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Abstract

The generalized Born (GB) approximation is introduced m ¢lontext of the implicit solvent framework.
The physical foundations of the model and its derivationmfrihe underlying Poisson-Boltzmann model are
presented in detail. Examples of various flavors of the b@8cmodel are discussed, followed by examples
of recent applications of the approximation in moleculardelong and simulations. Several practical issues
such as the accuracy/speed trade-offs, and specific cotigmaiaadvantages of GB-based molecular simula-
tions relative to those based on the explicit solvent modeleaplored. Limitations of the model and future
methodological directions and challenges are discussed.
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1 Introduction. The implicit solvent framework.

An accurate description of the solvent environment is dgdefor realistic biomolecular modeling. Within
the explicit solventframework movements of individual water molecules are ey calculated. While ar-
guably the most realistic of the current theoretical apphes, this methodology suffers from considerable
computational costs, which often becomes prohibitivegesly for molecular systems undergoing significant
structural transitions, such as those involved in the fajddf proteins. Other problems with the approach in-
clude the difficulty, and often inability to calculate rélat free energies of molecular conformations; problems
arise due to the need to account for the very large numbenweésiodegrees of freedom.

An alternative that is becoming more and more popular —itigicit solvent framework’ — is based
on replacing the real water environment consisting of @tsmolecules by an infinite continuum with the
dielectric and “hydrophobic” properties of water. The imgfilsolvent framework has several advantages over
explicit water representations, especially in molecularainics simulations. These include the following.

i) Lower direct computational (CPU) costs for many molecghigstems.

i) Enhanced sampling of conformational space: in conti@siplicit solvent models, solvent viscosity that
often slows down conformational transitions can be dralljiceduced or even turned off completely within
implicit representations.

i) Effective ways to estimate free energies; since sahaggrees of freedom are taken into account im-
plicitly, estimating free energies of solvated structuisesmuch more straightforward than with explicit water
models.

iv) Instantaneous dielectric response from the solventiviliminates the need for lengthy equilibration of
water that is typically necessary in explicit water simigdas. This feature of implicit solvent models becomes
key when the charge state of the system changes many timeg thee course of a simulation, as, for example,
in constantpH simulations.

v) Implicit averaging over solvent degrees of freedom dliatés the “noise” — an astronomical number of
local minima arising from small variations in solvent strwre. Energy landscapes of molecular structures are
no longer dominated by the noise and start to make sense.

Availability of all of these advantages depends criticalfythe availability of practical computational mod-



els based on the implicit solvent framework. One such mdulhas become particularly popular recently is
the generalized Born approximation, or simply th@B”. The model provides a relatively simple, computa-
tionally robust and effective way to estimate the long-etgctrostatic interactions in biomolecular structures
— currently the bottle neck for calculations of energy anddcestimates in classical all-atom simulatiéns.

The main goal of this article is to introduce the GB model amgresent an overview of its current use in
molecular modeling. Special emphasis will be given to treedgsion of approximations that the model rests
upon. The chapter is organized as follows: after a briebuhtiction into the key approximation of the general
implicit solvent framework, | will review the Poisson-Bethann model of continuum electrostatics as the
foundation of the GB approximation. A derivation of the GBapximation will then be presented, followed
by a discussion of the various “flavors” of the model. | wilethgive examples of some recent uses of the
model in molecular modeling. Several issues pertainingactical aspects of the model will be touched upon
in relative detail, including relative computational sgag and enhancement of conformational sampling that
can be achieved via the use of the GB approximation. Linoitatiof the model will also be discussed, followed

by concluding remarks and outlook.

1.1 Key approximations of the implicit solvent framework

In many molecular modeling applications, one needs to coenpie total energy of the molecule in the presence
of solvent. This energy is a function of molecular configimat and its gradients with respect to atomic
positions determine the forces on the atoms. The total gnafr@ solvated molecule can be conveniently
written asFEy,; = Fyae + AGgoly, WhereE,,. represents molecule’s potential energy in vacuum (gase)ha
and AG,., is defined as the free energy of transferring the molecule fracuum into solvent,e. solvation
free energy. The above decomposition is already an appaiidmmade by most classical (non-polarizable)
force-fields, as it assumes this specific separability ofHaeniltonian. In practice, once the choice of the
gas-phase potential function, or force-field,. is made, its computation is relatively straightforwdrd.he

difficulty comes from the need to estimate the effects ofeaiyencapsulated by theG,;, term in the above



equation. At present, one often makes the following simld approximation to estimatA G,y

AC;solv = AC;el + ACynonpolar» (l)

where AGonpolar 1S the free energy of solvating the molecule from which alhgjes have been removed
(i.e. partial charges of every atom are set to zero), Aig},; is the free energy of first removing all charges
in the vacuum, and then adding them back in the presence aftamaom solvent environment. That EQl 1
holds only approximately can be seen from the fact that tiselabe values of solvation energies of ions of the
same size and opposite charge (and the same magnitude)tademiical® It should be noted that E@ 1 is
not an absolutely necessary assumption within the gernegidit solvent framework! 2 put is the one that
most current practical models make. Within this approxiorgtone needs practical methods of computing
both AG¢ and AGponpolar- COmputing the non-polar term has not so far been the cortipuié bottleneck

of molecular modeling, perhaps in part due to the simplistiture of the approximations used to compute it.
We will briefly touch upon some of these issues below. Our rfagaos will be AG,, that is presently the most
time-consuming part. Accuracy &G, estimates is of paramount concern since the underlying-tange
interactions are critical to function and stability of madkasses of biological and chemical structures. To
understand the physical basisasfalytical approximations ta\G,, such as the GB model, one needs to start
with the more fundamental underlying approximation — thésg&m-Boltzmann (PB) model. Below is a brief

introduction to the PB theory, geared towards our preseat gioderiving the GB approximation from it.

1.2 The Poisson-Boltzmann model

If one accepts the continuum, linear response dielectficagimation for the solvent, then, in the absence of
mobile ions, the Poisson equation (PE) of classical elsttizs provides an exact formalism for computing

the electrostatic potential(r) produced by an arbitrary charge distributipfr).

Vie(r)Ve(r)] = —4mp(r). ()



Here, ¢(r) represents the position-dependent dielectric constamthmquals that of bulk solvent far away
from the molecule, and is expected to decrease fairly rg@idioss the solute/solvent boundary. For now, we
only considerp(r) produced by a set of “fixed” atomic charggsat positionsr; inside the dielectric boundary,
pr(r) = >, ¢:6(r —r;). Acommon simplification is to assume an abrupt dielectrigrintary, that is(r) takes
only two values:e;, inside the dielectric boundary angd,; outside — the so called “two-dielectric” model.
However, even with this assumption, analytical solutiohthe PE for arbitraryp(r) are available only for a
handful of highly symmetric geometries, such as the sphierat the same time the PE can be solved by a
variety of standard numerical methods for essentially @ajistic dielectric boundary and arbitrasyr). The
situation becomes more complicated if one is to consideetieet of mobile ions (salt). Not only will the total
charge density on the right-hand side of Elq. 2 depend on ttemfal, but it will contain non-trivial correlations
between ions of finite size which are difficult (though not mapible) to take into account computationaily.
These correlations may be particularly strong for mulfiewdions. Neglecting all such correlations via a mean-
field treatment leads to the Poisson-Boltzmann (PB) equafdamely, using the Boltzmann distribution for

the density of mobile ions inside the potential field:), we can represent the total charge density as

p(r) = ps(r) + |e] anzjexp(—(b(r)\e]zj/kT), (3)
j

wheren; andz; are the bulk density and charge of each ion spegiesd|e| is the elementary charge. Sub-
stituting p(r) from Eq.[3 into the right-hand side of the Poisson yields tilerfon-linear Poisson-Boltzmann
equation, or NLPB. The non-linear nature of the NLPB leadseweeral unusual properties ofr) derived
from it, including the fact that unlike solutions of the PRetNLPB potential is non-additive: potential due to
a collection of charges is not, in general, the sum of indigichotentials due to each charge. This property can
make some practical calculations, in particular thoselimain pK estimates? rather cumbersome. Several
more subtle consistency problems exist: a discussion setiesues, including a derivation of the correspond-
ing expression for the electrostatic free energy can bedaonrRef. 16. Analytical solutions of the NLPB are
not available for arbitrary ¢(r), even for a sphere. However, a variety of numerical algorilior solving the
NLPB equation exist, many of them implemented in softwarekpges designed specifically for biomolecular

modeling, for exampleéAPBS!” or DELPHI .218:19|n this very brief discussion we omit the details of these
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numerical procedures along with all of the related tecHriksues that are discussed in detail elsewhere, see
e.g. Ref. 20 or Ref. 21 which also contains a comprehensive ligh@fpopular software packages that solve
the NLPB equation and its more commonly used linearizedmelig a variety of contexts.

The complexity of the NLPB equation can be drastically retljcand the familiar properties of the PE
restored if the exponential in El 3 is linearized. The cspmnding linear Poisson-Boltzmann equation, or

simply the P B equation, is commonly used in biomolecular simulatiéhs:

V() V()] = —dmps(r) + K2e(r) (). (4)

Here the electrostatic screening effects of (monovalesit)enter via the second term on the right-hand side
of Eq[4, where the Debye-Huckel screening parameter 0.1[;4_1] at physiological conditions. Once the
potentialy(r) is computed, the electrostatic part of the solvation fregnis given by the familiar expression

of classical electrostatic:

AGa= 5 3 alolr) — 9{rluacl ©

whereg(r;)|vqc IS the electrostatic potential computed for the same chdigggbution in the absence of the

dielectric boundarye.g.in vacuum. Note that this simple formula is only valid for fheearized PB equation.

