
Novel Runtime Systems Support for
Adaptive Compositional Modeling on the Grid

Srinidhi Varadarajan and Naren Ramakrishnan

Department of Computer Science
Virginia Tech, Blacksburg, VA 24061, USA
Email: srinidhi@cs.vt.edu, naren@cs.vt.edu

Abstract

Grid infrastructures and computing environments have progressed significantly in the past few years. The
vision of truly seamless Grid usage relies on runtime systems support that is cognizant of the operational
issues underlying grid computations and, at the same time, is flexible enough to accommodate diverse
application scenarios. This paper addresses the twin aspects of Grid infrastructure and application support
through a novel combination of two computational technologies – Weaves, a source-language
independent parallel runtime compositional framework that operates through reverse-analysis of compiled
object files, and runtime recommender systems that aid in dynamic knowledge-based application
composition. Domain-specific adaptivity is exploited through a novel compositional system that supports
runtime recommendation of code modules and a sophisticated checkpointing and runtime migration
solution that can be transparently deployed over Grid infrastructures. A core set of “adaptivity schemas”
are provided as templates for adaptive composition of large-scale scientific computations. Implementation
issues, motivating application contexts, and preliminary results are described.

1 Introduction
Grid computing [Berman et al., 2003] is increasingly becoming a reality and rapid advances are being
made to establish high performance software environments for scientific and engineering computations.
In particular, there has been a recent shift of emphasis from low-level application scheduling and
execution to creating infrastructure for high-level problem solving environments (PSEs) or grid
computing environments (GCEs) [Fox et al. 2003]. To be effective, such GCEs should provide high-level,
powerful, computational primitives [Lee and Talia, 2003] within the context of the emerging landscape of
Grid infrastructures. This requires both an understanding of the architectural assumptions of
computational grids and an appreciation for how disciplinary scientists do computational science.

In consideration of the target of this special issue, this paper focuses on the twin aspects of Grid
infrastructure and application support, especially toward a unifying framework that addresses issues
pertinent to both aspects. The focus is on runtime systems support that is cognizant of the operational
issues underlying grid computations and is flexible enough to accommodate diverse application scenarios.
We begin by identifying specific desiderata for runtime systems support on the Grid.

Infrastructural and Usage Considerations: The vision of Grid usage is to tap into a vast computational
resource, with a reliability reminiscent of yesteryears custom designed supercomputers. Today’s Grid
infrastructure, however, resembles a loosely organized cluster of clusters, with all its attendant
shortcomings. Some of these shortcomings are borne out by the experiences of one of the authors, who
has set up and managed a 200 node cluster, operational for over two years, and supporting a large number
of demanding computational science applications. For instance, the probability of failure of an arbitrary
cluster node involved in a large computation is relatively high, and grows dramatically with increasing

mailto:srinidhi@cs.vt.edu
mailto:naren@cs.vt.edu

cluster sizes.1 In addition, we believe that while the initial Grid infrastructure will consist of a small
number of large supercomputing facilities, the Grid will evolve to include large numbers of relatively
small clusters. In such a scenario, there will be a constant tussle between the ability of large jobs to run
effectively and small players being able to assert administrative control over their own resources. We
argue that fundamental Grid reliability and resource control issues need to be resolved through runtime
systems support to make Grid computing an everyday reality.

Software Engineering Aspects: Scientific applications emerging on nascent Grid infrastructures are
expected to handle issues stemming from the enormous heterogeneity of Grid platforms – heterogeneity
of architecture, of processor speeds, and of interconnection bandwidth. While newer generations of
scientific software can be designed with this consideration in mind, targeting large legacy scientific codes
for the Grid poses an almost impossible software engineering endeavor. What is needed is runtime
systems support that can effectively mask the complexity of Grid infrastructures, to enable this transition.

Adaptivity and Modeling for Grid Applications: When basic infrastructural and software engineering
issues are resolved, Grid computing holds promise for scientific codes to become more adaptive -
adaptive in terms of algorithm selection, architectural tuning, and exploiting the underlying scientific
usage contexts [Foster et al., 2001]. We posit a broad picture of adaptivity here, one which is not
restricted to identifying partitioning parameters, modifying data decompositions, or parallel scheduling;
instead, adaptivity is proposed at a more logical unit of algorithms and object codes. This viewpoint leads
to scientific codes being organized in a model-based framework for adaptive composition, execution, and
performance analysis. As Berman et al. point out [Berman et al., 2003], “we still cannot throw any
application at the Grid and have resource management software determine where and how it will run.”

These considerations lead us to identifying important requirements for runtime systems support. First,
runtime systems support should enable a transparent transition path for composing and executing legacy
codes, without requiring that they be rewritten to achieve this functionality. Second, runtime adaptivity
should allow the dynamic selection, reconfiguration, and execution of code modules, taking into account
performance considerations and problem characteristics. Third, automatic facilities for masking systems
failures should be provided (witness the recent thrust for “recovery-oriented computing” initiated by
Patterson [Patterson et al., 2002]). Finally, runtime systems support is needed to realize a Grid
infrastructure that reconciles the needs of large computational applications and administrative control,
through a fluidic definition and control of Grid resources.

Solution Approach
Our solution approach for runtime systems support is two-pronged: (i) domain-specific adaptivity is
exploited through a novel compositional system that supports runtime recommendation of code modules;
and (ii) a sophisticated checkpointing and runtime migration solution is provided for deployment over the
Grid. A core set of “adaptivity schemas” constitute a reconfigurable approach to steering and managing
large-scale scientific computations.

In this view of grid computing, a high-level problem specification (e.g., “solve this elliptic PDE with a
relative accuracy of 10-6 and time less than 600 seconds”) is provided to a recommender system that
makes an initial recommendation of code modules (e.g., “use a finite-difference discretizer with red-black
ordering”). These code modules are communicated to the compositional system as a “configuration”,
which are then scheduled and executed on the Grid; as the computation progresses (e.g., the PDE gets

1 Simplistically, the probability of no failures = p200 (in our case), where p is the probability of a node
being operational. This leaves a large residual probability of failure.

discretized and the resulting linear system appears to be ill-conditioned), feedback is provided to the
runtime recommender through the checkpointing mechanism, which uses this information to perhaps
dynamically insert a preconditioner before the linear solver in the solution loop. The configuration is
updated with this selection, and the computation is re-scheduled (this time, perhaps migrated over to a
different cluster on the Grid). This interplay between the compositional system (which supports object-
based composition, migration, and checkpointing) and the runtime recommender (which enables dynamic
selection of code modules) leads to a novel runtime framework for grid computations.

It is pertinent to note that our solution approach supports all aspects of application composition over the
Grid – model specification, model execution, and model analysis. Model specification deals with how
representations for different aspects of a computation are brought together to create a representation of the
computation as a whole [Forbus, 1996]. It addresses the ease of specifying Grid computations by the end-
user. Model execution addresses the facility by which such scientific codes (constructed compositionally)
can be scheduled, executed, and deployed over the Grid. Model analysis encompasses the ways by which
performance information from execution is used to evaluate models and compositions, including
supporting the refining and improvement of models. Issues of checkpointing, code instrumentation, and
performance characterization are pertinent here. We use the term compositional modeling to collectively
refer to all of the above three aspects, as they have become well accepted as an integral tenet of Grid
computing.

In this Paper
Section 2 identifies two core computational technologies that form the basis of our solution for runtime
systems support. Section 3 elaborates on how these technologies are integrated to provide novel systems
support for Grid computing. Section 4 identifies a set of “adaptivity schemas” that can be used as
templates for realizing many complex, adaptive, scientific computations. Section 5 presents early results
and outlines work in progress. A concluding discussion placing this work in context of current Grid
computing is provided in Section 6.

2 Core Computational Technologies
Our approach to supporting adaptive compositional modeling on the Grid centers on two core
computational technologies: the Weaves parallel compositional framework, and data-driven runtime
recommender systems. We discuss them in detail in the context of a real scientific application.

2.1 Motivating Application
Our driver application involves the idea of collaborating partial differential equation (PDE) solvers
[Drashansky et al., 1999] for solving heterogeneous multi-physics problems. For instance, simulating a
gas turbine requires combining models for heat flows (throughout the engine), stresses (in the moving
parts), fluid flows (for gases in the combustor), and combustion (in the engine cylinder). Each of these
models can be described by an ODE/PDE with various formulations for the geometry, operator, and
boundary conditions. The basic idea here is to replace the original multi-physics problem by a set of
smaller simulation problems (on simple geometries) that need to be solved simultaneously while
satisfying a set of interface conditions. The mathematical basis of this idea is the interface relaxation
approach to support a network of interacting PDE solvers [McFaddin and Rice, 1992; see Fig. 1].

Figure 1: (left) Multi-physics problem with six subdomains with different PDEs. (right) A network of collaborating
solvers (S) and mediators (M) to solve the PDE problem. Each mediator is responsible for agreement along one of
the interfaces (colored lines).

Mathematical modeling of the multi-physics problem distinguishes between solvers and mediators. A
PDE solver is instantiated for each of the simpler simulation problems and a mediator is instantiated for
every interface to facilitate collaboration between the solvers. The mediators are responsible for ensuring
that the solutions (obtained from the solvers) match properly at the interfaces. The term “match properly”
is defined by the physics - if the interface is where the physics changes - or is defined mathematically
(e.g., the solutions should join smoothly at the interface and have continuous derivatives). Distinguishing
between solvers and mediators allows us to handle mathematical models naturally and elegantly; further,
they can be organized to reflect the hierarchy of the physical structures (in this case, the turbine)
underlying the computation.

In large-scale multi-physics simulations, it is not uncommon to have problems requiring collaboration
between hundreds of solvers; one solver is assigned to each subdomain and the mediators issue
instructions on appropriate boundary condition settings to their adjacent solvers. Once such a “network”
of solvers and mediators is configured, it is scheduled for computation over the Grid. After every
iteration, the mediators might proceed to “adjust” the boundary condition settings to ensure a better
matching of solutions or, if the change of boundary conditions is smaller than the tolerance, might report
convergence.

The need for this application to run effectively on different subsets of a grid - with varied and multilevel
memory hierarchies - is the primary motivation for the research described in this paper. To simplify the
discussion and to set the stage for describing the Weaves framework in the next section, we abstract the
essence of the collaborating PDE solvers application into a relatively simple data-sharing problem. This
problem arises when trying to exploit multiple levels of parallelism in PDE solver codes. We believe it is
a common problem facing computational scientists trying to develop performance-portable codes for the
grid.

