Diagnosing Memory Leaks using
Graph Mining on Heap Dumps

Evan K. Maxwell
emaxwell@cs.vt.edu

Godmar Back
gback@cs.vt.edu

Naren Ramakrishnan
naren@cs.vt.edu

Department of Computer Science
Virginia Tech, VA 24061

ABSTRACT

Memory leaks are caused by software programs that prevent
the reclamation of memory that is no longer in use. They can
cause significant slowdowns, exhaustion of available storage
space and, eventually, application crashes. Detecting mem-
ory leaks is challenging because real-world applications are
built on multiple layers of software frameworks, making it
difficult for a developer to know whether observed references
to objects are legitimate or the cause of a leak. We present
a graph mining solution to this problem wherein we ana-
lyze heap dumps to automatically identify subgraphs which
could represent potential memory leak sources. Although
heap dumps are commonly analyzed in existing heap pro-
filing tools, our work is the first to apply a graph grammar
mining solution to this problem. Unlike classical graph min-
ing work, we show that it suffices to mine the dominator
tree of the heap dump, which is significantly smaller than
the underlying graph. Our approach identifies not just leak-
ing candidates and their structure, but also provides aggre-
gate information about the access path to the leaks. We
demonstrate several synthetic as well as real-world exam-
ples of heap dumps for which our approach provides more
insight into the problem than state-of-the-art tools such as
Eclipse’s MAT.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Data mining; D.2.5 [Software Engineering):
Debugging aids;

General Terms: Algorithms, Experimentation, Reliabil-
ity.

Keywords: Memory leaks, heap profiling, graph mining,
graph grammars, dominator tree.

1. INTRODUCTION

Memory leaks are a frequent source of bugs in applica-
tions that use dynamic memory allocation. They occur if
programmers’ mistakes prevent the deallocation of memory
that is no longer used. Undetected memory leaks cause slow-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’10, July 25-28, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

downs and eventually the exhaustion of all available mem-
ory, triggering out-of-memory conditions that usually lead
to application crashes. These crashes significantly affect
availability, particularly of long-running server applications,
which is why memory leaks are one of most frequently re-
ported types of bugs against server frameworks.

Memory leaks are challenging to identify and debug for
several reasons. First, the observed failure may be far re-
moved from the error that caused it, requiring the use of
heap analysis tools that examine the state of the reachability
graph when a failure occurred. Second, real-world applica-
tions usually make heavy use of several layers of frameworks
whose implementation details are unknown to the develop-
ers debugging encountered memory leaks. Often, these de-
velopers cannot distinguish whether an observed reference
chain is legitimate (such as when objects are kept in a cache
in anticipation of future uses), or represents a leak. Third,
the sheer size of the heap — large-scale server applications
can easily contain tens of millions of objects — makes man-
ual inspection of even a small subset of objects difficult or
impossible.

Existing diagnosis tools are either online or offline. On-
line tools monitor either the state of the heap or accesses
to objects in it, or both. They analyze changes in the heap
over time to detect leak candidates, which are “stale” objects
that have not been accessed for some time. Online tools are
not widely used in production environments, in part because
their overhead can make them too expensive, but also be-
cause the need to debug memory leaks often occurs unex-
pectedly after an upgrade or change to a framework compo-
nent, and often when developers believe their code has been
sufficiently tested. Offline tools use heap snapshots, often
obtained post-mortem when the system runs out of memory.
These tools find leak candidates by analyzing the relation-
ships, types, and sizes of objects and reference chains. Most
existing heuristics, however, are based solely on the amount
of memory an object retains and ignore structural informa-
tion. Where structural information is taken into account,
it often relies on priori knowledge of the application and its
libraries.

This paper presents a graph mining approach to identify-
ing leak candidate structures in heap dumps. Our approach
is based on the observation that leaks often involve container
data structures from which programmers fail to remove un-
needed objects that were previously added. Consequently,
the heap dump involves many subgraphs of similar struc-
ture containing the leaked objects and their descendants. By
mining the dump, we can identify those recurring subgraphs,

present the developer with statistics about their frequency
and location within the graph. Our key contributions can
be summarized as follows:

1. Although analysis techniques are widely used in heap
analysis [21-23], our work is the first to employ graph
mining for detecting leaking candidates. Specifically,
we demonstrate that graph grammar mining used in
an offline manner can detect both seeded and known
memory leaks in real applications.

2. Compared to other offline analysis techniques, our ap-
proach does not require any a priori knowledge about
which classes are containers, or about their internal
structure. It captures containers even when these are
embedded into application classes, such as ad-hoc lists
or arrays.

3. Our approach can identify leaks even if the leaks’ lo-
cations within the graph do not share a common an-
cestor node, or if the paths from that ancestor to the
instances are difficult to find by the manual examina-
tion that is required in existing tools such as Eclipse
Memory Analyzer (MAT).

4. Graph grammar mining can find recursive structures,
giving a user insight into the data structures used in
a program. For instance, linked lists and trees can be
identified by their distinct signatures.

5. Finally, the ability to combine subgraph frequency with
location information makes our algorithm robust to the
presence of object structures that occur naturally with
high frequency without constituting a leak.

