
Author's personal copy

Journal of Computational Science 3 (2012) 28– 45

Contents lists available at SciVerse ScienceDirect

Journal of Computational Science

jo u r n al hom ep age: www.elsev ier .com/ locate / jocs

Implementing modular adaptation of scientific software

Pilsung Kanga,∗, Naresh K.C. Selvarasub, Naren Ramakrishnana, Calvin J. Ribbensa, Danesh K. Taftib,
Yang Caoa, Srinidhi Varadarajana

a Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
b Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA

a r t i c l e i n f o

Article history:
Received 26 July 2011
Received in revised form 19 January 2012
Accepted 29 January 2012
Available online 6 February 2012

Keywords:
Program adaptation
Scientific computing
Modular programming

a b s t r a c t

Scientific software often needs to be adapted for different execution environments, problem sets, and
available resources to ensure its efficiency and reliability. However, for existing programs, implement-
ing adaptations by directly modifying source code can be time-consuming, error-prone, and difficult to
manage for today’s complex software. In this paper, we present a modular approach to realizing adapta-
tion for existing scientific codes. By treating adaptation as a separate concern, our approach supports the
development of application-specific, context-aware adaptation schemes without directly modifying the
original code. Our approach uses a compositional framework that offers language-neutral mechanisms to
integrate separately written adaptation code with existing code. Using our approach, scientific program-
mers can focus on the design and implementation of adaptation schemes separately from the original
code development, and then compose an adaptive application whose original capabilities are enhanced
in diverse aspects such as performance and stability. Our compositional approach enables fine-grained
adaptation, so that an application’s program behavior is controlled at the function or algorithm level by
adaptation code plugged into the application. By applying our approach to real-world scientific appli-
cations to implement various adaptation scenarios, we demonstrate applicability and effectiveness for
adapting scientific software.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Program adaptation is a process of changing the runtime behav-
ior of a program in a different way from its original conception
to achieve a certain purpose necessitated by the user. The need
for adaptation arises from different application requirements such
as performance, stability, and program analysis. Changing system
state by modifying global variables and adapting functional behav-
ior of a program module (a chunk of code usually abstracted as a
procedure) are typical adaptation operations.

In scientific computing, adaptation is especially relevant
because scientific software often needs to change its original behav-
ior for different execution environments, problem instances, and
available resources to provide sufficient efficiency and reliability. A
variety of approaches exist at different levels to implement adap-
tive behavior in scientific programming. At the algorithmic level,
adaptive algorithms [12] or multi-method algorithms [4,6] can be
adopted from the beginning of the software design process. At
the framework level, adaptation can be supported from tools that

∗ Corresponding author.
E-mail addresses: kangp@cs.vt.edu, pilsungk@gmail.com (P. Kang).

perform dynamic algorithm selection or switching to find the best
algorithmic option for a given problem at runtime [3,36].

While these approaches can be useful for developing adaptive
applications from scratch, implementing adaptations for existing
programs requires modification over original source code. For fine-
grained adaptations, where the behavior of an application needs
to be manipulated at the algorithmic level, the modification pro-
cess can be a challenging task for scientific codes. The challenge is
particularly great for legacy codes, many of which were written in
early versions of Fortran, which lacked sophisticated software engi-
neering mechanisms for modularity support, and because modern
programming practices that encourage modularity and adaptabil-
ity have not always been used.

To address these challenges, we present a modular approach to
implementing adaptations for existing scientific programs. We take
a compositional approach, where software adaptation is treated
as a separate concern in the software development process and
application-specific adaptation schemes can be effectively factored
out in separate code. Therefore, by using our approach, the pro-
grammer can focus on the design and implementation of adaptation
scenarios for a given application. Later, separately developed adap-
tation code is integrated with the original program through a
compositional framework. Our approach is language-neutral and
enables composition of an adaptive application from multiple

1877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.jocs.2012.01.007

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 29

software modules written in different languages, including
Fortran.

The remainder of the paper is organized as follows. Section 2
presents key concepts of our compositional approach to imple-
menting modular adaptation of scientific software. Section 3
describes the Adaptive Code Collage (ACC), a compositional tool we
use to realize adaptation. Section 4 illustrates the power of modular
adaptation with a series of adaptivity scenarios applied to a com-
putational fluid dynamics (CFD) code. (Condensed descriptions of
these examples have appeared in [20,21].) Each of these CFD exam-
ples is precisely defined and automatic, in the sense that the point in
the code where the adaptation will occur and the strategy used for
adaptation are specified before an application is launched. A second
set of adaptivity scenarios is presented in Section 5, based on a cell
biology simulation code. These scenarios are more loosely defined
and interactive, in that we enable users to decide at run-time the
point at which adaptation will occur, and the type of adaptation
that will be done. Section 6 contrasts our work with related research
projects. And finally, Section 7 summarizes the contributions of the
paper.

2. Compositional approach to modular adaptation

Fig. 1 shows an overview of our compositional approach. Here,
functions are the basic unit where adaptation happens, i.e., adaptive
behavior results from implementing adaptation operations associ-
ated with functions of interest in the original code. Such adaptation
target functions are specified by the programmer as adaptation con-
trol points—points where our compositional framework can plug in
separately written adaptation code.

Our framework offers effective and efficient mechanisms nec-
essary for the programmer to use in describing desired adaptation
logic with respect to a given application. We discuss the benefits
of taking our compositional approach in implementing scientific
software adaptation in the following.

2.1. Factoring out the adaptation logic

In our compositional approach, we treat adaptation as a separate
concern in evolving software, where adaptation plans are organized
separately and their implementations are written and managed
in independent modules. Thus the main code base maintains its
original form and structure, unaffected by individual adaptation
efforts. Adaptation code modules are then later plugged into the
main program through a compositional framework, which com-
bines both codes to generate an application with a newly added
adaptation capability that adjusts original application behavior at
runtime. This is similar to the Aspect-Oriented Programming (AOP)
paradigm [23], where the programmer identifies control points (or
join points in AOP terms) in the original program, writes certain
aspect operations in a separate code, and weaves in the aspect code
at the control points in the original program through an AOP frame-
work, thereby resulting in an enhanced program with a specific
runtime capability.

2.2. Fine-grained adaptation

By defining adaptation control points at the interfaces of subpro-
gram modules, our compositional approach conveniently achieves
effective, fine-grained control over application behavior, where
adaptation strategies can be designed to monitor and react to
changes in internal program states. Global state variables can be
accessed from the adaptivity code by declaring these variables as
external. Our framework also provides function parameter control
APIs, which enables an extra level of flexibility in fine-grained adap-
tation. Function parameters are usually not exposed as globals in

a program, but they can hold important runtime program state for
certain adaptation purposes. Through parameter control APIs, we
allow dynamic program state that is communicated between mod-
ules not only to be accessed (e.g., to check computational progress)
but also to be manipulated to adjust the program’s runtime behav-
ior.

2.3. Fortran support

Fortran has traditionally been the language of choice in the sci-
entific computing domain and a large portion of legacy scientific
software written in Fortran is still used to build modern scien-
tific applications. For instance, numerical software more than a few
decades old is not unusual in the listings in the Netlib repository,1

Unfortunately, most legacy scientific computing software is tai-
lored toward static execution. The execution path of a typical
scientific application is predetermined at compile time and rarely
changes in response to any runtime events. This inherent stiffness
in the traditional scientific programming practice is a serious obsta-
cle that make it hard to adapt existing scientific codes.

To support legacy Fortran programs, our approach uses a
language-neutral framework that implements composition at the
assembly language level. This method works for code modules writ-
ten in Fortran as well as other high level languages as long as the
original code can be compiled to generate assembly output.

3. The Adaptive Code Collage framework

We use a compositional framework called Adaptive Code Col-
lage (ACC) [15,19] to combine adaptation code with a given
program. The ACC framework’s APIs support program composi-
tion through function call interception (FCI), a technique whereby
function calls are intercepted at runtime to alter the operations
performed when the call is actually made. With FCI, the desired
operations may be performed either just before or after the call, or
at both times. Because specific function calls are caught and manip-
ulated at runtime to change their original behavior, FCI enables
transparent code modification without directly rewriting the exist-
ing code.

The ACC framework implements FCI at the assembly language
level by replacing the x86 call instruction in the instrumentation
target code with a call to its own interception handler, a piece of
newly inserted code responsible for modifying the original func-
tion. Therefore, instead of directly altering the original high-level
language code, we apply ACC to the assembly output generated
from the compiler to insert new code, thus realizing modular devel-
opment of software adaptation. Moreover, due to the assembly
level code modification, ACC can be applied independently of the
original source language, making it suitable for Fortran legacy codes
as well as programs written in C or C++.

The application development process using ACC involves three
steps. First, the assembly output of the target subprogram is
patched to divert the target function calls to ACC. Next, the intended
adaptive plan is implemented in a new code module, in which the
desired operations are described and the original calls can be mod-
ified through ACC’s parameter manipulation APIs. ACC transfers
execution control of the diverted calls to the new module at execu-
tion time. Finally, the user needs to set up an association between
the target function and the new module by using ACC’s registration
APIs.

Fig. 2 shows how ACC operates to combine a new code module
with a given program. Here, the f() and g() functions are specified

1 http://www.netlib.org.

Author's personal copy

30 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 1. Composition of an adaptive application with existing code.

as adaptation control points and their handler code, f handler()
and g handler(), respectively, are written by the programmer
to adapt their original behavior. The handlers are then registered
and associated with the corresponding functions through ACC, thus
effectively integrating them with the original program. At runtime,
every call to the target functions is intercepted and program control
is diverted to the associated handler through ACC’s bookkeeping
data structure.

Although we say ACC implements FCI functions, its capabilities
are actually quite general, including:

• Function interception: User-specified function calls can be inter-
cepted before or after their lifetime through assembly code
patching. This means that the basic unit to support code insertion
is a procedure or function.

