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Abstract 

Grid infrastructures and computing environments have progressed significantly in the past few years. The 
vision of truly seamless Grid usage relies on runtime systems support that is cognizant of the operational 
issues underlying grid computations and, at the same time, is flexible enough to accommodate diverse 
application scenarios. This paper addresses the twin aspects of Grid infrastructure and application support 
through a novel combination of two computational technologies – Weaves, a source-language 
independent parallel runtime compositional framework that operates through reverse-analysis of compiled 
object files, and runtime recommender systems that aid in dynamic knowledge-based application 
composition. Domain-specific adaptivity is exploited through a novel compositional system that supports 
runtime recommendation of code modules and a sophisticated checkpointing and runtime migration 
solution that can be transparently deployed over Grid infrastructures. A core set of “adaptivity schemas” 
are provided as templates for adaptive composition of large-scale scientific computations. Implementation 
issues, motivating application contexts, and preliminary results are described. 

1 Introduction 
Grid computing [Berman et al., 2003] is increasingly becoming a reality and rapid advances are being 
made to establish high performance software environments for scientific and engineering computations. 
In particular, there has been a recent shift of emphasis from low-level application scheduling and 
execution to creating infrastructure for high-level problem solving environments (PSEs) or grid 
computing environments (GCEs) [Fox et al. 2003]. To be effective, such GCEs should provide high-level, 
powerful, computational primitives [Lee and Talia, 2003] within the context of the emerging landscape of 
Grid infrastructures. This requires both an understanding of the architectural assumptions of 
computational grids and an appreciation for how disciplinary scientists do computational science.  
 
In consideration of the target of this special issue, this paper focuses on the twin aspects of Grid 
infrastructure and application support, especially toward a unifying framework that addresses issues 
pertinent to both aspects. The focus is on runtime systems support that is cognizant of the operational 
issues underlying grid computations and is flexible enough to accommodate diverse application scenarios. 
We begin by identifying specific desiderata for runtime systems support on the Grid. 
 
Infrastructural and Usage Considerations: The vision of Grid usage is to tap into a vast computational 
resource, with a reliability reminiscent of yesteryears custom designed supercomputers. Today’s Grid 
infrastructure, however, resembles a loosely organized cluster of clusters, with all its attendant 
shortcomings. Some of these shortcomings are borne out by the experiences of one of the authors, who 
has set up and managed a 200 node cluster, operational for over two years, and supporting a large number 
of demanding computational science applications. For instance, the probability of failure of an arbitrary 
cluster node involved in a large computation is relatively high, and grows dramatically with increasing 
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cluster sizes.1 In addition, we believe that while the initial Grid infrastructure will consist of a small 
number of large supercomputing facilities, the Grid will evolve to include large numbers of relatively 
small clusters. In such a scenario, there will be a constant tussle between the ability of large jobs to run 
effectively and small players being able to assert administrative control over their own resources. We 
argue that fundamental Grid reliability and resource control issues need to be resolved through runtime 
systems support to make Grid computing an everyday reality. 
 
Software Engineering Aspects: Scientific applications emerging on nascent Grid infrastructures are 
expected to handle issues stemming from the enormous heterogeneity of Grid platforms – heterogeneity 
of architecture, of processor speeds, and of interconnection bandwidth. While newer generations of 
scientific software can be designed with this consideration in mind, targeting large legacy scientific codes 
for the Grid poses an almost impossible software engineering endeavor. What is needed is runtime 
systems support that can effectively mask the complexity of Grid infrastructures, to enable this transition. 
 
Adaptivity and Modeling for Grid Applications: When basic infrastructural and software engineering 
issues are resolved, Grid computing holds promise for scientific codes to become more adaptive - 
adaptive in terms of algorithm selection, architectural tuning, and exploiting the underlying scientific 
usage contexts [Foster et al., 2001]. We posit a broad picture of adaptivity here, one which is not 
restricted to identifying partitioning parameters, modifying data decompositions, or parallel scheduling; 
instead, adaptivity is proposed at a more logical unit of algorithms and object codes. This viewpoint leads 
to scientific codes being organized in a model-based framework for adaptive composition, execution, and 
performance analysis. As Berman et al. point out [Berman et al., 2003], “we still cannot throw any 
application at the Grid and have resource management software determine where and how it will run.” 
 
These considerations lead us to identifying important requirements for runtime systems support. First, 
runtime systems support should enable a transparent transition path for composing and executing legacy 
codes, without requiring that they be rewritten to achieve this functionality. Second, runtime adaptivity 
should allow the dynamic selection, reconfiguration, and execution of code modules, taking into account 
performance considerations and problem characteristics. Third, automatic facilities for masking systems 
failures should be provided (witness the recent thrust for “recovery-oriented computing” initiated by 
Patterson [Patterson et al., 2002]). Finally, runtime systems support is needed to realize a Grid 
infrastructure that reconciles the needs of large computational applications and administrative control, 
through a fluidic definition and control of Grid resources.  

Solution Approach 
Our solution approach for runtime systems support is two-pronged: (i) domain-specific adaptivity is 
exploited through a novel compositional system that supports runtime recommendation of code modules; 
and (ii) a sophisticated checkpointing and runtime migration solution is provided for deployment over the 
Grid. A core set of “adaptivity schemas” constitute a reconfigurable approach to steering and managing 
large-scale scientific computations.  
 
In this view of grid computing, a high-level problem specification (e.g., “solve this elliptic PDE with a 
relative accuracy of 10-6 and time less than 600 seconds”) is provided to a recommender system that 
makes an initial recommendation of code modules (e.g., “use a finite-difference discretizer with red-black 
ordering”). These code modules are communicated to the compositional system as a “configuration”, 
which are then scheduled and executed on the Grid; as the computation progresses (e.g., the PDE gets 
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discretized and the resulting linear system appears to be ill-conditioned), feedback is provided to the 
runtime recommender through the checkpointing mechanism, which uses this information to perhaps 
dynamically insert a preconditioner before the linear solver in the solution loop. The configuration is 
updated with this selection, and the computation is re-scheduled (this time, perhaps migrated over to a 
different cluster on the Grid). This interplay between the compositional system (which supports object-
based composition, migration, and checkpointing) and the runtime recommender (which enables dynamic 
selection of code modules) leads to a novel runtime framework for grid computations. 
 
It is pertinent to note that our solution approach supports all aspects of application composition over the 
Grid – model specification, model execution, and model analysis. Model specification deals with how 
representations for different aspects of a computation are brought together to create a representation of the 
computation as a whole [Forbus, 1996]. It addresses the ease of specifying Grid computations by the end-
user. Model execution addresses the facility by which such scientific codes (constructed compositionally) 
can be scheduled, executed, and deployed over the Grid. Model analysis encompasses the ways by which 
performance information from execution is used to evaluate models and compositions, including 
supporting the refining and improvement of models. Issues of checkpointing, code instrumentation, and 
performance characterization are pertinent here. We use the term compositional modeling to collectively 
refer to all of the above three aspects, as they have become well accepted as an integral tenet of Grid 
computing.  

In this Paper 
Section 2 identifies two core computational technologies that form the basis of our solution for runtime 
systems support. Section 3 elaborates on how these technologies are integrated to provide novel systems 
support for Grid computing. Section 4 identifies a set of “adaptivity schemas” that can be used as 
templates for realizing many complex, adaptive, scientific computations. Section 5 presents early results 
and outlines work in progress. A concluding discussion placing this work in context of current Grid 
computing is provided in Section 6.  

2 Core Computational Technologies 
Our approach to supporting adaptive compositional modeling on the Grid centers on two core 
computational technologies: the Weaves parallel compositional framework, and data-driven runtime 
recommender systems. We discuss them in detail in the context of a real scientific application. 

2.1 Motivating Application 
Our driver application involves the idea of collaborating partial differential equation (PDE) solvers 
[Drashansky et al., 1999] for solving heterogeneous multi-physics problems. For instance, simulating a 
gas turbine requires combining models for heat flows (throughout the engine), stresses (in the moving 
parts), fluid flows (for gases in the combustor), and combustion (in the engine cylinder). Each of these 
models can be described by an ODE/PDE with various formulations for the geometry, operator, and 
boundary conditions. The basic idea here is to replace the original multi-physics problem by a set of 
smaller simulation problems (on simple geometries) that need to be solved simultaneously while 
satisfying a set of interface conditions. The mathematical basis of this idea is the interface relaxation 
approach to support a network of interacting PDE solvers [McFaddin and Rice, 1992; see Fig. 1]. 
 



 
 
Figure 1: (left) Multi-physics problem with six subdomains with different PDEs. (right) A network of collaborating 
solvers (S) and mediators (M) to solve the PDE problem. Each mediator is responsible for agreement along one of 
the interfaces (colored lines). 
 
Mathematical modeling of the multi-physics problem distinguishes between solvers and mediators. A 
PDE solver is instantiated for each of the simpler simulation problems and a mediator is instantiated for 
every interface to facilitate collaboration between the solvers. The mediators are responsible for ensuring 
that the solutions (obtained from the solvers) match properly at the interfaces. The term “match properly” 
is defined by the physics - if the interface is where the physics changes - or is defined mathematically 
(e.g., the solutions should join smoothly at the interface and have continuous derivatives). Distinguishing 
between solvers and mediators allows us to handle mathematical models naturally and elegantly; further, 
they can be organized to reflect the hierarchy of the physical structures (in this case, the turbine) 
underlying the computation. 
 