2. ANATOMY OF A LEAK

Although memory leaks can occur in all languages that use
dynamically allocated memory, they are particularly preva-
lent in type-safe languages such as Java, which rely on garbage
collection to reclaim memory. In these languages, dynam-
ically allocated objects are freed only if the garbage col-
lector can prove that no accesses to them are possible on
any future execution path, which is true if and only if there
is no path from a set of known roots to the object in the
reachability graph. The reachability graph consists of nodes
that represent allocated objects and edges that correspond
to inter-object references stored in instance variables (fields).
Roots, also known as garbage collection (GC) roots, are
nodes whose liveness does not depend on the liveness of other
heap objects, but on the execution semantics of the program.
For instance, in Java, local and global static variables repre-
sent roots because the objects referred by them must remain
reachable throughout the execution of a method or program,
respectively. Hence, memory leaks form if objects remain
reachable from a GC root even though the program will no
longer access them. Such leaks also occur in programming
languages with explicit memory management, such as C++,
and our work applies to them. We do not consider leaks
arising from memory management errors in those languages
(e.g., failing to deallocate unreachable objects).

The Java program sketched in Figure 1 illustrates how
leaks in a program manifest themselves in the reachability
graph. In this example, a program maintains a number of
objects of type Legitimate, which are stored in a hash map

public class HiddenLeak
{
static HashMap legitimateMap;

static class Legitimate
{
HashMap leakyMap = new HashMap();

static class Leak
{

// This object is leaked
}

void leak()
{

// insert Leak instances into leakyMap

}

}
public static void main(String [Jav)
{
// create N instances of Legitimate
for (int i = 0; i < N; i++)
{ Legitimate legit = new Legitimate();
legit.leak();
legitimateMap.put (i, legit);
}
}

}

Figure 1: An example of a leak “hidden” underneath
legitimate objects.

container. Each Legitimate instance, by itself, represents
data the program needs to maintain and thus it needs to re-
tain references to each instance. However, Legitimate also
references a container leakyMap that accrues, over time, ob-
jects of type Leak that should not be stored permanently.
Figure 2 shows the resulting heap structure. The hash maps
exploit an open hashing scheme, which uses an array of buck-
ets. Each bucket maintains a separate chain of entries cor-
responding to keys for which hash collisions occurred.

Over time, the space taken up by the leaked object will
grow until all available heap space is exhausted. When this
limit is reached, the Java virtual machine throws a runtime
error (OutOfMemoryError). In many production environ-
ments, the JVM is run with a flag that saves a snapshot
of the heap at this point, which is then fed to a heap ana-
lyzer tool.

Most existing tools compute and analyze the dominator
tree, which represents a relationship between nodes in the
heap that expresses which objects a given object keeps alive.
Object ‘a’ dominates ‘b’ if all paths from a root to ‘b’ go
through ‘a’. If the object graph is a tree, as in this example,
then it is identical to its dominator tree. In the example,
the static (global) variable legitimateMap is the dominator
tree root that keeps alive all leaked objects.

However, inspection of the dominator tree for this exam-
ple with existing tools does not readily point to the leak.
For instance, when examining a heap dump with the Eclipse
Memory Analyzer tool (available at http://eclipse.org/mat),
the tool pointed at ‘legitimateMap’ as a likely leak candi-
date, because it keeps alive a large fraction of the heap.
None of its children stands out as a big consumer with re-
spect to retained heap size. The leak is “hidden” under a
blanket of legitimate objects. At this point, a developer
would be required to “dig down,” and individually examine

legitimateMap

Figure 2: Heap graph after executing the program
shown in Figure 1.

paths through each Legitimate instance, which is cumber-
some without global information about the structure of the
subtrees emanating from these instances. Heap analyzers do
support some global information, but is usually limited to
histogram statistics that shows how often objects of a certain
type occur. This approach often leads to limited insight be-
cause String objects and char arrays are the classes whose
objects usually consume most memory in Java programs.
Consequently, there is a need to mine the graph to iden-
tify structures that are likely leak candidates, even if these
structures are hidden beneath legitimate live objects. More-
over, developers require aggregate information that describe
where in the object graph these leak candidates are located.

3. ALGORITHMS

As stated in the introduction, our approach is based on
the observation that a leak would manifest as a heap dump
containing many similar subgraphs. Rather than directly
mine the heap dump, we compute the dominator tree of the
heap dump and mine frequent graph grammars [15,17] in
the dominator tree. We describe the rationale behind this
approach and algorithmic design decisions in this section.

3.1 Dominator Tree Computation

The computation of dominators is a well studied topic
and we adopt the Lengauer-Tarjan algorithm [19] from the
Boost graph library implementation. This algorithm runs in
O((JV] + |E|)log(|V| + |E|)) time, where |V is the number
of vertices and |E| is the number of edges.

Formally, the dominator relationship is defined as follows.
A node z dominates a node y in a directed graph iff all
paths to node y must pass through node z. In Fig. 3 (left),
all paths to node L must pass through node A, therefore A
dominates L. A node z is said to be the unique immediate
dominator of y iff x dominates y and there does not exist a
node z such that z dominates z and z dominates y. Note
that a node can have at most one immediate dominator, but
may be the immediate dominator of any number of nodes.
The dominator tree D = (VP EP) is a tree induced from
the original directed graph G = (V¢ E®), where VP =
VY, but an edge (u — v) € EP iff u is the immediate

Figure 3: (i) An example graph and (ii) its domi-
nator tree. In practice, the dominator will have a
significantly reduced number of edges than the orig-
inal graph.

dominator of v in G. Figure 3 shows an example graph
and its dominator tree. The computation of D requires the
specification of an entry node into G. We therefore introduce
a pseudo-root node p to G, and add edges (p — GC;) where
GC; € GC, the set of Java garbage collection roots (see
Section 2).

The dominator tree computation on the heap dump graph
provides us with several benefits. First, it significantly re-
duces the number of edges in the graph to be mined. Second,
since the resulting graph is a tree, we can apply optimiza-
tions in the mining algorithm specific to mining trees. Fi-
nally, recall that our goal is not just to find the frequent
subgraph representing the leak but also to characterize the
source of the leak. Once the dominator tree has been com-
puted, we can search the paths from the entry node of the
leaking subgraph up to the root of the dominator tree. This
path is generally sufficient to identify the source of the leak.
Without the dominator tree computation, tracing all paths
to garbage collection roots in the graph is much more ex-
pensive and is full of noise.

