244, 1996.

95. Antosiewicz, J., McCammon, J. A., and Gilson, M. K. Prediction of pH-dependent Properties of Proteins.

J. Mol. Biol. 238:415–436, 1994.

96. Nielson, J. E. and Vriend, G. Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-

basedpKa calculations. Proteins 43:403–412, 2001.

97. Georgescu, R., Alexov, E., and Gunner, M. Combining conformational flexibility and continuum electro-

statics for calculating pKas in proteins. Biophysical Journal 83:1731–1748, 2002.

98. Spassov, V. and Yan, L. A fast and accurate computationalapproach to protein ionization. Prot. Sci.

17:1955–1970, 2008.

99. Khandogin, J. and Brooks, C. L. Toward the accurate first-principles prediction of ionization equilibria

in proteins. Biochemistry 45(31):9363–9373, August, 2006.

49



100. Ripoll, D. R., Vorobjev, Y. N., Liwo, A., Vila, J. A., andScheraga, H. A. Coupling Between Folding and

Ionization Equilibria: Effects of pH on the ConformationalPreferences of Polypeptides. J. Mol. Biol.

264:770–783, 1996.

101. Lee, M. S., Salsbury, F. R., and Brooks, C. L. Constant-pH molecular dynamics using continuous titration

coordinates. Proteins 56(4):738–752, Sep, 2004.

102. Khandogin, J. and Brooks, C. L. Linking folding with aggregation in alzheimer’s beta-amyloid peptides.

Proceedings of the National Academy of Sciences 104(43):16880–16885, October, 2007.

103. Mongan, J., Case, D. A., and McCammon, J. A. Constant pH molecular dynamics in generalized Born

implicit solvent. J Comput Chem 25(16):2038–2048, Dec, 2004.

104. Swails, J. M., Meng, Y., Walker, A. F., Marti, M. A., Estrin, D. A., and Roitberg, A. E. ph-dependent

mechanism of nitric oxide release in nitrophorins 2 and 4. The Journal of Physical Chemistry B

113(4):1192–1201, January, 2009.

105. Gohlke, H. and Case, D. A. Converging free energy estimates: MM-PB(GB)SA studies on the protein-

protein complex ras-raf. J Comput Chem 25(2):238–250, January, 2004.

106. Liu, H. Y. and Zou, X. Electrostatics of ligand binding:Parametrization of the generalized Born model

and comparison with the Poisson-Boltzmann approach. J. Phys. Chem. B 110(18):9304–9313, May,

2006.

107. Wittayanarakul, K., Hannongbua, S., and Feig, M. Accurate prediction of protonation state as a prereq-

uisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors. Journal

of Computational Chemistry 29(5):673–685, 2008.

108. Zou, X., Yaxiong, S., and Kuntz, I. D. Inclusion of solvation in ligand binding free energy calculations

using the generalized-born model. J. Am. Chem. Soc. 121(35):8033–8043, September, 1999.

109. Ewing, T. J. A., Makino, S., Skillman, A. G., and Kuntz, I. D. Dock 4.0: Search strategies for automated

molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design 15:411–

428, May, 2001.

50



110. Lee, M. S., Salsbury, F. R., and Olson, M. A. An efficient hybrid explicit/implicit solvent method for

biomolecular simulations. J Comput Chem 25(16):1967–1978, Dec, 2004.

111. Okur, A., Wickstrom, L., Layten, M., Geney, R., Song, K., Hornak, V., and Simmerling, C. Improved

efficiency of replica exchange simulations through use of a hybrid explicit/implicit solvation model. J.

Chem. Theory Comput 2(2):420–433, 2006.

112. Okur, A. and Simmerling, C. Hybrid explicit/implicit solvation methods. InAnnual Reports in Compu-

tational Chemistry, volume 2, 97–109. Elsiver, 2006.

113. Pellegrini, E. and Field, M. J. A generalized-born solvation model for macromolecular hybrid-potential

calculations. J. Phys. Chem. A 106(7):1316–1326, February, 2002.