Suppose we have several instances of a solver task Si running in parallel. These solvers need not be the
same, e.g., in Figure 1, suppose S1, S2, S3 and S4 are instances of one solver (e.g., a standard finite
difference method with direct Gaussian elimination) , S5 and S6 are instances of another solver (e.g., one
that uses the GMRES iterative method and a suitable preconditioner), and so on. These solvers are
contributing to a shared state maintained by the mediator task Mij. The challenge is to implement codes

exhibiting these characteristics - independent tasks, organized at multiple levels of parallelism, sharing
state amongst themselves at different levels - and to do so transparently. We argue in Section 2.2 that
standard programming models (processes, threads) are not the complete answer. Our emphasis hence is
on a compositional framework that can transparently support arbitrary state sharing for scientific
computations. The Weaves parallel compositional framework embodies our solution approach to this
problem.

The composite PDE solvers application also helps motivate the need for adaptivity in Grid computations;
there are, literally, hundreds of well-defined software modules for supporting various aspects of the
simulation process. There are multiple alternatives for numerical methods (iterative or direct solvers),
numerical models (standard finite differences, collocation with cubic elements, Galerkin with linear
elements, rectangular grids, triangular meshes), and various physical model assumptions and
simplifications (e.g., cylindrical symmetry, steady state, rigid body mechanics, full 3D time-dependent
physics). In addition, there are a variety of interface-relaxation methods [Rice et al., 1999] that can be
implemented by a mediator. Performance information gathered at runtime can be fruitfully used to steer
the dynamic selection of a suitable software module, which must then be linked in at runtime, executed,
and possibly used to close the loop, to guide future compositions. Data-driven runtime recommender
systems help organize the cataloging and mining of performance data for realizing adaptivity in
compositional modeling.

2.2 The Weaves Parallel Compositional Framework
Weaves is a source-language independent parallel framework for object-based composition of unmodified
scientific codes. Weaves works through reverse-compiler analysis; by analyzing compiled ELF object
files, Weaves enables the vast repository of legacy scientific libraries to be seamlessly used in a object-
based compositional framework, without requiring that these codes be written in an object oriented
language. Formally, Weaves

• provides a source language independent framework based on object code analysis
• provides transparent checkpointing/recovery support. Object code analysis automatically

determines the state that needs to be checkpointed and/or restored without user intervention.
• provides support for performance data gathering via code instrumentation.
• supports notions of both spatial and temporal adaptivity (defined later), a critical element of

runtime compositional modeling
• supports runtime migration of fine-grain code modules. As opposed to process migration, Weaves

allows the migration of parts of a composed application over the Grid.

As a compositional framework, perhaps the most important feature of Weaves is the modeling perspective
it brings to bear on scientific computations; this enables scientific codes to be viewed in the context of a
framework that integrates execution, simulation, and modeling of Grid applications.

M 12

S 1 S2

Process

M 34

S3 S 4

Figure 2: Design goal of the Weaves framework. We need to support multiple solvers linked to mediators within a
single process.

Let us revisit the collaborating PDE solvers application from the context of the threads and processes
models. We will illustrate the need for Weaves by a series of examples culminating in a compositional
framework that can support the model shown in Figure 2. For simplicity, assume that S1 and S2 are two
instantiations of the PDE algorithm A1 and S3 and S4 are two instantiations of a different PDE algorithm
(A2).2 From a scalability perspective, the compositional framework should operate within a single
process, with multiple concurrent flows of control.

M12

S1 S2

Process

Figure 3: A simple compositional model with two PDE solvers linked to a single mediator. This composition
addresses a composite PDE problem involving two domains.

Let us start with a simple composition depicted in Figure 3 where two PDE solvers are linked to a single
mediator performing an interface relaxation. To model this interaction, we use a simple process per solver
model as shown in Figure 4a. This model allows a single PDE solver application to be linked to a
mediator. The external references of the PDE solver application will be bound to the mediator. Multiple
such processes can be executed to simulate a network of collaborating solvers. This simple approach has
several problems. The first and most basic problem is that we cannot link multiple solver applications to a
single shared mediator without modifying the application. The second major problem with the process
model arises from scalability concerns. A large network of collaborating PDE solvers will involve tens to

2 This is not a requirement of the Weaves framework. Technically, all the solvers could implement different
algorithms. However, the interesting cases arise when there are multiple instantiations of a given PDE algorithm.

hundreds of interfaces, each of which is a process. Inter-process context switch time will be a major
bottleneck.

M12 M12

S1

Process 1 Process 2

S2

(a) Process per solver model

M12

S1 S2

Thread 1 Thread 2

Process
(b) Threads model

Figure 4: The composition shown in Figure 3 modeled under (a) process per solver model and (b) threads model.
Neither of these models can achieve the composition shown in Figure 3.

To address the above concerns, let us build a new model based on threads as shown in Figure 4b. In the
threads model, the composition shown in Figure 3 can be achieved by modifying the PDE solver
application source to create two threads, or inserting a piece of stub code that creates two threads, with the
start function of each thread set to the entry point of the solver application. As before, the mediator
application is linked to the PDE solver.

The major problem with this approach arises from updates to global variables - in particular, the PDE
solver may not be thread-safe. Since threads share global variables, a solver thread modifying a global
variable will inadvertently change the state of the other – unrelated - solver thread causing erroneous
behavior. Ideally, we need two copies of all the global variables used in the PDE solver. In programs that
are explicitly threaded in design, sharing of global state is intentional. In our case, this sharing is neither
intentional nor necessarily desirable. On the other hand, to create a shared mediator, we need to share
global state within the mediator between the threads running through it.

The threads example illustrates the crux of our problem – conflicting needs – the need to avoid sharing
global state between threads of the solver application and the need for sharing global state between the
threads running through the mediator. The intuition here is that we need a programming model that allows
arbitrary sharing of global state. Such a model can subsume both the thread and process models, since it
can allow both complete sharing of global state as in threads as well as no sharing as in processes This
observation leads us to the first step towards Weaves compositional framework.

As an aside, we mention that recombination of global state can be achieved through an agents model. It is
thus not surprising that the collaborating PDE solvers application has been approached using agents
technology [Drashansky et al., 1999]. The critical observation here is that messages in agent technology
are a powerful code-neutral abstraction for parameter passing and procedure invocation. Effectively,
messages between agents are used to recombine state. For instance, two solver processes are used to
separate their global state. To recombine state, the solver processes communicate with a single mediator
process, whose state is a function of the messages received from the solvers.

2.2.1 Defining the Weaves Framework
The major components of the Weaves programming framework are:

• Module: A module is any object file or collection of object files defined by the user. Modules
have:

o A data context, which is the global state of the module scoped within the object files of
the module, and

o A code context, which is the code contained within the object files that constitute the
module. The code context may have multiple entry point and exit point functions.

• Bead: A bead is an instantiation of a module. Multiple instantiations of a module have
independent data contexts, but share the same code context.

• Weave: A weave is a collection of data contexts belonging to beads of different modules. The
definition of a weave forms the core of the Weaves framework. Traditionally, a process has a
single name space mapped to a single address space. Weaves allow users to define multiple
namespaces within a single address space, with user-defined control over the creation of a
namespace.

• String: A string is a thread of execution that operates within a single weave. Similar to the
threads model, multiple strings may execute within a single weave. However, a single string
cannot operate under multiple weaves. Intuitively, a string operates within a single namespace.
Allowing a string to operate under multiple namespaces would violate the single valued nature of
atomic variables.

• Tapestry: A tapestry is a set of weaves, which describes the structure of the composed
application. The physical manifestation of a tapestry is a single process.

The above definitions have equivalents in object-oriented programming. A module is similar to a class
and a bead - which is an instantiation of a module – is similar to an object. Tapestries are somewhat
similar to object hierarchies. The major exception is that interaction between beads within a tapestry
involves runtime binding. We chose to use our own terminology to (i) avoid overloading the semantics of
well-known OOP terms and (ii) avert the implication that the framework requires the use of an OOP
language.

Strings are similar to threads in that (i) they can be dynamically instantiated and (ii) they share the same
copy of code. However, unlike threads, strings do not share global state. Each string has its own copy of
global state. The main goal here is to avoid inadvertent sharing of state between unrelated instantiations
of an algorithm, without having to modify the algorithm.

Since strings are an intra-process mechanism, we will illustrate their operation by comparing and
contrasting them to threads. A thread’s state consists of (i) an instruction pointer (IP), (ii) a stack pointer
and (iii) copy of CPU registers. Each thread within a process has its own stack frame that maintains local
variables and a series of activation records that describes the execution path traversed by the thread.
When a thread is created, the thread library creates a new stack frame and starts execution at the first
instruction of the function specified by the thread instantiation call. When the thread scheduler needs to
switch between threads, it saves the current IP, current stack frame, and the values in the CPU registers,
switches to the state of the next thread, and starts execution at the IP contained in the thread state.

Strings involve an extension to the operation of threads. Similar to threads, each string has its own stack
frame, which maintains local state. In addition, each string also has a copy of the global variables in an
area called the weave context frame, the start of which is pointed to by a weave context frame pointer. A
weave context defines the namespace of a string. This includes the global variables of all the beads
traversed by a string. Note that some of the beads in a string may be shared between strings.

A string’s state consists of (i) an instruction pointer, (ii) a stack frame pointer, (iii) copy of CPU registers,
and (iv) a weave context frame pointer. When a string is created, the string creation call creates a stack

frame and a weave context frame (if necessary) and copies the current state of the global variables into the
weave context frame. The string creation call also associates a numerical identifier with the newly created
string. Since creating a string involves copying its global variables, the string creation cost depends on the
storage size of the global variables resulting in a higher creation cost than threads. We justify this cost by
noting that it is a one time cost paid at program startup. Also, well-written applications are generally
frugal in their use of global state, which mitigates the impact of the copy operation.

Similar to a thread scheduler, the string scheduler starts execution of the new string at the first instruction
of a user-specified function. When the string library needs to switch between strings, it saves the current
IP, current stack frame pointer, the values in the CPU registers, and the current weave context frame
pointer, switches to the state of the next string and starts execution at the IP contained in the string state.
The inter-string context switch cost is identical to threads.

Selective sharing of state in our framework operates at the level of individual beads. We illustrate the
operation of selective sharing with the example shown in Figure 2 (also repeated in the Figure 5 below).
The tapestry defines 4 weaves <Solver S1, Mediator M12>, <Solver S2, Mediator M12>, <Solver S3,
Mediator M34> and <Solver S4, Mediator M34>, and 4 strings, with each string operating within a single
weave. At run time, context switching between the strings automatically switches the namespace
associated with the string, preserving the sharing specified in the tapestry.

Graphical
User

Interface

Tapestry
configuration

file

Solver
module A1

Mediator
module

Any Compiler

Linker

Loader

Solver A1
Bead S1

Mediator
Bead M12

Tapestry

Process

Create Beads
Link to form Weaves
Define strings

String 1 String 2

Monitor

Solver
module A2

Solver A1
Bead S2

Solver A2
Bead S3

Mediator
Bead M34

String 3 String 4

Solver A2
Bead S4

Figure 5: Interaction between the various components of the Weaves framework.