• Registered callbacks: A piece of code (i.e., handler code) can be
registered with a function so that the code can be performed
whenever the associated function is intercepted. In effect, the
programmer implements adaptation by writing handler code for
function of interest within a given program and plugging in the
code to the application.

• Parameter manipulation: Function call parameters can be accessed
and modified through stack manipulation before the call is actu-
ally performed, which allows another degree of flexibility in
modifying the original program behavior.

• Function parameter remapping: Through sophisticated stack
manipulation, the entire parameter list of a function can be

remapped for a new function with a different parameter
signature.

Perhaps the most useful feature of ACC is the ability to remap
the entire parameter list of a function to a new function even with
a different signature. We make heavy use of this functionality to
implement the adaptive use cases presented in this paper.

3.1. ACC for adapting scientific software

Although ACC is primarily a programmer’s tool for factorizing
adaptivity with an existing code base to enable the plug-and-
play of different adaptive strategies, we focus on scientific codes
mainly because they offer rich adaptation possibilities. In scientific
computing, it is quite common that there are multiple algorith-
mic options for the same problem, which naturally encourages
application behavior adaptation depending on different execu-
tion contexts. Therefore, adaptation for improving performance or
stability has long been used in many scientific applications, and
methods to automatically switch between algorithms are critically
important. ACC can be used for different adaptation strategies and
in particular, it is well-suited to realizing adaptation patterns or
schemas [30], such as algorithm switching and systems control, that
commonly occur in diverse areas of scientific computing. Most of
these adaptations rely on monitoring and adjusting state variables
or diverting function calls to improve certain aspects of the appli-
cation’s runtime behavior. By using ACC, such capabilities can be

Fig. 2. Function call interception using ACC.

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 31

Table 1
Implementation aspects of GenIDLEST adaptation.

Time step change Flow model switch Dynamic tuning

Purpose Improve stability Enhance accuracy Improve performance
Type of scheme Automatic adjustment User’s dynamic decision Automatic tuning
States to monitor CFL number via mpi allreduce Stream-wise velocity written to a log Loop execution time
Control point mpi allreduce inside calc cfl calc cfl in the loop calc cfl in the loop
Adaptive logic Adjust time step to confine CFL

number within certain bounds
Switch flow model and activate
turbulent data structures

Explore parameter space to determine
optimal values

Communication Not necessary Broadcast of user’s decision Broadcast of parameter values

easily implemented in a modular fashion that factors them out into
a separate code which can be better managed and maintained.

Specifying what needs to be adapted and how differs depending
on applications and is the purview of domain-specific informa-
tion. As such, a fair amount of understanding of the control flow
and program structure of a target application at the function level
is necessary for the effective development of application-specific
adaptation using ACC. However, most scientific computations are
structured based on iterative loops and the end of a loop exhibits
stable computation states at runtime. In particular, parallel applica-
tions typically synchronize concurrent execution at the loop end to
construct consistent intermediate results. Hence, parallel commu-
nication functions near the computation loop are prime candidates
for adaptation control points in using our methods. And in most
cases, identifying and specifying these functions as control points
tend to be quite intuitive.

A further description of the ACC framework can be found in our
previous publication [19].

4. Case study 1: computational fluid dynamics simulations

We have used the ACC framework to implement a variety of
adaptation scenarios in the context of real scientific computing
codes. In the first case study we target Generalized Incompress-
ible Direct and Large-Eddy Simulations of Turbulence (GenIDLEST)
[29] code, a parallel computational fluid dynamics (CFD) simula-
tion program written in Fortran 90 with MPI to solve the three
dimensional, time-dependent incompressible Navier–Stokes and
energy or temperature equations. In this section, we describe three
applications of our fine-grained adaptation approach to GenIDLEST,
each of which is designed to enhance the capability of CFD simula-
tions in different aspects such as simulation stability, accuracy, and
performance. The implementation aspects of the three adaptation
scenarios are summarized in Table 1.

4.1. Synchronous parallel adaptation

Implementing parallel adaptive behavior requires adaptive logic
operations to take place synchronously at clearly defined program
control points that are shared across all the participating pro-
cesses. This is important for implementing fine-grained adaptation
strategies with SPMD (Single Program, Multiple Data) programs
where program behavior needs to change dynamically in response
to changes in program state, because asynchronous adaptation
in a parallel program can cause race conditions among the pro-
cesses and make the entire computation invalid. For example, if
one process changes a global simulation parameter or algorithm,
and continues the computation, before another process makes the
corresponding adaptation, the result may be inconsistent.

However, synchronous adaptation can degrade performance if
the adaptivity code involves extra global communication and syn-
chronization. To mitigate the potential performance slowdown
caused by adaptive global operations, we plug in the adaptivity
code at global synchronization points that already exist in the orig-
inal program, thus placing separate barriers (one from the original

code and the other from the new adaptivity code) close together
and making the combined overhead smaller. By having the adaptiv-
ity operations “piggyback” onto the existing communications that
are executed synchronously across the parallel environment, mon-
itoring and adjusting the program states can also be performed
synchronously without explicitly using extra global operations.
Furthermore, since the end of a computation loop typically exhibits
stable system state and consistent intermediate results, by plac-
ing adaptation code at the end of a loop, coherent results can be
assessed without disturbing the ongoing computation.

4.2. Input CFD problems and execution platforms

We consider two CFD problems that show distinct physical char-
acteristics to evaluate our adaptation method.

• Pin fin array: The geometry of the pin fin array simulation is shown
in Fig. 3(a). Extended surfaces or fins have been used extensively
to augment the heat/mass transfer from or to a surface primarily
by increasing the transfer area and/or increasing the heat/mass
transfer coefficient. Reducing the size and weight requirements of
equipment necessitates optimal designs of these systems, which
in turn requires a detailed understanding of flow and heat transfer
characteristics. Most of these fins are in the intermediate slen-
derness ratio range of 0.5–4 and the typical Reynolds numbers
are in the range of 150–4500 for electronic cooling applications.
For the GenIDLEST simulation, we divided the geometry into 16
block structures so that the maximum degree of parallelism is 16,
where each block is assigned to one MPI process.

• Turbulent straight channel: Turbulent flow phenomena are impor-
tant in various applications and affect the design and use of these
applications, where the turbulent channel is one of the canonical
geometries used to evaluate the properties of numerical approx-
imations and turbulence models by comparing the results to
known measured or computed solutions. Calculations are car-
ried out in turbulent channel flow at a Reynolds number Re� = 180
based on channel half-height and wall friction velocity. Grids of
64 × 64 × 64 computational cells were used in the x-, y-, and z-
directions, respectively, which are divided in the z-direction into
eight 64 × 64 × 8 blocks (Fig. 3(b)).

We use two cluster systems, called Anantham and System G
respectively, to perform the GenIDLEST simulations. A summary of
architectural features of each of the systems is shown in Table 2.

4.3. Adaptation for stability: automatic adjustment of simulation
time step

The stability of the simulation depends on the time step size
used. Based on observed Courant-Friedrich-Levi (CFL) numbers one
could discern if the simulation is proceeding towards convergence
or is becoming unstable. Current practice of running GenIDLEST
simulations records intermediate results at the end of a preset num-
ber of iterations onto the disk, thereby allowing the user to stop the
execution and restart from the last known stable state when the

Author's personal copy

32 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 3. CFD problems under consideration for GenIDLEST adaptation.

user determines the running simulation is diverging. By plugging
in a simple adaptivity module, the enhanced GenIDLEST simula-
tion (requiring no modifications to the original GenIDLEST code)
will incrementally adjust the time step value at runtime, allowing
the computation to proceed in a stable manner.

4.3.1. Implementation
Fig. 4 shows an overview of our automatic time step adjust-

ment implementation, where the original GenIDLEST code and the
adaptation code are combined together at a control point (stabil-
ity cfl check in the figure). At the end of every preset number of
iterations in the execution flow of GenIDLEST, a local CFL number
is calculated by each MPI process, and then the global CFL value is
computed in the stability check module using a reduction operation
(mpi allreduce) across all the processes. This point is a good can-
didate for adaptivity code insertion, since by catching and imposing
operations at this synchronization point, the newly inserted code
can also be executed in synchronization, thereby avoiding danger-
ous race conditions among the processes. Furthermore, catching
the global reduction call also makes it easy to monitor the global
CFL number because its value is passed as the second parameter
of the function. ACC’s parameter accessing APIs can be utilized to
access this value.

Two state variables need to be controlled by the adaptation
code: one for global CFL number and the other for the time step
parameter. As a specific adaptation scheme, we employed a sim-
ple multiplicative increase, multiplicative decrease algorithm with
upper (CFL U THRESHOLD) and lower (CFL L THRESHOLD) thresh-
old values for the CFL number, such that the time step is increased
or decreased by a preset factor if the current CFL number becomes
out of the bounds defined by the thresholds. Importantly, the entire
adaptive logic operations are performed synchronously at the call
sites of mpi allreduce without involving any extra global opera-
tions, thereby achieving efficient parallel program adaptation.

4.3.2. Experimental results
Fig. 5 shows the results of GenIDLEST enhanced with the con-

structed adaptivity module for the pin fin array simulation, with

Table 2
Architectural summary of execution platforms for GenIDLEST adaptation.