3.2 Mining the Dominator Tree

In general, frequent subgraphs in the original heap dump
need not necessarily be frequent in the dominator tree. To
understand this, consider the cases in Fig. 4 which shows
example graphs that are frequent in both the dump and the
dominator, frequent in the dump but not the dominator, as
well as the other two combinations. In particular, the (fre-
quent in dump, infrequent in dominator) combination occurs
due to the existence of different routes of entry into a fre-
quent subgraph S in graph G. This situates S into different
subgraphs in D that may not be frequent individually. The
reverse combination, i.e., (infrequent in dump, frequent in
dominator), also happens, because frequent subgraphs in D
may contain edges that summarize dissimilar paths in G.

Nevertheless, practical heap dumps have specific degree
distribution properties that we can exploit. As we show
later, a large majority of nodes in heap dumps have an in-
degree of either zero or one. This implies that cases as shown
in Fig. 4 (top right) are much fewer in number than cases
in Fig. 4 (top left). This is a key distinction because we
can guarantee that if a frequent subgraph S in G contains
only nodes having in-degree < 1, all instances of S will be
completely conserved after the computation of the domi-

nator tree D and will retain their frequencies. Although
it is unlikely that a frequent subgraph in the heap dump
will comprise exclusively of nodes with in-degree < 1, ex-
perience shows that it will be composed predominately of
such nodes. These observations justify our design decision
to compute the dominator tree as a preprocessing step be-
fore graph mining and to mine frequent structures in the
dominator.

1. .
G A D A G D .
/\ /\ A A A A A AL A A
! off Wi e
B, c B/ | \C \\/ / 3
¢ '
3 b !
! B B
E b *E
Frequent Frequent Frequent Not Frequent
iii D v. TG D

A

X o o
2|4,
\/ i B Ke B Ke
B

Not Frequent Frequent

>

Not Frequent Not Frequent

Figure 4: Examples of subgraphs that may be fre-
quent or not frequent in either or both the graph G
and its dominator tree D. (i-iv) show all 4 classes
of subgraphs defined by the different combinations.
Dashed edges represent a “dominates” edge pro-
duced only for D.

3.3 Inducing Graph Grammars

To mine patterns in the dominator tree, we explore the
use of context-free graph grammars [10, 28] instead of mere
subgraphs. Graph grammars are necessary because leak-
ing objects are often recursive in nature and we require the
expressiveness of graph grammars. Furthermore, it is not
necessarily the number of instances of a subgraph that is
important in debugging the leak, but rather the percent-
age of the heap dump that is composed of instances of the
subgraph. An algorithm that finds subgraphs could be mis-
leading because a simple count of the number of instances
could over-calculate the composition of the subgraph.

The concept of a graph grammar is akin to a formal lan-
guage grammar, except that the productions generate sub-
graphs rather than substrings. We are specifically interested
in node-label controlled grammars, as these contain a single
non-terminal labeled node which can be replaced with any
subgraph. These grammars take the form of S — P, where
S is a single non-terminal node, P can be any subgraph, and
the arrow implies a production/replacement rule.

As described in [9,15,17], we build graph grammars in a
priori fashion where we find a production rule capturing a
significant portion of the input graph, replacing instances
of the production by its non-terminal symbol, and contin-
uing. Candidate productions are evaluated for their ability
to compress the graph. We use the alternative size heuristic
from [17]:

size(Q)
size(S) + size(G|S)

where size(G) = |V| + |E|. Figure 5 shows two example
input graphs G, a top-scoring graph grammar S for each,

and the result of compressing G using S (denoted by G|S).
The first example shows how the graph grammar can de-
scribe the same information as a frequent subgraph. The
second example demonstrates additional features of graph
grammars. The graph grammar mining algorithm works it-
eratively, where in each iteration the top-ranked graph gram-
mar is used to compress G. The next iteration repeats the
process on the newly compressed version of G with non-
terminal nodes. In practice, we run the algorithm for just
a few iterations (< 3) because we focus on the top-ranked
grammars when trying to identify a memory leak. For scal-
ability reasons, we use sampling at several key states in the
mining process.

1. Candidate generation: When we expand an evalu-
ated pattern with k edges to a candidate pattern with
k+1 edges, we need not generate and explore all candi-
dates because the algorithm uses a beam search, which
we limit to 15, to bound the number of patterns gen-
erated at each stage [17]. We take a random sample
of < 1% of the instances of the extending pattern to
determine the best candidates to fill the beam. The
full set of instances will then be explored only for the
best candidates determined by the sample.

2. Scoring candidates: When a new candidate graph
grammar is generated, we must calculate the size heuris-
tic of the candidate. Since it will not have been checked
for recursiveness yet, we must ensure that we do not
over-estimate the size in the case that instances over-
lap. Instead of checking all instances of the candidate,
we estimate the size heuristic by looking at a random
sample of ~5% of all instances to get an idea for how
much overlap occurs within the grammar’s population.
This estimate is used to approximate the actual score.

3. Recursive Opportunities: Similar to the sampling
technique we use for scoring candidates, we sample the
candidate grammar’s instances to determine if and how
it is recursive. In this case, we use a sample of <1%
of the instances. We can afford to use a smaller sam-
ple size than in the scoring function because scoring
requires a higher degree of accuracy.