Figure 5 depicts the design process in the Weaves framework. The design process involves two entities: a
programmer who implements the modules and a composer, who uses a graphical user interface to
instantiate beads and define the various weaves and strings. The result of the GUI composition is a
tapestry configuration file, which is used to load and execute the composed application. Each composed

application also has a module called a monitor that is automatically linked with the composed application.
In the process model, utilities like ps (in UNIX) can be used to query the run time of the process. The
monitor provides a much more powerful IPC (Inter Process Communication) interface to such
functionality. Utilities can query the monitor to determine the current tapestry, beads, strings, and weaves
within a composed application.

2.2.2 Runtime Reconfigurability
The tapestry generated by the GUI is not necessarily a static composition. The Weaves programming
framework allows applications to rewire themselves on the fly in response to dynamic conditions. Two
forms of dynamic application composition are supported in the framework. In the first form, if the
requisite modules are already linked into the original tapestry, Weave-aware applications can modify their
structure by creating new beads, defining weaves, and instantiating strings at run-time. For non-Weave
aware applications, the interface exposed by the monitor can be used to modify the tapestry of a
composed application. These modifications may be manually made by a user at the command line or can
be automatically generated by an external resource monitoring agent.

In the second form of dynamic composition, new code modules can be inserted into a running application
through a modified dynamic library interface. In this mode of operation, the dynamically inserted code is
analyzed at run-time. Dynamically inserted modules can be used in the same manner as statically inserted
modules. This interface provides the full capabilities of Weaves, including arbitrary namespaces and
compositional capabilities, in a run-time compositional framework. We will exploit this capability to
investigate runtime algorithm selection and composition (see Section 3.1).

2.2.3 Scheduling Non-Reentrant Codes
Since the Weaves framework does not require that codes be re-entrant (thread-safe), scheduling poses
several interesting problems. When an operating system or threads scheduler preempts a task, it can
switch the operating context to any other task that is ready to run. In contrast, in the Weaves framework,
preemptive scheduling strategies can cause reentrancy in beads shared at lower layers. If the codes are not
reentrant, this will result in incorrect operation.

We solve this problem by organizing strings into equivalence classes, where each equivalence class
contains strings that share beads. Preemptive scheduling switches between strings of different equivalence
classes. If the preempted string has not traversed a shared bead, preemptive scheduling can also switch
between strings of the same equivalence class. In effect, the scheduler makes constant-time cuts on the
execution of a weaved application to determine if it is “safe” to switch the string context. While this
solution ensures that the weaved application as a whole is making progress, it does not guarantee against
starvation of strings belonging to the same equivalence class.

To guarantee against starvation of strings belonging to the same equivalence class, we insert
continuations for entry/exit point functions in shared modules. The continuations cooperatively relinquish
string control immediately after control returns from traversing a shared bead. A combination of such
cooperative scheduling with traditional preemptive scheduling ensures that as long as there are no
inherent starvation and/or deadlock conditions in the original code, the Weaves framework will not
introduce string starvation. The concluding section contains a discussion on automatic deadlock detection
and recovery for Grid applications.

2.2.4 Tuple Spaces
The notion of selective state sharing in the Weaves programming framework presents a very powerful
mechanism for defining namespaces. Since the definition of a weave permits any set of beads to define a
namespace, any composition that can be represented by a connected graph (or a set of independent

graphs) can be realized by this framework. From an application’s perspective, the definition and operation
of distinct namespaces is transparent. This mechanism presents a powerful compositional framework for
any procedural code.

The Weaves framework also supports the notion of shared tuple spaces. In the current definitions, distinct
beads of the same module have different data contexts, i.e., data sharing occurs at the granularity of an
entire module. To create a shared tuple space, we need fine grain control over the individual members of a
data context.

In order to support shared tuple spaces, from the perspective of the framework, we need mechanisms to
(i) define a shared tuple space and (ii) to selectively share the members of the tuple space across multiple
beads. To define a shared tuple space, application composers can use the graphical user interface to
denote the members of the tuple space or code modules can use a syntactic notation to mark the members
of the tuple space. This information is used at bead creation time to merge references to shared members
of a tuple space.

2.2.5 Automatic Checkpointing and Recovery
A primary goal of the Weaves framework is to support adaptive applications that can rewire themselves
dynamically in response to changing conditions. In the parallel discrete event simulation context, our
view of adaptivity encompasses optimistic algorithms that try to take the best execution path given a set
of available options. However, the path chosen may not always be right, requiring applications to rollback
to a known correct state. As discussed in the introduction, typical HPC applications also require
checkpointing and recovery.

Traditionally, state checkpointing and restoration has been left to individual applications. This
significantly adds to the complexity and maintainability of such codes. Furthermore, event driven codes
add an additional layer of complexity. Since the path of execution through an event driven application is
not known apriori, checkpointing and restoring such applications present significant challenges. Our goal
here is to provide a transparent support framework that can checkpoint and recover state, without
application support.

To provide support for automatic checkpointing and recovery, note that in the Weaves framework, each
string maintains its global variables in the weave context frame and local variables and call invocation
history in the stack frame. This compartmentalizes static state into two well defined regions. We can save
the contents of the stack and weave context frames, effectively saving static state. However, this does not
account for dynamic memory allocated during runtime.

To track dynamic memory allocation, we use a mechanism similar to the one used by memory leak
debuggers. We overload the library calls responsible for dynamic memory allocation ─ malloc(), calloc(),
realloc(), and free() in C. The overloaded calls keep track of the bead identifier, the start of the memory
region and the size of allocated memory.

We now have access to both the static as well as dynamic state of the tapestry, which can be used to
implement checkpointing and recovery. The naive mechanism for checkpointing involves (i) saving the
contents of the stack frame, (ii) saving the contents of the weave context frame, and (iii) copying the
contents of all dynamically allocated memory regions. Restoring application state involves garbage
collection of all dynamic memory allocated after the checkpoint and restoring the state saved during the
checkpoint. It is easy to see that the naive approach is not memory efficient, particularly in our domain
where tapestries can contain hundreds of beads.

To implement an efficient checkpointing mechanism, note that operating systems already have efficient
mechanisms for handling process fork calls, through the use of copy-on-write semantics. A sophisticated
approach to checkpointing can be implemented with the mprotect POSIX system call, which implements
a new light weight version of the copy-on-write mechanism that operates in an intra-process domain.
When a checkpoint is invoked, we mark all data pages corresponding to dynamically allocated memory
and the weave context frame read-only. As the application proceeds, updates to read-only data cause
segmentation faults (SIGSEGV), which are handled by duplicating the offending page and allowing
read/write operation on the duplicate. This mechanism works optimistically, limiting the memory
overhead of checkpointing to only modified data.

2.2.6 Weaves in a Grid Environment
The future of Grid computing hinges on its ability to provide a seamless view of distributed
computational resources. Facilitating this view requires us to reconcile the starvation concerns of large
computational applications that run across distributed resources, with the administrative control needs of
the smaller individual units that comprise the Grid. This leads to one of the most challenging cases for
automatic checkpointing, recovery, and migration – namely, that of large-scale, distributed-memory,
message-passing codes. While this problem is motivated by reliability concerns for parallel codes running
on large clusters, it is especially critical for grid computing codes, where checkpointing and runtime
migration are essential to enable fluidic control over administrative resources. In the last two months, we
have developed a user-level implementation of the TCP/IP stack (as a part of a project on scalable
network emulation) which, combined with the Weaves framework, provides a promising new approach to
checkpointing and runtime migration of parallel codes.

There are several serious issues with checkpointing parallel codes written using MPICH (a popular
implementation of the MPI library) or PVM. First, we need a reliable single process checkpointing tool;
these are not available on all platforms. While a single process checkpointing tool can capture process
state, we also need mechanisms to capture state maintained within the operating system on behalf of the
process. This includes open network socket handles and network data within operating system buffers.
One approach to this problem is to create a consistent global state of the parallel application [Chandy and
Lamport, 1985] and then initiate the checkpoint operation. While this approach works, it still doesn't
enable migration. MPI implementations maintain significant static environment state within themselves,
including IP addresses, hostnames and open TCP connections. To migrate a checkpointed MPI
application, we need mechanisms to update the internal MPI state to reflect the change in the underlying
environment, which makes any implementation of such a system specific to a particular MPI or PVM
codebase.

Our goal is to implement a transparent checkpoint and migration framework for any parallel
communication library that uses the TCP/IP protocol stack. The novel idea here is to use partial
consistency instead of global consistency to derive the unified state of the application. In our notion of
partial consistency, we do not checkpoint state within the operating system or in-flight over the
communication fabric. Instead, we exploit the ability of a reliable communications protocol to mask this
loss of state. The main advantage of this approach is that enables checkpointing at any point in the
execution of a parallel application, including within barrier operations.

In our design, a parallel application is linked to a message passing library (e.g., MPI), which in turn is
linked to our TCP/IP implementation through a standard sockets interface. Our TCP/IP implementation
treats the underlying communication subsystem as an unreliable link and only requires support for two
calls, a transmit call and an inbound receive call. Another interesting feature here is that the
implementation of reliability in our TCP/IP stack is decoupled from real-time by using interval timing,
where the interval durations are preserved across checkpoint/restart procedures.

The main advantage of this design is that the user-level TCP/IP stack provides an additional layer of
indirection, exposing a common IP address and hostname independent of the physical platform or
underlying communication infrastructure. We propose to use the Weaves framework to deliver platform
independent checkpointing and migration facilities. The Weaves framework will checkpoint the entire
application, including the user-level TCP/IP implementation. When a parallel application is migrated, the
user-level TCP/IP implementation is used to abstract the specifics of the target environment from the
application. There are several additional advantages to this approach. First, a parallel application can be
moved to a platform with a different underlying communication infrastructure. Secondly, the same
framework can be used to simulate different physical parallel communication fabrics and analyze the
performance of communication libraries. Finally, this approach enables easy portability of parallel
communication libraries, since they can be developed for TCP/IP and rely on our system to provide the
actual mapping to the physical environment.

2.3 Runtime Recommender Systems
Recommender systems [Ramakrishnan et al., 1998] provide facilities for automatic knowledge-based
selection of solution components on the Grid. They help make selections of algorithms and code modules
by taking into account both problem characteristics and performance considerations. Recommender
systems involve the empirical evaluation algorithms on realistic, often parameterized, test problems, and
interpreting and generalizing the results to guide selection of appropriate mathematical software. They are
the preferred method of analysis in applications where domain knowledge is imperfect and for which our
understanding of the factors influencing algorithm applicability is incomplete. For instance, when solving
linear systems associated with finite-difference discretization of elliptic PDEs, there is little mathematical
theory to guide a choice between, say, a direct solver and an iterative Krylov solver plus preconditioner.
A recommender systems approach is to parameterize a suitable family of problems, and mine a database
of thousands of PDE “solves” over the Grid to gain insight into the likely relative performance of these
two approaches (e.g., see Figure 6). Parameter sweep templates for Grid computing [Casanova and
Berman, 2002] are thus an important tool for designing recommender systems.