2 The generalized Born model

The need for computationally facile approximations 0%, requires further trade-offs between accuracy and
speed, especially in dynamical applications where speddabgorithmic simplicity is paramount. One such
approximation is the generalized Born (GB) model. The diwdy GB method is an approximate, relative to
the PB model, way to calculate the electrostatic part of theasion free energyAG.. The methodology has
become particularly popular in molecular dynamics (MD)laggtions?3-2°and lately in many other areas that

will be discussed below.



2.1 Theoretical foundation of the GB model

We will begin by re-casting the Poisson equafidn 2 in an edeivt form for the Green functio?f

Vie(r)VG(r;,rj)] = —4nd(r; —rj), (6)
Within the two-dielectric model, the solution inside theldictric boundary is

1

Ein|ri — I'j|

G(I'Z',I'j) = —|—F(I'Z',I'j), (7)

The first term in the Green function has the familiar form of tBoulomb potential due to a single charge
source, while the second term satisfies the Laplace equeti@(r;,r;) = 0. Here,F(r;,r;) corresponds to
the reaction field due to polarization charges induced avthdary;F(r;,r;) # 0 only in the presence of the

boundary. Comparingx(r;,r;) with Eq.[3 we see that

1
AGa = 5 > F(ri,r))qiq (8)
ij

Of course, computind'(r;, r;) for an arbitrary charge distribution inside an arbitrarylewwlar boundary is
as hard as solving the original Poisson equation, and cgrberdlone numerically as mentioned in the previous
section. To make progress towards our goal—finding a simghbsed form formula foAG,— we need to
make further approximations. We will pursue the followirigagegy: use a known analytical solution of the PE
for some very simple dielectric boundary to get a speifialytical form of F(r;, r;). Since for biomolecular
modeling we need to consider arbitrary distribution of @dutharges inside the dielectric boundary, our choice
is essentially limited to just one shape: the sphere, foctvlain exact solution of the PE exisfsWe follow

Ref3! and separate the self-contributidf(r;, r;), from the interaction partf (r;, r;):

1 1 1 th
F(ri, )P0 = - (_ B ) A > )
€in €out 1=0 1 =+ H_—lﬂ
sphere __ 1 1 1 & téjPZ(COS 9)
F(r, ) = —(——— )2} = —F (10)
€in €out / A =0 1+ H_—lﬂ



wheret;; = rirj/AQ, r; = |r;| is the atom’s position relative to the center of the sphdris the molecule’s

radius,f is the angle betweery andr;, and = €, /eout (S€€ FiglR).

Figure 1:

Figure 2: lllustration for Eqd.J9.-10: a sphere of dielectricand radiusA with two chargesg; andg; at positions
r; andr; relative to the sphere’s center. The sphere is surroundéafipjte medium of uniform dielectrie,,.

The expression foF(r;,r;), Eq. D, is extremely valuable because ieigct However, its use in prac-
tical computational problems is limited because the cpwading infinite series converges slowly whgn
approaches on&. The latter is the typical case for biomolecules where ldrgharges are likely to be found
near molecular surface. However, under certain assungptiom series in E._10 can be summed to produce
simple, finite expressions: 33 Here is an outline of the derivation. Consider the typicalecaf aqueous solva-
tion e,y > €, > 1. After making the approximation,,; — oo, which in this case is equivalent tH= 0, the
dependence ahin the denominators of the fractions in Egl 10 disappears$wancan use the well-known iden-
tity for the sum of Legendre polynomidfsalong with the geometrical identitys 6 = (r7 + 77 —7;) /2r;r; (

sphere.

ri; is the distance between the charges ) to obtairFfary, r;)

St
EinA—’I“iQ/A

1 1
F(r;, 1"j)5phCro = - (12)

€in r2 r2
G0

F(I’Z‘, I,i)sphere — (11)




The above equations along with EQL 8 solve the problem ofrfipdi simple, analytical formula foAG,,
albeit in thee,,,; — oo limit. However, it is not yet clear what parameters suchiasind especially “distance
to center’r;, Fig. [, mean in the case of realistic molecular shapes.uRately, the specific form of Egs.
1 andIPR provides a solution that is one of the cornerstofelseoGB theory. Note that both the cross-
term F(r;, r;)P""° and the self-tern (r;, r;)**"® of the Green function depend only ¢ — r2/A) — the
qguantity we will callthe effective Born radiu®; of atom:. Thus, if we are somehow able to compute the self-
term F(r;, r;), or equivalentlyAGS, for every atom in the molecule, then we can invert Eq 11 toutate
(A—r?/A)(A—r3/A) = R;iRj, insert these into EqC12, and hence obtain the cross-tlfnsr;) as a
function of R;, R;, andr;;. For realistic biomolecular shapes the specific fornF'¢f;, r;) currently used by

the generalized Born is slightly more complicated ti&m;, rj)sphorc of Eq.[12:

1/1 1 q?
R = —-(—_— ( 13
‘ 2 (Ein 6out) AG?} (13)
1 1/71 1 qiq;
AGel = 5 ZF(I‘Z,PJ)qqu ~ —5 (E— — c t) Z 1] - (14)
.. 1m ou L re.
4 & \/rlzj + R;R; exp (—’yRﬁ%j)

The above form oF (r;, r;) with v = 1/4 is due to Stillet al34 and is the most common form &f(r;, r;)
used in practice today, although alternatives such asl/2 ory = 1/10 have also been explored. The Still's
formulae, which we will refer to as the GB model or “canonic@aB, differ from the exact sphere-based Egs.

[I7 in two respects: the use of# (1, and slightly different dependence on the dielectrics ki@ pre-factor

€in €out

(i - ) Unless the charge is positioned exactly in the sphereecéme specific dependence of EGl 14 on
€in, €out IS APProximate even for a perfect sphere: the correspongtiray increases with decreasiag,;.33°
Ways to improve the approximation are considered in $ed. Pdbbetter understand the effect of non-zero
~, note that settinggy — 0 in the Still's formula recovers the sphere limit of EG.] 12ethse ofy # 0 leads
to more accurate estimates A, for non-spherical geometries of realistic molecules. Tikkely due to
the fact that, for a non-spherical molecule, many pairs @frgbs exist for which more of the electric field

lines between the charges go through the high dielectriomegffectively reducing the pairwise interaction

*As aresultF (r;, r;) from Eq.[13 does not satisfy the Laplace equation.
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compared to the purely spherical, everywhere convex mtdetwwundary. The Still's form oF (r;, r;) takes
this effect into account, at least to some extent, by allgWor steeper decay of the charge-charge interaction
with the distance. To perform practical computations basedq. (I3 one needs the effective Born rafji
for every atom. The effective radius represents the atomggeak of burial within the low dielectric solute. By
definition, the effective radius can be obtained by computii©¢! for each atom, and then inverting E .
In fact, Eq.[IB is simply the inverse of the the famous Bormfala for the solvation energy of a single ion.
The idea of “generalization” of the Born formula to accoumt$olvation energy of small molecules dates back
at least 50 year® although the term “generalized Born” did not seem to appeditérature until about 25
years agG./ Assuming that effective Born radii can be computed effi¢jefar every atom in the molecule,
computational advantages of Hql 14 relative to numericatrB&ment become apparent: knowledge of only
N self-energy term\G¢!, or equivalently, values oR; for each of NV atoms in the molecule gives, via the
GB Eq.[13, a quickanalytical estimate of the remaining %N2 charge-charge interaction contributions to
the total electrostatic solvation energy. Not less impuria the fact that the GB formula is very simple, its
analytical derivatives with respect to atomic positionsvide the forces needed in dynamical applications.
Two immediate questions arise: (i) how can the effectivéi tael computedaccuratelyand efficiently to fully
utilize these advantages? and (ii) even if fg are computed very accurately, will the GB formula, EQ. 14,
yield reasonably accurate estimates of the electrostati@tion energies forealistic molecular shap&s A
positive answer to the second question came from an anaif/fie GB accuracy in the case whek&r! and
henceR;s are computed by solving the Poisson equation directly ighly accurate numerical techniques.
The resulting sets oR;s—the so-called “perfect radii"—were shown to yield estigsaof individual pairwise
solvation cross-term energiéSngl- = ¢;q;F(r;, r;) in a reasonable agreement with numerical results based on
solving the PE directly® Fig.d.

The PE-based perfect effective radii are very helpful indhalysis and further development of the GB
model as they probe the limits of Hq.]14 and provide a natafakence point for approximated effective radii.

The perfect radii may also be useful in some practical cdeesxample in MD simulations of proteins in their

native states, if one assumes that the effective radii carelseconstant through the simulatiéHowever, in

*In case of homogeneous solvent of constant dielectric, dhrect procedure is to compute the radii in thg, — oo limit, which
eliminates the error due to approximate nature of([lje — ﬁ) prefactor, see Ref. 31 for details.
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Figure 3:

Figure 4. Comparison of individual cross terms between #réggt-radii GB model; terms of Eq[I¥) to the
corresponding cross terms computed directly from PE egndtir the native state of myoglobin. The lime= y
represents a perfect match between the GB and PE theories.

most cases the overhead costs of performing a full PE caionlavery time the radii need to be computed are
prohibitive. Thus, the development of approximate metHod&stimation ofR; becomes critical for the GB
field. In fact, since all of the current GB models use the saasichequatiofi 14, the differences between the
many GB “flavors” currently available mostly reflect the diénces between the particular procedures used to

compute the effective Born radii. In what follows we will ratluce the basic ideas behind these procedures.