Cluster Anantham System G

CPU AMD Opteron 240 Intel Xeon E5462
Clock (GHz) 1.40 2.80
Sockets 2 2
Cores per socket 1 4
L1 Data cache 64 kB 32 kB
L2 cache 2 × 1 MB 4 × 6 MB (shared by 2)
Memory 1 GB 8 GB
Interconnect 100 Mbps Ethernet 40 Gbps InfiniBand
MPI&Compiler MPICH2 1.0.8 with GNU

Compilers 4.2.5
OpenMPI 1.2.8 with Intel
Compilers 11.0

different initial values of time step ranging from 10−3 to 10−5.
CFL U THRESHOLD and CFL L THRESHOLD were set to 0.5 and 0.25,
respectively. The graphs show how the CFL value changes as the
time step parameter is controlled by the new module, thereby
maintaining the stability of the simulation. Interestingly, it also
shows that the time step in all cases converge to somewhere around
1.7 × 10−4, which might be the optimal value for the model, regard-
less of different starting values. Therefore, an adaptive logic based
on a sophisticated CFD theory might be devised to find the optimal
time step for more generalized problems through our composition
method.

4.4. Accuracy adaptation: runtime change of flow models

The predicted heat transfer and flow characteristics depend
on the selection of the appropriate flow model. A fundamental
distinction is between laminar and turbulent flow models, and sim-
ulations of interest often require a switch from one to the other.
This problem becomes acute when the Reynolds number is in the
transition region between laminar and turbulent flows. Thus it
becomes important to change the flow model from laminar to tur-
bulent once instabilities arise in the flow field, for a simulation
that is started assuming the flow is laminar. Two Large Eddy Sim-
ulation (LES) turbulent models are considered in this study—the
Smagorinsky model (SM) and dynamic Smagorinsky model (DSM)
[13]. The most commonly used model is the Smagorinsky model,
where the eddy viscosity of the subgrid scales is obtained by assum-
ing that the energy production and destruction are in equilibrium.
The drawback of this model is that the model coefficient is kept con-
stant, while in reality it should vary within the flow field depending
on the local state of turbulence. The dynamic Smagorinsky model
computes the model coefficient dynamically, which overcomes the
deficiencies of the Smagorinsky model by locally calculating the
eddy viscosity coefficient to reflect closely the state of the flow
[13]. The advantage of the DSM model is that the need to spec-
ify the model coefficient is eliminated, making the model more
self-contained, but with an additional computational expense of
10–15%.

4.4.1. Implementation
The simulated flow model in GenIDLEST is set initially by the

user through an input specification parameter, namely i les: 0
for laminar, 1 for Smagorinsky, and 2 for Dynamic Smagorinsky
model. Hence, the program state needs to be accessed and changed
at runtime via this variable. Importantly, the change should be
made synchronously across all processes to maintain the consis-
tency of the parallel computation. To this end, we plug in the
adaptivity module at the call site of the CFL reduction function as
shown in Fig. 4, because it is executed in synchronization across all
the MPI processes, providing a safe place for carrying out adapta-
tion operations without modifying the original code and disturbing

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 33

Fig. 4. GenIDLEST execution flow.

Fig. 5. Automatic adjustment of the time step parameter.

the parallel execution flow already established in the original
GenIDLEST. Specifically, the adaptivity code checks if the user wants
to change the flow model, for which we make use of Unix signals
(e.g., SIGUSR1) that can handle immediate, unanticipated user deci-
sions to switch the flow model. These user-sent signals set a flag
in the root process, which will pause accordingly with a simple
user interface in the next iteration to accept the user’s adaptation
decisions, which in turn are broadcast to the other processes.

4.4.2. Experimental results
The computational domain consists of an array of cylindrical

pins of circular cross section, where a uniform heat flux is applied
from the end walls assuming fin efficiency close to 100% for mini-
channels. The variation of the velocity in the direction of flow
(stream-wise) is plotted in Fig. 6, showing the points in time when
the flow models are switched from laminar to SM and then to DSM.
The stream-wise velocity initially decreases, as the simulation pro-
ceeds towards the solution, which occurs till about 0.6 time units.
After this simulation time, we see that the stream-wise velocity
tends to vary with time, indicating the development of flow insta-
bilities, and implying that the initial assumption of laminar flow
is no longer valid. Thus the model is switched to SM at time 1.0.
The drawback with the SM model, as mentioned earlier, is that the
model coefficient is set to a constant value, but in reality the coef-
ficient varies with the local state of turbulence, thus it becomes
imperative to change the model from SM to DSM. This switch is
done after a few hundred iterations (at time 1.4) to make sure that
the switch from laminar to turbulent model does not introduce
instabilities in the computation.

The switch from laminar to turbulent flow model has a signifi-
cant effect on the heat transfer. This is shown in Fig. 7(a) and (b),

which show the variation of the Nusselt number at the channel
walls, which is a measure of heat transfer at that location. The dot-
ted line shows the region of interest, which is at the front of the pin
in the line of fluid flow. The laminar flow model does not capture
the heat transfer effects at the front of the pin, predicting lower heat
transfer rates at the pin front than the turbulent model, thus jus-
tifying the model switch from laminar to DSM. This switch shows
the capabilities of the adaptive scheme, since to effect the switch
without it would have meant stopping the current execution and
then restarting the simulation after effecting the required change.

Fig. 6. Variation of stream-wise velocity with flow model change.

Author's personal copy

34 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 7. Dynamic flow model change from laminar to turbulent.

4.5. Performance adaptation: dynamic tuning of algorithmic
parameters

Algorithmic parameters can have a critical influence on the per-
formance of a scientific application. A typical example involves
domain decomposition methods, where a large problem domain
is partitioned into small subdomains or blocks, with a dominant
step in the algorithm corresponding to independent solves on each
of the subproblems, which are then combined in some fashion to
drive the global solution forward. Since a carefully chosen subdo-
main size (e.g., chosen to match the execution platform’s memory
hierarchy in some way) can lead to a significant speedup, tuning
of the decomposition method is a common optimization strategy
in this setting. Manual tuning of algorithm parameters not only
is time-consuming in scientific computing, where several days or
weeks of simulation is not unusual, but also requires a substantial
level of understanding of both the target algorithm and the underly-
ing hardware. This is particularly difficult with today’s fast evolving
hardware architectures such as multi- or many-core CPUs with
complex memory hierarchies. Therefore, tuning support to auto-
matically optimize scientific codes over parameter search spaces
is becoming more relevant [9,34]. However, most of the auto-
matic tuning efforts are focused on basic computational kernels
in numerical computing such as vector and matrix operations, and
tuning support for domain-specific algorithmic parameters is lack-
ing, where even a modest effort in parameter tuning can provide
significant speedups. In addition, in the high-performance comput-
ing context, parallel runtime factors arising from communication
patterns and synchronization costs, which are a critical determi-
nant of application performance, are not usually considered by
traditional auto-tuning approaches.

In this section, we apply our modular adaptation approach to
implement dynamic tuning of algorithmic parameters of scientific
codes. We target existing programs whose performance-critical
algorithms show distinct performance behavior depending on run-
time factors and, at the same time, are not well supported by
auto-tuning techniques, although our method can be applied to
any program in general with tunable algorithmic parameters.

4.5.1. Tuning with collective consideration of runtime factors
To account for runtime factors that affect performance behav-

ior depending on different properties (e.g., size) of actual problem
instances and parallel characteristics of a given execution platform,
we use a dynamic method for tuning target programs. Specifi-
cally, we implement a dynamic tuning procedure that searches for

optimal values of application-specific algorithmic parameters in
the beginning of program execution by periodically measuring and
analyzing the runtime performance profile. Tuning implementa-
tion modules are plugged into a given existing program through
our ACC compositional framework.

4.5.2. Target algorithmic parameters
We aim to tune the preconditioning code in the Krylov method

for solving pressure equations, which accounts for a substan-
tial amount of the computation in GenIDLEST simulations. For
the preconditioning smoother, GenIDLEST provides many options
and parameters to choose from to tweak the performance of the
smoothing process such as preconditioning method, inner and
outer loop relaxation parameters over decomposed domains, and
number of smoothing iterations for subdomains, all of which are
application-specific parameters for implementing preconditioners
in GenIDLEST.

For this example, we use GenIDLEST’s Jacobi preconditioner
with the relaxation factor set to 0.95, since, among available choices
such as SSOR (Symmetric Successive Over-relaxation) and ILU
(Incomplete LU) decomposition, this setting has been found to per-
form quite well in most GenIDLEST simulations. The two target
algorithmic parameters in the preconditioning code considered for
our dynamic tuning method are described in the following.

• Sub-blocks in domain decomposition. In the data decomposition
hierarchy of GenIDLEST simulations, a given whole problem
domain is divided into multiple blocks, each of which is then
assigned to individual processes in parallel execution. The pro-
cessor domain is further subdivided into smaller sub-blocks for
preconditioning, which groups a set of multiple sub-blocks into
a mesh block for coarse level smoothing, as is done in multi-
grid methods. In the GenIDLEST code, the (ni blk,nj blk,nk blk)
parameter set represents the number of sub-blocks in x-, y-,
and z-directions, respectively. For example, one of the CFD prob-
lems considered in this paper has computational geometry of
size 64 × 64 × 64 and it is divided into eight 64 × 64 × 8 blocks,
such that each block is assigned to one MPI process. Then, if the
parameter is set to (2,b,1), each sub-block will have 32 × 32 × 8
grid cells in the preconditioning process. The cache sub-block is
introduced solely for the solution of linear systems. Each time the
preconditioner is invoked in the Krylov method, it does most of
its work on each of the cache sub-blocks individually. Because of
the small size of each sub-block and the repetitive sweeps or iter-
ations done each time a block is visited, not only does this method

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 35

provide excellent preconditioning but also increases perfor-
mance on a single processor by using cache very effectively [33].

• Inner relaxation sweeps. The inner relaxation sweep parameter,
nswp in blk, specifies the number of sweeps or iterations per-
formed by the smoother each time a sub-block is visited. In
general, increasing this value improves cache performance. How-
ever, taking more sweeps also translates to more floating point
operations and so, it affects convergence characteristics which
could have a detrimental effect on CPU time. The default value
is set to 5 in complex flows. In simpler flows, higher values may
give better overall CPU time.