In a traditional design of a recommender system [Ramakrishnan and Ribbens, 2000; Houstis et al., 2000],
a database of test problems and algorithms is organized, and performance data is accumulated for the
given problem population. This database of performance data is then mined (generalized) to arrive at
high-level rules that can form the basis for a recommendation (for future problems). A variety of data
mining algorithms are appropriate here (e.g., attribute-value generalizations, inductive logic
programming; see [Houstis et al., 2000]). The MyPythia Grid portal [Houstis et al., 2002] provides many
interfaces to these algorithms, for both the recommender system builder and the recommender system
user. In this system, the data collection phase is distinct from the generalization aspect (we refer to these
as “offline” recommender systems); in other applications, data collection occurs in conjunction with data
mining [Ramakrishnan et al., 2002], so that it can be “steered” to more accurately sample desired regions
of the recommendation space.

In a Grid setting, recommender systems are important aids to application composition, by making
dynamic selections of components (we refer to these as “runtime” recommender systems). Such a facility
is important in many problem domains because: (i) the nature of the problem being solved changes as the
computations are being performed, (ii) the underlying computing platform or resource availability is
dynamic, or (iii) information about application performance characteristics is acquired at runtime, from
the actual computation rather than from offline analysis.

2000
alpha

30

28

24

20

16

12

8

4

0

lfill

 2000
alpha

30

28

24

20

16

12

8

4

0

lfill

Figure 6: (left) Mining and visualizing recommendation spaces for selecting between a GMRES iterative solver
(red) and a direct Gaussian elimination solver (green) to solve an elliptic PDE. α is a parameter controlling the
singularity in the PDE problem (and hence, the ill-conditioning of the corresponding linear system) and lfill controls
the pre-conditioning in the iterative solver. (right) A mined recommendation space with 90% confidence, showing
the region where the GMRES solver is preferred. As α grows larger, it is seen that the lfill parameter must fall
within a narrower range for the iterative solver to be preferred, until eventually the direct solver becomes the
preferred choice. For more details, please see [Ramakrishnan and Ribbens, 2000].

The importance of a runtime recommender is easily seen in applications such as the collaborating PDE
solvers, where selections need to be made of a discretizer, preconditioner, and linear system solver (in
that order). Information needed to make a preconditioning recommendation or linear solver
recommendation is not available until after the PDE has been discretized, hence such recommendations
have to happen at runtime, using dynamic information. Specifically, a runtime recommender monitors a
computational process, detects state-changes, and makes selections of solution components dynamically,
thus aiding knowledge-based application composition at runtime. Designing a runtime recommender is
thus more involved than an offline recommender because the database of problems and algorithm
executions is not readily available and needs to be captured “on the fly”.

2.3.1 Strategies for Runtime Recommendation
The primary problem faced by a runtime recommender is to observe a computational process (as it
unfolds), make recommendations along the way, with the added complexity that feedback (about
recommendations) is not immediate, and will arrive several timesteps (typically unknown) later. This is a
problem reminiscent of reinforcement learning [Kaelbling et al., 1996][Sutton and Barto, 1998], well
studied in the control systems and AI literature (and was one of the main influences in bringing control-
theoretic techniques to realize adaptivity in scientific software; e.g., see [Gustafsson, 1991]). Note that the
task here is more ambitious than mere parameter tuning or building expert systems. The key issue is to
tradeoff the cost of exploring the environment in the short-term with an accuracy improvement in the
long-term. A runtime recommender systems thus grapples with a constant dilemma: should it choose a
solver that it knows has worked before (exploitation) or should it “try” a different solver to see if it might
lead to a performance improvement (exploration)?

Our approach to this problem is to model the scientific application as a non-deterministic, stationary
system (the transition probabilities between states are assumed to be constant to ensure convergence of
the learning algorithms). This network does not need to be handcrafted, but can be constructed online by
the recommender system. For example, in the PDE application, “states” correspond to physical stages of
the computational process and are represented by features such as singularity, current algorithm, order of
the method, and performance criteria (set by the user). The “actions” correspond to choices made by the

recommender, such as “use the ILU preconditioner”, “switch from iterative to direct method”, “decrease
the current order”. The goal now is to learn the utility of taking certain actions in various states. These
utility estimations are summarized in the form of a control policy that chooses the action with the highest
utility. On each step of the interaction, the recommender receives as input some indication of the current
state (such as problem features) and it generates a recommendation as output. This recommendation
changes the state of the system (e.g., at the end of the first stage of PDE solution, information about linear
system characteristics becomes available), and the value of this state transition is communicated back to
the recommender as reinforcement; which then chooses recommendations that will tend to increase the
long-run sum of values of the reinforcement signal. Once again, there are a variety of learning algorithms
for iterative improvement of generalizations.

The recommender begins in a mode that favors exploration over exploitation. These runs are typically
scheduled during idle cycles on our computational grid. Over time, the recommender encounters enough
problems from its database and has explored enough alternatives that it can make an informed judgement
about solution alternatives. At this point, its mode of operation becomes primary exploitative with only a
small percentage of exploitation (to ensure that the learned utility values are current). Such an approach
has been validated for selecting quadrature routines from a space of over 120 algorithms [Ramakrishnan
et al., 2002] and for synthesizing type-insensitive codes for ODEs with both stiff and non-stiff regions
(see Figure 7 for a policy mined by inductive logic programming). The functionality provided by a
runtime recommender can be thought of as automatic determination of control policies to realize
adaptivity in scientific codes. Runtime recommendation is traditionally concerned with code executions
but can also be employed to assess model-based simulations and make selections of system
configurations, as studied in the adaptive control formulation of [Adve et al., 2002].

qvalue(1) :-
 state(beginning), algorithm(none),
 action(choose-non-stiff).

qvalue(1) :-
 state(near-stiff), algorithm(non-stiff),
 estimate < threshold, sv < 10,
 action(switch-to-stiff).

Figure 7: A partially induced control policy mined by a runtime recommender for the task of solving ODEs with
both stiff and non-stiff regions. From the beginning state, the recommender always prefers a non-stiff method (an
Adams-Moulton method), but when its estimates improve its assessment of the evolution of solution components, it
switches to a stiff method (in this case, an implicit A-stable formula). This approach should be contrasted to
classical differential equation software such as GEAR, LSODE, and DIFSUB where such adaptivity is realized
through static decision-making code coupled with the ODE solver.

3 Systems Support for Adaptive Compositional Modeling
To summarize the two core technologies: runtime recommender systems allow the dynamic selection and
composition of code modules and Weaves provides runtime systems support to realize such compositions.
In this section, we further bring out the synergy between these technologies.

From the viewpoint of the Weaves design process, a runtime recommender system acts as the composer,
dynamically determining the code modules and their instantiations. Specifically, the runtime
recommender supplies the tapestry configuration file that specifies the composition graph. From the
viewpoint of the recommender system, Weaves acts as the “end-effector” and provides systems support

for checkpointing algorithm executions and modifying code modules in response to changing problem or
platform characteristics. Figure 8 depicts how Weaves and the recommender system interact to provide an
adaptive runtime framework for Grid computations. Recommendations are made available as a tapestry
configuration file, which are then used to either create dynamic instantiations/code insertions or statically
linked executables. The realized tapestry is then made available through multiple interfaces that guide its
future execution. Note that recommendations happen in the context of a single process (which may have
multiple concurrent control flows). In the next section we show how parts of recommended compositions
can be migrated and scheduled on Grid infrastructures. As Figure 8 shows, the integrated framework
provides transparent application-level resource management and fault tolerance capabilities. Grid services
such as Globus can use these interfaces to implement fault recovery and migration in the context of the
entire Grid infrastructure.

Tapestry
configuration

file

Recommender System

Dynamic/
Static

Loaders

Solver A1
Bead S1

Mediator
Bead M12

Tapestry

Process

String 1 String 2

Monitor

Module Library

Solver A1
Bead S2

Solver A2
Bead S3

Mediator
Bead M34

String 3 String 4

Solver A2
Bead S4

Application Monitoring

Checkpointing
Interfaces

Migration
Interfaces

Grid Services
(Globus)

Resource Management and
Fault Detection/Recovery

Performance
Databases

Problem Specification/
Performance Goals

Grid Infrastructure

Figure 8: Interaction between the runtime recommender system and Weaves in the context of Grid infrastructures.

3.1 Temporal and Spatial Adaptivity
Consider how the interaction between Weaves and runtime recommender systems would work for the
task of adaptive numerical quadrature. Let us start with the collection of 120 quadrature algorithms
described in [Ramakrishnan et al., 2002]. For a given numerical integration problem, the performance
goal is to recommend a suitable quadrature routine such that the number of function evaluations is
minimized. A recommender system (GAUSS) with this functionality is also described in [Ramakrishnan
et al., 2002]. GAUSS can make suitable selections of algorithms from the quadrature library, monitor
their execution, and change its recommendation if its earlier selection failed or otherwise did not satisfy
the performance constraints. GAUSS is more than a polyalgorithm comprising of the 120 algorithms
(where the decision procedures for selection are hardwired); it has the ability to use runtime information
about algorithm performance dynamically as it becomes available. It functions by organizing a database
of parameterized test problems and algorithm executions and uses an online mechanism to continually
generalize from archived performance data.

This mode of operation in GAUSS can be viewed as a form of temporal adaptivity. The Weaves
framework provides two notions of temporal adaptivity. In the first form – called pessimistic temporal
adaptivity – the recommender system can dynamically select an algorithm already compiled into the
executing application (using a form of an if-then-else construct) but doesn’t have the ability to “retract”
its recommendation. For this form of adaptivity to be successful, the recommendation space must be
limited in its choice of algorithms to only those that produce correct results. Pessimistic temporal
adaptivity is thus most suited for the exploitation mode of a recommender system. In the second form –
called optimistic temporal adaptivity – the recommender system can dynamically choose from any
algorithm that suits the purpose, including those that may not produce correct results all the time.
Optimistic temporal adaptivity is ideal for the exploration mode of a recommender system.

Optimistic temporal adaptivity requires runtime systems support for checkpointing and recovery, since we
need to (i) recover from failed instantiations of algorithms, and (ii) ensure that the recovery process
doesn’t result in the recommender system following the “failed” path again. Note that (ii) is a rather
insidious issue. A perfect checkpoint/recovery mechanism will restore the recommender system state to
just before its selection of the failed algorithm, which will result in the recommender system following
the “failed” execution path repeatedly. What is needed is a checkpointing and recovery system that can
provide a tuple (any set of variables defined in the namespace of the executing algorithm) view of the
future, where the tuple presents intermediate results. In addition to pruning the search process of the
recommender system, the tuple may be used to augment the features gathered by the recommender,
helping it make a more informed decision.