2.2 Computing the effective Born radii

In practice, the effective radius for each atowan be calculated by approximately evaluating the eletzttios
part of solvation free energdG¢! in Eq. [I3 via an appropriate volume integf&t*® see below. Equivalent
formulations based on surface integrals also €&$t. Two main challenges have to be overcome on the way to
developing accurate and facile methods for computing tfeetfe radii: (i) finding a computationally simple,
physically justified integral representation f&G¢!, and (i) developing numerical routines to perform the
integration over specific volume/surface corresponding fahysically realistic dielectric boundary between

the solute and the solvent.
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2.2.1 The integral approaches

The goal is to find an approximation for computing the effextBorn radius for a given atominside a
molecule. Classical electrostatics provides an approacbdlculating the work done to create a given charge

distribution within the molecule:

o2
_ 8% /R 3 %di’w (15)
where D(7) is the dielectric displacement vector, ar(@) is the position-dependent dielectric constant. Now
let's zero out all of the charges inside the molecule excepttie one on the atom in question. Consider a
process in which this molecule is transferred from a medidiemiform dielectric constant;,, equal to that of
the solute into the uniform solvent mediuy,;. The process creates the dielectric boundary which caéssid
with the molecular bondary. Then, the electrostatic pathefsolvation free energi G, of the charge, that is

the work of transferring this one chargérom a medium of uniform dielectric constant, equal to that of the

solute, into the two-dielectric solute/solvent medium is:

1 - 2 1 - 2
AGE / D) dr / Dy &
v 8Te€out Jsolvent [ (T)] T 8Te€in Jsolute [ (T)] "
o1 (D0 () b — — 1D0(7) d¥F (16)
8Tein Jsolvent ! 87ein Jsolute ‘

whereﬁi(F) is the total dielectric displacement due to chaigg,,; in the dielectric of the solute, and

—

DY( v, 17)

3

)

Il
ﬁw|§

is the Coulomb field created by point chargean the uniform dielectric environment. The above equat®n i
an exact result that would lead to perfect effective radibjf7) were known. Since for an arbitrary molecular
shape it is unknown, one makes approximation@;(f) to make progress. The Coulomb field approximation
— CFA - is historically the first approximation of that naturtt makes what appears to be a fairly drastic
assumption,

—

Di(F) = DY(7) = L7 (18)

Il
ﬁw|>§_
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that is the electric field generated by the atomic point ch&ag@ssumed unaffected by the dielectric boundary.
With this assumption, the integrals over the solute voluméd.[T6 cancel, while the solvent volume integrals

combine, to yield just one integral over the region extetiothe molecule:

1 1 1 - 2
AGY = — _ /DQ 1 B
at = (o) (Db
1 1\ g 1 5.
= (EOUt —a)g—ﬂ/ﬁd T (19)

ext

Comparing the above with the definition of effective radin€i.[I3, we arrive at the following expression

for the inverse effective radius in the CFA approximation:

ay =R = % / ﬁdv = p - % / le|~*av (20)
ext r>p;
where in the first expression the integral is taken over tg@reoutside of the molecule. The second formula in
the equation above is often used for computational conmest® the origin is moved to the atom of interest,
and the integration region is the interior of the molecul¢swle of the atom’s VDW radiug;. Effective ways
to compute the integral will be discussed below.

The CFA is exact for a point charge at the center of a perfagtherical solute, but it overestimates effective
radii for realistic molecular geometrigsas well as for spherical regions when the charge is off céAteiow-
ever, many practical routines available today still useG@Ré, with a few notable exceptions discussed below.
A fortuitous cancellation of errof§ enhanced by elaborate parametrizations, plus compugtisficiency of
the approximation have contributed to its success so fak. t6e limitations of the CFA were known for quite
some time, and a search for better approximation®B;teontinued. In particular, a class of models exists that
approximates the effective radii via integral expressisinglar to Eq.[20, but with the integrand different from

the CFA'sr—4, namely

1

1
(N—3) N-_3
1 dVv 1 av
= —(N - 2 =N - (N - /7 21
ax <4ﬂ< 3)/,r_ri,N> (pz (N -3) ‘r_ri,N) . (@D

ext T>p;
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whereN > 3, and the additional prefactor and exponentiation are rebtmpreserve the dimension afy
to be inverse length. Empirical corrections to the CFA based simple linear or a rational combinationaf
expressions have lead to significant improvements in acgwithe GB modef3 44 Several GB flavors termed
“GBMV” based on these approximations have been implememt&HARMM, such expression involving,
and a5,*® and later an even more accurate expression—‘GBMV2” — based oand o; respectively’*
R'=(1- @)oq + @oq. While all N # 4 expressions in EC_21 may appear purely heuristic, at least
one of them has a rigorous foundatiaN: = 6 yields theexacteffective radius for any charge inside a perfect
spherical boundar$? not just at its center as is the case with the CFA. More prigitee ag expression is exact
in the ey — oo limit, that is AGZ?} = —%qeﬂ Numerical tests show, see Ref. 49 for important detaild, tha
if accurately computed “R6” radii are used in the GB equdiidrthe resulting electrostatic solvation energies
can, on average, be as accurate (relative to the PE ref@raadbe ones obtained with the use of the perfect

radii. An important conclusion made in Ref. 49 was that tHlefang expression based on just one integral

1 1
3 dV ’ 3 ’
—R1== _|,-3 -6
ag = R; (477 = ri|6) (pl gy / |r| dV) (22)

ext r>p;
represents a sufficient solution to the problem of calcatpeffective radii: further attempts to increase
their agreement with PB results would unlikely succeed iprioming the accuracy of the GB model itself
in its canonical version due to Still, E414. The above clawakes even more sense if we recall that the
“canonical’ GB Eq[IK has the same underlying physical hasitheR6 approximation for the effective radii:
the Kirkwood spherical model. Although the R6 radii can stmes deviate significantly from the perfect radii,
the deviations occur for those geometries where the spbased canonical GB, ER14, is itself not expected
to work. It remains to be seen whether the potential advastad Eq.[ZR will translate into practical gains
once its implementations, which are beginning to appedt haive been extensively tested by the modeling
community. Note that in practical GB models, the accuradhefR6 prescription may be significantly reduced
by approximations made by fast routines employed to comfhéentegral in Eq.L.22 or its equivalents. In
general, computing the N integrals over a physically realistic representation ofenolar interior (or surface

) is a challenge in its own right that we will discuss next.
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2.2.2 Representations of the dielectric boundary

Exactly what geometrical object most closely approximalessolute/solvent dielectric boundary is still an
unsettled question. Traditionally, PE or PB calculationgpkyed the molecular (Connolly) surface for this
purposet® although a boundary with a “smooth” transition between the dielectrics is coming into use as
well.”%0 The question is even more critical for the development ofaBemodel than for numerical PB solvers:
not only will the precise position of the boundary determihe numerical values of the integrals in EQsl 20,
21 oi22, and thus the accuracy of the effective Born radiittet mathematical form of the boundary will also
determine how hard it is to find analytical approximationsh®e integrals.

The two limiting case representations of the dielectricrimary commonly used for the purpose of comput-
ing the effective radii are shown in Figl 5. On the low end & tomplexity spectrum, one has the simple and
efficient model in which the solute is represented by atomheses of the appropriate (VDW) radii for each
atom type; the dielectric boundary is taken to coincide whihsurface of the spheres. In the other limiting case
the dielectric boundary is taken to be coincident with thdetwlar surface, and thus the integration volume
is the intricate molecular volume (MV). Comparisons witlpksit solvent calculations show that the latter is
a closer approximation to physical reafityffor macromolecules, but the higher degree of realism corhes a
high price: the complexity of molecular volume makes it vaerd to approximate the corresponding volume
integrals analytically. Practical routines for computithg effective radii often make additional modifications
to the two basic volume definitions; for example the sharpediec boundaries in both representations can
be “smoothed out’e.g. via the use of atom-centered Gaussian functions. ExistiBdl&ors can be further
classified by the specific dielectric boundary represematithat the flavor is based upon. For example, the
integral in Eq.L2D can be computed numerically without farthpproximations over any reasonable volume
representation, including the exact MVThe GB flavors based on such numerical quadrafuf&é* 464852
are in some sense similar to the “perfect” radii flavor introed before — they play a significant role in the
development of the theory, but their applicability domasrlimited, particularly in dynamics where the GB
model can be expected to offer most advantages over the Bifnteat and explicit solvent.

On the other end of the “volume approximation spectrum” aBsflavors that use the VDW-based dielectric

boundary to compute integrals such as Egs. Z0Dbr 21 in aneftimianner. One such flavor, GBS¥vailable
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Vdw Molecular

Figure 5: The two limiting cases of computational approxiors for the solute—solvent dielectric boundary.
In the simpler vdW-based approach (left), the boundary @des with the surface of atomic spheres, and the
interstitial space is treated as high dielectric solvertie Bther approximation utilizes molecular surface (MV)
for the boundary: all space inside the surface is consideredlielectric solute.

in CHARMM, uses a smooth dielectric boundary based on the VDW volurfieititan, with the integrand being
a rational combination ofiy anda;. Recently, VDW-based approximations for tRé GB (based onvg, EQ.
[27) also appearetf: >* Another example of the VDW-based approach is one of the &irst,still widely used,
GB flavor— the HC'T modef® 4%— that employs the sharp VDW-based dielectric boundary topue the
CFA integral in Eq[2D in an efficient manner. Namely, the gnéd for each atoni is represented as a pairwise

sum of integrals over spherical volumes of individual atgms i:

1
=R =t — — Z / |~ *d3r (23)

The key advantage of the above approximation is that simpdéytical expressions are available for it, as
well as for the more general case of [ |r|‘Nd3r for any IV, thus providing analytical expressions fox
in Eq.[Z1. Variants of the HCT ar‘g]a_\;a‘\;gble in many modeliagkages includindWBER®® and T| NKER .56
One relatively minor problem with the VDW-based pair-wiggpeoximation such as EqCR3 is that it
neglects possible overlaps between neighboring atom&leutfthe atom of interest. In practice, the resulting
over-counting of volume can be partially compensated byirggéhe intrinsic radiip; by a set of empirically

adjusted scaling factoys; — p; * f; where f; < 1 typically depend on atom type.