In large-scale multi-physics simulations, it is not uncommon to have problems requiring collaboration 
between hundreds of solvers; one solver is assigned to each subdomain and the mediators issue 
instructions on appropriate boundary condition settings to their adjacent solvers. Once such a “network” 
of solvers and mediators is configured, it is scheduled for computation over the Grid. After every 
iteration, the mediators might proceed to “adjust” the boundary condition settings to ensure a better 
matching of solutions or, if the change of boundary conditions is smaller than the tolerance, might report 
convergence. 
  
The need for this application to run effectively on different subsets of a grid - with varied and multilevel 
memory hierarchies - is the primary motivation for the research described in this paper. To simplify the 
discussion and to set the stage for describing the Weaves framework in the next section, we abstract the 
essence of the collaborating PDE solvers application into a relatively simple data-sharing problem. This 
problem arises when trying to exploit multiple levels of parallelism in PDE solver codes. We believe it is 
a common problem facing computational scientists trying to develop performance-portable codes for the 
grid. 
 
Suppose we have several instances of a solver task Si running in parallel.  These solvers need not be the 
same, e.g., in Figure 1, suppose S1, S2, S3 and S4 are instances of one solver (e.g., a standard finite 
difference method with direct Gaussian elimination) , S5 and S6 are instances of another solver (e.g., one 
that uses the GMRES iterative method and a suitable preconditioner), and so on. These solvers are 
contributing to a shared state maintained by the mediator task Mij. The challenge is to implement codes 



exhibiting these characteristics - independent tasks, organized at multiple levels of parallelism, sharing 
state amongst themselves at different levels - and to do so transparently. We argue in Section 2.2 that 
standard programming models (processes, threads) are not the complete answer. Our emphasis hence is 
on a compositional framework that can transparently support arbitrary state sharing for scientific 
computations. The Weaves parallel compositional framework embodies our solution approach to this 
problem. 
 
The composite PDE solvers application also helps motivate the need for adaptivity in Grid computations; 
there are, literally, hundreds of well-defined software modules for supporting various aspects of the 
simulation process. There are multiple alternatives for numerical methods (iterative or direct solvers), 
numerical models (standard finite differences, collocation with cubic elements, Galerkin with linear 
elements, rectangular grids, triangular meshes), and various physical model assumptions and 
simplifications (e.g., cylindrical symmetry, steady state, rigid body mechanics, full 3D time-dependent 
physics). In addition, there are a variety of interface-relaxation methods [Rice et al., 1999] that can be 
implemented by a mediator. Performance information gathered at runtime can be fruitfully used to steer 
the dynamic selection of a suitable software module, which must then be linked in at runtime, executed, 
and possibly used to close the loop, to guide future compositions. Data-driven runtime recommender 
systems help organize the cataloging and mining of performance data for realizing adaptivity in 
compositional modeling. 

2.2 The Weaves Parallel Compositional Framework 
Weaves is a source-language independent parallel framework for object-based composition of unmodified 
scientific codes. Weaves works through reverse-compiler analysis; by analyzing compiled ELF object 
files, Weaves enables the vast repository of legacy scientific libraries to be seamlessly used in a object-
based compositional framework, without requiring that these codes be written in an object oriented 
language. Formally, Weaves 
 

• provides a source language independent framework based on object code analysis 
• provides transparent checkpointing/recovery support. Object code analysis automatically 

determines the state that needs to be checkpointed and/or restored without user intervention. 
• provides support for performance data gathering via code instrumentation. 
• supports notions of both spatial and temporal adaptivity (defined later), a critical element of 

runtime compositional modeling 
• supports runtime migration of fine-grain code modules. As opposed to process migration, Weaves 

allows the migration of parts of a composed application over the Grid. 
 
As a compositional framework, perhaps the most important feature of Weaves is the modeling perspective 
it brings to bear on scientific computations; this enables scientific codes to be viewed in the context of a 
framework that integrates execution, simulation, and modeling of Grid applications.  
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Figure 2: Design goal of the Weaves framework. We need to support multiple solvers linked to mediators within a 
single process. 
 
Let us revisit the collaborating PDE solvers application from the context of the threads and processes 
models. We will illustrate the need for Weaves by a series of examples culminating in a compositional 
framework that can support the model shown in Figure 2. For simplicity, assume that S1 and S2 are two 
instantiations of the PDE algorithm A1 and S3 and S4 are two instantiations of a different PDE algorithm 
(A2).2 From a scalability perspective, the compositional framework should operate within a single 
process, with multiple concurrent flows of control.  
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Figure 3: A simple compositional model with two PDE solvers linked to a single mediator. This composition 
addresses a composite PDE problem involving two domains. 
 
Let us start with a simple composition depicted in Figure 3 where two PDE solvers are linked to a single 
mediator performing an interface relaxation. To model this interaction, we use a simple process per solver 
model as shown in Figure 4a. This model allows a single PDE solver application to be linked to a 
mediator. The external references of the PDE solver application will be bound to the mediator. Multiple 
such processes can be executed to simulate a network of collaborating solvers. This simple approach has 
several problems. The first and most basic problem is that we cannot link multiple solver applications to a 
single shared mediator without modifying the application. The second major problem with the process 
model arises from scalability concerns. A large network of collaborating PDE solvers will involve tens to 

                                                      
2 This is not a requirement of the Weaves framework. Technically, all the solvers could implement different 
algorithms. However, the interesting cases arise when there are multiple instantiations of a given PDE algorithm. 



hundreds of interfaces, each of which is a process. Inter-process context switch time will be a major 
bottleneck. 
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Figure 4: The composition shown in Figure 3 modeled under (a) process per solver model and (b) threads model. 
Neither of these models can achieve the composition shown in Figure 3. 
 
To address the above concerns, let us build a new model based on threads as shown in Figure 4b. In the 
threads model, the composition shown in Figure 3 can be achieved by modifying the PDE solver 
application source to create two threads, or inserting a piece of stub code that creates two threads, with the 
start function of each thread set to the entry point of the solver application. As before, the mediator 
application is linked to the PDE solver.  
 
The major problem with this approach arises from updates to global variables - in particular, the PDE 
solver may not be thread-safe.  Since threads share global variables, a solver thread modifying a global 
variable will inadvertently change the state of the other – unrelated - solver thread causing erroneous 
behavior. Ideally, we need two copies of all the global variables used in the PDE solver. In programs that 
are explicitly threaded in design, sharing of global state is intentional. In our case, this sharing is neither 
intentional nor necessarily desirable. On the other hand, to create a shared mediator, we need to share 
global state within the mediator between the threads running through it.  
 
The threads example illustrates the crux of our problem – conflicting needs – the need to avoid sharing 
global state between threads of the solver application and the need for sharing global state between the 
threads running through the mediator. The intuition here is that we need a programming model that allows 
arbitrary sharing of global state. Such a model can subsume both the thread and process models, since it 
can allow both complete sharing of global state as in threads as well as no sharing as in processes This 
observation leads us to the first step towards Weaves compositional framework.  
 
As an aside, we mention that recombination of global state can be achieved through an agents model. It is 
thus not surprising that the collaborating PDE solvers application has been approached using agents 
technology [Drashansky et al., 1999]. The critical observation here is that messages in agent technology 
are a powerful code-neutral abstraction for parameter passing and procedure invocation. Effectively, 
messages between agents are used to recombine state. For instance, two solver processes are used to 
separate their global state. To recombine state, the solver processes communicate with a single mediator 
process, whose state is a function of the messages received from the solvers. 
 
2.2.1 Defining the Weaves Framework 
The major components of the Weaves programming framework are: 



• Module: A module is any object file or collection of object files defined by the user. Modules 
have: 

o A data context, which is the global state of the module scoped within the object files of 
the module, and 

o A code context, which is the code contained within the object files that constitute the 
module. The code context may have multiple entry point and exit point functions. 

• Bead: A bead is an instantiation of a module. Multiple instantiations of a module have 
independent data contexts, but share the same code context. 

• Weave: A weave is a collection of data contexts belonging to beads of different modules. The 
definition of a weave forms the core of the Weaves framework. Traditionally, a process has a 
single name space mapped to a single address space. Weaves allow users to define multiple 
namespaces within a single address space, with user-defined control over the creation of a 
namespace.  

• String: A string is a thread of execution that operates within a single weave. Similar to the 
threads model, multiple strings may execute within a single weave. However, a single string 
cannot operate under multiple weaves. Intuitively, a string operates within a single namespace. 
Allowing a string to operate under multiple namespaces would violate the single valued nature of 
atomic variables.  

• Tapestry: A tapestry is a set of weaves, which describes the structure of the composed 
application. The physical manifestation of a tapestry is a single process. 

 
The above definitions have equivalents in object-oriented programming. A module is similar to a class 
and a bead - which is an instantiation of a module – is similar to an object. Tapestries are somewhat 
similar to object hierarchies. The major exception is that interaction between beads within a tapestry 
involves runtime binding. We chose to use our own terminology to (i) avoid overloading the semantics of 
well-known OOP terms and (ii) avert the implication that the framework requires the use of an OOP 
language. 
 
Strings are similar to threads in that (i) they can be dynamically instantiated and (ii) they share the same 
copy of code. However, unlike threads, strings do not share global state. Each string has its own copy of 
global state. The main goal here is to avoid inadvertent sharing of state between unrelated instantiations 
of an algorithm, without having to modify the algorithm.  
 
Since strings are an intra-process mechanism, we will illustrate their operation by comparing and 
contrasting them to threads. A thread’s state consists of (i) an instruction pointer (IP), (ii) a stack pointer 
and (iii) copy of CPU registers. Each thread within a process has its own stack frame that maintains local 
variables and a series of activation records that describes the execution path traversed by the thread. 
When a thread is created, the thread library creates a new stack frame and starts execution at the first 
instruction of the function specified by the thread instantiation call. When the thread scheduler needs to 
switch between threads, it saves the current IP, current stack frame, and the values in the CPU registers, 
switches to the state of the next thread, and starts execution at the IP contained in the thread state.  
 