Optimistic temporal adaptivity is a very powerful mechanism for supporting runtime recommendation and
composition. The tuple view of the future provides not just algorithm state (in the form of variables
comprising the tuple), but also the entire function invocation history prior to the failure (which includes
the entire sequence of algorithm recommendations exercised). For applications such as adaptive
quadrature, which are based on a divide-and-conquer strategy of repeated problem decompositions and
algorithm recommendations, this feature is particularly important.

Weaves supports a further form of adaptivity called spatial adaptivity, where even the space of algorithms
to be selected for composition is not known until runtime. For instance, consider a molecular electronics
simulation, where a sequence of thousands of linear systems have to be solved to compute the I-V profile
of a single device. The complete realization of such a simulation may span weeks to months. During
execution new solvers may become available - especially in grid settings - which may offer better
performance characteristics. What we need is a mechanism to transparently substitute the solver compiled
into the executing binary with a new solver “on-the-fly” – dynamic function replacement. This notion is

similar to dynamic classloaders in Java™.3 The Weaves framework provides strong support for spatial
adaptivity, including across multiple non-OOP source languages.

3.2 Runtime String Migration
Weaves is inherently a parallel run-time compositional framework. The examples above show the
operation of the framework within the context of a single process. In this mode of operation, the
framework provides load balancing on shared memory multiprocessor architectures by executing different
strings on different processors. This form of load balancing is largely transparent to the design of the
application.

Since the current generation of large parallel supercomputers is based on distributed memory design, we
need to extend the framework to provide similar transparent load balancing capabilities to distributed
memory codes. Currently, distributed memory codes implement their own load balancing. Since we know
the structure of the composed application, we are in a position to both expose additional interfaces as well
as augment existing load balancing capabilities.

In large tapestries composed of tens of thousands of beads, good load balancing is necessary to obtain
reasonable speedup. The scale of the system combined with incomplete knowledge of runtime load makes
it nearly impossible to statically load balance such a system. Dynamic load balancing guided by runtime
analysis of load is necessary to ensure scalability. Our view here is that load balancing in a distributed
memory environment translates to run-time code migration. This will ensure that all participating host
processors experience equal computation and communication loads. The main issue is determining the
resolution of code migration. Should code migration occur at the level of individual beads or something
larger?

To answer this question, let us take a look at the issues involved in code migration at different resolutions.
In the case of an individual bead, we can track its static state but it is much harder to keep track of its
dynamic memory allocation. To see why, let's take the example of a bead that invokes a function within
another bead. The target function allocates an array of pointers, allocates memory to each element of the
array and returns a pointer to the start of the pointer hierarchy. Our overloaded memory allocation calls
will incorrectly attribute the memory allocated to each element of the array to the bead corresponding to
the target function. Without exhaustive analysis and significant runtime support, it is not possible to track
dynamic memory allocation within a bead.

To avoid the above problem, our observation is that while it may not be possible to track the dynamic
memory usage of a single bead, it may be easier to track the total dynamic memory used by a set of beads.
In essence, we are trying to create closed regions of interacting beads ─ an island of beads ─ that
exchange memory between them, but have no connection to other beads. In general such islands of
interacting beads can be found in most applications ─ they represent entities at a higher layer of
abstraction. Graph theoretically, an island of beads represents a closed graph with no external
connections. The modular framework of weaves also aids the process of isolating islands of beads by
forcing designers to look at bead interactions during application composition. The GUI front-end used to
create a tapestry can also be used to mark specific islands of weaves, which then become targets for code
migration. Our target platform ─ a workstation cluster ─ uses the SPMD model of execution [Darema,
2001]. Since the same program executes on all cluster nodes, the necessary code modules either already
exist at the target of the migration, or can be instantiated at run-time through the dynamic library

3 Java implements dynamic classloaders through its VM. Compiled OOP languages such as C++ can do late binding
of function calls at runtime, but the target of the call has to be compiled into the executing binary. Weaves supports
source-language independent late binding, including cases where the target of the call is dynamically loaded and
linked.

interface. Code migration then reduces to the problem of instantiating new weaves at the target node
corresponding to a newly migrated island and migrating the state corresponding to the island. Since
weaved code always uses indexed addressing, the migrated code does not need any code patching to be
functional.

The above analysis ignores a very serious problem with intra-process code migration ─ pointer aliasing.
Traditionally code migration has been handled at the process level, resulting in process migration. Since
each process operates within its own address space, when a process is migrated, it sees the same virtual
memory addresses on the target processor. In our domain, migration occurs at the level of string, which is
an intra-process entity. When a string is migrated, it will not necessarily get the same virtual memory
addresses on the target processor. Code patching will be needed to fix the addresses. This significantly
complicates migration in distributed memory machines.

This problem is even more complex than the above description. To see why, let us take a case where a
bead allocates dynamic memory to a pointer variable ptr. It then sets a second pointer variable ptr1 to ptr,
i.e. ptr1 points to the same memory location as ptr. When we migrate this code, we allocate dynamic
memory at the target machine and set ptr to point to this memory. However, ptr1 is still pointing to the
old memory location from the source processor. There is no guarantee that the same memory location in
virtual memory address region is available on the target processor. Not only do we have to fix memory
addresses allocated dynamically, we also need to ensure that all aliases of memory addresses are fixed
appropriately, a problem known as pointer aliasing.

Pointer aliasing is a significant research issue. Current solutions are based on restricting source language
semantics to prevent pointer aliasing, or executing code within virtual machines. Neither of these
solutions is available to us. We have no control over the source language and emulating code over a
virtual machine will impose unacceptable performance penalties.

To solve this problem, we propose a shared virtual memory approach. Note that pointer aliasing becomes
an issue because of the shared nature of the virtual address space from the perspective of intra-process
migration. In our solution, we statically allocate regions of the virtual address space to participating
processors. The first processor allocates dynamic memory in the region [1,X] MB, the second processor
allocates memory in the region [X, 2X] MB and so on, where the memory addresses are in virtual
memory space. In this model, when a string migrates from a source processor to a destination processor, it
is guaranteed that memory addresses in its VM space are available on the target processor. This solution
effectively bypasses the pointer aliasing problem4.

The sharing of single VM address space across multiple processors imposes size restrictions on the VM
addresses that can be allocated to any single processor, which in turn impacts the dynamic size of an
application. However, this is not as restrictive as it appears at first sight. On a 64 bit processor, we can
allocate 1 TB of VM space to each processor and still support parallel applications that can run on 16
million CPUs - well beyond the scope of current applications and super computers (the calculation
divides the 64 bit space into 40 bit VM addresses and 24 bit CPU identifiers). As the dynamic memory
demands grow, we can allocate more bits to the address space, reduce the maximum number of CPUs that
can participate in the computation and still stay ahead of Moore's Law.

Performing a similar calculation for 32 bit processors shows that the above scheme imposes significant
restrictions. For instance, if we allocate 1 GB of VM space per processor, we can only support
applications that can run on 4 processors, which is definitely not acceptable. To get around this issue, we

4 We have also looked at dynamic VM partitioning schemes. Dynamic partitioning increases the cost of dynamic
memory allocation calls. Hence, we propose a static partitioning scheme.

note that the main 32 bit processor family is based on the Intel x86 instruction set. Starting with the
Pentium Pro family, Intel added 4 additional bits to the addressing, resulting in a 36 bit VM address
space. This allows us to allocate the full 32 bit address space to each processor and support parallel
applications up to 16 CPUs.

Even with the additional 4 bits of VM addressing space, limiting parallel applications to 16 CPUs is
overly restrictive. To ameliorate this condition, we compartmentalize CPUs into VM regions of 16 CPUs
each. Strings can freely migrate within a region and with some restrictions, even across regions. This
solution offers an attractive trade-off between scalability and run-time load-balancing for distributed
memory architectures.

4 Adaptivity Schemas
In working with concerted groups of scientists and engineers engaged in Grid computing, we have
encountered a number of recurring “schemas” capturing how compositional scientific codes should be
configured for adaptive execution. This section outlines these schemas and identifies application contexts
where they are relevant.

Before we begin, it is pertinent to mention that two common modes of high-level Grid problem solving –
viz. parameter sweeps [Casanova et al., 2000], algorithmic bombardment [Barret et al., 1996] – are
easily supported using the Weaves framework. Parameter sweeps embody rich opportunities for state
sharing and overloading of function invocations, and Weaves enables such sweeps to be conducted within
an economy of processes. Offline recommender systems rely on the ability to conduct multi-dimensional
parameter sweeps effectively and economically. Algorithmic bombardment is a speculative strategy by
which multiple algorithms or solution approaches are assigned to a given problem (simultaneously), some
of which may not run to completion and/or may be terminated when they are deemed redundant.
Simplistically, algorithmic bombardment can be implemented efficiently through spatial adaptivity. From
a simulation perspective, however, the end-goals of such bombardment can be achieved more elegantly
through the notions of optimistic temporal and spatial adaptivity. Such a system will not be required to
recover from any failures or revisit an earlier stage in the computation.

The list of adaptivity schemas below (see Table 1) is merely meant to be indicative of the power of our
runtime systems framework and the coverage is not intended to be exhaustive.

Table 1: Adaptivity schemas currently supported in our research.
Adaptivity Schema Example Application Context
Staged Composition Compositional PDE Solver Selection
Adaptation of Problem Decompositions Numerical Quadrature, Adaptive Sorting
Coordinated Problem Solving Interface Relaxation Algorithms
Algorithm Switching ODEs, Number Factoring
Control Systems Deriving Controllers for Algorithm Speedups
Active Mining of Recommendation Spaces Qualitative Assessment for Matrix Computations
Graphs of Models Multi-paradigm Performance Profiling

4.1 Staged Composition
Staged composition addresses the sequential selection and execution of code modules in scientific
computations. It is important in problem domains that are characterized by partial observability. In this
schema, code fragments from a library are composed at runtime to satisfy various general and domain-
specific constraints on their structure. For instance, in the PDEs domain, the code fragments would

correspond to choices of discretizer, pre-conditioner, and linear system solver. Since information about
application performance characteristics is often acquired during the actual computation, rather than
before, staged composition is a necessary feature in many application domains.

At each stage, the runtime recommender uses any of the features assessed and mined performance data to
make a selection for a code module. In addition, the recommender can exploit a variety of considerations
for staged composition: (i) domain-specific restrictions, (ii) interaction heuristics, and (iii) behavioral and
performance characteristics. Domain-specific restrictions refer to both syntactic and semantic constraints
on compositional modeling. An example of a syntactic restriction is that a compositional PDE solver must
activate a discretizer, indexer, and linear system solver, in that order. A different permutation of these
parts does not make syntactic sense. An example of a semantic restriction is that a Dyakunov algorithm
requires that its input be in self-adjoint form. Interaction heuristics refer to considerations that bridge the
various stages of the compositional process. Behavioral and performance issues are used to denote
considerations such as “the main cost to solving a PDE is usually that of solving the linear system
associated with it”, and “Sharp ridges and other difficulties such as re-entrant corners cause difficulties in
the estimation of convergence.”