A more serious problem with Eq_PR3 based directly on the VDMiniteon of solvent volume, Fig[5, is
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the neglect of interstitial spaces between the atomic sishierthe interior of the molecule. In other words,
these crevices are treated as if they belonged to the satpewae, that is filled with high dielectric. As a re-
sult, the effective radii are underestimated. For molexwih little interior the error is small, which probably
explains why the original HCT model worked so well for smalblecules. Also, the use of CFA leads to a
certain cancellation of errors in this case since the CFAltetio overestimate the effective radii. However,
for biopolymers, such as proteins or DNA, the neglect ofristiBal space leads to appreciable underestima-
tion of the effective radii, compared to the “perfect” radased on numerical PE estimates that use molecular
surface for the dielectric boundat¥. Efforts to correct this deficiency while preserving the aitionic sim-
plicity and computational efficiency of the pairwise approation have led to a series of GB flavors. In one
of them, GBYBC (available, for example, idVBER , NAB and TI NKER packages), an empirical correction
is introduced® that modifies the pairwise integration method, Eql 23, taicedthe effect of interstitial high
dielectrics. The procedure is designed to leave the smdill abmost unaffected while larger radii are scaled
up, with the scaling factor depending on the magnitude ofdlais. The parameters of the re-scaling function
were determined based on a training set that included dgwetains, both in their folded and unfolded states.
Since the VDW-based pair-wise HCT approach is already kntawgive rather accurate effective radii for
surface atoms, but substantially underestimates therlaffgetive radii for deeply buried atoms, the rescaled
radii in G BYBC improve agreement with PB solvation free energies. The coatipnal expense of the rescal-
ing function is minimal so that the efficiency of the HCT mathe retained. In addition, effective radii are
smoothly capped at about 30, avoiding potential problems with numerical stability. ithdut the capping,
stability problems may arise when the sum of volume integimEq.[2B becomes very closepg!, making
the value of the corresponding effective radius very sasib tiny structural variations.

However, by design, th& BB rescaling function with tabulated parameters compendatdsterstitial
high dielectric only on average, in a geometry-independeanner. The problem becomes transparent in the
limiting case of just two atoms that move relative to eactentivhile parameters of the re-scaling procedure
can in principle be so tabulated as to produce the corregtenter one inter-atomic distance, the method will
completely miss changes in molecular volume associatel thé relative motion of the atoms. To address

this deficiency, an additional correction to the pair-wisegedure was introducé@that brings in elements
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of molecular volume, in a pair-wise sense. Namely, an auldtili term is added to Eq._R3 that re-introduces
the molecular volume between each pair of atoms missed byritp@al approximation. The integral over this
neck-shaped region can be approximated by a simple aralfdicction that carries only a small computational
overhead relative t6&:B9BC. At the same time, compared to its predecessors, the m3@Bn flavor, was
found to be a noticeably more faithful approximation of élestatic solvation effects in proteins, not only by
comparisons with the PE, but also with explicit solvent Misiations®’ The flavor is now also available in
AMBER,

The “high interstitial dielectric” is not the only problenhat needs to be addressed within the pair-wise
VDW approach. An approach to better approximate variationghe integration volume associated with
changes in molecular geometry—an all-important issue indiflulations—is presented bW B andAGN PB
flavors® available ine.g.| MPACT modeling packageé® These two approximations are currently also based on
the pair-wise sphere-based CFA, Eql 23. However, unlikeotlygnal HCT, the scaling factors that multiply
the VDW radii are made explicitly geometry-dependent, eatthan set constant. As mentioned above, the
scaling of VDW radii is designed to compensate for the owamting of volume which in the pairwise ap-
proximation results from multiple overlaps between atospberes. IMGB these overlaps are computed for
each pair of atoms; the scaling factors are approximated fmeo-sphere overlap volumes. For computational
efficiency, the atomic volumes are described by Gaussiasityefunctions. Yet another GB flavor based on
pair-wise CFA approximation islC' E2° 59 available ine.g. TINKER®® package. The approach uses a set of
pre-tabulated atomic volumes—for example Voronoi volumés represent the total molecular volume. Each
atom’s contribution is described by a Gaussian densitytfonavhich leads to reasonably simple analytical
expressions for the integrals in Hql 23. A completely défgrapproach, not based on the pair-wise approxima-
tion and the CFA, is employed by GBMYV flavdfs** and its variation§® Rather than augmenting the VDW
representation to approximate the integrals over moleadlume, Leeet al. found an analytical approxima-
tion of the the appropriate integrals computed over a “simboundary” molecular volume that closely mimics
the volume used in typical numerical PE calculations. Thpmsgor accuracy of these GBMV flavors, relative to
the routines based on VDW and pair-wise representatiomsesa@t a price of noticeably higher computational

costs®?
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The above examples represent several important problechshair solutions in the development of the
GB field, but by no means give an exhaustive account of all efvdwriant or “flavors” of the GB model
currently available. Among the relatively new developnsest‘residue pair-wise” GB? the Gaussian GE3
andF ACT S% GB flavors. Interestingly, unlike all of the GB flavors dissad aboveF ACT'S approach does
not rely on integral representations such as Egk. 21 to ctapa effective radii. Instead, it uses an empirical
relationship between the effective radius of an atom andtsgibution of other atoms around it. Work to

improve the accuracy and efficiency of computational rasgifor estimation of effective Born radii continues.

2.3 Accounting for salt effects

When salt is present in the solvent, the GB formalism mustnberaed to include screening effects of the ionic
atmosphere. In principle, one could envision repeatingifwrous derivations presented in Secfiod 2.1 starting
from the Poisson-Boltzmann equation instead of just thedeoi equation, but to the best of our knowledge
the strategy has not yet been carried through. Part of thelggromay be that the mathematical structures
of the solution of the PB equation inside and outside theedtgt boundary are significantly more complex
and substantially different from each other, unlike in tiedse. Instead, the screening effects of monovalent
salt are currently introduced into the GB model via an appnate, yet very simple and computationally

inexpensive empirical correctibhto the main formula, Eq_14:

€in €out fGB

1 1 exp(—0.73xfCB i
AGa=-35Y (— o )\ 2 (24)
irj

r2, . .
where 6B = \/rfj + R;R; exp <_7R;1]%]-> as before, and: is the Debye-Huckel screening parameter
k[A~1] ~ 0.316+/[salt][mol/L]. The above expression can be rationalized as follows. Bdhiat the solution

of the PB equation for a single point charge has the fofm- eap(=rr) o (%), and the role ofr” in the GB

€out

ex —K G
formula is played byfG®B, which suggests the above anséﬁe — 1 ) — (L — M). The 0.73

€out €in €out

prefactor was found empirically to give best agreement withnumerical PB treatmefi.
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2.4 The non-polar contribution

Although the goal of the GB model is to approximate the etestaitic part of solvation only, a comment is due
on how the non-polar part is currently handled in practiatulations. A common approximation widely in
use today® assume\Gonpolar 10 be proportional to the total solvent accessible surfaea @ASA ) of the
molecule,AGyonpolar = 0 x SASA, with the proportionality constant derived from experirtadrsolvation
energies of small non-polar molecules. Substantial uaiceyt exists in what appropriate value of the surface
tensions should be used in simulations, which perhaps reflects thigalions of this approximation itself.
Strong arguments for the use of less drastic approximaf@ma G onpolar, €.9.those that treat solute-solvent
van der Waals interactions (“volume term” ) separately fritwm surface area term, have also been ntadé.
Practical models based on these ideas have already emé&gegkample, the AGBN{ approximation men-
tioned above combines the basic GB framework with a modehGr, 01, that goes beyond the surface area
approximation.

At the same time, it is clear that, at least in some cases\fig,npolar ~ o X SASA approximation is
not as critical to the over-all accuracy &G}, compared to the quality of approximating the electrostati
part AG,;. For example, in a study aimed at assessing the performance of various implemensatf the
ACE GB flavor in MD simulations of small proteins, it was found thiae over-all structural deviations were
insensitive to variations of the surface tensioim a wide range frond to 50cal/mol /212. Some researchers
choose to neglect the hydrophobic term altogether in MD Kitians, especially if no large conformational

changes are expected.