Strings involve an extension to the operation of threads. Similar to threads, each string has its own stack 
frame, which maintains local state. In addition, each string also has a copy of the global variables in an 
area called the weave context frame, the start of which is pointed to by a weave context frame pointer. A 
weave context defines the namespace of a string. This includes the global variables of all the beads 
traversed by a string. Note that some of the beads in a string may be shared between strings. 
 
A string’s state consists of (i) an instruction pointer, (ii) a stack frame pointer, (iii) copy of CPU registers, 
and (iv) a weave context frame pointer. When a string is created, the string creation call creates a stack 



frame and a weave context frame (if necessary) and copies the current state of the global variables into the 
weave context frame. The string creation call also associates a numerical identifier with the newly created 
string. Since creating a string involves copying its global variables, the string creation cost depends on the 
storage size of the global variables resulting in a higher creation cost than threads. We justify this cost by 
noting that it is a one time cost paid at program startup. Also, well-written applications are generally 
frugal in their use of global state, which mitigates the impact of the copy operation. 
 
Similar to a thread scheduler, the string scheduler starts execution of the new string at the first instruction 
of a user-specified function. When the string library needs to switch between strings, it saves the current 
IP, current stack frame pointer, the values in the CPU registers, and the current weave context frame 
pointer, switches to the state of the next string and starts execution at the IP contained in the string state. 
The inter-string context switch cost is identical to threads.  
 
Selective sharing of state in our framework operates at the level of individual beads. We illustrate the 
operation of selective sharing with the example shown in Figure 2 (also repeated in the Figure 5 below). 
The tapestry defines 4 weaves <Solver S1, Mediator M12>, <Solver S2, Mediator M12>, <Solver S3, 
Mediator M34> and <Solver S4, Mediator M34>, and 4 strings, with each string operating within a single 
weave. At run time, context switching between the strings automatically switches the namespace 
associated with the string, preserving the sharing specified in the tapestry. 
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Figure 5: Interaction between the various components of the Weaves framework. 

 
Figure 5 depicts the design process in the Weaves framework. The design process involves two entities: a 
programmer who implements the modules and a composer, who uses a graphical user interface to 
instantiate beads and define the various weaves and strings. The result of the GUI composition is a 
tapestry configuration file, which is used to load and execute the composed application. Each composed 



application also has a module called a monitor that is automatically linked with the composed application. 
In the process model, utilities like ps (in UNIX) can be used to query the run time of the process. The 
monitor provides a much more powerful IPC (Inter Process Communication) interface to such 
functionality. Utilities can query the monitor to determine the current tapestry, beads, strings, and weaves 
within a composed application. 
 
2.2.2 Runtime Reconfigurability 
The tapestry generated by the GUI is not necessarily a static composition. The Weaves programming 
framework allows applications to rewire themselves on the fly in response to dynamic conditions. Two 
forms of dynamic application composition are supported in the framework. In the first form, if the 
requisite modules are already linked into the original tapestry, Weave-aware applications can modify their 
structure by creating new beads, defining weaves, and instantiating strings at run-time. For non-Weave 
aware applications, the interface exposed by the monitor can be used to modify the tapestry of a 
composed application. These modifications may be manually made by a user at the command line or can 
be automatically generated by an external resource monitoring agent. 
 
In the second form of dynamic composition, new code modules can be inserted into a running application 
through a modified dynamic library interface. In this mode of operation, the dynamically inserted code is 
analyzed at run-time. Dynamically inserted modules can be used in the same manner as statically inserted 
modules. This interface provides the full capabilities of Weaves, including arbitrary namespaces and 
compositional capabilities, in a run-time compositional framework. We will exploit this capability to 
investigate runtime algorithm selection and composition (see Section 3.1). 
 
2.2.3 Scheduling Non-Reentrant Codes 
Since the Weaves framework does not require that codes be re-entrant (thread-safe), scheduling poses 
several interesting problems. When an operating system or threads scheduler preempts a task, it can 
switch the operating context to any other task that is ready to run. In contrast, in the Weaves framework, 
preemptive scheduling strategies can cause reentrancy in beads shared at lower layers. If the codes are not 
reentrant, this will result in incorrect operation. 
 
We solve this problem by organizing strings into equivalence classes, where each equivalence class 
contains strings that share beads. Preemptive scheduling switches between strings of different equivalence 
classes. If the preempted string has not traversed a shared bead, preemptive scheduling can also switch 
between strings of the same equivalence class. In effect, the scheduler makes constant-time cuts on the 
execution of a weaved application to determine if it is “safe” to switch the string context. While this 
solution ensures that the weaved application as a whole is making progress, it does not guarantee against 
starvation of strings belonging to the same equivalence class. 
 
To guarantee against starvation of strings belonging to the same equivalence class, we insert 
continuations for entry/exit point functions in shared modules. The continuations cooperatively relinquish 
string control immediately after control returns from traversing a shared bead. A combination of such 
cooperative scheduling with traditional preemptive scheduling ensures that as long as there are no 
inherent starvation and/or deadlock conditions in the original code, the Weaves framework will not 
introduce string starvation. The concluding section contains a discussion on automatic deadlock detection 
and recovery for Grid applications.  
 
2.2.4 Tuple Spaces 
The notion of selective state sharing in the Weaves programming framework presents a very powerful 
mechanism for defining namespaces. Since the definition of a weave permits any set of beads to define a 
namespace, any composition that can be represented by a connected graph (or a set of independent 



graphs) can be realized by this framework. From an application’s perspective, the definition and operation 
of distinct namespaces is transparent. This mechanism presents a powerful compositional framework for 
any procedural code. 
 
The Weaves framework also supports the notion of shared tuple spaces. In the current definitions, distinct 
beads of the same module have different data contexts, i.e., data sharing occurs at the granularity of an 
entire module. To create a shared tuple space, we need fine grain control over the individual members of a 
data context. 
 
In order to support shared tuple spaces, from the perspective of the framework, we need mechanisms to 
(i) define a shared tuple space and (ii) to selectively share the members of the tuple space across multiple 
beads. To define a shared tuple space, application composers can use the graphical user interface to 
denote the members of the tuple space or code modules can use a syntactic notation to mark the members 
of the tuple space. This information is used at bead creation time to merge references to shared members 
of a tuple space. 
 
2.2.5 Automatic Checkpointing and Recovery 
A primary goal of the Weaves framework is to support adaptive applications that can rewire themselves 
dynamically in response to changing conditions. In the parallel discrete event simulation context, our 
view of adaptivity encompasses optimistic algorithms that try to take the best execution path given a set 
of available options. However, the path chosen may not always be right, requiring applications to rollback 
to a known correct state. As discussed in the introduction, typical HPC applications also require 
checkpointing and recovery. 
 
Traditionally, state checkpointing and restoration has been left to individual applications. This 
significantly adds to the complexity and maintainability of such codes. Furthermore, event driven codes 
add an additional layer of  complexity. Since the path of execution through an event driven application is 
not known apriori, checkpointing and restoring such applications present significant challenges. Our goal 
here is to provide a transparent support framework that can checkpoint and recover state, without 
application support. 
 
To provide support for automatic checkpointing and recovery, note that in the Weaves framework, each 
string maintains its global variables in the weave context frame and local variables and call invocation 
history in the stack frame. This compartmentalizes static state into two well defined regions. We can save 
the contents of the stack and weave context frames, effectively saving static state. However, this does not 
account for dynamic memory allocated during runtime.  
 
To track dynamic memory allocation, we use a mechanism similar to the one used by memory leak 
debuggers. We overload the library calls responsible for dynamic memory allocation ─ malloc(), calloc(), 
realloc(), and free() in C. The overloaded calls keep track of the bead identifier, the start of the memory 
region and the size of allocated memory. 
 
We now have access to both the static as well as dynamic state of the tapestry, which can be used to 
implement checkpointing and recovery.  The naive mechanism for checkpointing involves (i) saving the 
contents of the stack frame, (ii) saving the contents of the weave context frame, and (iii) copying the 
contents of all dynamically allocated memory regions. Restoring application state involves garbage 
collection of all dynamic memory allocated after the checkpoint and restoring the state saved during the 
checkpoint. It is easy to see that the naive approach is not memory efficient, particularly in our domain 
where tapestries can contain hundreds of beads.  
 



To implement an efficient checkpointing mechanism, note that operating systems already have efficient 
mechanisms for handling process fork calls, through the use of copy-on-write semantics. A sophisticated 
approach to checkpointing can be implemented with the mprotect POSIX system call, which implements 
a new light weight version of the copy-on-write mechanism that operates in an intra-process domain. 
When a checkpoint is invoked, we mark all data pages corresponding to dynamically allocated memory 
and the weave context frame read-only.  As the application proceeds, updates to read-only data cause 
segmentation faults (SIGSEGV), which are handled by duplicating the offending page and allowing 
read/write operation on the duplicate.  This mechanism works optimistically, limiting the memory 
overhead of checkpointing to only modified data. 
 
2.2.6 Weaves in a Grid Environment 
The future of Grid computing hinges on its ability to provide a seamless view of distributed 
computational resources. Facilitating this view requires us to reconcile the starvation concerns of large 
computational applications that run across distributed resources, with the administrative control needs of 
the smaller individual units that comprise the Grid. This leads to one of the most challenging cases for 
automatic checkpointing, recovery, and migration – namely, that of large-scale, distributed-memory, 
message-passing codes. While this problem is motivated by reliability concerns for parallel codes running 
on large clusters, it is especially critical for grid computing codes, where checkpointing and runtime 
migration are essential to enable fluidic control over administrative resources. In the last two months, we 
have developed a user-level implementation of the TCP/IP stack (as a part of a project on scalable 
network emulation) which, combined with the Weaves framework, provides a promising new approach to 
checkpointing and runtime migration of parallel codes. 
 