A runtime recommender can use such considerations to prune the search space of code modules and scale
its functionality to large domains. In this model-based approach, the sequence of stages in a composition
is captured using a Markov decision process and the utilities of states are directly estimated. Then, given
an initial state, the runtime recommender would evaluate the various choices (of algorithm components)
and choose the one that leads to the state with the highest utility.

4.2 Adaptation of Problem Decompositions
Many scientific computations are characterized by a recursive divide-and-conquer strategy, with
algorithm selection happening at each level of the recursive invocation. Classical examples are adaptive
numerical quadrature and adaptive sorting on parallel architectures. With the Weaves framework, the
runtime recommender has the capability to backtrack both breadthwise and depthwise in the recursive
function invocation history. This means that any form of branch-and-bound algorithm can be easily
implemented. Notice that the breadthwise capability arises from the parallel compositional nature of the
Weaves framework.

To curtail the potential explosive growth in space complexity, the runtime recommender must cleverly
choose an intermediate representation that is indicative of the problem characteristics and, at the same
time, can be cheaply evaluated when necessary. This is because at each backtrack point, the recommender
has to make a judgement of code module and execution path. The choice of the intermediate
representation is a domain-specific issue but we can give an indication of what it might look like. In the
case of recommending numerical quadrature algorithms, it is of critical interest to assess features of the
integrand such as the presence of a singularity, whether it is an end-point singularity, whether the
integrand is smooth in the interval, and whether it exhibits an oscillatory behavior of non-specific type.
These features are sometimes impossible to determine (e.g., when the integrand is provided only as a
software routine). One solution approach is to first model the dynamic selection of quadrature nodes by a
general purpose adaptive code such as QAGS [Piessens et al., 1983] and then use the layout of these
nodes as the actual representation of the function. This requires that we employ optimistic temporal
adaptivity in order to be able to successfully backtrack and later follow a suitable integration algorithm.

4.3 Coordinated Problem Solving
The collaborating PDE solvers application described earlier falls in this category. Here, adaptivity is the
responsibility of one/some of the weaved code modules themselves (in this case, the mediators), and
which coordinates the functioning of other code modules. Note that the structure of the composition –

shared elements and multiple flows of control (see Fig. 1) - is naturally prone to single-cycle deadlock.
While an implementation may be carefully instrumented to avoid deadlocks, the Weaves framework
enables us to use the natural, underlying, problem representation and rely on runtime systems support for
deadlock detection and recovery. The discussion section contains details of this mode of operation.

4.4 Algorithm Switching
Algorithm switching refers to the case where the problem being solved remains the same but the currently
executing algorithm has to be replaced with another, dynamically. This facility is critical in solving ODEs
with both stiff and non-stiff components, solving certain categories of linear systems, and integer
factoring. For instance, the ODEs underlying many biological cell cycle models alternate between being
stiff and non-stiff several times over the region of integration. In addition, properties such as stiffness are
really a facet of both the ODE and the algorithm used to solve it. Algorithm switching is relevant here
because our understanding of the problem improves as the computation proceeds. LSODE [Petzold, 1983]
is an example of a real scientific code that embodies an algorithm switching mechanism, but as mentioned
earlier the switching procedure is hardwired. It is sometimes “overcautious” to prevent thrashing between
the two categories of algorithms. This is because, since stepsize selection is dependent on error estimates,
situations involving misleading estimates can cause either a premature termination of methods or a switch
to an unstable method. A runtime recommender can more carefully assess the suitability of algorithm
switching by taking into account problem characteristics and runtime information, not otherwise available
to the basic ODE algorithm.

In other applications, algorithm switching is important because the initial choice of algorithm fails. Here,
it is imperative that we are able to use results and byproducts from the first algorithm to “seed”
subsequent algorithm recommendations. For instance, in crypto-challenges such as integer factoring
[Silverman and Wagstaff, 1993], we might switch to the quadratic sieve algorithm when the elliptic curve
method fails.

4.5 Control Systems
An algorithm control system can be modeled with various configurations of the runtime recommender in
the problem solving loop. More fundamentally, many classical formulations of control systems can be
realized in scientific codes. For instance, a simple form of derivative-based control was used by Hovland
and Heath [Hovland and Heath, 1997] to achieve an adaptive control policy for the SOR (Successive
Over-Relaxation) algorithm. This is shown to be more powerful than using a fixed one with the optimal
value of the over-relaxation parameter!

Similarly, adaptive control formulations are common in solving ODEs and automatic quadrature. In the
former, the problem of stepsize selection can be thought of as designing a suitable controller (P, PI, PD,
or PID formulations) around the basic numerical approximation. Automatic quadrature algorithms
embody control systems because they must inherently assess the suitability of their approximations by
deriving error estimates (often using approximations of successive orders).

A runtime recommender system extends such control system formulations into the realm of actor-critic
models; the actor is the recommender that makes selections of solution components and the critic
captures the improvement in how the recommender is itself assessed. Both the actor and the critic are
implemented as learning algorithms. As the critic is learning to exercise better judgement, the actor
benefits from the improved assessments, leading to a closed-loop control system.

4.6 Active Mining of Recommendation Spaces
In assessing many recommendation spaces, it is important to selectively sample and actively collect data,
for the sole purpose of improving the confidence in the recommendation. For instance, in qualitative
assessment of Jordan forms [Ramakrishnan and Bailey-Kellogg, 2002], data points are actively collected
at specific perturbations in order to determine the most probable Jordan form of a matrix. This adaptivity
schema iterates between a code execution (for collecting a data point), refining the recommendation
(another code execution), and repeating these steps until a desired functional is minimized. This idea is a
central ingredient of the US National Science Foundation’s recent thrust for Dynamic Data-Driven
Application Systems (DDDAS; [Darema, 2002]).

Another critical application arises in integrating data from measurements and data from performance
evaluation of codes, to improve confidence in a model. A popular example is biological cell cycle models
(e.g., for simulating the Golgi apparatus) where rate constants are collected from measurements (stored in
files), and must be reconciled with simulation results (available from code executions).

4.7 Graphs of Models
In this final adaptivity schema, adaptivity is itself factored as operations on a graph and the task of
runtime recommendation reduces to traversing this graph, to achieve user-specified criteria. For instance,
in the performance modeling of the Sweep3D code ([Koch et al., 1992]; a benchmark for discrete-
ordinates neutron transport), codes are available for analytical modeling, low-level simulation, and actual
system execution [Adve et al., 2000]. Each node in the “graphs of models” corresponds to one model
family, and the edges denote conditions and constraints to be satisfied (or achieved) when switching from
one model to another. Consider two scenarios of Sweep3D modeling: one might (i) model the machine
parameters accurately, taking into account processor components, memory components (buffers etc.) and
transport components (interfaces to caches), or (ii) one might replace all machine parameters by picking
one of the analytical models. Thus, moving from (i) to (ii) in the models graph might take place under the
constraint that over 65% of the parts of the composed application need to be removed. Given end-to-end
performance constraints, the runtime recommender then attempts to perform a means-end analysis on the
induced graph, leading to a satisficing model sequence, that involves both models and the edges
connecting them (notice that there may be more than one edge between two model choices). Preliminary
results for this application are reported in [Houstis et al., 2002].

5 Early Results

5.1 Weaves: Implementation and Evaluation
The core of the Weaves compositional framework is the abstraction of a weave, which allows an
application composer to define arbitrary namespaces over a composed application. To implement the
weave abstraction, we need a data structure that can efficiently capture the state separation and state
recombination needs of the compositional framework.

Before we discuss the specifics, note that the goals of our compositional framework place additional
constraints on the implementation of the weave abstraction. First, our transparency requirement states that
the solution should be transparent to the application. Since, the application may be written in any
programming language, the transparency requirement precludes modification to the source code to
implement the namespace abstraction. Second, from a scalability perspective, the implementation should
be efficient. In particular, we need to minimize context switch time between the various namespaces
defined in the composed application.

To meet the transparency requirement, the implementation of the namespace abstraction works by
analyzing the Executable and Linking Format (ELF) object files produced by any compiler. ELF is a
public domain file format used to represent both object code as well as the final executable on most UNIX
systems. Our current prototype is implemented on the Linux operating system running on Intel x86
architectures. Since the implementation only depends on the ELF file format, it can be easily ported to
other operating systems/architectures. Furthermore, we anecdotally note that the features of the ELF file
format used by our implementation are common to object file formats. Hence, it should be possible to
extend the prototype to support other object file formats as well.

The ELF file format uses the Global Offset Table (GOT) data structure to access global state in an
application. The GOT data structure maintains an array of pointers (instead of data values), with each
pointer referring to a global data variable. To access data, applications first index into the GOT data
structure to get a pointer to the data and then use the pointer (and possibly an offset) to retrieve the data
value. The number of entries in the GOT structure is proportional to the number of variables and is
independent of the size of each variable. For instance, an array variable has a single entry in the GOT
structure. The observation here is that the GOT defines the namespace of the application. Typically, a
program contains a single GOT structure reflecting the single namespace within an application. However,
by appropriately defining multiple GOT structures, it should be possible to create multiple namespaces
within a single ELF executable.

The problem with the basic GOT structure is that compilers hardcode the base address of the GOT
structure and the index into the GOT at compile time. To implement multiple namespaces, we need to
create multiple GOT structures and, at runtime, copy them over to the fixed base address generated by the
compiler. This operation is expensive since its cost is proportional to the number of global variables,
which can potentially be large.

Instead, we note that compilers produce relocatable code (for instance, the command line option –fPIC on
the gcc family of compilers) to support dynamic libraries. In relocatable codes, the base of the GOT
structure is pointed to by a base register. All indexed accesses into the GOT are made with reference to
the current value of the base register. The use of relocatable object code and indexed access to the GOT
forms the basis of our implementation.

To implement the weave abstraction, we create a new GOT structure for each distinct weave in the
composed application. To implement state separation between beads belonging to different weaves, we
first create copies of the data and point the GOT entries in the weaves to the distinct copies of the data. To
enable state recombination between weaves sharing a bead, we set the pointer in the GOT entries in the
different weaves to point to the same data value. The double indexed nature of the GOT structure enables
state separation/recombination at the resolution of a single data variable, which can be used to implement
arbitrary data sharing at both the tuple space and module levels.

To implement the string abstraction, note that a string is really a thread operating under a user specified
namespace. Since we have a mechanism to create the namespace, context switching between strings
involves context switching the thread state and switching the namespace. What we need here is an
efficient mechanism for switching namespaces.