Because the statistical significance of our sample would be
largely dependent on the prevalence and recursive nature
of a candidate graph grammar, we cannot generalize our
method to all cases and we choose our sample sizes empiri-
cally without claiming statistical significance. However, our
small sample sizes worked well in all of our experiments.
We also note that once the top scored graph grammar is re-
turned by the algorithm with sampling, we ensure that the
recursion detection and compression of the input graph by
the grammar are done exactly.

4. EVALUATION

Our evaluation contains three parts. First, we check whe-
ther our algorithm finds seeded structures in a set of syn-
thetically created dumps. Second, we examine its efficacy
on heap dumps we obtained from Java developers. Third,
we report its scalability and performance with respect to the
sizes of the heap graphs considered.

eﬂ) © s
® ©

G S G|s

(®)

® © (®)

A o= A) P ® &
©) — QO® O ® O
G s G|s

Figure 5: Two examples of an input graph G, a graph grammar S inferred from G, and the result of compress-
ing G on S, denoted G|S. (i) A non-recursive grammar which does not contain any embedded non-terminal
nodes or edges. (ii) Recursive grammar on node A containing an embedded non-terminal node that can
match either nodes of type B or C. The grey box containing the “(S)” label represents a recursive connection

instruction.

4.1 Preparing Heap Dumps

We obtained heap dumps from Sun’s Java VM (version
1.6) using either the jmap tool or via the -XX:+HeapDump-
OnOut0fMemoryError option, which triggers an automatic
heap dump when the JVM runs out of memory. We use the
com.sun.tools.hat.* API to process the dump and extract
the reachability graph. Each node in the graph corresponds
to a Java object, which is labeled with its class. Each edge in
the graph corresponds to a reference, labeled with the name
of the field containing the reference. We label edges from
arrays with $array$, ignoring the specific index in which a
reference is stored. We remove all edges that correspond to
weak and soft references, because weak and soft references
to an object do not prevent that object from being reclaimed
if the garbage collector runs low on memory.

4.2 Synthetic Examples

java.util. HashMap$Entry

Figure 6: Most frequent grammar mined from Hid-
denLeak example in Figure 2. The $ character de-
notes nested classes. For example, the node Hidden-
Leak$Legitimate$Leak corresponds to Java class Hid-
denLeak.Legitimate.Leak in the source code.

We first present the results for the motivating example
presented in Section 2. Figure 6 shows the most frequently
occurring mined grammar, which represents a (key, value)
pair anchored by an instance of type HashMap.Entry. This
information directs an expert’s attention immediately to a
HashMap mapping keys of type String to values of type Hid-
denLeak.Legitimate.Leak. We found that 70% of the paths
from the instances produced by this grammar to GC roots
in the original graph exhibit the following structure, where
java.lang.Class (top) is a root node of the dominator tree,
java.util.HashMap$Entry (bottom) corresponds to the top

node in the best grammar displayed in Figure 6, and edge
labels (in parenthesis) stem from the explicit and implicit
variable names used in the source code from Figure 1:

java.lang.Class

| (legitimateMap)

+-+-> java.util.HashMap

| (table)

+-+-> [Ljava.util.HashMap$Entry;

| ($array$)

+-+-> java.util.HashMap$Entry

| (value)

+-+-> HiddenLeak$Legitimate

| (leakyMap)

+-+-> java.util.HashMap

| (table)

+-+-> [Ljava.util.HashMap$Entry;

| ($array$)

+-+-> java.util.HashMap$Entry

The remaining paths contain an additional edge Entry-
.next, which represents the case in which a hash collision led
to chaining. This information immediately describes the lo-
cation of all instances of Leak objects in the graph, alerting
the developer that a large number of these structures has
accumulated underneath each Legitimate object. As dis-
cussed in Section 2, a size-based analysis of the dominator
tree as done in Eclipse’s Memory Analyzer would lead only
to the bucket array of the HashMap object referred to by ‘le-
gitimateMap’ and require manual inspection of the subtree
emanating from it.

Since programmers often choose container types depend-
ing on specific space/time trade-offs related to an expected
access pattern, we then investigated if the leaking struc-
ture would be found if a different container type had been
used. We replaced both uses of HashMap with class TreeMap,
which uses a red-black tree implementation. Our algorithm
correctly identified a grammar consisting of TreeMap.Entry
objects that refer to a (key, value) pair, near-identical to
the grammar shown in Figure 6. In addition, the aggre-
gated path was expressed by the recursive grammar shown
in Figure 7, which covers over 99% of observed paths from
a root to the grammar’s instances.

This path grammar identifies the leak as hidden in a tree
of trees and provides a global picture that would be nearly
impossible to obtain by visual inspection. The use of recur-
sive productions enabled the algorithm to identify a classic
container data structure (a binary tree) without any a priori
knowledge. The use of recursive grammars is also essential
for other recursive data structures, such as linked lists. The
following example demonstrates that our mining approach

+-+-> java.lang.Class
| (legitimateMap)
+-+-> java.util.TreeMap
| (root)
{
+-+-> java.util.TreeMap$Entry
| (right | left)
+-+-> java.util.TreeMap$Entry
}*
| (value)
+-+-> leaks.TreeMapLeaks$Leak
| (leakyMap)
+-+-> java.util.TreeMap
| (root)
{
+-+-> java.util.TreeMap$Entry
| (right | left)
+-+-> java.util.TreeMap$Entry
T

Figure 7: Resulting root path grammar if a TreeMap
container is used for the example shown in Figure 2.

easily captures such data structures, even when they occur
embedded in application classes (rather than in dedicated
collection classes). Class 00ML in Figure 8 embeds a link el-
ement next and an application-specific payload field. The
main method contains an infinite loop which will add el-
ements to a list held in a local variable ‘root’ until heap
memory is exhausted.

public class 0OML {
OOML next;
String payload;

// next element

0OML(String payload, OOML next) {
this.payload = payload;
this.next = next;

}

// add nodes to list until out of memory
public static void main(String [Jav) {
00OML root = new OOML("root", null);
for (int i = 0; ; i++)
root = new 00ML("content", root);

}

Figure 8: A singly linked list embedded in an appli-
cation class.