There are several serious issues with checkpointing parallel codes written using MPICH (a popular 
implementation of the MPI library) or PVM. First, we need a reliable single process checkpointing tool; 
these are not available on all platforms. While a single process checkpointing tool can capture process 
state, we also need mechanisms to capture state maintained within the operating system on behalf of the 
process. This includes open network socket handles and network data within operating system buffers. 
One approach to this problem is to create a consistent global state of the parallel application [Chandy and 
Lamport, 1985] and then initiate the checkpoint operation. While this approach works, it still doesn't 
enable migration. MPI implementations maintain significant static environment state within themselves, 
including IP addresses, hostnames and open TCP connections. To migrate a checkpointed MPI 
application, we need mechanisms to update the internal MPI state to reflect the change in the underlying 
environment, which makes any implementation of such a system specific to a particular MPI or PVM 
codebase.  
 
Our goal is to implement a transparent checkpoint and migration framework for any parallel 
communication library that uses the TCP/IP protocol stack. The novel idea here is to use partial 
consistency instead of global consistency to derive the unified state of the application. In our notion of 
partial consistency, we do not checkpoint state within the operating system or in-flight over the 
communication fabric. Instead, we exploit the ability of a reliable communications protocol to mask this 
loss of state. The main advantage of this approach is that enables checkpointing at any point in the 
execution of a parallel application, including within barrier operations. 
 
In our design, a parallel application is linked to a message passing library (e.g., MPI), which in turn is 
linked to our TCP/IP implementation through a standard sockets interface. Our TCP/IP implementation 
treats the underlying communication subsystem as an unreliable link and only requires support for two 
calls, a transmit call and an inbound receive call. Another interesting feature here is that the 
implementation of reliability in our TCP/IP stack is decoupled from real-time by using interval timing, 
where the interval durations are preserved across checkpoint/restart procedures. 
 



The main advantage of this design is that the user-level TCP/IP stack provides an additional layer of 
indirection, exposing a common IP address and hostname independent of the physical platform or 
underlying communication infrastructure. We propose to use the Weaves framework to deliver platform 
independent checkpointing and migration facilities. The Weaves framework will checkpoint the entire 
application, including the user-level TCP/IP implementation. When a parallel application is migrated, the 
user-level TCP/IP implementation is used to abstract the specifics of the target environment from the 
application. There are several additional advantages to this approach. First, a parallel application can be 
moved to a platform with a different underlying communication infrastructure. Secondly, the same 
framework can be used to simulate different physical parallel communication fabrics and analyze the 
performance of communication libraries. Finally, this approach enables easy portability of parallel 
communication libraries, since they can be developed for TCP/IP and rely on our system to provide the 
actual mapping to the physical environment. 

2.3 Runtime Recommender Systems 
Recommender systems [Ramakrishnan et al., 1998] provide facilities for automatic knowledge-based 
selection of solution components on the Grid. They help make selections of algorithms and code modules 
by taking into account both problem characteristics and performance considerations. Recommender 
systems involve the empirical evaluation algorithms on realistic, often parameterized, test problems, and 
interpreting and generalizing the results to guide selection of appropriate mathematical software. They are 
the preferred method of analysis in applications where domain knowledge is imperfect and for which our 
understanding of the factors influencing algorithm applicability is incomplete.  For instance, when solving 
linear systems associated with finite-difference discretization of elliptic PDEs, there is little mathematical 
theory to guide a choice between, say, a direct solver and an iterative Krylov solver plus preconditioner. 
A recommender systems approach is to parameterize a suitable family of problems, and mine a database 
of thousands of PDE “solves” over the Grid to gain insight into the likely relative performance of these 
two approaches (e.g., see Figure 6). Parameter sweep templates for Grid computing [Casanova and 
Berman, 2002] are thus an important tool for designing recommender systems. 
 
In a traditional design of a recommender system [Ramakrishnan and Ribbens, 2000; Houstis et al., 2000], 
a database of test problems and algorithms is organized, and performance data is accumulated for the 
given problem population. This database of performance data is then mined (generalized) to arrive at 
high-level rules that can form the basis for a recommendation (for future problems). A variety of data 
mining algorithms are appropriate here (e.g., attribute-value generalizations, inductive logic 
programming; see [Houstis et al., 2000]). The MyPythia Grid portal [Houstis et al., 2002] provides many 
interfaces to these algorithms, for both the recommender system builder and the recommender system 
user. In this system, the data collection phase is distinct from the generalization aspect (we refer to these 
as “offline” recommender systems); in other applications, data collection occurs in conjunction with data 
mining [Ramakrishnan et al., 2002], so that it can be “steered” to more accurately sample desired regions 
of the recommendation space. 
 
In a Grid setting, recommender systems are important aids to application composition, by making 
dynamic selections of components (we refer to these as “runtime” recommender systems). Such a facility 
is important in many problem domains because: (i) the nature of the problem being solved changes as the 
computations are being performed, (ii) the underlying computing platform or resource availability is 
dynamic, or (iii) information about application performance characteristics is acquired at runtime, from 
the actual computation rather than from offline analysis. 
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Figure 6: (left) Mining and visualizing recommendation spaces for selecting between a GMRES iterative solver 
(red) and a direct Gaussian elimination solver (green) to solve an elliptic PDE. α is a parameter controlling the 
singularity in the PDE problem (and hence, the ill-conditioning of the corresponding linear system) and lfill controls 
the pre-conditioning in the iterative solver. (right) A mined recommendation space with 90% confidence, showing 
the region where the GMRES solver is preferred. As α grows larger, it is seen that the lfill parameter must fall 
within a narrower range for the iterative solver to be preferred, until eventually the direct solver becomes the 
preferred choice. For more details, please see [Ramakrishnan and Ribbens, 2000]. 
 
The importance of a runtime recommender is easily seen in applications such as the collaborating PDE 
solvers, where selections need to be made of a discretizer, preconditioner, and linear system solver (in 
that order). Information needed to make a preconditioning recommendation or linear solver 
recommendation is not available until after the PDE has been discretized, hence such recommendations 
have to happen at runtime, using dynamic information. Specifically, a runtime recommender monitors a 
computational process, detects state-changes, and makes selections of solution components dynamically, 
thus aiding knowledge-based application composition at runtime. Designing a runtime recommender is 
thus more involved than an offline recommender because the database of problems and algorithm 
executions is not readily available and needs to be captured “on the fly”.  
 
2.3.1 Strategies for Runtime Recommendation 
The primary problem faced by a runtime recommender is to observe a computational process (as it 
unfolds), make recommendations along the way, with the added complexity that feedback (about 
recommendations) is not immediate, and will arrive several timesteps (typically unknown) later. This is a 
problem reminiscent of reinforcement learning [Kaelbling et al., 1996][Sutton and Barto, 1998], well 
studied in the control systems and AI literature (and was one of the main influences in bringing control-
theoretic techniques to realize adaptivity in scientific software; e.g., see [Gustafsson, 1991]). Note that the 
task here is more ambitious than mere parameter tuning or building expert systems. The key issue is to 
tradeoff the cost of exploring the environment in the short-term with an accuracy improvement in the 
long-term. A runtime recommender systems thus grapples with a constant dilemma: should it choose a 
solver that it knows has worked before (exploitation) or should it “try” a different solver to see if it might 
lead to a performance improvement (exploration)? 
 
Our approach to this problem is to model the scientific application as a non-deterministic, stationary 
system (the transition probabilities between states are assumed to be constant to ensure convergence of 
the learning algorithms). This network does not need to be handcrafted, but can be constructed online by 
the recommender system. For example, in the PDE application, “states” correspond to physical stages of 
the computational process and are represented by features such as singularity, current algorithm, order of 
the method, and performance criteria (set by the user). The “actions” correspond to choices made by the 



recommender, such as “use the ILU preconditioner”, “switch from iterative to direct method”, “decrease 
the current order”. The goal now is to learn the utility of taking certain actions in various states. These 
utility estimations are summarized in the form of a control policy that chooses the action with the highest 
utility. On each step of the interaction, the recommender receives as input some indication of the current 
state (such as problem features) and it generates a recommendation as output. This recommendation 
changes the state of the system (e.g., at the end of the first stage of PDE solution, information about linear 
system characteristics becomes available), and the value of this state transition is communicated back to 
the recommender as reinforcement; which then chooses recommendations that will tend to increase the 
long-run sum of values of the reinforcement signal. Once again, there are a variety of learning algorithms 
for iterative improvement of generalizations.  
 
The recommender begins in a mode that favors exploration over exploitation. These runs are typically 
scheduled during idle cycles on our computational grid. Over time, the recommender encounters enough 
problems from its database and has explored enough alternatives that it can make an informed judgement 
about solution alternatives. At this point, its mode of operation becomes primary exploitative with only a 
small percentage of exploitation (to ensure that the learned utility values are current). Such an approach 
has been validated for selecting quadrature routines from a space of over 120 algorithms [Ramakrishnan 
et al., 2002] and for synthesizing type-insensitive codes for ODEs with both stiff and non-stiff regions 
(see Figure 7 for a policy mined by inductive logic programming). The functionality provided by a 
runtime recommender can be thought of as automatic determination of control policies to realize 
adaptivity in scientific codes. Runtime recommendation is traditionally concerned with code executions 
but can also be employed to assess model-based simulations and make selections of system 
configurations, as studied in the adaptive control formulation of [Adve et al., 2002]. 
 

