
Program Transformations

for Information Personalization

Saverio Perugini

Department of Computer Science

University of Dayton

300 College Park, Dayton, OH 45469–2160, USA

Naren Ramakrishnan

Department of Computer Science

Virginia Tech

Blacksburg, VA 24061–0106, USA

Abstract

Personalization constitutes the mechanisms necessary to automatically cus-
tomize information content, structure, and presentation to the end-user to
reduce information overload. Unlike traditional approaches to personaliza-
tion, the central theme of our approach is to model a website as a program
and conduct website transformation for personalization by program transfor-
mation (e.g., partial evaluation, program slicing). The goal of this paper is
study personalization through a program transformation lens, and develop a
formal model, based on program transformations, for personalized interaction
with hierarchical hypermedia. The specific research issues addressed involve
identifying and developing program representations and transformations suit-
able for classes of hierarchical hypermedia, and providing supplemental in-
teractions for improving the personalized experience. The primary form of
personalization discussed is out-of-turn interaction – a technique which em-
powers a user navigating a hierarchical website to postpone clicking on any of
the hyperlinks presented on the current page and, instead, communicate the

Email addresses: saverio@udayton.edu (Saverio Perugini), naren@cs.vt.edu
(Naren Ramakrishnan)

URL: http://academic.udayton.edu/SaverioPerugini (Saverio Perugini),
http://people.cs.vt.edu/∼naren (Naren Ramakrishnan)

Preprint submitted to Computer Languages, Systems and Structures August 5, 2009

label of a hyperlink nested deeper in the hierarchy. When the user supplies
out-of-turn input we personalize the hierarchy to reflect the user’s informa-
tional need. While viewing a website as a program and site transformation
as program transformation is non-traditional, it offers a new way of thinking
about personalized interaction, especially with hierarchical hypermedia. Our
use of program transformations casts personalization in a formal setting and
provides a systematic and implementation-neutral approach to designing sys-
tems. Moreover, this approach helped connect our work to human-computer
dialog management and, in particular, mixed-initiative interaction. Putting
personalized web interaction on a fundamentally different landscape gave
birth to this new line of research. Relating concepts in the web domain (e.g.,
sites, interactions) to notions in the program-theoretic domain (e.g., pro-
grams, transformations) constitutes the creativity in this work.

Key words: hierarchical hypermedia, information personalization,
navigation, out-of-turn interaction, program transformations, partial
evaluation, program slicing, web interaction, web mining, website
transformation

“The important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them.”

Sir William Lawrence Bragg,
the youngest-ever recipient of the Nobel Prize.

1. Introduction

Information personalization constitutes the mechanisms necessary to au-
tomatically customize information content, structure, and presentation to
the end-user to reduce information overload (Perugini and Ramakrishnan,
2003a). Personalization technologies are now ubiquitous on the web and
critical to retaining customers (e.g., eBay, Amazon).

Our view of personalization is oriented toward personalizing user interac-

tion. Specifically, we have developed an interaction technique which empow-
ers a user navigating a hierarchical website to postpone clicking on any of
the hyperlinks presented on the current page and, instead, communicate the
label of a hyperlink nested deeper in the hierarchy. We call this technique
out-of-turn interaction and when the user supplies out-of-turn input (i.e., a

2

hyperlink label) we re-organize (or, in other words, personalize) the hierarchy
to reflect the user’s informational need.

Consider a user, interacting with an automobile website, such as Ed-
munds, interested in manufacturers offering hybrid automobiles. If the site’s
hierarchical structure requires the user to select a manufacturer at the top
level, make at the following level, and so on, then to fulfill the information-
seeking goal, this user would need to drill-down through each manufacturer
and manually aggregate all hybrid automobiles discovered at the lower levels
of the site. However, using out-of-turn interaction, this user could say ‘hy-
brid’ at the top level of the site and in response the system would prune out
all manufacturer hyperlinks on the root page which do not lead to hybrid au-
tomobiles and, therefore, only present hyperlink representing manufacturers
which offers hybrid models. With this set of reduced manufacturers the user
has the option of browsing (i.e., clicking on one of the presented hyperlinks)
or, again, interacting out-of-turn (e.g., by saying ‘manual transmission’).