2.5 GB for non-aqueous solvents

To the extent that solvation in non-aqueous media can bibwtid to the change in the dielectric properties
of the solvent, it is appropriate to seek a modification of @& formalism to approximate the corresponding
AG,. In the simplest case of uniform solvent dielectric andtaalby ratioe;, /€., ONe can develop a rigorous
formalism similar to the one used to derive the canonical GRlehvalid in thee;, /e, < 1 case, Section2.1.
Namely, the summation of the infinite series that represér@exact Green function for the sphere, Egl 10,

can be performed for any ratig, /.., leading to the following expressiot:
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€in €out
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where fSB is same as above, = €in/€outs X = % —1 =~ 0.580127, and andA is theelectrostatic size

of the molecule. The latter provides a relationship betwienmolecule’s global shape and its electrostatic
energy3! Roughly speaking4 is the over-all size of the structure; a rigorous definitionl a way to compute

it analytically is presented in Refs. 31, 35. Whether or ngt[E3, termed “ALPB” in Ref. 35, can be referred
to as a “GB model” may be a matter of debate: unlike the caabi®@® formulalI#, Eq[A5 contains an extra
parameterd and its dependence on the solute and solvent dielectridartisds different. However, the model,
currently available inAMBER package, is as efficient computationally as the Still's folafil4 and can also
be used in MD simulatior8 to describe solvation effects. Extensive comparisons thi¢hPE reference on
realistic biomolecular structures shdithat the use of EQ_25 instead of the canonical GB to compdie,
removes a systematic bias present in the canonica® @&t becomes especially pronounced outside of the
€in/€out < 1 regime.

Despite the simplicity and conceptual appeal of a rigordussizal basis, the ALPB formalism of Ef.125
has one serious drawback: in its present form it is only applie to the case of uniform solvent dielectric.
To describe the effects of essentially heterogeneousdtieleenvironment of biological membranes and wa-
ter/membrane interface, several groups proposed varioysrieal modifications to the canonical GB. The
resulting approximations are currently used in practidausations of proteins and peptides interacting with
biological membranes. The key idea behind these approiinsats to keep the main GB formulal25 intact,
but to modify the effective Born radii to account for the prase of additional dielectric boundaries. In one
such flavof” GBSA/IM (implicit membrane), the membrane is modeled as mdgeneous, low dielectric
membrane “slab” that has a finite thickness in one dimensind,extends to infinity in the other two, FIg. 6.

For each atom of the solute, the CFA pair-wise summation in [E§ is then split into two parts: one

represents the polarization energy of the atom in the poesefthe dielectric slab alone, and the other describes

the contribution of the solute atoms outside of the slab. fireecontribution is tabulated via a relatively simple
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Figure 6: A schematic illustrating two different approashe approximating the distributions of dielectric in the
solute/membrane/solvent system used by some of the alal&® flavors to compute the effective Born radii.
Left: the two-dielectric model used by the GBSA/IM flavor. The loigldctric slab is assumed infinite in the X
and Y dimensionsRight: the multi-dielectric model of HDGB.

analytical function whose parameters are set by fitting tmenical PE solutions. An obvious limitation of the
approach is the assumtion that the membrane environmertbeaepresented by a single dielectric constant
which is equal to that of the solute. Recently, the model waslifired to account for heterogeneity of the
membrané?

A different approach based on the same general idea of incatipg the electrostatic effects of a membrane
into appropriately modified effective Born radii was deysd in Refs. 60, 69. The resulting heterogeneous
dielectric generalized Born (HDGB) flavor is an extensiontltd GBMV approach discussed above. The
first few terms in the infinite series Kirkwood solutigh 9 warsed to suggest a specific form for the self-
energyAG¢! as a function of;, ande,,;, which in turn is used to modify the originak{, ay)-based GBMV2
expression for the effective Born radii to include an expliependence of, ande,, in the analytical formula
for Ri: R; = Ri€in, cout). The theor§® then proceeds by partitioning the membrane “slab” into sve
regions of constant dielectric, Fi§l 6, approximating diséia scenario in which the dielectric properties of
the membrane vary continuously across the bi-layer. Theahgieometry of the slab and the variation of
the dielectric constant perpendicular to the membraneepldn), mimic that predicted for a DPPC bi-layer.
This partition is used to define the dielectric environmeantdach solute atom embedded in the membrane;
the corresponding effective radius is computed viafhé:,, €,ut) prescription. Both GBSA/IM and HDGB
flavors are available iiCHARMM® 71 package, along with another membrane-GB flavor based onatine s

general principle but derived from GBSW mentioned in thevjmes sectiong?
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3 Applications of the GB model

The algorithmic simplicity and reasonable accuracy of tiieeapproximation, combined with its availability in
popular modeling packages, have made it the method of clmice@ny practical applications of the implicit

solvent methodology. The list is expanding; below are sospeasentative examples.

3.1 Protein Folding and Design

Exploring large conformational transitions is one of seva@reas where the advantages of implicit solvent
framework, and specifically of the GB model, become pariduluseful. Recent molecular simulations of
the protein folding process, which used all-atom, phybiased potentials to obtain correctly folded structures
starting from extended conformations, are arguably ondn@fmbost spectacular achievements attributable to
the GB model. Examples include small proteins such as J@trestrpcage™® ’* a 23-residue mixed:/3
protein/® and a 36-residue villin headpieé®.Successful folding simulations of even larger proteinsaise
beginning to appedr: 78 In these simulations the folded state is typically predidte within about 2A from
experiment (', rmsd), and in some cad@s’® within about 1A. Energy landscapes computed within the
implicit solvent framework were used to gain insights inte folding mechanism®: ”® The GB model can
also be used to explore the influences of temperature, drictind random forces on the folding of proteffis.
An example of a “protein design” study in which changes otgirostability associated with point mutations
were explored with the GB model can be found in Ref. 81. Anothkevant example is the use of the model

in the prediction of protein loop conformatiofs.

3.2 “Large-scale” motions in macromolecules.

The conformational search speed-up allows one to studgdsezgle motions in proteins and protein complexes.
The use of the methodology to understand large conformalticimanges in proteins is exemplified by a recent
study of the motions of active site flaps in HIV prote&3eit is unlikely that a comparable explicit solvent

study would currently be computationally feasible. Anathelevant example is a recent work that explored

conformational dynamics of avian flu virds.
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Compared to proteins, implicit solvent MD simulations ofchaic acids are relatively new, and not as
numerous. A number of methodological issues still need toelselved. So far, the GB methodology has
been employed to model free DNA in soluti&h®® binding between proteins and nucleic adié<?as well as
for energetic analysis of conformational changes suchaslith- B transition?® A recent all-atom study of
the nucleosome and its 147- bp DNA free in soluffbhas demonstrated usefulness of the GB for exploring

dynamics of “large” DNA fragments and protein-DNA complexe

3.3 Peptides and proteins in the membrane environment.

Membranes are large structures, translocation of molestractures through membranes may involve signifi-
cant molecular movements and conformational changes,ctiese systems are natural candidates for implicit
solvent simulations based on the GB model. The GB flavorsrithestin Sectiofi 215 have been used in mod-
eling of small peptide$? °* membrane spanning helices in protelfAsind in simulation of whole membrane

proteins®® 69 91and protein complexes, as large and complex as the battedopsin trimef?

3.4 pK prediction and constantpH simulations.

Traditionally, quantitative prediction gf{'s and protonation states of ionizable groups in macromtgeduas
been based on numerical PB solvers, sgeRefs. 15,94-97. While development of PB-based approacines f
pK prediction continues, GB-based calculations begin tergm First applications of the GB model to compute
the energetics of proton transfer in proteins were enconggj although the reference PB calculations were
still definitely more accurate. However, a very recent GBdshmodel for prediction of protep/s was found
competitive with the latest PB-based and empirical appresi®

Up until recently, physics-based< calculations assumed limited or no coupling between padton and
conformational degrees of freedom. Likewise, charge stafeall ionizable groups were considered fixed
throughout the course of a typical MD simulation, regarsllesthe conformational changes that the structure
may undergo. In reality, changes in protonation state amflocmational changes are strongly coupled. Full
and consistent accounting for this coupling may be necgdeafurther improvement of the accuracy pK

estimate$? in dynamics, it may lead to non-trivial effect®® The GB model is an ideal candidate to intro-
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duce the coupling into dynamical simulations: its instaetaus dielectric response makes possible on-the-fly
estimates of relative energies of protonation microstateeveral GB-based approaches have recently been
been developed to fully couple protonation and confornmafi@egrees of freedom in molecular dynamics —
the so-callecconstant pH MDOne of the methods employs a continuous protonation statel}P? in which
equations of motion are used to time-evolve the protonatmordinate; convergence to physical protonation
state of 1 or 0 is enforced by an adjustable potential barar example of recent use of the methodology
is a study ofpH dependence of folding landscapes of several peptides wih@hded insights into protein
aggregation that occurs in Alzheimer’s dised¥eAn alternative approaéfi® operates directly in the physical
protonation space: protonation states are accepted atedjen the fly, according to a Metropolis criterion,
during the course of the MD simulation. The approach wasnticeombined with the replica exchange tech-
nique to study pH-dependent mechanism of nitric oxide esléa nitrophorin protein®* The accuracy op K
predictions based on the constarf dynamics is becoming competitffewith that of the more traditional

PB-based models that do not fully account for the strucfuictenation coupling.

3.5 Other uses

The use of the GB approximation in molecular modeling is moitéd to the general areas outlined above. Ap-
plications of the model to the analysis of the energeticsrofigin-ligand binding have been reportedt5-107
Several GB flavors have been implemented in the popDBEK ligand docking program®:10% Another
emerging area where the GB has been found useful is “hybsgli@t/implicit approaches to the treatment
of the solvent effects. Examples of the latter include ameceodet'® in which the immediate hydration of
the solute is modeled explicitly by a layer of water molesuland the GB model describes the electrostatics
of the bulk continuum solvent outside the explicit simuativolume. A similar idea has recently been found
very effective in the context of replica-exchange simolasil'! a detailed account of this methodology can be

found in Ref 112. Finally, we will mention recent applicatiof the GB in QM/MM simulationg!3 114
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4 Some practical considerations.