 

qvalue(1) :- 
       state(beginning), algorithm(none), 
       action(choose-non-stiff). 
 
qvalue(1) :- 
       state(near-stiff), algorithm(non-stiff), 
       estimate < threshold, sv < 10, 
       action(switch-to-stiff). 

 
Figure 7: A partially induced control policy mined by a runtime recommender for the task of solving ODEs with 
both stiff and non-stiff regions. From the beginning state, the recommender always prefers a non-stiff method (an 
Adams-Moulton method), but when its estimates improve its assessment of the evolution of solution components, it 
switches to a stiff method (in this case, an implicit A-stable formula). This approach should be contrasted to 
classical differential equation software such as GEAR, LSODE, and DIFSUB where such adaptivity is realized 
through static decision-making code coupled with the ODE solver. 

3 Systems Support for Adaptive Compositional Modeling 
To summarize the two core technologies: runtime recommender systems allow the dynamic selection and 
composition of code modules and Weaves provides runtime systems support to realize such compositions. 
In this section, we further bring out the synergy between these technologies.  
 
From the viewpoint of the Weaves design process, a runtime recommender system acts as the composer, 
dynamically determining the code modules and their instantiations. Specifically, the runtime 
recommender supplies the tapestry configuration file that specifies the composition graph. From the 
viewpoint of the recommender system, Weaves acts as the “end-effector” and provides systems support 



for checkpointing algorithm executions and modifying code modules in response to changing problem or 
platform characteristics. Figure 8 depicts how Weaves and the recommender system interact to provide an 
adaptive runtime framework for Grid computations. Recommendations are made available as a tapestry 
configuration file, which are then used to either create dynamic instantiations/code insertions or statically 
linked executables. The realized tapestry is then made available through multiple interfaces that guide its 
future execution. Note that recommendations happen in the context of a single process (which may have 
multiple concurrent control flows). In the next section we show how parts of recommended compositions 
can be migrated and scheduled on Grid infrastructures. As Figure 8 shows, the integrated framework 
provides transparent application-level resource management and fault tolerance capabilities. Grid services 
such as Globus can use these interfaces to implement fault recovery and migration in the context of the 
entire Grid infrastructure. 
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Figure 8: Interaction between the runtime recommender system and Weaves in the context of Grid infrastructures. 



3.1 Temporal and Spatial Adaptivity 
Consider how the interaction between Weaves and runtime recommender systems would work for the 
task of adaptive numerical quadrature. Let us start with the collection of 120 quadrature algorithms 
described in [Ramakrishnan et al., 2002]. For a given numerical integration problem, the performance 
goal is to recommend a suitable quadrature routine such that the number of function evaluations is 
minimized. A recommender system (GAUSS) with this functionality is also described in [Ramakrishnan 
et al., 2002]. GAUSS can make suitable selections of algorithms from the quadrature library, monitor 
their execution, and change its recommendation if its earlier selection failed or otherwise did not satisfy 
the performance constraints. GAUSS is more than a polyalgorithm comprising of the 120 algorithms 
(where the decision procedures for selection are hardwired); it has the ability to use runtime information 
about algorithm performance dynamically as it becomes available. It functions by organizing a database 
of parameterized test problems and algorithm executions and uses an online mechanism to continually 
generalize from archived performance data. 
 
This mode of operation in GAUSS can be viewed as a form of temporal adaptivity. The Weaves 
framework provides two notions of temporal adaptivity. In the first form – called pessimistic temporal 
adaptivity – the recommender system can dynamically select an algorithm already compiled into the 
executing application (using a form of an if-then-else construct) but doesn’t have the ability to “retract” 
its recommendation. For this form of adaptivity to be successful, the recommendation space must be 
limited in its choice of algorithms to only those that produce correct results. Pessimistic temporal 
adaptivity is thus most suited for the exploitation mode of a recommender system. In the second form – 
called optimistic temporal adaptivity – the recommender system can dynamically choose from any 
algorithm that suits the purpose, including those that may not produce correct results all the time. 
Optimistic temporal adaptivity is ideal for the exploration mode of a recommender system. 

 
Optimistic temporal adaptivity requires runtime systems support for checkpointing and recovery, since we 
need to (i) recover from failed instantiations of algorithms, and (ii) ensure that the recovery process 
doesn’t result in the recommender system following the “failed” path again. Note that (ii) is a rather 
insidious issue. A perfect checkpoint/recovery mechanism will restore the recommender system state to 
just before its selection of the failed algorithm, which will result in the recommender system following 
the “failed” execution path repeatedly. What is needed is a checkpointing and recovery system that can 
provide a tuple (any set of variables defined in the namespace of the executing algorithm) view of the 
future, where the tuple presents intermediate results. In addition to pruning the search process of the 
recommender system, the tuple may be used to augment the features gathered by the recommender, 
helping it make a more informed decision.  

 
Optimistic temporal adaptivity is a very powerful mechanism for supporting runtime recommendation and 
composition. The tuple view of the future provides not just algorithm state (in the form of variables 
comprising the tuple), but also the entire function invocation history prior to the failure (which includes 
the entire sequence of algorithm recommendations exercised). For applications such as adaptive 
quadrature, which are based on a divide-and-conquer strategy of repeated problem decompositions and 
algorithm recommendations, this feature is particularly important.  

 
Weaves supports a further form of adaptivity called spatial adaptivity, where even the space of algorithms 
to be selected for composition is not known until runtime. For instance, consider a molecular electronics 
simulation, where a sequence of thousands of linear systems have to be solved to compute the I-V profile 
of a single device. The complete realization of such a simulation may span weeks to months. During 
execution new solvers may become available - especially in grid settings - which may offer better 
performance characteristics. What we need is a mechanism to transparently substitute the solver compiled 
into the executing binary with a new solver “on-the-fly” – dynamic function replacement. This notion is 



similar to dynamic classloaders in Java™.3 The Weaves framework provides strong support for spatial 
adaptivity, including across multiple non-OOP  source languages.  

3.2 Runtime String Migration 
Weaves is inherently a parallel run-time compositional framework. The examples above show the 
operation of the framework within the context of a single process. In this mode of operation, the 
framework provides load balancing on shared memory multiprocessor architectures by executing different 
strings on different processors. This form of load balancing is largely transparent to the design of the 
application.  
 
Since the current generation of large parallel supercomputers is based on distributed memory design, we 
need to extend the framework to provide similar transparent load balancing capabilities to distributed 
memory codes. Currently, distributed memory codes implement their own load balancing. Since we know 
the structure of the composed application, we are in a position to both expose additional interfaces as well 
as augment existing load balancing capabilities. 
 
In large tapestries composed of tens of thousands of beads, good load balancing is necessary to obtain 
reasonable speedup. The scale of the system combined with incomplete knowledge of runtime load makes 
it nearly impossible to statically load balance such a system. Dynamic load balancing guided by runtime 
analysis of load is necessary to ensure scalability. Our view here is that load balancing in a distributed 
memory environment translates to run-time code migration. This will ensure that all participating host 
processors experience equal computation and communication loads. The main issue is determining the 
resolution of code migration. Should code migration occur at the level of individual beads or something 
larger? 
 
To answer this question, let us take a look at the issues involved in code migration at different resolutions. 
In the case of an individual bead, we can track its static state but it is much harder to keep track of its 
dynamic memory allocation. To see why, let's take the example of a bead that invokes a function within 
another bead. The target function allocates an array of pointers, allocates memory to each element of the 
array and returns a pointer to the start of the pointer hierarchy. Our overloaded memory allocation calls 
will incorrectly attribute the memory allocated to each element of the array to the bead corresponding to 
the target function. Without exhaustive analysis and significant runtime support, it is not possible to track 
dynamic memory allocation within a bead. 
 
To avoid the above problem, our observation is that while it may not be possible to track the dynamic 
memory usage of a single bead, it may be easier to track the total dynamic memory used by a set of beads. 
In essence, we are trying to create closed regions of interacting beads ─ an island of beads ─ that 
exchange memory between them, but have no connection to other beads.  In general such islands of 
interacting beads can be found in most applications ─ they represent entities at a higher layer of 
abstraction. Graph theoretically, an island of beads represents a closed graph with no external 
connections. The modular framework of weaves also aids the process of isolating islands of beads by 
forcing designers to look at bead interactions during application composition. The GUI front-end used to 
create a tapestry can also be used to mark specific islands of weaves, which then become targets for code 
migration. Our target platform ─ a workstation cluster ─ uses the SPMD model of execution [Darema, 
2001]. Since the same program executes on all cluster nodes, the necessary code modules either already 
exist at the target of the migration, or can be instantiated at run-time through the dynamic library 
                                                      
3 Java implements dynamic classloaders through its VM. Compiled OOP languages such as C++ can do late binding 
of function calls at runtime, but the target of the call has to be compiled into the executing binary. Weaves supports 
source-language independent late binding, including cases where the target of the call is dynamically loaded and 
linked.  



interface. Code migration then reduces to the problem of instantiating new weaves at the target node 
corresponding to a newly migrated island and migrating the state corresponding to the island. Since 
weaved code always uses indexed addressing, the migrated code does not need any code patching to be 
functional. 
 
The above analysis ignores a very serious problem with intra-process code migration ─ pointer aliasing. 
Traditionally code migration has been handled at the process level, resulting in process migration. Since 
each process operates within its own address space, when a process is migrated, it sees the same virtual 
memory addresses on the target processor. In our domain, migration occurs at the level of string, which is 
an intra-process entity. When a string is migrated, it will not necessarily get the same virtual memory 
addresses on the target processor. Code patching will be needed to fix the addresses. This significantly 
complicates migration in distributed memory machines. 
 