Table 3 summarizes the target GenIDLEST parameters consid-
ered for dynamic tuning in this application.

CFD simulations with GenIDLEST show distinct performance
behavior depending on both the preconditioning parameters used
and the execution platforms. For example, Fig. 8 shows execution
time measurements on each of the clusters with the CFD problems
for 10,000 simulation time steps. Fig. 8(a) shows measurements for
the straight channel problem on Anantham, where 2 MPI processes
were used on each node. The plots represent 5 different config-
urations for the sub-block parameter. In the top, elapsed times
measured between every 50 time steps are plotted for each of the 5
configurations, and the cumulative sums of elapsed times are plot-
ted in the bottom.2 Here, we varied the 3-dimensional sub-block
parameter only in the x and y directions while keeping nk blk = 1.
Also the values of both ni blk and nj blk were set equal. Therefore,
for instance, blk2 corresponds to (ni blk,nj blk,nk blk) = (2, 2, 1), which
specifies the decomposition of the per-process block of (64, 64, 8)
grid cells into (2 × 2 × 1 = 4) sub-blocks. This results in each sub-
block consisting of (32 × 32 × 8) grid cells, which take 64 kB for
double precision data. Although these 5 configurations are only a
small fraction of the entire search space of the sub-block parame-
ter, they can serve as practical examples because they are simple
to specify and the distribution is in proportion to powers of 2.
The plots show the connection between GenIDLEST performance
and the sub-block size—the performance gets better as the num-
ber of sub-blocks decreases (i.e., the sub-block size increases) up
to a certain point, which happens to be at blk4 where the parame-
ter is (4, 4, 1) and the sub-block size is 16 kB for Anantham. Further
decrease in the number of sub-blocks results in rapid performance
degradation, as shown by the plot for blk2. Similarly, Fig. 8(b) shows
elapsed time plots (top) and cumulative execution time plots (bot-
tom) measured at each 50 time steps for the pin fin array problem
on System G. The best performance is seen at blk2 when the param-
eter is set to (2, 2, 1), which corresponds to the largest sub-block size
(32 kB) among the 5 configurations we tested.

With respect to the shapes of the graphs, Fig. 8(a) for the straight
channel shows performance curves with an almost linear time vari-
ation with intermittent increase in the elapsed time. The linear
profile is due to the fact that the calculations have proceeded to
become fully developed and the jumps in elapsed time indicate
the turbulent nature of the simulation. The performance curves in
Fig. 8(b) for the pin fin array show an initial increase followed by
a decrease in elapsed time. This observed variation is because the
solution is proceeding towards a fully developed condition, lead-
ing to this profile. Obviously, the solution behavior of the flow
problem depends on the stage of the calculation. From the data in
Fig. 8, it can be inferred that given the complexity of the flow prob-
lems encountered in engineering applications, predicting solution
behavior a priori is very difficult. Understanding the performance

2 The measurement code was also separately developed and plugged into the
GenIDLEST program through the ACC framework without directly touching the
original source code.

characteristics of one problem does not necessarily help in pre-
dicting the behavior of another problem. This emphasizes the
importance of runtime tuning of algorithmic parameters for
improving performance on a particular problem and computational
platform.

4.5.3. Dynamic tuning implementation
To allow separate development of application-specific tuning

code and to compose a dynamically tuned application with a given
program, tuning control points need to be identified in the original
code, such that the execution control is intercepted and trans-
ferred to the tuning module. Within the whole program structure,
these control points are the places in which the application per-
formance is regularly measured and the considered algorithmic
parameters are updated by tuning operations. As in the previous
adaptation examples, we choose as the tuning control point the
stability check function, calc cfl(), at the end of the time inte-
gration loop, which calculates CFL numbers at every preset number
of iterations. In this way, tuning operations can be synchronously
performed at regular intervals, while mitigating the potential per-
formance slowdown caused from tuning efforts by reusing existing
synchronization barriers that occur near the end of the outer (time
integration) simulation loop.

4.5.4. Dynamic tuning procedure and search strategies
A simple dynamic tuning strategy is to use a two point measure-

and-compare scheme. At the first measurement point, execution
time for a certain computational step is measured, with the algo-
rithmic parameter of interest set to some initial value. A new value
of that parameter is then selected and the same computational
step is timed again. Performance of the computation under the two
values of the parameter can then be compared, so that the rela-
tive improvement or degradation in performance, as a function of
the algorithmic parameter, can be estimated. However, this sim-
ple scheme requires that the computational step being compared
remains the same, i.e., that the only reason for a change in perfor-
mance from the first measurement point to the second is the change
in the parameter. This is often an unrealistic assumption, especially
for scientific simulations, where the properties of the underlying
problem (e.g., turbulence in CFD simulations) can change in differ-
ent phases of the computation, resulting in changes in performance
behavior even for the same algorithm parameter values.

To better handle the case were performance may vary due
to a variety of reasons, we estimate the dynamic performance
trends by examining the current performance behavior with two
execution intervals, so that the slope of the change in per-
formance can be obtained. This gives some indication whether
the computation—with the current algorithm parameter value—is
becoming easier or more difficult. This slope information is then
used in the search heuristic, as in the threshold function in empir-
ical optimization [28], along with the execution time with a new
parameter value, to decide whether or not to switch to the new
value.

Fig. 9 shows our dynamic tuning procedure. For each algorith-
mic parameter under tuning consideration, exploring a point in
the search space takes four stages: stage 1 initiates measuring
performance with the current value, stage 2 completes the first
measurement and begins one more examination to measure the
slope in performance behavior, stage 3 completes the second mea-
surement and starts measuring with a newly selected parameter
value, and stage 4 completes the new measurement and com-
pares performance behavior based on measured history to decide
whether the new parameter value is better than the current one. For
stages greater than 4 (line 28), the tuning procedure performs no
operations. These empty stages are used to control how frequently
the adaptation should be performed. For example, with 10 stages

Author's personal copy

36 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Table 3
Algorithmic parameters of GenIDLEST for dynamic tuning.

Parameter Algorithm Variable name Dimension

Sub-blocks Domain decomposition
in preconditioning

ni blk,nj blk,nk blk 3D

Relaxation sweeps Smoothing nswp in blk 1D

Fig. 8. Performance behavior of GenIDLEST with varying sub-block parameter values on different platforms and with different problems.

Fig. 9. Dynamic parameter tuning procedure.

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 37

Fig. 10. Coarse search process for GenIDLEST sub-block parameter tuning.

the tuning procedure just breaks and returns to the main simulation
code for stages 5–10, essentially pausing the tuning process for sev-
eral steps of the main simulation. The empty stages are useful for
tuning parameters whose changes in value can cause temporary
fluctuations in physics simulations (e.g., flow model parameters
in CFD simulations [20]), in which some time is required for the
simulation to stabilize in order to measure consistent performance
behavior.

• Tuning of the number of sub-blocks parameter. It is important to
balance the trade-off between tuning cost and program per-
formance: spending too much time on an exhaustive search of
parameter space for optimal tuning points can adversely affect
the overall time-to-solution of the simulation, whereas search-
ing only a small part of the parameter space to reduce tuning
cost can end up with sub-optimal results, failing to achieve the
desired speedup.

Since the search space of the cache sub-block parameter is 3-
dimensional, and can grow quite large with only a small increase
in problem size, exhaustive search where every combination of
(x, y, z) values is examined is not feasible. Therefore, it is criti-
cal to plan an effective way of reducing the search space to the
extent that the performance benefit from tuning is not signifi-
cantly degraded. To this end, we first eliminate considering the
z-direction (nk blk) of the parameter space and use the value as
specified by the user, since, once ni blk and nj blk are tuned, fur-
ther variations in the sub-block size by changing the z component
will be small, and are unlikely to cause any drastic changes in
GenIDLEST performance.

Secondly, to further reduce the search space of the remain-
ing (ni blk,nj blk) pair, we use a two-phase tuning scheme that
performs coarse search in the first phase and fine search in the
second phase. In the coarse search phase, the 2-dimensional pair
is treated like a 1-dimensional variable by changing both ni blk
and nj blk together by the same amount. In addition, as illus-
trated in Fig. 10, the coarse phase uses binary search where both
ni blk and nj blk are decreased by half in each exploration step
that examines a new parameter value for optimality. Exploiting
the fact that after a certain optimal point the GenIDLEST perfor-
mance becomes worse as the number of sub-blocks increases (the
sub-block size becomes smaller), we decrease the number of sub-
blocks (the sub-block size becomes bigger) in the coarse phase,
starting from a large initial values for the pair (step (1)), which will
exhibit an initial period of improved performance in the search.
Once a point is reached where performance starts deteriorating
(step (3)), the search process backs off to the previous point and
continues by changing both ni blk and nj blk with a decrement
of 2 at each exploration step (steps (4) and (5)), which tries to

gradually converge to an optimum in the subspace of (ni blk,nj blk).
With the (ni blk,nj blk) value found in the coarse search phase, the
fine search phase starts to tune nj blk further, with ni blk’s value
fixed now, by searching a 4-point neighborhood in the y-direction
with an increment (or decrement) of 2, and selecting the point in
the neighborhood that shows the best performance.

• Tuning of the inner relaxation sweep parameter. Once tuning of the
cache sub-block parameter is complete, we start tuning the inner
relaxation sweep parameter. Unlike the search space of the sub-
block size parameter, which is directly dependent on the input
problem size, the possible number of smoothing iterations on
each sub-block is not determined by the problem size; this allows
flexibility in defining its search space. In such a case, practical
experience with the target code, together with understanding of
tuned algorithms, helps to narrow down the parameter search
space, enabling effective search strategy design. Therefore, we
take the default value of 5 as a reasonably obtained one from
GenIDLEST simulation practice, and use it as a starting guess. In
addition, we examine the four-point neighborhood of the default
value by defining the search space as {1, 5, 10, 15, 20}.