Out-of-turn interaction permits the user to circumvent any intended flows
of navigation hardwired into a hyperlink structure by the designer and, in this
manner, flexibly reconciles any mismatch between the site’s one-size-fits-all
organization and the user’s model of information seeking. Out-of-turn input
can be communicated to a site either through text using a browser toolbar
plugin (Perugini and Ramakrishnan, 2003b) or through speech using a voice
user interface (Narayan et al., 2004).

Unlike traditional approaches to personalization, the central theme of
our approach is to model information-seeking interactions with hierarchical
hypermedia explicitly in a programmatic representation and use program
transformations (e.g., partial evaluation, program slicing) to stage the inter-
action (Perugini and Ramakrishnan, 2005). A program transformation is an
automatic, closed operation mapping one program to another. Converting a
program which computes xn to one which computes x2 is a simple example of
a transformation (in this case, partial evaluation). Program slicing (Binkley
and Gallagher, 1996) is a program transformation used to extract statements
which may affect or be affected by the values of variables from a program.

A website such as the Yahoo! directory may be viewed as a DAG, with
vertices representing webpages, edges representing hyperlinks, edge labels
representing hyperlink labels or search terms, and leaves representing content
pages (destinations) (e.g., see Fig. 1). We support the user in experiencing a
personalized traversal of such a website by permitting her to enter a search
term out-of-turn and adjusting the graph accordingly, e.g., by retaining only

3

the subgraph leading to leaves which have an occurrence of the search term
on a path from the root to each leaf (e.g., see Fig. 2). A DAG may also be
represented by a program, where each search term corresponds to a boolean
variable in a branch in a nested conditional representation (e.g., see Table 4).
In that representation, the out-of-turn adjustment described above is mod-
eled by slicing the program. Thus, the essence of this paper is an equivalence
between rooted DAGs and programs, such that some operations of interest
on a DAG (such as adjustment to out-of-turn search terms) correspond to
operations of interest on a program (such as slicing).

In summary, the central theme of our research is to pose website person-
alization and, particularly, website transformation, as the application of a
program transformation technique to a programmatic representation of in-
teraction based on (often partial) user input. This approach offers a new
way of thinking about personalized interaction, especially with hierarchical
hypermedia. Decoupling the logic into a program (representation, trans-
formation) pair1 provides a clean separation of concerns and allows us to
personalize a hierarchy to individual users without explicitly enumerating a
specialized hierarchy (or building a user model) for each individual user. It
also fosters the attractive possibility of exploring alternate representations
and transformations and studying the resulting forms of personalization en-
abled. The creativity in this research arises from relating concepts in the web
domain (e.g., sites, links) to notions in the program-theoretic domain (e.g.,
programs, transformations) (see Table 1).

1.1. Objectives

We have built a software framework based on the theoretical ideas pre-
sented in this paper (Narayan et al., 2004) and have conducted human-
computer interaction studies with users to evaluate specific systems designed
with it (Perugini, 2004, Ch. 6) (Perugini et al., 2007). The goal of this paper
is study personalization through a program transformation lens, and develop
a formal model, based on program transformations, for personalized inter-
action with hierarchical hypermedia. The primary form of personalization

1The representation in a program (representation, transformation) pair specifies how
to model a website as a program, such as the nested conditionals representation used in
the programs shown in Table 4, while the transformation is a program transformation,
i.e., a closed, source-to-source operation mapping a program to another program, such as
partial evaluation or program slicing.