This problem is even more complex than the above description. To see why, let us take a case where a 
bead allocates dynamic memory to a pointer variable ptr. It then sets a second pointer variable ptr1 to ptr, 
i.e. ptr1 points to the same memory location as ptr. When we migrate this code, we allocate dynamic 
memory at the target machine and set ptr to point to this memory. However, ptr1 is still pointing to the 
old memory location from the source processor. There is no guarantee that the same memory location in 
virtual memory address region is available on the target processor. Not only do we have to fix memory 
addresses allocated dynamically, we also need to ensure that all aliases of memory addresses are fixed 
appropriately, a problem known as pointer aliasing. 
 
Pointer aliasing is a significant research issue. Current solutions are based on restricting source language 
semantics to prevent pointer aliasing, or executing code within virtual machines. Neither of these 
solutions is available to us. We have no control over the source language and emulating code over a 
virtual machine will impose unacceptable performance penalties. 
 
To solve this problem, we propose a shared virtual memory approach. Note that pointer aliasing becomes 
an issue because of the shared nature of the virtual address space from the perspective of intra-process 
migration. In our solution, we statically allocate regions of the virtual address space to participating 
processors. The first processor allocates dynamic memory in the region [1,X] MB, the second processor 
allocates memory in the region [X, 2X] MB and so on, where the memory addresses are in virtual 
memory space. In this model, when a string migrates from a source processor to a destination processor, it 
is guaranteed that memory addresses in its VM space are available on the target processor. This solution 
effectively bypasses the pointer aliasing problem4.  
 
The sharing of single VM address space across multiple processors imposes size restrictions on the VM 
addresses that can be allocated to any single processor, which in turn impacts the dynamic size of an 
application. However, this is not as restrictive as it appears at first sight. On a 64 bit processor, we can 
allocate 1 TB of VM space to each processor and still support parallel applications that can run on 16 
million CPUs - well beyond the scope of current applications and super computers (the calculation 
divides the 64 bit space into 40 bit VM addresses and 24 bit CPU identifiers). As the dynamic memory 
demands grow, we can allocate more bits to the address space, reduce the maximum number of CPUs that 
can participate in the computation and still stay ahead of Moore's Law. 
 
Performing a similar calculation for 32 bit processors shows that the above scheme imposes significant 
restrictions. For instance, if we allocate 1 GB of VM space per processor, we can only support 
applications that can run on 4 processors, which is definitely not acceptable. To get around this issue, we 
                                                      
4 We have also looked at dynamic VM partitioning schemes. Dynamic partitioning increases the cost of dynamic 
memory allocation calls. Hence, we propose a static partitioning scheme. 



note that the main 32 bit processor family is based on the Intel x86 instruction set. Starting with the 
Pentium Pro family, Intel added 4 additional bits to the addressing, resulting in a 36 bit VM address 
space. This allows us to allocate the full 32 bit address space to each processor and support parallel 
applications up to 16 CPUs.  
 
Even with the additional 4 bits of VM addressing space, limiting parallel applications to 16 CPUs is 
overly restrictive.  To ameliorate this condition, we compartmentalize CPUs into VM regions of 16 CPUs 
each. Strings can freely migrate within a region and with some restrictions, even across regions. This 
solution offers an attractive trade-off between scalability and run-time load-balancing for distributed 
memory architectures.  

4 Adaptivity Schemas 
In working with concerted groups of scientists and engineers engaged in Grid computing, we have 
encountered a number of recurring “schemas” capturing how compositional scientific codes should be 
configured for adaptive execution. This section outlines these schemas and identifies application contexts 
where they are relevant. 
 
Before we begin, it is pertinent to mention that two common modes of high-level Grid problem solving – 
viz. parameter sweeps [Casanova et al., 2000], algorithmic bombardment [Barret et al., 1996] – are 
easily supported using the Weaves framework. Parameter sweeps embody rich opportunities for state 
sharing and overloading of function invocations, and Weaves enables such sweeps to be conducted within 
an economy of processes. Offline recommender systems rely on the ability to conduct multi-dimensional 
parameter sweeps effectively and economically. Algorithmic bombardment is a speculative strategy by 
which multiple algorithms or solution approaches are assigned to a given problem (simultaneously), some 
of which may not run to completion and/or may be terminated when they are deemed redundant. 
Simplistically, algorithmic bombardment can be implemented efficiently through spatial adaptivity. From 
a simulation perspective, however, the end-goals of such bombardment can be achieved more elegantly 
through the notions of optimistic temporal and spatial adaptivity. Such a system will not be required to 
recover from any failures or revisit an earlier stage in the computation. 
 
The list of adaptivity schemas below (see Table 1) is merely meant to be indicative of the power of our 
runtime systems framework and the coverage is not intended to be exhaustive.  
 

Table 1: Adaptivity schemas currently supported in our research. 
Adaptivity Schema Example Application Context 
Staged Composition Compositional PDE Solver Selection 
Adaptation of Problem Decompositions Numerical Quadrature, Adaptive Sorting 
Coordinated Problem Solving Interface Relaxation Algorithms  
Algorithm Switching ODEs, Number Factoring 
Control Systems Deriving Controllers for Algorithm Speedups 
Active Mining of Recommendation Spaces Qualitative Assessment for Matrix Computations 
Graphs of Models Multi-paradigm Performance Profiling 

 

4.1 Staged Composition 
Staged composition addresses the sequential selection and execution of code modules in scientific 
computations. It is important in problem domains that are characterized by partial observability. In this 
schema, code fragments from a library are composed at runtime to satisfy various general and domain-
specific constraints on their structure. For instance, in the PDEs domain, the code fragments would 



correspond to choices of discretizer, pre-conditioner, and linear system solver. Since information about 
application performance characteristics is often acquired during the actual computation, rather than 
before, staged composition is a necessary feature in many application domains.  
 
At each stage, the runtime recommender uses any of the features assessed and mined performance data to 
make a selection for a code module. In addition, the recommender can exploit a variety of considerations 
for staged composition: (i) domain-specific restrictions, (ii) interaction heuristics, and (iii) behavioral and 
performance characteristics. Domain-specific restrictions refer to both syntactic and semantic constraints 
on compositional modeling. An example of a syntactic restriction is that a compositional PDE solver must 
activate a discretizer, indexer, and linear system solver, in that order. A different permutation of these 
parts does not make syntactic sense. An example of a semantic restriction is that a Dyakunov algorithm 
requires that its input be in self-adjoint form. Interaction heuristics refer to considerations that bridge the 
various stages of the compositional process. Behavioral and performance issues are used to denote 
considerations such as “the main cost to solving a PDE is usually that of solving the linear system 
associated with it”, and “Sharp ridges and other difficulties such as re-entrant corners cause difficulties in 
the estimation of convergence.”  
 
A runtime recommender can use such considerations to prune the search space of code modules and scale 
its functionality to large domains. In this model-based approach, the sequence of stages in a composition 
is captured using a Markov decision process and the utilities of states are directly estimated. Then, given 
an initial state, the runtime recommender would evaluate the various choices (of algorithm components) 
and choose the one that leads to the state with the highest utility. 

4.2 Adaptation of Problem Decompositions 
Many scientific computations are characterized by a recursive divide-and-conquer strategy, with 
algorithm selection happening at each level of the recursive invocation. Classical examples are adaptive 
numerical quadrature and adaptive sorting on parallel architectures. With the Weaves framework, the 
runtime recommender has the capability to backtrack both breadthwise and depthwise in the recursive 
function invocation history. This means that any form of branch-and-bound algorithm can be easily 
implemented. Notice that the breadthwise capability arises from the parallel compositional nature of the 
Weaves framework. 
 
To curtail the potential explosive growth in space complexity, the runtime recommender must cleverly 
choose an intermediate representation that is indicative of the problem characteristics and, at the same 
time, can be cheaply evaluated when necessary. This is because at each backtrack point, the recommender 
has to make a judgement of code module and execution path. The choice of the intermediate 
representation is a domain-specific issue but we can give an indication of what it might look like. In the 
case of recommending numerical quadrature algorithms, it is of critical interest to assess features of the 
integrand such as the presence of a singularity, whether it is an end-point singularity, whether the 
integrand is smooth in the interval, and whether it exhibits an oscillatory behavior of non-specific type. 
These features are sometimes impossible to determine (e.g., when the integrand is provided only as a 
software routine). One solution approach is to first model the dynamic selection of quadrature nodes by a 
general purpose adaptive code such as QAGS [Piessens et al., 1983] and then use the layout of these 
nodes as the actual representation of the function. This requires that we employ optimistic temporal 
adaptivity in order to be able to successfully backtrack and later follow a suitable integration algorithm. 

4.3 Coordinated Problem Solving 
The collaborating PDE solvers application described earlier falls in this category. Here, adaptivity is the 
responsibility of one/some of the weaved code modules themselves (in this case, the mediators), and 
which coordinates the functioning of other code modules. Note that the structure of the composition – 



shared elements and multiple flows of control (see Fig. 1) - is naturally prone to single-cycle deadlock. 
While an implementation may be carefully instrumented to avoid deadlocks, the Weaves framework 
enables us to use the natural, underlying, problem representation and rely on runtime systems support for 
deadlock detection and recovery. The discussion section contains details of this mode of operation. 