When performing dynamic tuning, the tuning order of parame-
ters is important because optimizing operations are performed in
conjunction with the computation itself. The order of parameters
under tuning directly affects application performance: parameters
that are more critical to performance and can show bigger speedups
by tuning should be optimized earlier than less critical ones, so
that a running computation can benefit earlier from the larger tun-
ing effect, leading to better time-to-solution. Therefore, we first
tune the number of sub-blocks parameter and then the number of
inner sweeps parameter, since the blocking parameter determines
GenIDLEST performance more substantially.

4.5.5. Experimental results
We plugged in the implemented tuning code through ACC and

performed GenIDLEST simulations on both Anantham and System
G. The GenIDLEST code checks the simulation stability by calling
calc cfl() to calculate global CFL values at every 50 time steps,
which therefore is the periodic interval the tuning code is executed.
Specifically, we set up a 5-stage tuning procedure for exploring a
search point, so that the tuning procedure for each searched point
takes 250 time steps.

Fig. 11(a) shows the dynamic tuning progress of GenIDLEST
for the straight channel problem on Anantham for the first 3000
time steps. The thick gray solid line represents the elapsed time
measured at every 50 steps during the tuning process. Data
measured for different fixed parameter configurations with the
original (unadapted) GenIDLEST program, as previously shown in
Fig. 8(a), are also shown for comparison. With an initial value
of {(16, 16, 1), 5} for {(ni blk,nj blk,nk blk),nswp in blk}, the enhanced
GenIDLEST program starts tuning first with the sub-block param-
eter by periodically measuring elapsed times and exploring a new
parameter value, where the parameter is changed first to (8, 8, 1),
then to (4, 4, 1), and so forth at each exploration step according to
the search scheme. The sub-block parameter finally settles down
to (4, 4, 1) at time step 1700. Compared with the results for other
fixed sub-block parameter values in the figure, the tuned results
closely follow the execution time profile with the same parameter
value after each update of the parameter, which shows the effec-
tiveness of our dynamic tuning method. Tuning of inner relaxation
sweep parameter follows after the sub-block parameter is handled,
which completes with the value 15 at time step 2700. Fig. 11(a)
shows measurements of the elapsed times for the full 10,000 steps,
where, after tuning is complete at time step 2700, the tuned simu-
lation shows better performance than other simulations with fixed
parameter values.

Author's personal copy

38 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 11. Dynamic tuning for the straight channel problem on Anantham.

Fig. 12 shows the dynamic tuning progress of the GenIDLEST
simulation for the pin fin array problem on System G, both for
the first 3000 time steps (12(a)) and for the full 10,000 time steps
(12(b)). Here, tuning of the sub-block parameter completes with
the value (2, 4, 8) at time step 1950, followed by tuning of the inner
relaxation sweep parameter that completes with the value 5 at
time step 2950. Fig. 12(b) shows that the tuned simulation per-
forms slightly better than blk2 until near the time step 7000, when
it starts to perform a little worse than blk2 (but still better than the
others). This is due to changes in the physics of the simulated prob-
lem, which develops in such a way that a parameter configuration
that produces good performance initially might not remain optimal
through the whole simulation. Our current approach is to minimize
overhead by tuning algorithmic parameters only at the beginning
of a simulation, and then sticking with those values. Obviously,
an enhancement for long-running simulations—where the charac-
teristics of the computation may change over time—would be to
redo the parameter tuning at some point, perhaps triggered by an
occasional lightweight exploration of other parameter values.

For completeness, we note that the dynamically tuned
GenIDLEST simulation for the turbulent straight channel prob-
lem on System G completed tuning with the parameters

{(ni blk,nj blk,nk blk),nswp in blk} set to {(2, 8, 1), 10} (compare
with {(4, 4, 1), 15} on Anantham). The tuned simulation of the
pin fin array problem on Anatham completed tuning with
{(ni blk,nj blk,nk blk),nswp in blk} set to {(4, 2, 8), 5} (compare with
{(2, 4, 8), 5} on System G). This well illustrates the fact that the
best choice of algorithmic parameters can depend heavily on the
computational platform.

To evaluate the overall improvement in time-to-solution from
dynamic parameter tuning, we also measured the performance of
GenIDLEST on the same 10,000 time-step simulations, with four
different fixed parameter sets (without tuning), corresponding to
the configurations blk2, blk4, blk8 and blk16 defined in Section 4.5.2.
The default value of nswp in blk= 5 is used for these cases. As well as
the total execution time for the 10000 steps, elapsed times between
every 50 steps were also measured for each simulation. Fig. 13
compares the performance of dynamically tuned GenIDLEST simu-
lations against that of the simulations without tuning. In the figure,
‘tuning’ represents the total execution time of the tuned simula-
tions; ‘best’ represents an upper bound on performance, i.e., the
hypothetically best time that could be achieved by correctly choos-
ing the best of the four fixed configurations (from blk2 to blk16)
at every 50 steps; and the ‘expected’ time represents an expected

Fig. 12. Dynamic tuning for the pin fin array problem on System G.

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 39

Fig. 13. Performance comparison of the dynamically tuned GenIDLEST with the original GenIDLEST.

value for the total execution time, computed by simply averaging
the times for the four fixed configurations.

For the straight channel problem, our the dynamically tuned
method performed better than ‘expected’ by 26% and slightly bet-
ter than the ‘best’ case by 2% on Anantham; it outperformed both
‘expected’ (by 13%) and ‘best’ (by 8%) on System G. The primary rea-
son that the dynamically tuned results are better than what we label
as ‘best’ here is that the number of relaxation sweeps nswp in blk is
set at 5 for all the fixed parameter cases, while the tuned case is
allowed to vary this parameter. For the pin fin problem, on both
platforms our method performed better than ‘expected’ by about
10%, and came within 2% of matching the ‘best’ performance.

4.6. Adaptation overhead

The runtime overhead of our adaptation method comes from
catching the function calls at adaptive control points, which in
itself does not involve any global operations that cause communi-
cation overhead. The catching overhead is measured at 0.10 �s per
call on average on the Anantham cluster, which translates to 140
CPU cycles. Since the catching cost is fixed, the relative overhead
depends on the number of interceptions and the entire execution
profile of an application. That is, the overhead increases as the num-
ber of adaptive control points increases. Still, the catching cost is
relatively insignificant if the application spends most of its time on
executing other parts of the computation than at control points.

In the adaptive GenIDLEST simulations, control points are inter-
cepted only once at the end of every preset number of iterations
of the time integration loop, while most of the computing time is
spent inside the loop. As a result, the catching overhead is negligi-
ble compared to the whole simulation profile. For example, Fig. 14
shows execution time of the GenIDLEST simulations where the ACC
framework is imposed at control points in the time step change
and in the flow model change scenario, respectively, but with no
adaptation operations. Across the three configurations (4, 8 and 16
processors) the costs for catching 500 calls of mpi allreduce dur-
ing 500 time steps in the time step change example were measured
to be less than 0.7% in all cases compared to the original GenIDLEST
simulations (Fig. 14(a)). Similarly, the overhead is less than 0.95%
for catching 1000 calls of calc cfl during 1000 time steps in the
flow model change example (Fig. 14(b)).

The overhead for the dynamic tuning application includes three
components: synchronization, the cost of the dynamic parameter
tuning algorithm (Fig. 9), and the extra cost incurred when poor
parameter values are used during the exploration of the param-
eter space. Synchronization overhead is negligible because we do
the extra adaptation work at a point where the code already does
synchronization. The cost of the tuning algorithm itself is also neg-
ligible. The third component of the overhead could be significant if
performance is highly sensitive to small changes in parameter val-
ues However, for the examples considered here, this overhead was
low. We estimated this component of the overhead by totaling the

extra time spent doing a 50-timestep interval with a “bad” parame-
ter configurations, i.e., the difference between the time taken when
the parameters were poorly chosen and the time taken if we had
left the parameters alone. A “good” change in parameters, where
performance is improved, is not added into this total. Comparing
this total penalty to the total running time of the simulation, the
overheads ranged from 0.4% (pin fin array problem on Anantham)
to 0.9% (pin fin array problem on System G).

5. Case study 2: cell biology simulations

Adapting an application’s runtime behavior requires specify-
ing adaptation schemes, which can be categorized into precisely
defined schemes and loosely defined schemes. Precisely defined
schemes include a complete description, before application launch,
of “where” (adaptation control points), “when” (conditions to
trigger adaptation actions), “what” (adaptation targets such as vari-
ables or functions), and “how” (operations to execute) to change
with regard to runtime program behavior. In contrast, loosely
defined schemes consider highly dynamic adaptation scenarios in
order to support the user’s dynamic and unplanned adaptation
decisions. These schemes lack complete adaptation specifications:
some part of the adaptations are not specified clearly before appli-
cation launch and adaptive decisions are deferred until at runtime.
Adaptation decisions in such cases can only be made by monitor-
ing the application’s dynamic progress, since, until runtime, the
user may have only a vague idea of how the program will behave
on a given problem instance and computational platform.

Implementing loosely defined schemes requires a high degree
of execution control of an application due to the fact that adapta-
tion operations are determined by the user’s dynamic decisions.
They require a running application to stop at the user’s discre-
tion, update its system state with user input, continue its execution
followed by additional stops for possible future adaptations. Fur-
thermore, these schemes often require an application to record
and restore its state so that its computation can be resumed at
an execution point that the user thinks is interesting for perform-
ing experiments or simulations. Therefore, enabling loosely defined
adaptations in a compositional framework becomes complex. This
is in contrast to implementing precisely defined schemes, where
adaptation operations are automatically initiated by writing adap-
tive logic operations in separate modules and by plugging them
into an application.