4

Table 1: Analogs between the web interaction and program-theoretic domains.
Web interaction: Transformation(· · · Transformation (Website, Hyperlink label), · · ·, Hyperlink label) ⇒ Personalized website

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Program-theoretic: Transformation(· · · Transformation (Program, Program construct), · · ·, Program construct) ⇒ Specialized program

discussed here is out-of-turn interaction. The objectives of this paper are to

1. develop graph-theoretic interpretations of out-of-turn interaction with a
general class of websites,

2. illustrate how these interpretations can be supported by a program (rep-
resentation, transformation) pair (called a model), often involving pro-
gram slicing,

3. evaluate the soundness and completeness (as well as other properties) of
a model wrt a target interaction paradigm (e.g., browsing or out-of-turn
interaction),

4. identify a partial order of classes of hierarchical hypermedia and explain
its implications on the program transformation approach to personaliza-
tion,

5. introduce web functional dependencies and describe how they can be
mined from websites and used for automatic query expansion to person-
alize the user experience further,

6. illustrate program transformation techniques based on program slicing
to mine web functional dependencies,

7. demonstrate that an alternate program transformation technique, which
employs web functional dependencies, can achieve the same effect as the
original transformation technique,

8. develop specialized program transformation techniques for some specific
classes of hierarchical hypermedia, and

9. demonstrate how the program transformation formalism can be used to
support supplementary personalized interactions.

1.2. Research Methodology

When a user says something out-of-turn, we ask: what can be reasonably
pruned out of the website? Answers to this question lead to interpretations
of out-of-turn interaction, e.g., when a user says something out-of-turn,

5

Table 2: Our research methodology.

Develop a graph-theoretic definition of
an interpretation of personalized interaction.

↓
Model interaction with a hierarchical website as a program

(never to be executed, but only to be transformed).
ւտ

[design a mapping from user input
to program constructs to capture requirements]

ցր
Develop a program transformation technique

capable of realizing the interpretation.
↓

Evaluate the model.
↓

Study the enabled personalized interaction with users.

1. (a) first identify leaf webpages reachable by a path involving a hyperlink
labeled with the out-of-turn input, and

(b) prune all paths through the site that do not lead to any of these
leaf pages.

2. prune all paths through the site which do not involve a hyperlink labeled
with the out-of-turn input.

Both interpretations assume that the input supplied by the user is legal.
An interaction using illegal input may either be undefined or cause an er-
ror. Interpretation 2 entails interpretation 1 because every path retained by
interpretation 2 is retained under interpretation 1. In other words, interpre-
tation 2 prunes all paths pruned under interpretation 1, but the converse
does not hold. Next we ask: how can we support (i.e., model and realize) the
interpretation of out-of-turn interaction using program-theoretic principles.

This suggests an iterative process, illustrated in Table 2, of developing
a programmatic representation of interaction with an instance of hierarchi-
cal hypermedia and developing a program transformation technique, often
involving a composition of program transformations, capable of supporting
the desired personalized interactions from the model. Moreover, we must de-
sign a mapping from user requests (often partial input) to program constructs

6

Table 3: Graph-theoretic constructs and web analogs.

Graph-theoretic construct Web analog

Graph Website
Vertex Webpage
Edge Hyperlink
Edge-label Hyperlink label
Root Homepage

(often variables) to direct the transformation. We next evaluate the model
by computing various metrics. We evaluate the personalized interaction en-
abled by conducting studies with users (Perugini, 2004, Ch. 6) (Perugini
et al., 2007) which often reveal insights into new interpretations, interaction
paradigms, and interaction techniques and, thus, help close the loop.

While some parts of this paper have been previously reported upon by
the authors (Narayan et al., 2004; Perugini and Ramakrishnan, 2005), the
present paper builds upon these foundations to develop a unifying theory
for personalization using program transformations. Where necessary, key
results from the above papers (e.g., Table 1, taken from (Perugini and Ra-
makrishnan, 2005); Table 5, taken from (Narayan et al., 2004); Table 6, taken
from (Perugini and Ramakrishnan, 2005), and Section 8, taken from (Perug-
ini and Ramakrishnan, 2005)) are reported to ensure that the discussion here
is self-contained.