4.4 Algorithm Switching 
Algorithm switching refers to the case where the problem being solved remains the same but the currently 
executing algorithm has to be replaced with another, dynamically. This facility is critical in solving ODEs 
with both stiff and non-stiff components, solving certain categories of linear systems, and integer 
factoring. For instance, the ODEs underlying many biological cell cycle models alternate between being 
stiff and non-stiff several times over the region of integration. In addition, properties such as stiffness are 
really a facet of both the ODE and the algorithm used to solve it. Algorithm switching is relevant here 
because our understanding of the problem improves as the computation proceeds. LSODE [Petzold, 1983] 
is an example of a real scientific code that embodies an algorithm switching mechanism, but as mentioned 
earlier the switching procedure is hardwired. It is sometimes “overcautious” to prevent thrashing between 
the two categories of algorithms. This is because, since stepsize selection is dependent on error estimates, 
situations involving misleading estimates can cause either a premature termination of methods or a switch 
to an unstable method. A runtime recommender can more carefully assess the suitability of algorithm 
switching by taking into account problem characteristics and runtime information, not otherwise available 
to the basic ODE algorithm. 
 
In other applications, algorithm switching is important because the initial choice of algorithm fails. Here, 
it is imperative that we are able to use results and byproducts from the first algorithm to “seed” 
subsequent algorithm recommendations. For instance, in crypto-challenges such as integer factoring 
[Silverman and Wagstaff, 1993], we might switch to the quadratic sieve algorithm when the elliptic curve 
method fails. 

4.5 Control Systems 
An algorithm control system can be modeled with various configurations of the runtime recommender in 
the problem solving loop. More fundamentally, many classical formulations of control systems can be 
realized in scientific codes. For instance, a simple form of derivative-based control was used by Hovland 
and Heath [Hovland and Heath, 1997] to achieve an adaptive control policy for the SOR (Successive 
Over-Relaxation) algorithm. This is shown to be more powerful than using a fixed one with the optimal 
value of the over-relaxation parameter!  
 
Similarly, adaptive control formulations are common in solving ODEs and automatic quadrature. In the 
former, the problem of stepsize selection can be thought of as designing a suitable controller (P, PI, PD, 
or PID formulations) around the basic numerical approximation. Automatic quadrature algorithms 
embody control systems because they must inherently assess the suitability of their approximations by 
deriving error estimates (often using approximations of successive orders).  
 
A runtime recommender system extends such control system formulations into the realm of actor-critic 
models; the actor is the recommender that makes selections of solution components and the critic 
captures the improvement in how the recommender is itself assessed. Both the actor and the critic are 
implemented as learning algorithms. As the critic is learning to exercise better judgement, the actor 
benefits from the improved assessments, leading to a closed-loop control system.  



4.6 Active Mining of Recommendation Spaces 
In assessing many recommendation spaces, it is important to selectively sample and actively collect data, 
for the sole purpose of improving the confidence in the recommendation. For instance, in qualitative 
assessment of Jordan forms [Ramakrishnan and Bailey-Kellogg, 2002], data points are actively collected 
at specific perturbations in order to determine the most probable Jordan form of a matrix. This adaptivity 
schema iterates between a code execution (for collecting a data point), refining the recommendation 
(another code execution), and repeating these steps until a desired functional is minimized. This idea is a 
central ingredient of the US National Science Foundation’s recent thrust for Dynamic Data-Driven 
Application Systems (DDDAS; [Darema, 2002]). 
 
Another critical application arises in integrating data from measurements and data from performance 
evaluation of codes, to improve confidence in a model. A popular example is biological cell cycle models 
(e.g., for simulating the Golgi apparatus) where rate constants are collected from measurements (stored in 
files), and must be reconciled with simulation results (available from code executions). 

4.7 Graphs of Models 
In this final adaptivity schema, adaptivity is itself factored as operations on a graph and the task of 
runtime recommendation reduces to traversing this graph, to achieve user-specified criteria. For instance, 
in the performance modeling of the Sweep3D code ([Koch et al., 1992]; a benchmark for discrete-
ordinates neutron transport), codes are available for analytical modeling, low-level simulation, and actual 
system execution [Adve et al., 2000]. Each node in the “graphs of models” corresponds to one model 
family, and the edges denote conditions and constraints to be satisfied (or achieved) when switching from 
one model to another. Consider two scenarios of Sweep3D modeling: one might (i) model the machine 
parameters accurately, taking into account processor components, memory components (buffers etc.) and 
transport components (interfaces to caches), or (ii) one might replace all machine parameters by picking 
one of the analytical models. Thus, moving from (i) to (ii) in the models graph might take place under the 
constraint that over 65% of the parts of the composed application need to be removed. Given end-to-end 
performance constraints, the runtime recommender then attempts to perform a means-end analysis on the 
induced graph, leading to a satisficing model sequence, that involves both models and the edges 
connecting them (notice that there may be more than one edge between two model choices). Preliminary 
results for this application are reported in [Houstis et al., 2002]. 

5 Early Results 

5.1 Weaves: Implementation and Evaluation 
The core of the Weaves compositional framework is the abstraction of a weave, which allows an 
application composer to define arbitrary namespaces over a composed application. To implement the 
weave abstraction, we need a data structure that can efficiently capture the state separation and state 
recombination needs of the compositional framework.  
 
Before we discuss the specifics, note that the goals of our compositional framework place additional 
constraints on the implementation of the weave abstraction. First, our transparency requirement states that 
the solution should be transparent to the application. Since, the application may be written in any 
programming language, the transparency requirement precludes modification to the source code to 
implement the namespace abstraction. Second, from a scalability perspective, the implementation should 
be efficient. In particular, we need to minimize context switch time between the various namespaces 
defined in the composed application. 
 



To meet the transparency requirement, the implementation of the namespace abstraction works by 
analyzing the Executable and Linking Format (ELF) object files produced by any compiler. ELF is a 
public domain file format used to represent both object code as well as the final executable on most UNIX 
systems. Our current prototype is implemented on the Linux operating system running on Intel x86 
architectures. Since the implementation only depends on the ELF file format, it can be easily ported to 
other operating systems/architectures. Furthermore, we anecdotally note that the features of the ELF file 
format used by our implementation are common to object file formats. Hence, it should be possible to 
extend the prototype to support other object file formats as well. 
 
The ELF file format uses the Global Offset Table (GOT) data structure to access global state in an 
application. The GOT data structure maintains an array of pointers (instead of data values), with each 
pointer referring to a global data variable. To access data, applications first index into the GOT data 
structure to get a pointer to the data and then use the pointer (and possibly an offset) to retrieve the data 
value. The number of entries in the GOT structure is proportional to the number of variables and is 
independent of the size of each variable. For instance, an array variable has a single entry in the GOT 
structure. The observation here is that the GOT defines the namespace of the application. Typically, a 
program contains a single GOT structure reflecting the single namespace within an application. However, 
by appropriately defining multiple GOT structures, it should be possible to create multiple namespaces 
within a single ELF executable.  
 
The problem with the basic GOT structure is that compilers hardcode the base address of the GOT 
structure and the index into the GOT at compile time. To implement multiple namespaces, we need to 
create multiple GOT structures and, at runtime, copy them over to the fixed base address generated by the 
compiler. This operation is expensive since its cost is proportional to the number of global variables, 
which can potentially be large.  
 
Instead, we note that compilers produce relocatable code (for instance, the command line option –fPIC on 
the gcc family of compilers) to support dynamic libraries. In relocatable codes, the base of the GOT 
structure is pointed to by a base register. All indexed accesses into the GOT are made with reference to 
the current value of the base register.  The use of relocatable object code and indexed access to the GOT 
forms the basis of our implementation.  
 
To implement the weave abstraction, we create a new GOT structure for each distinct weave in the 
composed application. To implement state separation between beads belonging to different weaves, we 
first create copies of the data and point the GOT entries in the weaves to the distinct copies of the data. To 
enable state recombination between weaves sharing a bead, we set the pointer in the GOT entries in the 
different weaves to point to the same data value. The double indexed nature of the GOT structure enables 
state separation/recombination at the resolution of a single data variable, which can be used to implement 
arbitrary data sharing at both the tuple space and module levels.   
 
To implement the string abstraction, note that a string is really a thread operating under a user specified 
namespace. Since we have a mechanism to create the namespace, context switching between strings 
involves context switching the thread state and switching the namespace. What we need here is an 
efficient mechanism for switching namespaces. 
 
To switch namespaces, we note that the GOT structure is accessed through a base register (%ebx in our 
current implementation). Hence, context switching between namespaces merely involves changing the 
base register to point to a different GOT structure, a single instruction move operation, which results in a 
weave context switch time that is identical to thread context switch time. Our current implementation of 
the Weaves framework works over both POSIX Threads (pthreads) as well as the GNU Portable Threads 
(Pth) thread libraries. 



 
To implement spatial adaptivity, we need mechanisms to (i) dynamically insert/remove functions and (ii) 
implement dynamic function overloading. In addition, for flexibility reasons, spatial adaptivity should 
operate at the granularity of a single weave - beads in distinct weaves may have different implementations 
of a similarly named function.  
 
Dynamic code insertion/removal can be implemented through a runtime interface to dynamic libraries, 
which “weaves” them on-the-fly. To see how (ii) can be implemented, notice that it is similar to a runtime 
version of latebinding virtual functions in OOP. Such dynamic function overloading can be used to 
transparently change functional implementations.  The Weaves framework achieves this effect through an 
interesting use of the GOT namespace. Traditionally, dynamically linked functions are referenced through 
a single procedure linkage table (PLT). Our goal of spatial adaptivity requires multiple PLT structures, 
with each PLT referring to functional bindings in a single weave.  
 
Instead of modifying the memory image of an executable to create multiple PLT structures, we chose to 
direct the compilation process through an intermediate assembly code generation stage. Here, we patch 
the assembly code to indirect functional references through the GOT, instead of the PLT. The initial PLT 
is folded into the GOT structure. This process extends the Weaves namespace abstraction to include both 
code and state, which is almost identical to the OOP view of an object. The namespace view allows us to 
change the function pointer in each distinct GOT enabling namespace specific function bindings. This 
mechanism achieves both dynamic function binding as well as primitive function overloading capabilities 
through weave specific function signatures.  
 