114. Walker, R. C., Crowley, M. F., and Case, D. A. The implementation of a fast and accurate qm/mm

potential method in amber. Journal of Computational Chemistry 29(7):1019–1031, 2007.

115. Bashford, D. An object-oriented programming suite forelectrostatic effects in biological molecules. In

Scientific Computing in Object-Oriented Parallel Environments, Ishikawa, Y., Oldehoeft, R. R., Reyn-

ders, J. V. W., and Tholburn, M., editors, volume 1343 ofLecture Notes in Computer Science, 233–240

(ISCOPE97Springer, Berlin, 1997).

116. Friedrichs, M. S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A. L., Ensign, D. L.,

Bruns, C. M., and Pande, V. S. Accelerating molecular dynamic simulation on graphics processing units.

Journal of Computational Chemistry 30(6):864–872, 2009.

117. Loncharich, R. J. and Brooks, B. R. The effects of truncating long-range forces on protein dynamics.

Proteins 6:32–45, 1989.

118. Svrcek-Seiler, A. and Onufriev, A. Fast computation ofeffective Born radii for use in molecular dynamics

simulations. in preparation.

119. Anandakrishnan, R. and Onufriev, A. V. An N log N approximation based on the natural organization of

biomolecules for speeding up the computation of long range interactions. J. Comp. Chem. 31(4):691–706,

2010.

51



120. Hamelberg, D., Shen, T., and McCammon, J. A. Insight into the role of hydration on protein dynamics.

The Journal of chemical physics 125(9), September, 2006.

121. Feig, M. Kinetics from implicit solvent simulations ofbiomolecules as a function of viscosity. J. Chem.

Theory Comput. 3(5):1734–1748, September, 2007.

122. Hagen, S. J., Qiu, L., and Pabit, S. A. Diffusional limits to the speed of protein folding: fact or friction?

Journal of Physics: Condensed Matter 17(18):S1503–S1514,2005.

123. Lankas, F., Lavery, R., and Maddocks, J. H. Kinking occurs during molecular dynamics simulations of

small dna minicircles. Structure 14(10):1527–1534, Oct, 2006.

124. Gordon, J. C., Fenley, A. T., and Onufriev, A. An analytical approach to computing biomolecular elec-

trostatic potential. ii. validation and applications. TheJournal of Chemical Physics 129(7):075102, 2008.

125. Shell, S. M., Ritterson, R., and Dill, K. A. A test on peptide stability of amber force fields with implicit

solvation. J. Phys. Chem. B 112:6878–6886, May, 2008.

126. Zhou, R. and Berne, B. J. Can a continuum solvent model reproduce the free energy landscape of a beta

-hairpin folding in water? Proc Natl Acad Sci U S A 99(20):12777–12782, Oct, 2002.

127. Roe, D. R., Okur, A., Wickstrom, L., Hornak, V., and Simmerling, C. Secondary structure bias in gener-

alized born solvent models: Comparison of conformational ensembles and free energy of solvent polar-

ization from explicit and implicit solvation. J. Phys. Chem. B 111(7):1846–1857, February, 2007.

52


	Introduction. The implicit solvent framework. 
	Key approximations of the implicit solvent framework
	The Poisson-Boltzmann model

	The generalized Born model
	Theoretical foundation of the GB model 
	Computing the effective Born radii
	The integral approaches
	Representations of the dielectric boundary

	Accounting for salt effects
	The non-polar contribution
	GB for non-aqueous solvents

	Applications of the GB model
	 Protein Folding and Design 
	 ``Large-scale" motions in macromolecules. 
	 Peptides and proteins in the membrane environment. 
	pK prediction and constant pH simulations.
	Other uses

	Some practical considerations.
	The accuracy/speed trade-offs
	Computational time relative to explicit solvent 
	Enhancement of conformational sampling

	Limitations of the GB model.
	Conclusions and outlook
	Acknowledgments
	Bibliography