In this section, we apply our adaptation approach to cell biol-
ogy simulations to implement loosely defined adaptation schemes.
Instead of executing automated adaptation operations, the main
functionality of the inserted adaptation code is to serve as a gateway
to control the execution of an application. By using our approach,
domain experts in scientific simulations can initiate dynamic adap-
tation decisions and perform “what-if” scenarios at runtime, so
that they can better mimic what experimentalists do in a physical
environment.

Author's personal copy

40 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 14. ACC overhead with GenIDLEST simulations.

5.1. Dynamic adaptation for flexible cell cycle simulations

In search of better models or in exploration of new models, cell
cycle modelers change the configuration of a given simulation to
examine how the original system is perturbed to evolve into a new
state. The course of action using conventional modeling tools that
lack dynamic program adaptation functionalities is: (1) stop the
simulation and save the state, (2) update the mathematical model
(i.e., system of ordinary differential equations (ODEs)) to reflect the
perturbation by changing model parameter values, (3) set the initial
conditions of the ODEs with the saved state, and (4) restart the sim-
ulation. Repeating this procedure whenever configuration changes
are desired is cumbersome for cell cycle modelers. Therefore, the
ability to adapt simulations at runtime helps facilitate effective cell
cycle modeling.

Adapting a simulation at runtime requires a dynamic change
in the original simulation model quantified by a set of ODEs. In
particular, dynamic changes required for effecting perturbations
can be loosely defined. For example, specific reactions to change
in a simulated system can remain unspecified before simulation
launch and be up to the modeler’s runtime decisions.

In the following, we describe the benefits of dynamic adaptation
in performing cell cycle simulations.

5.1.1. Effective model parameter estimation
In a mathematical model that describes a biological reaction

system, each reaction is modeled as an ODE with parameters that

represent reaction rates. Parameter estimation plays a crucial role
in modeling biological systems based on real experimental data.
Dynamically adapting scientific software through loosely defined
schemes allows for increased execution control and interactive
feedback to a running computation, so that, based on runtime
analysis of computational progress, the user can make adaptive
decisions and manipulate ODE parameters immediately through
feedback controls without stopping a running simulation. The user
then can check to see if the changes in model parameters make
the simulation better match experimental data. Thus, support of
loosely defined schemes in biological simulations expedites effec-
tive model parameter estimation.

5.1.2. Exploration of new evolution pathways
In addition to facilitating effective parameter estimation, adapt-

ing cell cycle simulations at runtime allows the user to explore new
evolution pathways by manipulating the model parameters of a
running simulation. Without having to stop a running computa-
tion, the user can dynamically simulate a new protocol—a sequence
of operations performed in real experiments to develop a certain
environment to suppress or catalyze specific biochemical reac-
tions, such as raising the temperature or adding new materials to
a system—to investigate how the simulated system evolves from a
current condition. Hence, dynamic adaptation capabilities here can
effectively facilitate new scientific discoveries.

Fig. 15. Dynamic adaptation implementation of PET cell cycle simulations using ACC.

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 41

Fig. 16. ODE system model for the cell cycles of frog-egg extracts.

5.1.3. Effective simulation through checkpointing and rollback
Most conventional simulation tools are static in the sense that

a simulation cannot be rolled back to past states once it is com-
plete. As a result, the user has to finish a simulation and record
its results whenever he or she finds the results interesting for
future uses, which becomes time-consuming and error-prone as
the simulated problem becomes complex and the number of simu-
lations involved gets large. Through the increased execution control
offered by dynamic adaptation capabilities, a running computation
can be adapted to pause and save its entire state on-the-fly and then
resume its execution. By saving and restoring intermediate results
and simulation configurations, the user can easily reuse past simu-
lations of interest in future simulations, thus being able to shorten
the time-to-solution.

5.2. Implementation

We apply the ACC framework to the PET (Parameter Estima-
tion Toolkit)3 software of the JigCell project [2,14,31] to implement
dynamic adaptations. Specifically, we implement adaptations over
the Fortran code generated by PET in the simulation phase, for
which PET uses the lsodar solver in ODEPACK [16], a collection
of Fortran solvers for ODE systems.

5.2.1. Adaptation control
Since the end of a simulation loop typically exhibits stable sys-

tem state with consistent intermediate results, we specify the entry
of the lsodar function as an adaptation control point to control the
execution of the PET simulation. Thus, the lsodar calls in the PET
source file are intercepted by the ACC framework. We implement
an adaptation scheme in a function lsodar handler, to which the
intercepted lsodar calls are redirected by ACC.

The lsodar handler function checks the time step at each iter-
ation of the simulation loop and compares it with a stop time
specified by the user through an adaptation control GUI, so that
the simulation is paused when the stop time is reached. While
the application is stopped, the user can analyze the simulation
progress, make adaptive decisions, and adapt the simulation by
changing the values of the model parameters of interest.

To access the model parameters and variables of a simulated
system, we reuse a set of set/get helper functions generated by
PET, i.e., get/set model param and get/set model var.

3 http://mpf.biol.vt.edu/pet.

5.2.2. GUI for runtime adaptation
To better support cell cycle modelers in performing dynamic

adaptations, we prototyped a GUI whereby the modeler can control
the execution of running simulations and change parameter values
of a given model dynamically. We implement the GUI using Qt,4 a
cross-platform UI development framework. The GUI runs in a sep-
arate thread from the main simulation engine using the Pthread
APIs [18] in order to control the simulation execution separately
from the GUI execution.

Fig. 15 illustrates how we dynamically adapt PET cell cycle
simulations through the ACC framework. A simulation pro-
gram originally consists of the PET simulation engine and a
PET-generated simulation driver, each written in Fortran. The adap-
tation program module includes the lsodar handler code written
in C and the Qt GUI in C++. The language-neutral ACC framework
combines the simulation program and the adaptation module writ-
ten in different languages, composing a highly flexible simulator
that realizes dynamic, user-driven adaptation schemes.

5.3. Experimental results

As an example simulation of cell cycle models, we use the frog-
egg extracts simulation [37]. Specifically, we apply the adaptation
code and the GUI to the PET-generated Fortran code for simulating
dephosphorylation of pre-MPF (mitosis-promoting factor) during
mitosis, when Cdc25 is active [24]. The biological system is modeled
as a system of 15 ODEs with 28 parameters and 15 variables, as
shown in Fig. 16.

Among the reaction equations, we are interested in the second
one, which gives the rate of change in the MPF concentration.

Fig. 17 shows the GUI with the initial configuration for sim-
ulating the cell cycle of frog-egg extracts. The 4 red squares in
the plotting area represents the actual MPF concentration data
obtained in “wet” lab experiments for reference: 0.75 at 2 min, 0.5
at 2, 0.2 at 8, and 0.08 at 16. The upper left Parameters pane shows
5 parameters and corresponding input area where the user can
change each parameter value during the simulation. The param-
eter values are initially set using empirically determined “good”
values for this specific simulation (i.e., dephosphorylation of pre-
MPF during mitosis). The lower left Simulation pane embeds the
user controls for the simulation. The user can specify the simula-
tion time in the time input area and execute the simulation using

4 http://qt.nokia.com.

Author's personal copy

42 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

Fig. 17. Cell cycle simulation of frog-egg extracts.

the specified parameter values by clicking the Run button, which
has changed to Continue in the figure when the simulation starts
execution. Also, the user can save the current simulation state by
clicking the Snapshot button and restore saved states through the
Go to Snapshot box.

To show an example use of the GUI, Fig. 17 also plots simulation
results until 20 min (blue curve). The simulation uses the initial
parameter values, which seem to perform quite effectively because
the simulated Mp values closely match the real experimental data.
We note that this simulation does not involve any adaptations in
simulating the model from time 0 to time 20, which is the usual
way PET would be used to simulate this model.

5.3.1. Dynamic parameter change
Fig. 18 shows an example adaptive simulation where the model

parameter values are dynamically changed by the user. First, the
user specifies how long the model should run and what parameter
values are to be used, and starts the simulation. Fig. 18(a) plots the
simulation results where the simulation end time is set to 2 min
and the initial parameter values are used. Then, after observing
and analyzing the simulation results, the user decides to change
two parameters from their default values: kmp y to 0.5 and km d
to 1.0. Wanting to know how the simulated system progresses if
the new setting is kept for 2 min, the user sets the simulation time
to 4 min and continues the simulation by clicking the Continue
button. The MPF plot until time 4 in Fig. 18(b) shows how the sim-
ulated system evolves with the newly set parameter values, where
the MPF concentration drops more rapidly than its previous set-
ting. Finally, after checking the simulation results, the user decides
to adjust another parameter, changing km d to 0.5. and simulates
the system until 20 min. The MPF plot from time 4 to 20 in the figure
shows how the MPF concentration is changed by the new setting
of the simulation, where its decrease rate becomes slow after time
4.

As demonstrated by this example, the dynamic adaptation capa-
bility implemented in this work allows the user to explore new
pathways in evolving biological systems in a flexible way, without
requiring stop and restart of an on-going simulation.

5.3.2. Simulation rollback and continuation
Fig. 19 shows an example of how a simulation can rollback and

be continued by our dynamic adaptation framework. First, by click-
ing the Snapshot button, the user saves a simulation state which
may be interesting to reuse in future experiments. A saved state
contains all the information needed to resume a simulation start-
ing from the saved point, including all the model parameter values

Fig. 18. Dynamic parameter change in cell cycle simulations.

and variable values for the duration of simulated evolution. Later,
saved states can be restored by choosing a specific state in the Go
to Snapshot box. For example, Fig. 19(a) shows a restored state
(snapshot 1) from Fig. 18(a) in the previous parameter change
adaptation example. Using the saved results as a new starting point,
the user then tweaks two parameters, kmp y and km d, by setting
their values to 0.5 and 0.5, respectively, and continues the simu-
lation until 10 min. The simulation results are shown in Fig. 19(b),
where the MPF concentration after time 2 until 10 decreases more
rapidly by the changes in the reaction rates. At time 10, the user
can explore new pathways in evolving the system. As shown in
the figure, the user changes kmp y and km d again to 1.0 and 1.0,
respectively, and continues the simulation until time 20. Affected
by this reaction rate change, the MPF plot in the figure shows more
rapid decrease in its concentration after the parameter change.