Figure 9 shows the most frequent subgraph, which con-
tains a recursive production OOML —"*** OOML, rep-
resenting a single linked list. The root path aggregation
showed the location of its instances in the graph:

+-+-> Java_Local

| (root)

{
+-+-> 00ML
| (next)
+-+-> 00ML

}*

4.3 Web Application Heapdumps
4.3.1 Apache Tomcat/J2EE

We obtained a series of heap dumps that resulted from re-
curring out-of-memory situations during the development of
the LibX Edition Builder, a complex J2EE web application

S

OOML javalang.String

next

OOML

Figure 9: Most frequent grammar in synthetic
linked list example.

that makes heavy use of multiple frameworks [2] including
the Apache Tomcat 5.5 servlet container. These heap dumps
were generated over a period of several months. When the
server ran out of memory during intense testing, develop-
ers would simply save a heap dump and restart the server,
without further immediate investigation of the cause.

We obtained a total of 20 heapdumps, varying in sizes
from 33 to 47MB. In all of these dumps, the grammar shown
in Figure 10 percolated to the top. This grammar represents
instances of type BeanInfoManager that reference a HashMap
through their mPropertyByName field. 80% of the root paths
are expressed via the following grammar:

+-+-> org.apache.catalina.loader.StandardClassLoader

| (classes)

+-+-> java.util.Vector

| (elementData)

+-+-> [Ljava.lang.Object;

| ($array$)

+-+-> java.lang.Class

| (mBeanInfoManagerByClass)

+-+-> java.util.HashMap

| (table)

+-+-> [Ljava.util.HashMap$Entry;

| ($array$)

+-+-> java.util.HashMap$Entry

| (value)

+-+-> org.apache.commons.el.BeanInfoManager

This grammar shows that the majority of these objects
are kept alive via a field named mBeanInfoManagerByClass.
Since the field is associated with a node of type Class, it
represents a static field. Examination of an actual path in-
stance reveals that this static field belongs to class org-
.apache.commons.el.BeanInfoManager.

Similar to the HiddenLeak example, the Eclipse analyzer
reported the (legitimate!) HashMap.Entry array stored in
the mBeanInfoManagerByClass class as accumulation point,
but could not provide insights into the structure of the ob-
jects kept in this table without tedious manual inspection.
We eventually found that this leak had already been re-
ported by another developer against the Tomcat Apache
server (Bug 38048: Classloader leak caused by EL evalu-
ation). Interestingly, the original bug report had received
little attention, likely because the bug reporter included only
a single trace to a leaked object reachable from the Bean-
InfoManager class.

S

org.apache.commons.el.BeanlnfoM anager

ivaropertyByNeme

javautil. HashMap

e

[Ljavautil. HashMap$Entry;

org.apache.commons.el.BeanlnfoProperty

Figure 10: Most frequent grammar in Tomcat 5.5
heap dump.

This leak was subsequently fixed in a 6.x release of Tom-
cat. After updating the server, we periodically took heap
dumps via the jmat tool. We subjected these heap dumps,
which contain no known leaks, to our analysis. Unsurpris-
ingly, the subgraph anchored by HashMap.Entry rose to the
top, reflecting the ubiquitous use of hash maps. However,
path aggregation showed these hash maps were located in
very different regions of the object graph, thus making it
less likely for them to be leaks.

4.3.2 MVEL

In a separate project, one of the authors developed a rule-
based system for the application of software engineering pat-
terns to enhance code [29]. During the development of this
project, out of memory situations occurred when certain in-
put was fed to the rule engine, which was written using
the Drools rule engine framework. In this system, rules can
contain expressions written in the MVEL scripting language
(mvel.codehaus.org).

Mining the resulting heap dump showed the grammar in
Figure 11, which contains a recursive production RegFEx M atch
—nextASTNode pog BaMatch. This mined grammar mirrors
the synthetic linked list discussed in Section 4.2. All RegEx-
Match objects are contained in a single list held in a local
variable:

+-+-> Java_Local

I (??)

+-+-> org.mvel.ASTLinkedList

| (firstASTNode)

{

+-+-> org.mvel.ast.RegExMatch
| (nextASTNode)
+-+-> org.mvel.ast.RegExMatch

I*

This path indicates that the cause of the memory exhaus-
tion was the unbounded growth of a singly-linked list of
RegExMatch objects, likely due to a bug in the MVEL parser.
Although this information does not directly lead to the un-
derlying bug, it rules out a number of other scenarios, such

as memory exhaustion due to a large object kept alive by a
long list of RegExMatch objects.

()]

org.mvel .ast. RegExMatch

@m

org.mvel .ast. RegExMatch

Figure 11: Most frequent grammar in MVEL heap
dump.

4.4 Scalability and Other Quantitative Aspects

In this section, we study some quantitative aspects of our
graph mining approach to illustrate its effectiveness at min-
ing heap dumps. First, we study the indegree distribution
of nodes from 24 real (i.e., not synthetic) heap dumps. As-
sessing the % of nodes that have indegree < 1 across these
dumps, we obtain statistics of a minimum of 84%, an av-
erage of 89%, and a maximum of 99.8% (from the MVEL
dumps). This suggests that assessing frequent subgraphs in
the dominator tree should not cause significant loss of infor-
mation as compared to the original heap dump. At the same
time, Table 1 illustrates the reduction gained in the number
of edges and the overall size of the graph by choosing to
focus on the dominator tree.