The decision to use the GB approximation instead of the mgmaus PB model or the traditional explicit
solvent model may depend on many factors, including the tfpmaolecular structure, specifics of questions
one asks of the calculation, and even available computdti@sources. Which of the numerous GB flavors is
an optimal choice for each task also depends on the detadseRed below is a discussion of select aspects of
the GB performance in all-atom molecular modeling that isridled to illustrate several general trends backed

by specific examples.

4.1 The accuracy/speed trade-offs

One of the main motivations behind developing the GB modsldiaays been its computational efficiency,
relative to alternative approximations that describe a&tidbn effects. Since the GB is just an approximation to
the more fundamental PB, and both approximations shareatne sinderlying physical framework of the con-
tinuum electrostatics, performance comparison betweenvilo models appears natural, though not straight-
forward in practice. This is because the results may depenth® type of the problem, size and shape of
the molecular structure, and also on parameters of the fgpafgorithms involved, such as grid spacing and
specific convergence criteria used in numerical PB solvéilsese issues were considered in detail in a re-
cent stud$* which presents a performance comparison between sevaralgsdGB models and numerical PB
solvers that were commonly available in 2004. The work ubedelectrostatic solvation energy as the target
guantity to assess both accuracy and speed of the modelssuNwtsingly, it was found that the most accu-
rate of the GB flavors teste@.g. GBMV and GB©5C ) are still less accurate than the most accurate of the
PB solvers, but appreciably faster. The difference in speasl up to several orders of magnitude for a small
protein (36 residues, 596 atoms), but only about an orderagfmtude for a much larger protein (239 residues,
3628 atoms). The trend reflects the difference in scalingiieh between the GB model, which scales with
the number of charges @ N?) unless further approximations are made, and a more fawsataling of the
PB-based algorithmsg.g. O(N?/2) for some algorithms that employ successive over-relaratiosolve the

finite-difference matrix equations® We stress that the specific trend is only applicable to comngeadbu-
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lar structures such as proteins in their native states; ardetailed discussion of the scaling issues will be
presented below in the context of MD simulations. One shaidd be careful not to over-interpret such com-
parisons between two different models, and focus on getrerads rather than precise numbers. For example,
the above mentioned comparison sttidglso found that some of the less accurate numerical PB solvere
quite competitive, speed-wise, with the more accurate GBaiso Among the GB flavors, the same general
trade-offs were seen: the more accurate approximations gesrerally slower. For example, the most accurate
of the flavors tested in Ref. 61 — GBMV — was found to be sevarag slower in MD simulations than the
next one down the accuracy ligk,B9B¢ (IT).

The algorithmic simplicity and computational speed of thg @pproximation make it particularly attractive
in Molecular Dynamics simulations of biomolecules. Refatio the traditional explicit solvent simulations,
the use of the GB model to represent solvation effects canected to accelerate the simulation significantly
in many cases. The corresponding “speed-up” is the comh@ffedt of two very different contributions: (i)
the direct speed-up via reduced computational (clock) tifiethe indirect speed-up achieved via enhanced

conformational sampling. In what follows we will considéettwo contributions separately.

4.2 Computational time relative to explicit solvent

Since MD simulations in explicit solvent require trackinigpdarge number of water molecules and counterions
placed around the solute of interest, one may expect a @masilé reduction in CPU (clock) time once this

need is eliminated via the use of the GB model. The exact atraduhis “direct” relative speed-up is not easy

to quantify for the same reasons as in the @GBnumerical PB comparison outlined above: the algorithms to
be compared are very different. In explicit solvent simioias, the current practice in the field is to use the
so-called Particle Mesh Ewald (PME) approximatiom speed up the computation of electrostatic interactions.
Within this approach the long-range pair-wise Coulombrextéon energy is represented (via a mathematical
trick that relies on imposing artificial periodic boundagndlitions on the system ) as a sum of rapidly converg-
ing series summed in real space, plus a rapidly convergingi€tcsseries. Since both sums converge quickly, an
accurate result can be obtained by retaining only a relgtamall number of terms in the sums. An additional

speed-up comes from the interpolation of the potential avegular mesh. Several adjustable parameters con-
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trol the accuracy and speed of the PME. While any direct coisga of MD simulation timings between the
GB and PME is bound to be implementation-dependent, we dhidentify several general important trends
based on the computational complexity of the two algorittand types of molecular structures used in the
simulations.

The computational complexity of the basic GB equafioh 1bigausly O(N2 ), ,.), while for the PME it
is° O(Nyo1l0gNiot ), Where Ny, .. is the number of atomic charges in the solute, gl is the total number
of charges, including those of the solvei;,; = Ngojute + Nsolvent- ASSUMING that one keeps the same
thickness of the solvent shell as the size of the solute grimsvsompact globular soluteand largeN, ;e
one hasN, pent ~ Nfo/lite, Niot ~ Nsorute, and thus the expense of a PME-based computation is effgctiv
O(NsorutelogNsorute ) for large structures. This means that while a reasonabléemgntation of the “raw” GB
may be expected to be faster than the PME for “small and mediaaf structures, the advantage is bound
to disappear beyond a certain—implementation dependeaiss-ver solute size. We stress that this result
assumes no further approximations or algorithmic improsets to the general GB formalism presented in the
previous sections.

The above trends for the relative speeds of GB- and PME- ctatipns can be very different for non-
compact structures, or simulations where transitions betwcompact and stretched-out conformations are
expected, for example during the process of protein foldifilgis is because the number of solute molecules
required to fill the standard simulation box in these casdksaale differently with the solute size than for
the compact globular structures considered above. For gbeaiin the limiting case of a completely stretched-
out polymer chain a cubic bounding box, the total volume @f siolvent in the box scales &3N3, . ),

and hence&V,tar ~ which leads toO(N3 , . 10gNsou:e) for the PME computational complexity,

3
solute’ solute

compared to jusO (N2,,,.) of the “raw” GB. Thus, in contrast to the case of compact glabstructures,
GB-based simulations of extended conformations are alwagscted to be considerably less expensive than
the corresponding explicit solvent computations that emghe PME.

We now illustrate the above general trends on concrete elempVe will compare single CPU timings
between theG BEC flavor and the PME, in MD simulations of a set of proteins initltmpact, native

states. For this illustration we will be using the models lienpented in a popular MD packade/BER (8).>°
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Unless otherwise specified, we choose the default valuethéoinput parameters such as non-bonded cut-
off (9 ,&) in PME. The solvent buffer size is 18 . No long-range cut-offs or other approximations will
be applied in the GB-based simulations. The results of tmepesison are as follows. For a small protein
villin headpiece (36 residues, 596 atoms), a GB-based atinual proceeds roughly ten times faster than the
corresponding explicit solvent one based on the PME. Thangimmbecome about equal for a medium-size
protein ubiquitin (76 residues, 1231 atoms). For a muctelangicleosome structure (8 protein subunits + 146
base-pairs of DNA, about 25,000 atoms in total) it was fouadie® that the ratio of computational times
is about10 : 1 in favor of the PME, although parameters of that specific &tmn were somewhat different
from those used in the single protein examples. Thus, faetlspecific GB and PME implementations used
to compute electrostatic interactions in all-atom MD siatigns of compact globular structures, the cross-
over size beyond which the PME-based simulation becomésr fimn those based on the GB is somewhere
between 1000 and 2000 atoms. Note that this result applissniglations that use a single CPU. The cross-
over point may be effectively pushed towards larger stmastif one has access to a multi-CPU cluster: the
GB-based simulations generally tend to scale better wémtimber of utilized processors than the PME-based
ones. RecemM\MVBER (version 9) benchmarks provide some concrete examplestriactures of about 25,000
atoms, the maximum speed-up — that is the speed-up beyoruh wbubling the number of CPUs does not
lead to any significant increase in compute speed — is atTeasies higher for the GB-based simulations than
for the PME-based runs. Thus, relative computational spéé¢ide GB model can be substantially increased,
albeit extensively, if one has an access to a large paraliehine. The use of graphics processing units (GPU)
to speed-up GB-based molecular dynamics calculations fsayhalds considerable promise. For example, a
recent study demonstrated that a two orders of magnitudeexation vs. a single CPU can be achieved for a
~ 5,000 atom protein in an all-atom molecular dynamics runningrettion a GPU-16

Additional approximations can also be used to reduce thecaged direct simulation costs in GB-based
simulationg For example, the latest versions AVBER offer at least three different strategies to speed up
such simulations: some of these strategies are specifiet@Bimethodology and some are generic and have

been used in the explicit solvent simulations as well. Amtiveglatter is thenultiple stepapproach in which

*Note that the now standard PME approach is not applicablédtce@Gleast in its current form.
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slow-varying long range forces are not calculated at evep sf MD, but only everynr espa > 1 steps.
In addition, the standard long range cut-off schemes mayebguseful in GB-based simulations. The cut-off
schemes have become almost obsolete in explicit solventriviiauit due to success of the Ewald method and
in part since it became evident that spherical cut-offsomtice artifacts into explicit solvent simulatiohs,
affecting particularly strongly the structure and dynasmé water. However, the very absence of explicit water
in the GB-based simulations may make them more amenablagertinge cut-offs— successful long MD runs
have been reported using cut-off values of*24,885 or even 188 A . While for small systems the benefits of
using realistic cut-offs are not very high, the speed-upy berome significant for larger molecules where a
reasonable cut-off may be chosen to be considerably snthiarthe system size. The specific numbers will
necessarily be implementation-dependent. Also, one dhalulays be aware that spherical cut-offs may not
be appropriate for highly charged systems or other sitnatiwhere long-range electrostatic interactions play
a key role, such as in nucleic acids or the nucleosome. Fateiyy yet another way to cut GB computational
expense is now available which is based on reducing the ¢asinoputing the effective Born radii. This is
achieved by setting a finite upper limitgbmax , in the integral EqZZ0, so that only the part of the solvent
within the r gbnax around the given atom is taken into account in computing fiective radius. Atoms
whose associated spheres are farther awayrtigdnmrax from the given atom will not contribute to that atom’s
effective Born radius. This is implemented in a “smoothHias*' so that when part of an atom’s sphere lies
inside ther gbmax sphere, that part still contributes to the low-dielectegion that determines the effective
Born radius. As a result, the derivatives of the total enawih respect to atomic coordinates are continuous,
leading to energy conservation, and there is no large spsifiarce acting on the atoms coming in and out of
this “reaction field cut-off”. Importantly, unlike in the sa of the standard cut-off, even if two charges are
separated by a distance larger thathmax they still interact, albeit with a somewhat altered stréngt