6. Related work

Adaptation support for existing programs has been of much
interest at different levels of the software stack in many computer
science domains. We describe some of the projects most relevant
to our work and contrast them in this section.

6.1. Language and compiler support for adaptation

Program Control Language (PCL) [11] is a small language
extension that provides mechanisms that one can use to write
separate control code that specifies application-specific adaptation

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 43

Fig. 19. Runtime simulation rollback and continuation in cell cycle simulations.

strategies at a high level for distributed programs. The PCL frame-
work uses a global representation of the distributed program as
a graph of task nodes. Each adaptation primitive of PCL maps to
a sequence of graph-changing operations of the target program.
Du and Agrawal [10] proposed a Java language extension to help
programmers specify adaptation parameters, which exposes the
degree of flexibility in the quality of the output, for adaptive pro-
gram execution. By combining runtime information with a static
analysis for relating the execution time to the values of the adap-
tation parameters, a set of optimal parameter values is determined
by initial test runs to achieve the best precision while meeting the
specified constraints on execution time. ADAPT [32] is an adaptive
optimization system that provides a domain-specific language by
which users can describe optimization heuristics to be applied at
runtime. Based on user-supplied heuristics (e.g., loop unrolling and
specifying machine parameters), the ADAPT compiler generates a
runtime system that consists of a modified version of the applica-
tion, which in turn contains two different execution paths for each
code section that is a candidate for optimizations.

These projects share a common theme with our work in
that centralized design of adaptation strategies can be specified
at a high level for existing programs. However, our work pro-
vides more fine-grained control by supporting monitoring and
manipulating of state variables internal to a program. In addition,
the ACC framework supports language-independent composition,
whereby individual code modules written in different languages
can be seamlessly combined. Thus, by using our approach, scientific

programs written in Fortran that have been traditionally hard to
change can be effectively adapted.

6.2. Dynamic instrumentation

Dynamic binary instrumentation tools offer a modular,
language-independent way of code modification, so that new
adaptation modules can be transparently combined with exist-
ing software. Detours [17] is a library for instrumenting arbitrary
Win32 binary functions (32-bit API for Windows systems), so that
th calls to target functions can be intercepted and detoured to the
user-provided detour function, which can replace or extend the
target function. For example, if a programmer is writing a program
that uses a Win32 function and want to intercept it, he can include
the Detours library in the program and use its APIs to intercept
the Win32 functions. DynInst [8] offers an API for inserting code
to a running program on both Unix and Windows systems. Code
modification places are usually the entry or exit (or both) of a func-
tion of interest. To modify a program in execution (referred to as
mutatee), a separate program (mutator), where the programmer
uses the DynInst API to instrument mutatee and perform mutat-
ing operations, is executed with the information of mutatee (e.g.,
the process id of the mutatee). Functions in dynamically loaded
modules in an application can be effectively handled since DynInst
allows code modification at any time during program execution.
Since the accompanying overhead is significant while they perform
code instrumentation at program runtime, they are usually devel-
oped for sophisticated programs analysis purposes [27] rather than
as a tool to realize program behavior adaptation.

6.3. Middleware support for adaptation

In parallel or distributed environments such as the Grid, there
is a large body of research work on middleware to support runtime
adaptations without recompiling or rerunning of an application.
We contrast notable projects to our work in the following.

Buaklee et al. [7] develop an accurate performance model from a
detailed analysis of application execution times with varying con-
figuration parameters, such that optimal configuration parameters
for the distribution of work can be determined without requiring
any user-supplied input. The GrADS (Grid Application Development
Software) [22] project proposes a configurable object program that
encapsulates, in addition to the application code, dynamic adap-
tation strategies to effectively map and schedule Grid resources,
for which resource selection and accurate performance models
are provided by the GrADS execution framework. CACTUS-G [1]
implements dynamic adaptive techniques for efficient execution
of astrophysics simulations in distributed, heterogeneous Grid
environments. The focus is on automatically adjusting external
operating parameters such as communication message sizes and
ghost zone sizes in the grid. The AppLeS project [5] provides a
methodology and software environments for on-the-fly adaptive
application scheduling in Grid environments. It has been applied
to a variety of domains to result in new applications, each of which
consists of domain-specific components and custom scheduling
superstructure that is controlled by the AppLeS scheduling agent
to monitor available resource performance and generate a dynamic
schedule on the target Grid platforms.

As their objective is to implement middleware support for
adaptation between the application and the underlying execution
layer, these efforts focus on resource management towards effi-
cient utilization of the environment, such as load-balancing and
scheduling of application tasks, where coarse-grained strategies
based on resource constraints or external operating parameters are
employed. In contrast, our work implements a parallel adaptation
framework that can adjust fine-grained aspects of program state

Author's personal copy

44 P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45

and behavior by monitoring dynamic progress of the computation
itself.

6.4. Computational steering

Computational steering [25,26] enables dynamic adaptation of
scientific simulations through interactive user-feedback on chang-
ing parameter values of a given simulated system. Computational
steering is useful for runtime performance tuning and “what-if”
studies because it does not require stop-and-restart of computa-
tion all over again. However, sophisticated data visualization is
crucial to help guide the user in analyzing the progress of a run-
ning simulation, which often takes significant programming effort
to implement. Furthermore, implementing efficient middleware or
runtime support to instantly update the program states at the com-
putation backend with the user’s feedback at the steering fronted is
a major challenge in large, distributed systems such as the Grid—a
major target execution environment of computational steering
applications—where communication between remote sites is a per-
formance bottleneck [35].

In contrast to computational steering that focuses on user-
driven parameter change, our work implements software adap-
tation in general, where program behavior is adapted through
changing not only program states but also program modules such
as through function call substitution.

7. Conclusion

In this paper, we presented a modular approach to implement-
ing adaptations for existing scientific programs. Our compositional
approach addresses adaptation as a separate concern in soft-
ware development and allows one to separately design and
implement adaptation strategies for scientific programs. We use
a language-neutral, compositional framework based on func-
tion call interception to transparently insert adaptation code at
user-specified control points within a program, thus adapting
application behavior at runtime. We showcased the applicability
of our approach to real-world scientific programs. By using our
approach, we enhanced the original capabilities of a parallel CFD
simulation program with regard to stability, accuracy, and perfor-
mance, with negligible adaptation overhead. We also implemented
flexible cell cycle simulations whose execution control is dynami-
cally controlled by user-driven decisions, thus facilitating effective
examination of biochemical reactions. Overall, the benefits of our
adaptation approach include high modularity, fine-grained adap-
tation control, and language-independence. Our approach is well
suited to factoring out new functionality and integrating it with
existing scientific programs to implement dynamic application-
specific adaptation scenarios.

References

[1] G. Allen, T. Dramlitsch, I. Foster, N.T. Karonis, M. Ripeanu, E. Seidel, B. Toonen,
Supporting efficient execution in heterogeneous distributed computing envi-
ronments with cactus and globus, in: Supercomputing ‘01: Proceedings of the
2001 ACM/IEEE Conference on Supercomputing (CDROM), ACM, New York, NY,
USA, 2001, p. 52.

[2] N.A. Allen, C.A. Shaffer, N. Ramakrishnan, M.T. Vass, L.T. Watson, Improving the
development process for eukaryotic cell cycle models with a modeling support
environment, Simulation 79 (2003) 674–688.

[3] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N.M. Amato,
L. Rauchwerger, STAPL: an adaptive generic parallel C++library, in: H.G. Dietz
(Ed.), LCPC, Lecture Notes in Computer Science, vol. 2624, Springer, 2001, pp.
193–208.

[4] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, C. Romine, Algorithmic bombard-
ment for the iterative solution of linear systems: a poly-iterative approach, J.
Comput. Appl. Math. 74 (1996) 91–109.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J.
Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, D. Zagorodnov,

Adaptive computing on the grid using AppLeS, IEEE Trans. Parallel Distrib Syst.
14 (2003) 369–382.

[6] S. Bhowmick, L.C. McInnes, B. Norris, P. Raghavan, The role of multi-method
linear solvers in PDE-based simulations, in: V. Kumar, M.L. Gavrilova, C.J.K. Tan,
P. L’Ecuyer (Eds.), Computational Science and its Applications – ICCSA, Part I,
vol. 2667, Springer, 2003, pp. 828–839.

[7] D. Buaklee, G.F. Tracy, M.K. Vernon, S.J. Wright, Near-optimal adaptive control
of a large grid application, in: ICS ‘02: Proceedings of the 16th International
Conference on Supercomputing, ACM, New York, NY, USA, 2002, pp. 315–326.

[8] B. Buck, J.K. Hollingsworth, An API for runtime code patching, Int. J. High Per-
form. Comput. Appl. 14 (2000) 317–329.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J.
Shalf, K. Yelick, Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures, in: SC ‘08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, IEEE Press, Piscataway, NJ, USA, 2008, pp. 1–12.

[10] W. Du, G. Agrawal, Language and compiler support for adaptive applications,
in: SC’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing,
IEEE Computer Society, Washington, DC, USA, 2004, p. 29.

[11] B. Ensink, J. Stanley, V. Adve, Program control language: a programming lan-
guage for adaptive distributed applications, J. Parallel Distrib. Comput. 63
(2003) 1082–1104.