2. Graph-theoretic View of Personalized Interaction

We begin by developing syntactic notions from graph theory and progres-
sively attach web interaction semantics to develop a theory of representing
and reasoning about interaction with hierarchical hypermedia.

2.1. Syntactic and Semantic Notions

Fig. 1 illustrates a DAG model of a hierarchical website with charac-
teristics similar to web directories such as Yahoo! at http://dir.yahoo.

com or the Open Directory Project (ODP) at http://dmoz.org. Table 3 is
an abridged mapping from graph-theoretic notions to web analogs. Edges
help model paths through a website a user follows to access leaf vertices.
Leaf vertices model leaf webpages which contain content. We refer to a leaf

7

http://dir.yahoo.com
http://dir.yahoo.com
http://dmoz.org

1

2

arts

3

computers

4

music

5

theatre speakers

6

hardware

7

software

8

jazz

9

classical

11

theatre

13

software

10

drama music

12

memorymusic

14

business

Figure 1: Example of a DAG model of a hypothetical hierarchical website with character-
istics similar to those in the Yahoo! directory

8

content page as terminal information and the terms therein as units of ter-

minal information. Edge-labels, which we refer to as structural information,
model hyperlink labels or, in other words, choices made by a navigator en
route to a leaf. An edge-label, a unit of structural information, is therefore
a term of information-seeking (simply a term hereafter) which a user may
bring to bear upon information seeking. Structural information thus helps
make distinctions among terminal information.

A set of terms is complete when it determines a particular leaf webpage;
otherwise it is partial. An interaction set of a DAG D is the complete set
of the terms along a path from the root of D to a leaf vertex of D. An
interaction set constitutes complete information; any proper subset of it is
partial information. An interaction set of D classifies a leaf vertex of D, but
does not capture any order of the terms.

We now provide definitions which pertain to a user’s interaction with a
website. A term is in-turn information if it appears as a hyperlink label on
the user’s current webpage and is, thus, currently solicited by the system. On
the other hand, a term is out-of-turn information if it represents a hyperlink
label nested somewhere deeper in the site and is, thus, currently unsolicited
from the system, but relevant to information seeking. Each term from D

which is not in-turn information is out-of-turn information.
Several partial orders can be defined over an interaction set wrt the time

at which the user communicates the term to the system, called arrival time.
When a user clicks on a hyperlink, she implicitly communicates the hyperlink
label to the underlying system. For instance, when a user clicks on the
hyperlink labeled ‘arts’ followed by that labeled ‘music,’ she communicates
the ≺arts, music≻ terms, in that order. Similarly, when the user supplies
out-of-turn input (using a textual or speech modality), he is communicating
terms to the system. These partial orders can be summarized with partially
ordered sets or posets. Each linear extension of such a poset is a total order
called an interaction sequence. A browsing interaction sequence of D is a total
order on an interaction set of D wrt the parenthood relation of D. An out-of-

turn interaction sequence of D is a total order on an interaction set of D wrt
the arrival time relation implied by out-of-turn interaction. Interestingly,
both interpretations of out-of-turn interaction introduced above imply the
same arrival time relation – a partial order containing only the reflexive
tuples of terms from the interaction set. In other words, none of the terms
from the interaction set are required to be ordered. The linear extensions
of the posets associated with these partial orders are out-of-turn interaction

9

sequences.
An interaction paradigm P for D is given by the union of all linear exten-

sions of posets defined over interaction sets of D. In other words, an inter-
action paradigm is a complete set of realizable interaction sequences from D

wrt an interaction technique. When an edge-label labels more than one edge
in a path from the root of D to a leaf vertex of D, it is advantageous to think
of an interaction sequence as a finite effective enumeration of an interaction
set of D, where the order of the terms in the enumeration corresponds to the
arrival time relation afforded by the interaction technique wrt D. The brows-
ing paradigm of D in Fig. 1 is {≺arts, music, jazz≻, ≺arts, music, classical≻,
≺arts, music, theatre≻, . . . , ≺computers, hardware, memory≻}. Likewise,
an out-of-turn paradigm is