Fig. 12 illustrates the time taken for diagnosing leaks as a
function of the size of the dominator. This time does not in-
clude loading and pre-processing (removal of weak and soft
references) and computation of the dominator. It does in-
clude the time to mine the top (best) graph grammar, for
graph reduction, and for summarizing root paths. The lower
cluster of points are drawn from the Tomcat/J2EE dumps.
These are processed faster because they do not involve re-
cursive constructs and there are fewer instances of the mined
grammar in the dump. We see that these are processed in

1200

MVEL dumps
~N

D

800
N,

seconds)
”» 0

~ 600

400

Runtime

200 *
*
L 2 *
* wh o ‘
0 500 1000 1500 2000 2500 3000 3500 4000

Size (D) = # nodes + # edges (in thousands)

Figure 12: Runtime statistics on real heap dumps.

Table 1: Summary statistics of some of the heap dumps analyzed in this work. Each heap dump is named by
the type of leak it contains and the date it was created. Dumps labeled as ‘maintenance’ were taken before
the production server was shut down for maintenance; they appear to be healthy and leak-free.

Name Memory | # nodes | # edges | # edges | % edge % size Grammar

(MB) (Q) (D) reduction | reduction | size (avg)
tomcat.jul03 39 713076 1243152 536628 57% 36% 10.3
tomcat.jul05 41 732089 1288883 555829 57% 36% 7.0
tomcat.jun02 33 603941 1035000 440201 57% 36% 11.7
tomcat.jun04 33 588559 974322 427347 56% 35% 9.7
tomcat.may02 41 745434 1442146 561377 61% 40% 31.0
tomcat.may15 40 788482 1545443 609702 61% 40% 31.0
tomcat.sep20 40 734027 1295724 561956 57% 36% 10.3
tomecat.oct20 36 655251 1133970 487573 57% 36% 14.3
tomcat.nov05 43 742729 1336582 559642 58% 37% 24.3
tomcat.oct24 41 707913 1218834 533087 56% 36% 11.3
tomcat.nov03 42 715032 1202226 522893 57% 35% 23.7
tomcat.nov06 42 710730 1250427 535371 57% 36% 25.7
tomcat.oct28 42 717464 1260223 540283 57% 36% 9.0
tomcat.oct06 38 700479 1212796 530758 56% 36% 10.3
tomcat.oct03 47 854365 1584715 674692 57% 37% 11.0
tomcat.oct14 40 722417 1278437 550516 57% 36% 10.3
maintenance.feb06 34 321786 464017 260367 44% 26% 15.0
maintenance.nov08 35 519435 635638 348284 45% 25% 11.0
maintenance.nov1? 35 547759 689958 374595 46% 25% 11.0
maintenance.nov09 34 493408 577236 322739 44% 24% 14.7
mvel.feb12 69 1704284 3832262 1698297 56% 39% 15.0
mvel.feb13 69 1704286 3832264 1698296 56% 39% 13.0
mvel.feb14 69 1704810 3832897 1698405 56% 39% 13.0
mvel.feb19 69 1707258 3837542 1701496 56% 39% 15.0

about 2-3 minutes. Conversely, the MVEL dumps involve
significant recursion and several hundreds of thousands of
instances. Furthermore, the path summarization for the
MVEL constructs require greater work since we must tra-
verse up the linked list to observe the root path for even a
single instance.

Finally, we compared the runtime of our algorithm when
used on the dominator tree versus the original heap dump
graph. We chose one particular dump, tomcat.sep20 from
Table 1, to make the comparison. We used this dump be-
cause the Tomcat leak graph grammar does not display sig-
nificant recursion and this dump is one of many good rep-
resentatives of the leak class. In order to compare the run-
times, we excluded the path summarization step that was
included in the runtime plot in Fig. 12 because this step
would not be comparable between graphs. We note that the
preprocessing step of removing weak and soft references will
differ between graphs as well (in fact it is less complex in the
dominator tree), but the resulting graphs are comparable.
Further, we found that the most frequent graph grammar
in the dominator tree is a subgraph of the most frequent
graph grammar in the full heap dump graph, thus requir-
ing more iterations of candidate generation and therefore
more runtime for discovery. To enable a fair runtime com-
parison, we considered the time required to generate the
most frequent single-edge graph grammar from the domi-
nator tree versus from the full graph. We found that the
dominator tree accomplished this task in 21 seconds versus
38 seconds in the full graph. We also compared the com-
plete runtime for the graph grammar in the full heap dump

graph for tomcat.sep20 versus the runtime on a dominator
tree from a similar heap dump, tomcat.nov05, because the
discovered graph grammar from the dominator tree in tom-
cat.nov05 was closer in size to that found in the full heap
dump graph for tomcat.sep20 and composed of the same
leak — but was actually larger and more frequent. We found
that in the dominator tree the runtime was 130 seconds ver-
sus 426 seconds in the full heap dump graph. Our results
show that we obtain ~ 46% runtime reduction for identify-
ing small graph grammars and ~69% runtime reduction for
large graph grammars when the percentage of size reduction
is only 36%. This suggests that mining the dominator tree
is not only quicker due to size reduction, but also because its
tree structure contains less noise and redundancy, thereby
simplifying the mining process.

S. RELATED WORK

Our research combines ideas from software engineering
and graph mining. We discuss related work in each of these
areas.

5.1 Memory Leak Detection Tools

One of the first systems to debug leaks exploited visual-
ization, allowing a user to interactively focus on suspected
problem areas in the heap [26]. Most recent existing leak de-
tection tools use temporal information, including object age
and staleness, that is obtained by monitoring a program as
it runs. For instance, IBM’s Leakbot [21-23] acquires snap-
shots at multiple times during the execution of a program,

applies heuristics to identify leak candidates, and monitors
how they evolve over time.