[12] V. Estivill-Castro, D. Wood, A survey of adaptive sorting algorithms, ACM Com-
put. Surv. 24 (1992) 441–476.

[13] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy
viscosity model, Phys. Fluids A: Fluid Dyn. 3 (1991) 1760–1765.

[14] L.S. Heath, N. Ramakrishnan, The emerging landscape of bioinformatics soft-
ware systems, IEEE Comput. 35 (2002) 41–45.

[15] M.A. Heffner, A runtime framework for adaptive compositional modeling, Mas-
ter’s Thesis, Blacksburg, VA, USA, 2004.

[16] A.C. Hindmarsh, ODEPACK, a systematized collection of ODE solvers, in: R.S.
Stepleman, et al. (Eds.), IMACS Transactions on Scientific Computation, vol. 1,
North-Holland, Amsterdam, 1983, pp. 55–64.

[17] G. Hunt, D. Brubacher, Detours: binary interception of Win32 functions, in:
Proceedings of the 3rd USENIX Windows NT Symposium, pp. 135–144.

[18] IEEE and The Open Group, IEEE Standard 1003.1-2001, 2001.
[19] P. Kang, M.A. Heffner, N. Ramakrishnan, C.J. Ribbens, S. Varadarajan, Adap-

tive Code Collage: a framework to transparently modify scientific codes, IEEE
Computing in Science and Engineering 14 (1) (2012) 52–63.

[20] P. Kang, N.K.C. Selvarasu, N. Ramakrishnan, C.J. Ribbens, D.K. Tafti, S. Varadara-
jan, Modular fine-grained adaptation of parallel programs, in: ICCS ‘09:
Proceedings of the 9th International Conference on Computational Science,
Springer, 2009, pp. 269–279.

[21] P. Kang, N.K.C. Selvarasu, N. Ramakrishnan, C.J. Ribbens, D.K. Tafti, S. Varadara-
jan, Dynamic tuning of algorithmic parameters of parallel scientific codes, in:
ICCS ‘10: Proceedings of the 10th International Conference on Computational
Science, pp. 145–153.

[22] K. Kennedy, M. Mazina, J.M. Mellor-Crummey, K.D. Cooper, L. Torczon, F.
Berman, A.A. Chien, H. Dail, O. Sievert, D. Angulo, I.T. Foster, R.A. Aydt, D.A.
Reed, D. Gannon, S.L. Johnsson, C. Kesselman, J. Dongarra, S.S. Vadhiyar, R. Wol-
ski, Toward a framework for preparing and executing adaptive grid programs,
in: IPDPS ‘02: Proceedings of the 16th International Parallel and Distributed
Processing Symposium, IEEE Computer Society, Washington, DC, USA, 2002, p.
322.

[23] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.M. Loingtier, J.
Irwin, Aspect-oriented programming, in: Proceedings of the European Con-
ference on Object-Oriented Programming, vol. 1241, Springer-Verlag, Berlin,
Heidelberg, and New York, 1997, pp. 220–242.

[24] A. Kumagai, W.G. Dunphy, Control of the Cdc2/cyclin B complex in xenopus
egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors, Mol.
Biol. Cell 6 (1995) 199–213.

[25] R. Marshall, J. Kempf, S. Dyer, C.C. Yen, Visualization methods and simulation
steering for a 3D turbulence model of Lake Erie, SIGGRAPH Comput. Graph. 24
(1990) 89–97.

[26] S.G. Parker, C.R. Johnson, SCIRun: a scientific programming environment for
computational steering, in: Supercomputing ‘95: Proceedings of the 1995
ACM/IEEE Conference on Supercomputing (CDROM), ACM, New York, NY, USA,
1995, p. 52.

[27] M. Schulz, D. Ahn, A. Bernat, B.R. de Supinski, S.Y. Ko, G. Lee, B. Rountree, Scal-
able dynamic binary instrumentation for blue gene/L, SIGARCH Comput. Archit.
News 33 (2005) 9–14.

[28] K. Seymour, H. You, J. Dongarra, A comparison of search heuristics for empirical
code optimization, in: iWA, 2008: the 3rd International Workshop on Auto-
matic Performance Tuning, 2008, pp. 421–429.

[29] D. Tafti, GenIDLEST – a scalable parallel computational tool for simulating com-
plex turbulent flows, in: Proceedings of the ASME Fluids Engineering Division
(FED), vol. 256, ASME-IMECE, 2001, pp. 347–356.

[30] S. Varadarajan, N. Ramakrishnan, Novel runtime systems support for adap-
tive compositional modeling in PSEs, Future Gener. Comput. Syst. 21 (2005)
878–895.

[31] M.T. Vass, C.A. Shaffer, N. Ramakrishnan, L.T. Watson, J.J. Tyson, The JigCell
model builder: a spreadsheet interface for creating biochemical reaction net-
work models, IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006) 155–164.

[32] M.J. Voss, R. Eigemann, High-level adaptive program optimization with ADAPT,
in: PPoPP ‘01: Proceedings of the 8th ACM SIGPLAN Symposium on Principles
and Practices of Parallel Programming, ACM, New York, NY, USA, 2001, pp.
93–102.

Author's personal copy

P. Kang et al. / Journal of Computational Science 3 (2012) 28– 45 45

[33] G. Wang, D.K. Tafti, Performance enhancement on microprocessors with hier-
archical memory systems for solving large sparse linear systems, Int. J. High
Perform. Comput. Appl. 13 (1999) 63–79.

[34] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization of
sparse matrix–vector multiplication on emerging multicore platforms, in: SC
‘07: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, ACM,
New York, NY, USA, 2007, pp. 1–12.

[35] H. Wright, R. Crompton, S. Kharche, P. Wenisch, Steering and visualization:
enabling technologies for computational science, Future Gener. Comput. Syst.
(2008).

[36] H. Yu, D. Zhang, L. Rauchwerger, An adaptive algorithm selection framework, in:
PACT ‘04: Proceedings of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques, IEEE Computer Society, Washington, DC,
USA, 2004, pp. 278–289.

[37] J.W. Zwolak, J.J. Tyson, L.T. Watson, Parameter estimation for a mathematical
model of the cell cycle in frog eggs, J. Comput. Biol. 12 (2005) 48–63.

Pilsung Kang received a Ph.D. in Computer Science
from Virginia Tech. His research interests include
computational science, software engineering, parallel
programming, and embedded computing. He recently
joined Samsung Electronics as a Senior Engineer and now
develops embedded software for solid-state drives.

Naresh K.C. Selvarasu joined the Mechanical Engineering
PhD program at Virginia Tech in Fall 2007 after complet-
ing his masters from Purdue University. He research area
is the study of blood flow in coronary arteries, with the
object of characterizing the effect of stenting, using Com-
putational Fluid Dynamics, with focus on Fluid–Structure
Interaction and Pulsatile Flow.

Naren Ramakrishnan is a professor and the associate
head for graduate studies in the Department of Com-
puter Science at Virginia Tech. His research interests are
mining scientific data, computational science, and infor-
mation personalization He received his Ph.D. in computer
sciences from Purdue University. He is an ACM Distin-
guished Scientist and serves on the editorial boards of
several journals including IEEE Computer and Data Mining
and Knowledge Discovery.

Calvin J. Ribbens is an Associate Professor and Asso-
ciate Department Head for Undergraduate Studies in
the Department of Computer Science at Virginia Tech
(Blacksburg, VA, USA). He received a B.S. in Math-
ematics from Calvin College (1981) and a Ph.D. in
Computer Sciences from Purdue University (1986). His
research interests include parallel computation, numer-
ical algorithms, mathematical software, and tools and
environments for high performance computing.

Dr. Danesh K. Tafti obtained his Ph.D. from the Mechan-
ical Engineering Department at Penn State University
in 1989. From 1989 to 1991, he served as a post-
doctoral research associate in the Dept. of Mechanical
and Industrial Engineering at the University of Illi-
nois at Urbana-Champaign (UIUC). He then joined the
National Center for Supercomputing applications (NCSA)
at UIUC, where he held positions of Research Scien-
tist, Senior Research Scientist and Associate Director.
At NCSA his research focused on developing novel pro-
gramming paradigms on emerging high performance
computing architectures for applications to computa-
tional fluid dynamics and turbulent flow simulations. He

joined the Mechanical Engineering Department at Virginia Tech in spring 2002 as
an Associate Professor where he directs the High Performance Computational Fluid-
Thermal Science and Engineering Lab. He was promoted to the rank of Professor in
2008 and currently holds the William S. Cross Professorship in Engineering. His
research interests are in high-end, multiscale, multiphysics simulations of single
and multiphase systems in the broad areas of propulsion (Solid-rockets, turbines
and Micro-Air Vehicles), energy (coal and nuclear systems), and biomedical (car-
diovascular) flows. He has over 150 peer reviewed publications to his credit in the
areas of fluid mechanics and turbulence, heat transfer, numerical methods and algo-
rithms and high-end computing and has given several invited lectures and keynote
presentations at national and international conferences.

Yang Cao received his Ph.D. degree in computer science
from the University of California, Santa Barbara in 2003.
He is an Assistant Professor in the Computer Science
Department at the Virginia Polytechnic Institute and State
University. His research focuses on the development of
multiscale, multiphysics stochastic modeling and simula-
tion methods and tools that help biologists build, simulate,
and analyze complex biological systems. He has published
around 40 refereed journal articles.

Srinidhi Varadarajan is the Director of the Center for
High-End Computing Systems and an Associate Professor
in the Department of Computer Science at Virginia Tech.
His research interests are in the area of high-end comput-
ing systems, focused more specifically on fault tolerance
in large-scale distributed systems, runtime systems, and
frameworks for integrated emulation and simulation of
computer networks. He received his Ph.D. in Computer
Science from Stony Brook University.