{≺arts, music, jazz≻, ,≺music, arts, jazz≻,
[the remaining 4 permutations of {arts, music, jazz}],
≺arts, music, classical≻, ≺music, arts, classical≻,
[the remaining 4 permutations of {arts, music, classical}],
. . . ,
≺computers, hardware, memory≻, ≺hardware, computers, memory≻,
[the remaining 4 permutations of {computers, hardware, memory}]}.

While there can be only one browsing paradigm, there are multiple out-of-
turn paradigms. Moreover, the browsing paradigm for a DAG D is a subset
of any out-of-turn paradigm for D.

2.2. Support Terms and Tools

We use the symbol D to represent the universal set of DAGs, the symbol
T to represent the universal set of terms, and L to denote the universal set
of leaf webpages. Before we can expand this discussion to functions over
D×T to realize the sequences of a particular interaction paradigm, we must
develop some support terms and tools.

Sequencize is a total function SQ : D → P (I) which given D returns the
browsing paradigm of D. We use the symbol I to represent the universal set
of interaction sequences. P (·) denotes the power set function.

Term extraction is a total function TE : D → P (T) which given D

returns the set of all unique terms in D. A term-co-occurrence set of D is
a set T ⊆ TE(D). Let the level of an edge-label in D be the depth of the
source vertex of the edge it labels. If a given edge-label occurs multiple times
in D, a level is associated with every occurrence. A term-level set of D is a
term-co-occurrence set comprising all unique terms in D with the same level.
Term-level extraction is a total function TLE : (D×N) → P (TE(D)) which

10

1

2

arts

3

computers

4

music

5

theatre speakers

6

hardware

7

software

8

jazz

9

classical

11

theatre

13

software

10

drama music

12

memorymusic

14

business

1

2

arts

3

computers

4

music

5

theatre speakers

7

software

8

jazz

9

classical

11

theatre

13

softwaremusic music

Figure 2: Illustration of forward-propagation (FP) followed by back-propagation (BP) on
the DAG in Fig. 1. (left) Forward-propagation wrt the term ‘music,’ i.e., FP (D, music).
(right) Back-propagation wrt the leaf vertices highlighted green (lighter in black and white
rendering) in left, i.e., BP (D, FP (D, music)).

11

given D and a level l(> 1) ∈ N = {1, 2, . . . , M} returns the set of all unique
terms in D with level l, i.e., a term-level set. We use the variable M to
represent the the maximum depth of D. If D represents the DAG in Fig. 1,
TLE(D, 2) = {theatre, music, speakers, software, hardware}. In any DAG,
TLE(D, 1) returns the set of terms available to supply through browsing.

Get sequences is a partial function GS : (T ×P (I)) → P (I)⊥ which given
a term t and a set of interaction sequences IS returns the set of all interaction
sequences in IS which each contain t as a member. The symbol ⊥ denotes
the partial nature of the function, i.e., the value of GS is undefined for some
inputs. Forward propagate is a total function FP : (D × T) → P (L) which
given D and a term t ∈ T = TE(D) returns a set of leaf vertices L of D,
where L contains each leaf vertex reachable from all paths of D containing
an edge labeled t. Collect results is a total function CR : D → P (L) which
given D returns a set of all the leaf vertices in D. Collect results wrt the
sub-DAG rooted at vertex 2 in Fig. 1 is the {8, 9, 10, 11, 13} set of vertices.
Back propagate is a total function BP : (D × P (L)) → D which given
D and a set of leaf vertices L returns a DAG D

′

, where D
′

contains only
browsing interaction sequences which classify the leaf vertices in L. Fig. 2
illustrates forward-propagation (left) on the DAG D in Fig. 1 followed by
back-propagation (right) yielding D

′

.
Notice that D also can be represented as a |TE(D)| × |CR(D)| term-

document matrix, where rows correspond to terms (structural information,
or edge-labels) and columns correspond to webpages (terminal information,
or leaf vertices). However, such a matrix is insufficient to reconstruct D.