Minimizing both the space and runtime overhead of dy-
namic analyses have been the subject of intense study. Space
overhead is incurred because object allocation sites and last
access times must be recorded; runtime overhead because
this information must be continuously updated. Bell and
Sleigh [3] use a novel encoding to minimize space overhead
for allocation sites. To minimize the runtime cost, statisti-
cal profiling approaches have been developed [13]. Cork [16]
combines low-overhead statistic profiling with type-slicing.
Some profilers, notably the NetBeans profiler, use informa-
tion already kept by generational collectors to determine ob-
ject age. Lastly, hardware support for monitoring memory
access events has been proposed in [30].

By contrast, our approach explores mining information
from a single heap dump, which is often the only source of
information available when out-of-memory errors occur un-
expectedly, which is the common case in production environ-
ments in which dynamic tools are rarely deployed. Our work
is complementary to dynamic approaches. Mined structural
information is likely to enhance information these tools can
provide, especially in the common scenario in which software
engineers diagnose suspected leaks in codes with which they
are not familiar. Moreover, the ability to identify data struc-
tures could be exploited to automatically infer which oper-
ations are add/delete operations on containers, which could
benefit approaches that rely on monitoring the membership
of object containers to identify leaks [33].

In the context of languages with explicit memory man-
agement, several static analyses have been developed that
identify where a programmer failed to deallocate memory 8,
14,25,32]. Similarly, trace-based tools such as Purify [12] or
Valgrind [24] can identify unreachable objects in such envi-
ronments. By comparison, the garbage collected languages
at which our analysis aims do not employ explicit dealloca-
tion; we aim to identify reachable objects that are unlikely
to be accessed in the future. Lastly, rather than eliminat-
ing the source of leaks, some systems implement mitigation
strategies such as swapping objects to disk [4].

5.2 Graph Mining

Graph mining is a well studied field that expands far in
both breadth and depth. Initial works such as [18, 35] fo-
cused on the problem of discovering frequent subgraphs and
these algorithms have been expanded in several directions
over the past decade [6, 7,34, 36,37]. Building upon FP-
tree data structures [11], fast data structures [1] have also
been developed. Similar to our work, graph mining algo-
rithms have been tailored toward specific application do-
mains where the structure of the desired subgrahs can be
exploited in the discovery process.

Cook and Holder’s work [9] takes a different approach to
graph mining by finding a single, “best” subgraph as op-
posed to all subgraphs frequent above some threshold. This
approach uses a scoring function based on the minimum de-
scription length (MDL) principle and is therefore computa-
tionally more complex. This work has also been expanded
upon for the use of finding highly descriptive graph gram-
mars [15,17] which consider the recursive nature of the sub-
graphs and allow for variability in the edge and node labels.

Graph grammars are synonymous with other formal lan-
guage grammars, with the difference being that the “sen-

tences” being generated are connected graphs. Graph gram-
mars have an array of applications, but have generally been
researched from a theoretical perspective for graph genera-
tion [10,28] as opposed to inference problems as studied here.
The benefit of graph grammars is that they can capture
richer information about the connectivity of subgraphs than
traditional frequent subgraphs. Although these graph gram-
mars are primarily context-free and therefore lossy, they pro-
vide a more descriptive representation of a subgraph than
just a frequency count. Our work follows the graph gram-
mar philosophy but applies it toward the characterization of
dominator trees, which has not been studied before.

5.3 Data Mining for Software Engineering

Data from programming projects (code, bug reports, doc-
umentation, runtime snapshots, heap dumps) is now so plen-
tiful that data mining approaches have been investigated
toward software engineering goals (see [31] for a survey).
Graph data, in particular, resurfaces in many guises such
as call graphs, dependencies across subprojects, and heap
dumps. Graph mining techniques have been used mini-
mally for program diagnosis. For instance, program behav-
ior graphs have been mined for frequent closed subgraphs
that become features in a classifier to predict the existence
of “noncrashing” bugs [20]. Behavior graphs were also mined
with the LEAP algorithm [34] in [5] to identify discrimina-
tive subgraphs signifying bug signatures. However, to the
best of our knowledge, nobody has investigated the role of
mining heap dumps for detecting memory leaks or used a
graph grammar mining tool.

6. CONCLUSION

We have presented a general and expressive framework
for diagnosing memory leaks using frequent grammar min-
ing. Our work extends the arsenal of memory leak diagnosis
tools available to software developers. For the KDD commu-
nity, we have introduced the notion of dominators and how
they possess sufficient statistics for mining certain types of
frequent subgraphs. The experimental results are promising
in their potential to debug leaks when other state-of-the-
art tools cannot. We expect our algorithm to be used in
complement of tools like Eclipse MAT.

Our future work revolves around three themes. First, we
seek to embed our algorithm in a runtime infrastructure so
that it can track leaking subgraphs as they build up over
time. Second, we seek to investigate the theoretical proper-
ties of dominators and whether they can support a frequent
pattern growth [11] style of subgraph mining. This approach
will allow us to process larger heap dumps than our current
approach. Third, we plan to perform a quantitative evalua-
tion comparing the quality of our reports to existing tools.
Such quantitative comparisons require the definition of a
metric, which could be derived by approximating the num-
ber of lines of code a user would have to investigate to verify
the presence or absence of a bug, as proposed in [27].

Acknowledgements

This work is supported in part by US NSF grant CCF-
0937133 and the Institute for Critical Technology and Ap-
plied Science (ICTAS) at Virginia Tech. Also, we would like
to thank Jongsoo Park, the developer of the dominator tree

algorithm used in the Boost C++ libraries, for his ready

responses to our questions and comments.