To switch namespaces, we note that the GOT structure is accessed through a base register (%ebx in our
current implementation). Hence, context switching between namespaces merely involves changing the
base register to point to a different GOT structure, a single instruction move operation, which results in a
weave context switch time that is identical to thread context switch time. Our current implementation of
the Weaves framework works over both POSIX Threads (pthreads) as well as the GNU Portable Threads
(Pth) thread libraries.

To implement spatial adaptivity, we need mechanisms to (i) dynamically insert/remove functions and (ii)
implement dynamic function overloading. In addition, for flexibility reasons, spatial adaptivity should
operate at the granularity of a single weave - beads in distinct weaves may have different implementations
of a similarly named function.

Dynamic code insertion/removal can be implemented through a runtime interface to dynamic libraries,
which “weaves” them on-the-fly. To see how (ii) can be implemented, notice that it is similar to a runtime
version of latebinding virtual functions in OOP. Such dynamic function overloading can be used to
transparently change functional implementations. The Weaves framework achieves this effect through an
interesting use of the GOT namespace. Traditionally, dynamically linked functions are referenced through
a single procedure linkage table (PLT). Our goal of spatial adaptivity requires multiple PLT structures,
with each PLT referring to functional bindings in a single weave.

Instead of modifying the memory image of an executable to create multiple PLT structures, we chose to
direct the compilation process through an intermediate assembly code generation stage. Here, we patch
the assembly code to indirect functional references through the GOT, instead of the PLT. The initial PLT
is folded into the GOT structure. This process extends the Weaves namespace abstraction to include both
code and state, which is almost identical to the OOP view of an object. The namespace view allows us to
change the function pointer in each distinct GOT enabling namespace specific function bindings. This
mechanism achieves both dynamic function binding as well as primitive function overloading capabilities
through weave specific function signatures.

We ran a series of experiments to compare the context switch time under the threads, processes and
weaves programming models. In this experiment, we created a baseline application that implements a
calibrated delay loop (busy wait). We then implemented threads-, processes-, and weaves- versions of the
application. In each of these versions, there are n independent flows of control over the same code, where
each flow of control executes a calibrated delay loop, which does 1/nth the work of the baseline
application. We then measure the total time taken to execute the application under each of these models.
Since each of the control flows does 1/nth of the work and there are n flows, the total time taken should
the same as the baseline calibrated delay loop case, except for an additional context switching cost.

Figure 9 shows the results of the experiment on a single processor AMD Athlon™ workstation running
the Linux operating system. The results show the run time for five cases: (a) baseline calibrated delay
loop, (b) pthreads threads library, (c) Pth threads library, (d) processes, (e) Weaves over pthreads, and (f)
Weaves over Pth. The results clearly show that the weaved implementations are significantly faster than
processes, even in this simple case, where the copy-on-write semantics of the fork() call are very
effective. Furthermore, the run time of weaved implementation of pthreads is very close to the base run
time of pthreads alone. The marginal variation in runtime is due to the slightly higher weave creation cost,
which is included in the run time. Also, the pthreads implementation is relatively efficient, since the
Linux kernel includes operating system support for it.

However, in the case of Pth, the run time of the weaved implemented is higher than the base Pth case.
This increase in runtime is because unlike pthreads, Pth is a user-level library and hence suffers from
timer inaccuracies inherent in user-level library implementation.

100

110

120

130

140

150

160

170

180

0 100 200 300 400 500 600 700 800 900 1000

Number of Control Flows

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Processes
Pthreads
Pth
Weaves/Pthreads
Weaves/Pth
Baseline

Figure 9: Comparison of inter-flow context switch time in the threads, processes, and weaves programming models.
The baseline single process application implements a calibrated delay loop of 107 seconds.

5.2 Experiments in Adaptive Runtime Composition
A number of scientific applications have been or are currently being created using the runtime systems
support framework described in this paper. These include:

• A weaved version of the Sweep3D code suitable for performance characterization over the Grid
• Compositional PDE solvers for multi-domain, multi-physics problems
• A runtime recommender system for adaptive numerical quadrature
• Iterative assessment of spectral portraits of matrices by active mining
• Adaptive ODE algorithm switching for simulating biological cell cycle models
• Dynamic selection of linear system solvers for molecular electronics simulations

Due to space considerations, we describe only the first application below, which embodies the “graphs of
models” adaptivity schema described earlier. The role of a recommender system for Sweep3D
characterization is well motivated in [Adve et al., 2000]; preliminary results for a recommender built on
this idea are presented in [Houstis et al., 2002]. To avoid duplication, we focus here on how the Sweep3D
application has been weaved and an assessment of its performance characteristics. The reader should keep
in mind the larger context in which such a performance model is then used to drive the characterization of
large-scale scientific applications.

5.2.1 Sweep3D
The main characteristic of Sweep3D is that it uses no global variables. Since the application only relies on
local state, multiple instantiations of local state should be enough to create a VM abstraction. This
characteristic makes Sweep3D inherently thread-safe, which enables its modeling by either the threads or
process models. However, since the application is written in Fortran 77, with dynamic array extensions,
modeling with the threads and processes models present interesting implementation problems. While
trying to model the application using POSIX threads, we found that there was substantial global state in
the .data section of the ELF executable, a Fortran compiler issue, which essentially made the code-base
“thread unsafe”. Weaving the Sweep3D code-base created independent namespaces, resulting in a
thread-safe version.

To support the message passing primitives used by Sweep3D, we created a simple threaded MPI
emulator, which implements only the nine MPI primitives used by Sweep3D. To ensure correctness, the
MPI emulator implementation follows the guidelines set forth in the MPI specification. Our MPI emulator
is intended as a test prototype and is neither as comprehensive nor as capable as a complete MPI
implementation.

In the weaved implementation, we create n distinct virtual machines, each of which executes an
independent instantiation of the Sweep3D application. To do this, we create n distinct Sweep3D beads
and n weaves, where each weave has a distinct Sweep3D bead and a shared emulator bead. Each weave
also has a single string associated with it. The n distinct virtual machines run on a single processor
workstation.

We compared the performance of our single processor weaved implementation of Sweep3D against
measured values from real runs for up to 150 processors. Measurements for the real runs were made on
our 200 processor cluster (1GHz AMD Athlon ™ processors over Myrinet™) Anantham. Since the
Sweep3D application performs its own timing measurements, we compared the timing numbers (CPU
Time) of the weaved version of Sweep3D with the measurements from actual runs. The two input files
(50x50x50 and 150x150x150 decompositions) provided in the Sweep3D distribution were used to drive
the Sweep3D application.

For upto 150 processors, the timing results from the weaved implementation and the actual runs were
consistent to within 0.2%. Furthermore, we tested the weaved version of Sweep3D with over 1000
weaves on a single processor. The variation in the timing results between multiple runs was within 0.2%.
This clearly shows that even at high levels of scalability (over 1000 weaves/processor) context switch
time does not impact the efficacy of our runtime compositional framework.

6 Discussion
This paper has described a novel runtime compositional system for supporting adaptive scientific
computations on the Grid. Weaves serves as a true generalization of the threads and processes models of
programming and provides immediate benefits in object-based composition, checkpointing, migrating,
and dynamic reconfiguration of scientific applications. Runtime recommender systems encapsulate
knowledge about which solution components perform well (and for which situations) and provide
intelligent decision support for configuring and managing large-scale computations. Together, they
constitute a powerful mode of developing and deploying adaptive grid applications.

The work presented here has interesting parallels to research in many different areas – we survey a
collection of references topically. At a basic level, Weaves’s capabilities as a programming model can be
compared to that of distributed OO [Gannon and Grimshaw, 1998], parallel programming primitives
[Foster, 1996; Skillicorn and Talia, 1998], agent-based composition [Drashansky et al., 1999], and
service-based systems integration [Foster et al., 2002; Rana and Walker, 2001]. The design of the Weaves
system bears a strong resemblance to the OO framework of Mentat propounded in [Grimshaw et al.,
1996]. However, unlike Mentat, which requires creating code objects in an OO language, Weaves can
create an object based framework from code written in any language, allowing the reuse of the vast
repository of legacy codes.

In any parallel compositional framework of the type presented here, deadlock detection and recovery pose
serious concerns. This issue is particularly problematic for us due to the dynamic nature of our
framework, which prevents a priori analysis of deadlock scenarios. In ongoing research, we are working
on implementing automatic mechanisms for transparent detection and elimination of single cycle
deadlocks. The basic mechanism works by implementing functional continuations of mutual exclusion

calls. Before acquiring a mutual exclusion lock, the continuations automatically (i) associatively track the
strings and the bead invoking the mutual exclusion lock and (ii) checkpoint the beads in the string
invoking the mutual exclusion call. Single cycle deadlock can then be detected through cycles in the
history of acquired mutual exclusion locks. The actual detection mechanism can be implemented through
a checkpoint extension to the monitor interface, which itself can be guaranteed to be deadlock free. In this
setup deadlock recovery reduces to (i) choosing a candidate victim string and (ii) rolling back the victim
string to its checkpoint state just prior to acquiring the lock.

Significant research has also been conducted to realize adaptivity in distributed scientific computations
are well studied, e.g., in the contexts of performance modeling [Vraalsen et al., 2001; Adve et al., 2002],
application tuning [Chang and Karamcheti, 2001], and meta-modeling and control [Ribler et al. 2001;
Kennedy et al., 2002]. Many of these applications are focused on selecting system configurations,
identifying optimal application parameters, and exploiting opportunities for application scheduling over
the Grid. The notion of runtime recommendation presented here applies more broadly to selecting
algorithms and code modules, and the knowledge-based framework allows application-specific context
about the suitability of algorithms to be exploited. The algorithmic framework used for runtime
recommendation (namely, reinforcement learning) is very powerful, and is part of a larger family of
strategies for adaptive control of algorithm executions.

As Grid infrastructure improves and newer applications are explored, we believe the importance of Grid
programming primitives will be better appreciated. It will be especially crucial that the programming
primitives allow rich forms of adaptivity to be specified and captured without the need for low-level
system configuration. There are many recent steps taken in this direction (e.g., the compiler directed
frameworks described in [Adve et al., 2001; Adve and Sakellariou, 2000]). The central idea here is to
encode adaptivity as operations on a suitably defined task graph, which serves as an intermediate
representation of the dynamic behavior of a grid application. In addition to operationalizing adaptivity,
such a representation allows systematic performance characterization of scientific applications using
multiple methodologies [Browne et al., 2000]. In our work, the intermediate representation is the purview
of the runtime recommender but dynamic operations of spatial and temporal adaptivity are handled by the
checkpointing and composition framework supplied by Weaves. We are currently in the process of
defining a language for declaring search primitives (akin to a branch-and-bound operation for optimistic
simulation) that can be used as building blocks of adaptivity. The advantage with this formulation is that
adaptivity is taking place at the level of code modules and hence can be made as coarse or fine grained as
necessary. It also allows for ease of specification by the grid application developer.