2.3. Interpretations of Out-of-turn Interaction

Prior to providing graph-theoretic interpretations for out-of-turn interac-
tion, we formalize browsing over DAG models of websites. Browse is a partial
function B : (D × T) → D⊥, which given D and a term t ∈ TLE(D, 1) re-
turns the sub-DAG rooted at the target vertex of the edge in D labeled with
edge-label t whose source vertex is the root of D. If the DAG in Fig. 1 is D,
B(D, computers) returns the sub-DAG rooted at vertex 3, which represents
the result of a user clicking on the hyperlink labeled ‘computers.’

We formally cast the above two interpretations for out-of-turn interaction
in graph-theoretic terms:

Interpretation 1 of out-of-turn interaction is a partial function OOT1 : (D ×
T) → D⊥ which given D and a term t ∈ TE(D) returns D

′

. It is defined as

12

1

3

computers

4

arts

speakers

13

software

8

jazz

9

classical

11

theatre theatre software

Figure 3: Result of interpretation 1 of out-of-turn interaction with the DAG D shown in
Fig. 1 wrt the term ‘music,’ i.e., OOT1(D, music). Alternatively, one can think of this
DAG as the result of shrink edges with the DAG D

′

in Fig. 2 (right), i.e., SE(D
′

, music).

13

1

2

arts

3

computers

4

music

5

theatre

7

software

8

jazz

9

classical

11

theatre

13

softwaremusic music

1

3

computers

4

arts

13

software

8

jazz

9

classical

11

theatre theatresoftware

Figure 4: (left) Result of applying select paths to the DAG D
′

shown in Fig. 2 (right)
wrt the term ‘music,’ i.e., SP (D

′

, music). (right) Result of interpretation 2 of out-of-turn
interaction with the DAG D shown in Fig. 1 wrt the term ‘music,’ i.e., OOT2(D, music).
Alternatively, one can think of this DAG as the result of shrink edges with the DAG D

′′′

(left), i.e., SE(D
′′′

, music).

14

OOT1(D, t) =

Fig. 3
︷ ︸︸ ︷

SE(BP (D,

Fig. 2 (left)
︷ ︸︸ ︷

FP (D, t))
︸ ︷︷ ︸

Fig. 2 (right)

, t) , (1)

where SE (shrink edges) is a partial function SE : (D × T) → D⊥ which
given D and a term t ∈ TE(D) returns D

′

, where any edge e in D labeled
with t is removed in D

′

, the source vs of e is replaced with its target vt in
D

′

, and vt becomes the new target of any edge e
′

with target vs in D
′

.

Interpretation 2 of out-of-turn interaction is a partial function OOT2 : (D ×
T) → D⊥ which given D and a term t ∈ TE(D) returns D

′

. It is defined as

OOT2(D, t) = SE(

Fig. 4 (left)
︷ ︸︸ ︷

SP (BP (D, FP (D, t)), t))
︸ ︷︷ ︸

Fig. 4 (right)

, (2)

where SP (select paths) is a partial function SP : (D × T) → D⊥ which
given D and a term t ∈ TE(D) returns D

′

, where D
′

contains only the
browsing interaction sequences from D involving t (i.e., SQ(SP (D, t)) =
GS(t, SQ(D))). All browsing interaction sequences pruned under OOT1

also are pruned under OOT2, but the converse does not hold. Formally,
SQ(OOT2(D, t)) ⊆ SQ(OOT1(D, t)). Interpretation 2 retains shrunken ver-
sions of only browsing interaction sequences involving the out-of-turn input,
while interpretation 1 retains shrunken versions of all browsing interaction
sequences which classify the leaf vertices classified by sequences involving the
out-of-turn input.