We ran a series of experiments to compare the context switch time under the threads, processes and 
weaves programming models.  In this experiment, we created a baseline application that implements a 
calibrated delay loop (busy wait). We then implemented threads-, processes-, and weaves- versions of the 
application. In each of these versions, there are n independent flows of control over the same code, where 
each flow of control executes a calibrated delay loop, which does 1/nth the work of the baseline 
application. We then measure the total time taken to execute the application under each of these models. 
Since each of the control flows does 1/nth of the work and there are n flows, the total time taken should 
the same as the baseline calibrated delay loop case, except for an additional context switching cost.  
 
Figure 9 shows the results of the experiment on a single processor AMD Athlon™ workstation running 
the Linux operating system. The results show the run time for five cases: (a) baseline calibrated delay 
loop, (b) pthreads threads library, (c) Pth threads library, (d) processes, (e) Weaves over pthreads, and (f) 
Weaves over Pth. The results clearly show that the weaved implementations are significantly faster than 
processes, even in this simple case, where the copy-on-write semantics of the fork() call are very 
effective. Furthermore, the run time of weaved implementation of pthreads is very close to the base run 
time of pthreads alone. The marginal variation in runtime is due to the slightly higher weave creation cost, 
which is included in the run time. Also, the pthreads implementation is relatively efficient, since the 
Linux kernel includes operating system support for it. 
 
However, in the case of Pth, the run time of the weaved implemented is higher than the base Pth case. 
This increase in runtime is because unlike pthreads, Pth is a user-level library and hence suffers from 
timer inaccuracies inherent in user-level library implementation. 
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Figure 9: Comparison of inter-flow context switch time in the threads, processes, and weaves programming models. 
The baseline single process application implements a calibrated delay loop of 107 seconds. 

5.2 Experiments in Adaptive Runtime Composition 
A number of scientific applications have been or are currently being created using the runtime systems 
support framework described in this paper. These include: 

• A weaved version of the Sweep3D code suitable for performance characterization over the Grid 
• Compositional PDE solvers for multi-domain, multi-physics problems 
• A runtime recommender system for adaptive numerical quadrature 
• Iterative assessment of spectral portraits of matrices by active mining 
• Adaptive ODE algorithm switching for simulating biological cell cycle models 
• Dynamic selection of linear system solvers for molecular electronics simulations 

 
Due to space considerations, we describe only the first application below, which embodies the “graphs of 
models” adaptivity schema described earlier. The role of a recommender system for Sweep3D 
characterization is well motivated in [Adve et al., 2000]; preliminary results for a recommender built on 
this idea are presented in [Houstis et al., 2002]. To avoid duplication, we focus here on how the Sweep3D 
application has been weaved and an assessment of its performance characteristics. The reader should keep 
in mind the larger context in which such a performance model is then used to drive the characterization of 
large-scale scientific applications. 
 
5.2.1 Sweep3D 
The main characteristic of Sweep3D is that it uses no global variables. Since the application only relies on 
local state, multiple instantiations of local state should be enough to create a VM abstraction. This 
characteristic makes Sweep3D inherently thread-safe, which enables its modeling by either the threads or 
process models. However, since the application is written in Fortran 77, with dynamic array extensions, 
modeling with the threads and processes models present interesting implementation problems. While 
trying to model the application using POSIX threads, we found that there was substantial global state in 
the .data section of the ELF executable, a Fortran compiler issue, which essentially made the code-base 
“thread unsafe”. Weaving the Sweep3D code-base created independent namespaces, resulting in a 
thread-safe version. 
 



To support the message passing primitives used by Sweep3D, we created a simple threaded MPI 
emulator, which implements only the nine MPI primitives used by Sweep3D. To ensure correctness, the 
MPI emulator implementation follows the guidelines set forth in the MPI specification. Our MPI emulator 
is intended as a test prototype and is neither as comprehensive nor as capable as a complete MPI 
implementation. 
 
In the weaved implementation, we create n distinct virtual machines, each of which executes an 
independent instantiation of the Sweep3D application. To do this, we create n distinct Sweep3D beads 
and n weaves, where each weave has a distinct Sweep3D bead and a shared emulator bead. Each weave 
also has a single string associated with it. The n distinct virtual machines run on a single processor 
workstation. 
 
We compared the performance of our single processor weaved implementation of Sweep3D against 
measured values from real runs for up to 150 processors. Measurements for the real runs were made on 
our 200 processor cluster (1GHz AMD Athlon ™ processors over Myrinet™) Anantham. Since the 
Sweep3D application performs its own timing measurements, we compared the timing numbers (CPU 
Time) of the weaved version of Sweep3D with the measurements from actual runs. The two input files 
(50x50x50 and 150x150x150 decompositions) provided in the Sweep3D distribution were used to drive 
the Sweep3D application. 
 
For upto 150 processors, the timing results from the weaved implementation and the actual runs were 
consistent to within 0.2%. Furthermore, we tested the weaved version of Sweep3D with over 1000 
weaves on a single processor. The variation in the timing results between multiple runs was within 0.2%. 
This clearly shows that even at high levels of scalability (over 1000 weaves/processor) context switch 
time does not impact the efficacy of our runtime compositional framework.  

6 Discussion 
This paper has described a novel runtime compositional system for supporting adaptive scientific 
computations on the Grid. Weaves serves as a true generalization of the threads and processes models of 
programming and provides immediate benefits in object-based composition, checkpointing, migrating, 
and dynamic reconfiguration of scientific applications. Runtime recommender systems encapsulate 
knowledge about which solution components perform well (and for which situations) and provide 
intelligent decision support for configuring and managing large-scale computations. Together, they 
constitute a powerful mode of developing and deploying adaptive grid applications. 
 
The work presented here has interesting parallels to research in many different areas – we survey a 
collection of references topically. At a basic level, Weaves’s capabilities as a programming model can be 
compared to that of distributed OO [Gannon and Grimshaw, 1998], parallel programming primitives 
[Foster, 1996; Skillicorn and Talia, 1998], agent-based composition [Drashansky et al., 1999], and 
service-based systems integration [Foster et al., 2002; Rana and Walker, 2001]. The design of the Weaves 
system bears a strong resemblance to the OO framework of Mentat propounded in [Grimshaw et al., 
1996]. However, unlike Mentat, which requires creating code objects in an OO language, Weaves can 
create an object based framework from code written in any language, allowing the reuse of the vast 
repository of legacy codes. 
 
In any parallel compositional framework of the type presented here, deadlock detection and recovery pose 
serious concerns. This issue is particularly problematic for us due to the dynamic nature of our 
framework, which prevents a priori analysis of deadlock scenarios. In ongoing research, we are working 
on implementing automatic mechanisms for transparent detection and elimination of single cycle 
deadlocks. The basic mechanism works by implementing functional continuations of mutual exclusion 



calls. Before acquiring a mutual exclusion lock, the continuations automatically (i) associatively track the 
strings and the bead invoking the mutual exclusion lock and (ii) checkpoint the beads in the string 
invoking the mutual exclusion call. Single cycle deadlock can then be detected through cycles in the 
history of acquired mutual exclusion locks. The actual detection mechanism can be implemented through 
a checkpoint extension to the monitor interface, which itself can be guaranteed to be deadlock free. In this 
setup deadlock recovery reduces to (i) choosing a candidate victim string and (ii) rolling back the victim 
string to its checkpoint state just prior to acquiring the lock.  
 
Significant research has also been conducted to realize adaptivity in distributed scientific computations 
are well studied, e.g., in the contexts of performance modeling [Vraalsen et al., 2001; Adve et al., 2002], 
application tuning [Chang and Karamcheti, 2001], and meta-modeling and control [Ribler et al. 2001; 
Kennedy et al., 2002]. Many of these applications are focused on selecting system configurations, 
identifying optimal application parameters, and exploiting opportunities for application scheduling over 
the Grid. The notion of runtime recommendation presented here applies more broadly to selecting 
algorithms and code modules, and the knowledge-based framework allows application-specific context 
about the suitability of algorithms to be exploited. The algorithmic framework used for runtime 
recommendation (namely, reinforcement learning) is very powerful, and is part of a larger family of 
strategies for adaptive control of algorithm executions. 
 
As Grid infrastructure improves and newer applications are explored, we believe the importance of Grid 
programming primitives will be better appreciated. It will be especially crucial that the programming 
primitives allow rich forms of adaptivity to be specified and captured without the need for low-level 
system configuration. There are many recent steps taken in this direction (e.g., the compiler directed 
frameworks described in [Adve et al., 2001; Adve and Sakellariou, 2000]). The central idea here is to 
encode adaptivity as operations on a suitably defined task graph, which serves as an intermediate 
representation of the dynamic behavior of a grid application. In addition to operationalizing adaptivity, 
such a representation allows systematic performance characterization of scientific applications using 
multiple methodologies [Browne et al., 2000]. In our work, the intermediate representation is the purview 
of the runtime recommender but dynamic operations of spatial and temporal adaptivity are handled by the 
checkpointing and composition framework supplied by Weaves. We are currently in the process of 
defining a language for declaring search primitives (akin to a branch-and-bound operation for optimistic 
simulation) that can be used as building blocks of adaptivity. The advantage with this formulation is that 
adaptivity is taking place at the level of code modules and hence can be made as coarse or fine grained as 
necessary. It also allows for ease of specification by the grid application developer. 
 
The eventual success of grid computing will lie in “what it lets you get away with.” By factoring support 
for adaptivity in a runtime recommender system and operationalizing parallel composition, 
checkpointing, and migration using the Weaves framework, the ideas presented here allow us to 
transparently realize the promise of adaptive Grid applications. 
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