The implicit solvent methodology is relatively new, and sadées on speeding up MD simulations based
on it are not nearly as many or extensive as is the case witlexhkcit solvent MD. However, the limited
available evidence is encouraging. For exampfeyiD simulations of several small and medium size proteins,
10 bp duplexes of B-DNA and RNA have shown that, at least ortithe-scales of up to 10 ns, the use of

r gbnmax preserves the native structure to the same extent as doagiomd in which this approximation was
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Table

1: The effect of several additional approximationstenspeed and accuracy of GB-based MD simulations.

Shown are the deviations from the native structure (backhomsd,A ) and relative computational speed-up
for a set of 8 ns. long MD simulations of a 76-residue protéiiguitin (PDB 1UBQ), all done withG BOBC¢
model { gb = 5) of AMBER . Further details of the MD protocol can be found in Ref. 45.simulations that
employed the multiple time-step algorithm, that is recotegdithe long-range forces only at everyespa > 1

step,

Langevin dynamics was used. The collision frequeray set to a low value afanmma_l n = 0.05ps~".

The average and max. values of the rmsd were computed oventire trajectory in each case. The value of
long-range cut-off is specified yut .

r gbmax cut nrespa (rmsd) max rmsd relative direct speed-up

40 40 1 1.05 1.6 1

40 18 1 1.3 2.0 1.1
9 40 1 11 1.8 1.6
9 18 1 1.28 2.11 1.9
40 40 4 1.6 2.5 2.4
9 40 4 1.23 2.1 4.0
9 18 4 1.08 2.08 4.4

not used, as in Ref. 45. Even fewer tests have been perfotma¢@xamine the effects of multiple time step
approximation in implicit solvent MD, or a combination ofiiith the traditional spherical cut-off and/or the
use ofr gbmax . Still, the limited experience we have is encouraging, sd#ell, where we have summarized
the results of applying such approximations in MD simulasi@f a 76-residue protein.

A conclusion can be drawn that at least for this particulartgin the use of any of the algorithmic im-
provements described above brings about a speed-up, witmardest disruption of the native structure of the
protein. When two or more of the methods are combined, tipgied-ups combine too, though not necessarily
in a linear fashion: the use of reasonable valuesgiimax , the long-range cut-offut , and multiple time-
stepsnr espa together (last row in Tablg 1) results in a 4-fold increasedmputational speed compared to the
simulation in which none of the methods have been used (@GveL rThe algorithmic improvements discussed
above are expected to be even more efficient for larger sgstBor example, our recent experiefftwith the
GB-based MD simulations of the nucleosome core partisle2,000 atoms, system size 120A ) shows
that the use of gbnmax = 15 A results in about three-fold increase in speed for the systehile yielding
stable trajectories. Even withgbmax = 40 A , the speed up was still more than two-fold. Note that the

use of the standard long-range cut-off would be problenfati¢his highly charged compound. At the same
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time, it is clear that the more of the additional approximasi are made, the larger are the deviations from the
native structure, and so one has to be very cautious, edlpenithe yet unexplored regimes. It is also worth
mentioning that, compared to the standard explicit solggmulations, more careful multi-step equilibration
protocols may be necessary in the regime where solventsityds considerably reduced or even set to Z&ro.
Over-all, based on admittedly very limited evidence, weatode that the three approximations to speed-up the
GB-based simulations yield encouraging results, sugugstiat these are worth exploring further. Develop-
ment of novel approximations that promise to bring comporteti complexity of the GB model t&(NlogN)

is underway:1?

4.3 Enhancement of conformational sampling

This is one of the most significant advantage that the GB muaketo offer, although a quantitative analysis of
the effect and its relative contribution to the correspagdindirect” speed-up of the GB-based MD simulations
is even less straightforward than for the “direct” speedeopsidered above. Part of the difficulty is that the
sampling enhancement depends on many details of the matesydtem and the process studied, and may
also depend on the specifics of the GB model and MD algoritheesl.uBelow we will present a few semi-
guantitative and qualitative observations based on thitdthdata available in literature.

One can make estimates of the degree of conformational sagrgshhancement by comparing kinetics of
specific conformational transitions in the implicit and t@rresponding explicit solvent simulations. Gener-
ally, the enhancement of conformational sampling can baghbof as a combination of at least two effects:
increased sampling due to significant reduction or compitaination of solvent viscous forces that slow
down the motion of the solute parts, and faster conformatieearch due to the effective smoothing of energy
landscapes. The interplay of these effects in GB-based MiDlations of small model systems have recently
been considered in detail by Hamelbagal ?° and Feigt?! for specific GB models irAMBER (GBYB¢
) and CHARMM (GBMV) respectively. Relevant discussions more focusedhenGB-based protein folding
simulations can also be found in Refs. 76, 80.

Hamelberget al. reported al0* increase in the rate of conformational sampling due to thakioed

effect of both the landscape smoothing and reduced sohisobsity, as assessed by comparing ¢he «—
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trans isomerization rate in a di-peptide relative to the corregting rate in explicit water simulations. When
the solvent viscosity was increased to the levels corradipgnto that of water, by appropriately increasing
the collision frequency in Langevin dynamics, the isonedian rate was still found to be about one to two
orders of magnitude higher than that in explicit water. ThHoghis specific model and molecular system, 2
to 3 orders of magnitude enhancement of sampling relatiexpdicit solvent comes from the elimination of
solvent viscous forces and the remaining 2 to 1 orders of ihadm are due to the smoothing of the energy
landscape. Thus, it is reasonable to assume that the efiorifraduction of solvent viscosity alone should
result in significant effective speed-up of viscosity-coliéd conformational transitions. We hypothesize that
this type of transitions is likely to involve large-scaldative motions of parts of the structure along a relatively
smooth energy landscape. This hypothesis may explain gmisant folding rate enhancement observed in
the GB-based MD simulations of folding of some small prateiRor example, note that experimental folding
times for even the fastest folding proteins is of the ordemafroseconds, whereas in some of the GB-based
protein folding simulation§ described in the previous sections the native state wasedaon 10 ns time-
scale. Assuming that the folding rates in explicit solvenatthe same order of magnitude as the experimental
ones, the comparison gives a very rough idea of the magnafidenformational search speed-ups—at least
two orders of magnitude—that one can expect in these typssrflations through the use of the GB model.
We emphasize that the specific numbers may only be applicalttee GB flavors AMBER ) used in these
simulations, see below. For a relevant general discusdidimednterplay of time-scales and friction forces in
protein folding, see.g. Ref. 122; a detailed analysis of the folding rate dependemceiscous effects for
20-residue protein is available Ref. 76.

The magnitude of the conformational search speed-up vel&di the explicit solvent also depends on the
type conformational rearrangements. In a GB-based siiunlalf A < B transition in DNA, Tsuiet al?®
reported only a~ 20 fold increase in the transition speed. We do not know whetiemore modest transition
rate enhancement observed in this system is indeed due factthat the transition involves relatively smaller
structural rearrangements and higher barriers, but it imagible hypothesis. A similar amount of a conforma-
tional sampling speed-up was estimated from an analysipefi/close loop transition events in the avian flu

virus protein®* On the other hand, global bending of the DNA on length-scetesparable to its persistence
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length appears to occur about a 100 times faster in GB-basedasionsP relative to explicit solvent?® This
amount of conformational sampling enhancement is moreistems$ with viscosity-controlled dynamics.
Over-all, while there is no doubt that the use of the GB-mddelepresent solvation effects in simula-
tions does bring about appreciable increase in the raterdbomational sampling in many cases, the precise
magnitude of this increase depends strongly on the speoffite system and processes under study. The rate
increase also appears to depend of the particular imptibiest model. For example, in contrast to the numbers
discussed above appropriate for the GB flavoiBMBER, considerably smaller acceleration of conformational
sampling— only about a factor of 4 to 5— was obseh#davith a GBMYV flavor available irCHARMM. More-
over, the zero solvent viscosity limit achieved in the aleseof stochastic collisions with the solute (via the
use of Nosé-Hoover thermostat) actualgwed dowrconformational transitions in alanine di-peptide in that
study, relative to the explicit solvent. At least some of sf@v-down in this case was attributed to the lack of

thermal “jolts” from stochastic collisions that help crqsstential barriers.

5 Limitations of the GB model.

The generalized Born model is separated from reality byrsélegyers of approximations, Figl 7, each of them
adding its own limitations to the method. Some of these &tions directly affect the accuracy of the GB
approximation, while others may simply restrict its arebapplication. For example, no matter how accurate a
specific flavor of the GB model may be, continuous electristaitential can not be defined within its context:
at best one can talk about potential at atomic centersBrilus, unlike the PB model, the GB approximation
proper can not be used to produce the colorful distributiminslectrostatic potential that are now widely used
in structural biology. To have this specific capability viittan analytical model one has to go beyond the
GR 32124

More important, however, are limitations that directlyeadf the accuracy of the GB relative to the more
fundamental descriptions of solvation, such as the ex@avent framework or the PB model.