The result of FP is the set of all leaf vertices classified by the browsing
interaction sequences involving the out-of-turn input. We back-propagate
from this set of leaves up to the root of the DAG with BP . To generalize
this approach, we can replace FP with SL (select leaves) – any total function
SL : (D × T) → L which given D and a term from D returns a set of leaf
vertices of D. FP is an instance of SL. The use of a function such as SL

allows us to marry our approach with standard techniques from information
retrieval (IR) (Baeza-Yates and Ribeiro-Neto, 1999). Moreover, our inclusion
of a function which returns a set of leaf vertices leads to the possibility of
bringing units of terminal information (additional terms modeled in the leaf

15

documents and not explicitly used in the classification), in replacement of
or in addition to structural information, to bear upon the interaction. For
instance, we might perform a query (e.g., ‘Picasso’) in a vector-space model
over the set of leaf webpages (documents) using cosine similarity to arrive at
a target set of leaves from which to back-propagate. We do not study this
extension here and present SL primarily as a technique which works with
structural information.

Generalized interpretation 1 of out-of-turn interaction is a partial function
GOOT1 : (D × T) → D⊥ which given D and a term t ∈ TE(D) returns D

′

.
It is defined as

GOOT1(D, t) = SE(BP (D, SL(D, t)), t). (3)

Generalized interpretation 2 of out-of-turn interaction is a partial function
GOOT2 : (D × T) → D⊥ which given D and a term t ∈ TE(D) returns D

′

.
It is defined as

GOOT2(D, t) = SE(SP (BP (D, SL(D, t)), t), t) (4)

Notice that equations 3 and 4 are the analogs of equations 1 and 2, re-
spectively, in that FP in the latter is replaced by SL. Note also that the
out-of-turn paradigm studied here is supported by all four interpretations of
out-of-turn interaction.
Notice also that SE can be made optional in each interpretation of out-of-
turn interaction. The absence of SE however requires the user to ultimately
browse to reach leaf content pages. This idea is generalized below through a
concept we call web functional dependencies.

Lemma 2.1. Any interpretation of out-of-turn interaction is commutative,

assuming both sides are defined, i.e.,

OOT1(OOT1(D, x), y) = OOT1(OOT1(D, y), x),

OOT2(OOT2(D, x), y) = OOT2(OOT2(D, y), x),

GOOT1(GOOT1(D, x), y) = GOOT1(GOOT1(D, y), x), and

GOOT2(GOOT2(D, x), y) = GOOT2(GOOT2(D, y), x),

16

where x and y represent terms. A sketch of the proof of Lemma 2.1 is given
in (Perugini, 2004, Ch. 4). While we do not study this extension here,
Lemma 2.1 is important to supporting multiple terms per utterance, i.e.,
the ability to communicate more than one term to the system in a single
interaction, an important ingredient for personalized interaction.

3. Program-theoretic View of Personalized Interaction

We now view the above graph-theoretic interpretations of out-of-turn in-
teraction through a programmatic lens and, specifically, relate out-of-turn
interaction, and generalizations thereof, to program slicing. We begin by il-
lustrating how to model interaction with a hierarchical website as a program.

3.1. Modeling Interaction Programmatically

Researchers have predominately modeled web interaction programmat-
ically to maintain state across and within sessions (Graunke et al., 2001;
Queinnec, 2000). Here we model interaction programmatically to personal-
ize information access. Table 4 (left) illustrates a programmatic model of
a user’s browsing interactions with Fig. 1. Notice our use of procedures to
model common sub-trees induced by symbolic links. A symbolic link is a
hyperlink to a webpage which has an existing incoming hyperlink (Perugini,
2008). For example, the edge from vertex 3 to 4 in Fig. 1 labeled ‘speakers’
is a symbolic link. The absence of symbolic links from a website make its
DAG model a tree. In voluminous web directories, such as Yahoo! and ODP,
symbolic link labels are augmented with ‘@’ and transport a user from one
sub-branch of the directory (e.g., News) to another (e.g., Sports).