The eventual success of grid computing will lie in “what it lets you get away with.” By factoring support
for adaptivity in a runtime recommender system and operationalizing parallel composition,
checkpointing, and migration using the Weaves framework, the ideas presented here allow us to
transparently realize the promise of adaptive Grid applications.

Acknowledgements
This work is supported in part in US National Science Foundation grants EIA-9974956, EIA-9984317
(CAREER), EIA-0103660, and EIA-0133840 (CAREER).

7 References
V.S. Adve, A. Akinsanmi, J.C. Browne, D. Buaklee, G. Deng, V. Lam, T. Morgan, J.R. Rice, G. Rodin,
P. Teller, G. Tracy, M.K. Vernon, and S. Wright, Model-Based Control of Adaptive Applications: An
Overview, in Proceedings of the Next Generation Software Workshop, International Parallel and
Distributed Processing Symposium (IPDPS’02), Fort Lauderdale, FL, Apr 2002.

V.S. Adve, R. Bagrodia, J.C. Browne, E. Deelman, A. Dube, E.N. Houstis, J.R. Rice, R. Sakellariou, D.J.
Sundaram-Stukel, P.J. Teller, and M.K. Vernon, POEMS: End-to-End Performance Design of Large
Parallel Adaptive Computational Systems, IEEE Transactions on Software Engineering, Vol. 26, No. 11,
pages 1027-1048, Nov 2000.

V.S. Adve, V.V. Lam, and B. Ensink, Language and Compiler Support for Adaptive Distributed
Applications, in Proceedings of the ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OM’2001), Snowbird, Utah, 2001. Also available as Technical Report UIUC-DCS-
R-2001-2220, University of Illinois, Urbana-Champaign, March 2001.

V.S. Adve and R. Sakellariou, Application Representations for Multi-Paradigm Performance Modeling of
Large-Scale Parallel Scientific Codes, International Journal of High Performance Computing
Applications, Vol. 14, No. 4, pages 304-316, Winter 2000.

R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, C. Romine, Algorithmic Bombardment for the Iterative
Solution of Linear Systems: A Poly-Iterative Approach, Journal of Computational and Applied
Mathematics, Vol. 74, No. 1-2, pages 91-109, 1996.

F. Berman, G. Gox, and T. Hey, The Grid: Past, Present, and Future, Chapter 1 in Grid Computing:
Making the Global Infrastructure a Reality, F. Berman, G. Fox, and T. Hey (editors), Wiley, Feb 2003.

J.C. Browne, E. Berger, and A. Dube, Compositional Development of Performance Models in POEMS,
International Journal of High Performance Computing Applications, Vol. 14, No. 4, pages 283-291,
Winter 2000.

H. Casanova and F. Berman, Parameter Sweeps on the Grid with APST, Concurrency and Computation:
Practice and Experience, Vol. 14, No. 13-14 (Special Issue on “Grid Computing Environments”), Dec
2002.

H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The AppLeS Parameter Sweep Template: User-
Level Middleware for the Grid, in Proceedings of the Supercomputing Conference (SC’2000), Dallas,
TX, Nov 2000.

K.M. Chandy and L. Lamport, Distributed Snapshots: Determining Global States of Distributed Systems,
ACM Transactions on Computer Systems, Vol. 3, No. 1, pages 63-75, Feb 1985.

F. Chang and V. Karamcheti, A Framework for Automatic Adaptation of Tunable Distributed
Applications, Cluster Computing: The Journal of Networks, Software, and Applications, Vol. 4, No. 1,
pages 49-62, 2001.

F. Darema, The SPMD Model: Past, Present, and Future, in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 8th European PVM/MPI Users Group Meeting, Y. Cotronis and J.
Dongarra (editors), Santorini, Thera, Greece, Sep 2001.

F. Darema, Dynamic Data-Driven Application Systems, in Process Coordination and Ubiquitous
Computing, D.C. Marinescu and C. Lee (editors), CRC Press, 2002.

T.T. Drashansky, E.N. Houstis, N. Ramakrishnan, and J.R. Rice, Networked Agents for Scientific
Computing, Communications of the ACM, Vol. 42, No. 3, pages 48-54, March 1999.

K.D. Forbus, Qualitative Reasoning, in The Computer Science and Engineering Handbook, A. Tucker
(editor), pages 715-733, CRC Press, 1996.

I. Foster, Compositional Parallel Programming Languages, ACM Transactions on Programming
Languages and Systems, Vol. 18, No. 4, pages 454-476, July 1996.

I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual
Organizations, International Journal of Supercomputer Applications, Vol. 15, No. 3, pages 200-222, Fall
2001.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke, Grid Services for Distributed Systems Integration, IEEE
Computer, Vol. 35, No. 6, pages 37-46, June 2002.

G. Fox, D. Gannon, and M. Thomas, Overview of Grid Computing Environments, Chapter 20 in Grid
Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox, and T. Hey (editors), Wiley,
Feb 2003.

D. Gannon and A.S. Grimshaw, Object-Based Approaches, in The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman (editors), pages 205-236, Morgan Kaufmann, 1998.

A.S. Grimshaw, J.B. Weissman and W.T. Strayer, Portable Run-Time Support for Dynamic Object-
Oriented Parallel Processing, ACM Transactions on Computer Systems, Vol 14, No. 2, pages 139-170,
May 1996.

K. Gustafsson, Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta Methods,
ACM Transactions on Mathematical Software, Vol. 17, No. 4, pages 533-554, Dec 1991.

E.N. Houstis, A.C. Catlin, J.R. Rice, V.S. Verykios, N. Ramakrishnan, and C.E. Houstis, PYTHIA-II: A
Knowledge/Database System for Managing Performance Data and Recommending Scientific Software,
ACM Transactions on Mathematical Software, Vol. 26, No. 2, pages 227-253, June 2000.

E.N. Houstis, A.C. Catlin, N. Dhanjani, J.R. Rice, N. Ramakrishnan, and V.S. Verykios, MyPYTHIA: A
Recommendation Portal for Scientific Software and Services, Concurrency and Computation: Practice
and Experience, Vol. 14, No. 13-14 (Special Issue on “Grid Computing Environments”), Dec 2002, to
appear.

P. Hovland and M. Heath, Adaptive SOR: A Case Study in Automatic Differentiation of Algorithm
Patameters, Technical Report ANL/MCS-P672-0697, Argonne National Laboratory, 1997.

L.P. Kaelbling, M.L. Littman, and A.W. Moore, Reinforcement Learning: A Survey, Journal of Artificial
Intelligence Research, Vol. 4, pages 237-285, 1996.

K. Kennedy et al., Toward a Framework for Preparing and Executing Adaptive Grid Programs, in
Proceedings of the Next Generation Software Workshop, International Parallel and Distributed
Processing Symposium (IPDPS’02), Fort Lauderdale, FL, Apr 2002.

K.R. Koch, R.S. Baker, and R.E. Alcouffe, Solution of the First-Order Form of the 3D Discrete Ordinates
Equation on a Massively Parallel Processor, Transactions of the American Nuclear Society, Vol. 65, No.
198, 1992.

C. Lee and D. Talia, Grid Programming Models: Current Tools, Issues, and Directions, Chapter 21 in
Grid Computing: Making the Global Infrastructure a Reality, F. Berman, G. Fox, and T. Hey (editors),
Wiley, Feb 2003.

H.S. McFaddin and J.R. Rice, Collaborating PDE Solvers, Applied Numerical Mathematics, Vol. 10,
pages 279-295, 1992.

D.A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and N. Treuhaft, Recovery-
Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies, UC Berkeley
Computer Science Technical Report UCB-CSD-02-1175, March 15, 2002.

R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner, Quadpack, New York,
Springer, 1983.

N. Ramakrishnan and C. Bailey-Kellogg, Sampling Strategies for Mining in Data-Scarce Domains,
IEEE/AIP Computing in Science and Engineering, Vol. 4, No. 4 (Special issue on “Data Mining in
Science”), pages 31-43, July/Aug 2002.

N. Ramakrishnan, E.N. Houstis, and J.R. Rice, Recommender Systems for Problem Solving
Environments, in Working Notes of the AAAI-98 Workshop on Recommender Systems, H. Kautz (editor),
pages 91-95, AAAI/MIT Press, 1998.

N. Ramakrishnan and C.J. Ribbens, Mining and Visualizing Recommendation Spaces for Elliptic PDEs
with Continuous Attributes, ACM Transactions on Mathematical Software, Vol. 26, No. 2, pages 254-
273, June 2000.

N. Ramakrishnan, J.R. Rice, and E.N. Houstis, GAUSS: An Online Algorithm Selection System for
Numerical Quadrature, Advances in Engineering Software, Vol. 33, No. 1, pages 27-36, Jan 2002.

O.F. Rana and D.W. Walker, Agent based Service Integration for Distributed Problem Solving
Environments, in Proceedings of the 34th Annual Hawaii International Conference on System Sciences,
Maui, Hawaii, Jan 2001.

R.L. Ribler, H. Simitci, and D.A. Reed, The AutoPilot Performance-Directed Adaptive Control System,
Future Generation Computer Systems, Vol. 18, No. 1, pages 175-187, 2001.

J.R. Rice, P. Tsompanopoulou and E.A. Vavalis, Interface Relaxation Methods for Elliptic Partial
Differential Equations, Applied Numerical Mathematics, Vol. 32, pages 219-245, 1999.

R.D. Silverman and S.S. Wagstaff, A Practical Analysis of the Elliptic Curve Factoring Algorithm,
Mathematics of Computation, Vol. 61, No. 203, pages 445-462, 1993.

D. Skillicorn and D. Talia, Models and Languages for Parallel Computation, ACM Computing Surveys,
Vol. 30, No. 2, pages 123-169, June 1998.

R.S. Sutton and A.G. Barto, Reinforcement Learning, MIT Press, 1998.

F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed, Performance Contracts: Predicting and Monitoring
Grid Application Behavior, in Proceedings of the 2nd International Workshop on Grid Computing, pages
154-165, Nov 2001.

	Abstract
	Introduction
	Solution Approach
	In this Paper

	Core Computational Technologies
	Motivating Application
	The Weaves Parallel Compositional Framework
	Defining the Weaves Framework
	Runtime Reconfigurability
	Scheduling Non-Reentrant Codes
	Tuple Spaces
	Automatic Checkpointing and Recovery
	Weaves in a Grid Environment

	Runtime Recommender Systems
	Strategies for Runtime Recommendation

	Systems Support for Adaptive Compositional Modeling
	Temporal and Spatial Adaptivity
	Runtime String Migration

	Adaptivity Schemas
	Staged Composition
	Adaptation of Problem Decompositions
	Coordinated Problem Solving
	Algorithm Switching
	Control Systems
	Active Mining of Recommendation Spaces
	Graphs of Models

	Early Results
	Weaves: Implementation and Evaluation
	Experiments in Adaptive Runtime Composition
	Sweep3D

	Discussion
	Acknowledgements

	References