7.
[1]

2]

8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

REFERENCES

M. Akbar and R. Angryk. Frequent pattern-growth
approach for document organization. In CIKM 08,
pages 77-82, 2008.

A. Bailey and G. Back. LibX—a Firefox extension for
enhanced library access. Library Hi Tech,
24(2):290-304, 2006.

M. Bond and K. McKinley. Bell: bit-encoding online
memory leak detection. In ASPLOS-XII ’06, pages
61-72, 2006.

M. Bond and K. McKinley. Tolerating memory leaks.
In OOPSLA 08, pages 109-126, 2008.

H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan.
Identifying bug signatures using discriminative graph
mining. In ISSTA 09, pages 141-152, New York, NY,
USA, 2009.

H. Cheng, X. Yan, J. Han, and P. Yu. Direct
discriminative pattern mining for effective
classification. In ICDE ’07, pages 169-178, 2008.

C. Chent, X. Yan, F. Zhu, and J. Han. gApprox:
Mining frequent approximate patterns from a massive
network. In ICDM ’07, pages 445-450, 2007.

S. Cherem, L. Princehouse, and R. Rugina. Practical
memory leak detection using guarded value-flow
analysis. In PLDI ’07, pages 480-491, 2007.

D. Cook and L. Holder. Substructure discovery using
minimum description length and background
knowledge. JAIR, 1:231-255, 1994.

J. Engelfriet and G. Rozenberg. Graph grammars
based on node rewriting: an introduction to nlc graph
grammars. In Graph grammars and their application
to computer science: 4th Intl. Workshop, pages 12-23,
1991.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD ’00, pages
1-12, 2000.

R. Hastings and B. Joyce. Purify: A tool for detecting
memory leaks and access errors in ¢ and c+-+
programs. In Winter USENIX Conference, pages
125-138, 1992.

M. Hauswirth and T. Chilimbi. Low-overhead memory
leak detection using adaptive statistical profiling. In
ASPLOS-XI ’04, pages 156—164, 2004.

D. Heine and M. Lam. A practical flow-sensitive and
context-sensitive C and C++ memory leak detector.
In PLDI ’03, pages 168-181, 2003.

I. Jonyer, L. Holder, and D. Cook. MDL-based
context-free graph grammar induction and
applications. IJAIT, 13(1):65-79, 2004.

M. Jump and K. McKinley. Cork: dynamic memory
leak detection for garbage-collected languages. In
POPL 07, pages 31-38, 2007.

J. Kukluk, L. Holder, and D. Cook. Inference of node
and edge replacement graph grammars. In ICML
Grammar Induction Workshop ’07, 2007.

M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM ’01, pages 313-320, 2001.

T. Lengauer and R. Tarjan. A fast algorithm for

20]

21]

(22]

23]

24]

(25]

[26]

27]

28]

29]

30]

(31]

32]

33]

34]

(35]

(36]

37]

finding dominators in a flowgraph. ACM Trans.
Program. Lang. Syst., 1(1):121-141, 1979.

C. Liu, X. Yan, H. Yu, J. Han, and P. Yu. Mining
behavior graphs for "backtrace” of noncrashing bugs.
In SDM 05, pages 286—297.

N. Mitchell. The runtime structure of object
ownership. In D. Thomas, editor, ECOOP ’06, 2006.
N. Mitchell and G. Sevitsky. LeakBot: An automated
and lightweight tool for diagnosing memory leaks in
large java applications. In ECOOP 03, 2003.

N. Mitchell and G. Sevitsky. The causes of bloat, the
limits of health. In OOPSLA ’07, pages 245-260, 2007.
N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07, pages 89-100, 2007.

M. Orlovich and R. Rugina. Memory leak analysis by
contradiction. In Lecture Notes in Computer Science,
volume 4134, pages 405-424. Springer, 2006.

W. De Pauw and G. Sevitsky. Visualizing reference
patterns for solving memory leaks in java.
Concurrency - Practice and Ezperience,
12(14):1431-1454, 2000.

M. Renieris and S.Reiss. Fault localization with
nearest neighbor queries. In ASE ’03, pages 30-39,
2003.

G. Rozenberg. Handbook of Graph Grammars and
Computing by Graph Transformation, volume 1. 1997.
E. Tilevich and G. Back. Program, enhance thyself!
demand-driven pattern-oriented program
enhancement. In AOSD 08, pages 13—24, April 2008.
G. Venkataramani, B. Roemer, Y. Solihin, and

M. Prvulovic. Memtracker: Efficient and
programmable support for memory access monitoring
and debugging. In HPCA 07, pages 273-284, 2007.
T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data
Mining for Software Engineering. IEEE Computer,
Vol. 42(8):35-42, Aug 2009.

Y. Xie and A. Aiken. Context- and path-sensitive
memory leak detection. In ESEC/FSE-13, pages
115-125, 2005.

G. Xu and A. Rountev. Precise memory leak detection
for Java software using container profiling. In ICSE
08, pages 151-160, 2008.

X. Yan, H. Cheng, J. Han, and P. Yu. Mining
significant graph patterns by leap search. In SIGMOD
08, pages 433-444, 2008.

X. Yan and J. Han. gSpan: graph-based substructure
pattern mining. In ICDM 02, pages 721-724, 2002.
X. Yan and J. Han. CloseGraph: mining closed
frequent graph patterns. In SIGKDD 03, pages
286-295, 2003. 956784.

Z. Zeng, J. Wang, L. Zhou, and G. Karypis.
Out-of-core coherent closed quasi-clique mining from
large dense graph databases. ACM TODS, 32(2), 2007.