The most fundamental approximation step, the “discret&ontinuum” approximation obviously elimi-

nates a number of real solvent effects that depend on the &izié of the water molecule, such as de-wetting.
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Figure 7: The hierarchy of representations of solvent ¢ffecmolecular modeling. The GB model is separated
from reality by several layers of approximation.

Likewise, the implicit solvent model cannot describe effeaf tightly bound water molecules, which may be
a serious limitation when those are important for functiostability of the structure of interest. For example,
in protein-ligand complexes structured water is sometifoegd right at the binding interface. Also, it is not

clear how well the continuum approximation works insideglbending pockets, where solvent can hardly be
considered as having properties of the bulk. Water—solkgdtogen bonds are present in the implicit solvent
model only approximately, at a mean-field level, which maglem or over- estimate their strengths in specific
cases.

The Poisson-Boltzmann approximation inherits the abovesge limitations of mean-field theories and
linear response approximations, and adds its own. In péaticthe neglect of correlation between counterions,
especially multi-valent ones such ag¢>*, may be a serious problem in the modeling of highly charged
structures such as nucleic acids. Th& — GB step introduces several additional approximations. &arli
GB models, as well as models that used uncorrected pairafieases based on VDW atom spheres to compute

the effective radii, could be expected to perform worse ogdastructures relative to small molecules, see the
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discussion in Section 2.2.2. Fortuitous cancellation afrsroften masked this problem in calculations of the
total electrostatic solvation enerdy.The latest generations of the GB models have overcome sortinesé
problems. Still, from the derivation of the GB model presehin Sectiorl Z]1, it can be expected that for a
given structure the largest errors relative to the PB treatmvill occur in regions whose local shapes deviate
most from spherical. The heuristic correction in the Stifiormula that partially accounts for deviations of
molecular shape from a perfect sphere is uncontrollablis. Ubrealistic to expect that its effect on the over-all
accuracy, even relative to the PB, would be exactly quahtéia-priori for any biomolecular simulation.

An additional complication is that while there is really piiine GB model, any of its practical applications
relies on a specific flavor of the model. There is now well ogarguch flavors, and the number is alarmingly on
the rise, especially if one counts in the numerous parapadions of the same basic “flavor”. There is enough
difference between most of these flavors and their detadeametrization$ that specific results obtained with
one flavor/parametrization can not necessarily be expéaotbd reproducible with another. This is particularly
true in dynamical applications. Note that in this case itdsanly the specifics of the GB flavor that affect the
outcome, but also the way the non-polar contribution is cateh. The choice of underlying gas-phase force-
field is also important: one can not automatically assumiegtffiarce-field known to outperform its predecessor
within the explicit solvent framework will also show betigerformance when used with a given GB motfél.
Here, by “performance” we mean agreement with the explalitent and/or experiment.

Even though it may not be possible to make an unambiguousetudithe best performing combination
of GB flavor and gas-phase force-field, one general trendaappe emerge. The latest GB flavors that show
better agreement with the underlying PB model are likelygdgrm better than older flavors that did not agree
with the PB all that well. Since the PB is also an approxinmati® natural question is then how much of the
error seen in GB-based MD simulations is already preseteaPB level? For example, it appears that at least
some of the GB flavors do not have the right balance betweea-salute and solvent-solute charge-charge
interactions, resulting in over-stabilization of solventposed salt bridge$® However, a careful follow-up
study revealed that not all of the discrepancy (with therezfee explicit solvent results) came from the GB
model, with some of it being inherent to the PB. Importanglyen the use of “perfect® effective radii in the

GB Eq.[13 does not match the accuracy of the PB in predictitagive energies of conformational states of
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small peptide, see Ref. 127 for important details. In thidigalar study, the error of the PB itself, relative to
explicit solvent treatment, was found to be smaller, butmegiligible compared to the GB error. Thus, there

still appears to be room for improvement within thd3 — G B approximation.

6 Conclusions and outlook

Within the implicit solvent framework, solvation effecteeanodeled by replacing individual solvent molecules
with a continuous medium that mimics bulk properties of tbkvent. Even though the framework makes
several fundamental approximations to reality, it is araattve alternative to the more conventional explicit
representation which track movements of discrete solvesiecules. Practical models based on the implicit
solvent framework, such as the GB model considered herey, efiveral significant advantages over the explicit
water representation, including lower computational sofdster conformational search, and very effective
ways to estimate relative free energies of conformationakebles.

The generalized Born (GB) model provides a simple analytaranula for molecular electrostatic energy
in the presence of implicit solvent. In the hierarchy of apqimations that lead to model, the GB lies below
the more fundamental model based on the Poisson equatignofREntinuum electrostatics. In fact, apart
from a heuristic correction term, the general mathemafmah of the GB corresponds to the exact PE result
for the electrostatic part of solvation free energy for adtjyetical perfectly spherical molecule surrounded
by uniform dielectric medium in the conductor limit (infielyy high dielectric). Heuristic corrections partially
account for realistic biomolecular shapes, screeningeffef monovalent salt, and high, but finite dielectric of
water. Non-homogeneous dielectric environments suchodasdical membranes require additional corrections.
The accuracy of the GB model depends critically on the acgushthe so-called effective Born radii that char-
acterize positions of each partial atomic charge relativeblecular surface of the structure. Many practical
algorithms for computing the effective radii have been digyed, leading to the many different “flavors” of the
basic GB model available today. Expected trade-offs batveeeuracy and speed apply. The accuracy of the
effective radii depend largely on how realistic is the reygrgation for the solvent/solute dielectric boundary

used by the specific algorithm: simplified representatioesypically more facile computationally, but lead to
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less accurate radii.

In several applications such as molecular dynamics simounlatwhere robustness of the algorithms and
computational efficiency are of paramount concerns, themgdinzed Born (GB) model has arguably become
the most widely used approximation for molecular elecatistenergy in the presence of implicit solvent.
Perhaps one of the most spectacular achievements of thd imtiiesuccessful first-principles (physics-based)
simulations of the complete folding process of several bprateins at full atomic level — a fit that is probably
not yet within reach for the corresponding all-atom explégdlvent simulations. Other areas where the model's
effectiveness is found particularly useful include exptan of large-scale motions in proteins or DNA, protein
design, modeling of the membrane environment, and replcdange simulations based on novel “hybrid”
explicit/implicit approaches. For some types of calcalas, e.g. constantpH molecular dynamics, models
based on implicit solvation such as the GB appear to be theamds currently available in practice. Recently,
encouraging results have also been obtained in applyin@GBienodel for prediction op K shifts in proteins,
QM/MM simulations, and in the field of protein-ligand docginWhile there is no doubt at the moment that
use of the implicit solvent in molecular simulations maynigriconsiderable rewards, it is also associated with
additional uncertainty compared to the more traditiondtwations based on the explicit solvent. Less is
known about the domain of applicability of the implicit seit framework, and so extra care must be taken
when using practical models based on it, including the GE. décision of whether or not the potential rewards
of using the GB model are likely to outweigh the risks dependwany factors. These may include type of
molecular structure, specifics of the questions one askbeo€alculation, and even available computational
resources. For example, the task of exploring large corditional changes in a protein is a good candidate
for GB-based simulations, especially on a parallel machistghe same time, if one simply needs to generate
an ensemble of near native conformations of the same protemPC, then the tried-and-true explicit solvent
approach (with the electrostatics treated by PME) is prigbatbetter choice. Once the decision of using the
GB model is made, the researcher is typically faced with medditional practical issues, including choice of
optimal GB flavor for the specific task at hand. As we have sdmvey the flavors may differ substantially
in their accuracy and speed, including the speed of confiomea sampling which may be a critical factor in

making the choice. An additional complication is that mahyhe GB flavors available in popular modeling
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packages deliver optimal performance only in conjunctidtihha specific gas-phase force-field, including the
associated atomic radii sets used in the calculation offfeetave Born radii.

Despite many documented successes of the GB model, sitsatibere it clearly needs improvement are
abundant. These help establish boundaries of applicalofithe currently available GB flavors; they also
suggest directions for future improvements of the modelesehimprovements will likely include progress in
the following areas:

(i) Systematic quantitative exploration of performancedha available GB flavors. Development of com-
prehensive consensus test sets and practices.

(ii) Further parameter optimization of the most promisirfgtle existing GB flavors against the PB and
explicit solvent. The challenge here is not to over-paraixeetthe GB model beyond its natural accuracy
limits. Transferability of the highly parametrized sotuts will probably remain problematic.

(iii) Development and testing of novel ways to compute thfeafve Born radii such as the “R6” pre-
scription that yields exact effective radii in the perfepherical case. The method is appealing from both the
accuracy and computational facility standpoints, but mais to be seen how its practical implementations
will perform.

(iv) Development of novel approaches designed specifi¢allseduce computational complexity of GB-
based molecular simulations, ideally@ NlogN), without the loss of accuracy associated with the tradition
spherical cut-off schemes.

(v) Revision of the theoretical foundation of the GB modehed at bringing its accuracy closer to the
more fundamental PB model, while preserving the appealmgliity of the canonical GB. It is apparent now
that the Still's formula has reached its accuracy limitg, developing a superior approximation that is equally

simple and robust is probably the most challenging task erishabove.
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