The expressive constructs, most notably, nested conditionals, of program-
ming languages make such languages an attractive vocabulary of discourse
for modeling interaction with hierarchical hypermedia. While we can model
interaction with (imperative, functional, or logic) programming languages,
we use C here for purposes of presentation. At the NATO Conference on
Software Engineering Techniques held in Rome, Italy in 1969, A. Perlis said,
‘a good programming language is a conceptual universe for thinking about
programming’ (Randell and Buxton, 1969). Similarly here, a good program-
ming language is a conceptual universe for thinking about interacting with
hierarchical hypermedia.

17

Table 4: Modeling interaction programmatically. (left) PD, programmatic representation
of interaction with the website modeled by the DAG D in Fig. 1. (center) PD′ , result of
applying the zoom transformation to the program on the left wrt music. This program is
the representation of interaction with the website modeled by the DAG D

′

in Fig. 2 (right).
(right) PD′′ , result of applying partial evaluation to (center) wrt music = 1. This program

is the representation of interaction with the website modeled by the D
′′

in Fig. 3.

PD PD′ = [[zoom]][PD, music] PD′′ = [[mix]][PD′ , music = 1]

1 if (arts)
2 if (theatre)
3 if (drama)
4 page = 10;
5 if (music)
6 f1();
7 if (music)
8 f2() ;
9 if (computers)

10 if (speakers)
11 f2() ;
12 if (software)
13 if (music)
14 f3();
15 if (business)
16 page = 14;
17 if (hardware)
18 if (memory)
19 page = 12;
20

21 void f1() {
22 page = 11;
23 }
24

25 void f2() {
26 if (theatre)
27 f1() ;
28 if (classical)
29 page = 9;
30 if (jazz)
31 page = 8;
32 if (software)
33 f3() ;
34 }
35

36 void f3() {
37 page = 13;
38 }

if (arts)
if (theatre)

if (music)
f1();

if (music)
f2() ;

if (computers)
if (speakers)
f2() ;

if (software)
if (music)
f3();

void f1() {
page = 11;

}

void f2() {
if (theatre)
f1() ;

if (classical)
page = 9;

if (jazz)
page = 8;

if (software)
f3() ;

}

void f3() {
page = 13;

}

if (arts)
if (theatre)

f1() ;

f2() ;
if (computers)

if (speakers)
f2() ;

if (software)

f3() ;

void f1() {
page = 11;

}

void f2() {
if (theatre)
f1() ;

if (classical)
page = 9;

if (jazz)
page = 8;

if (software)
f3() ;

}

void f3() {
page = 13;

}

18

Table 5: Illustration of program slicing (simplified for purposes of presentation). (left) A
program which accepts the radius and height of a cylinder as input and computes and
prints the cylinder’s surface area and volume. (center) A static backward slice wrt (6, vol).
(right) A static forward slice wrt (1, h) (variable key: r = radius; h = height; cArea = circle
area; sArea = surface area).

original program backward(6,volume) forward(1,h)

1 read(r,h);
2 cArea = PI*r*r;
3 sArea = 2*cArea+2*r*PI*h;
4 volume = cArea*h;
5 print(sArea);
6 print(volume);

read(r,h);
cArea = PI*r*r;
volume = cArea*h;
print(volume);

read(r,h);

sArea = 2*cArea+2*r*PI*h;
volume = cArea*h;
print(sArea);
print(volume);

3.2. Program Slicing

We relate the four interpretations of out-of-turn interaction to the appli-
cation of program slicing, a transformation common in debuggers, to suitably
selected programmatic representations of interaction, such as that shown Ta-
ble 4 (left). Program slicing (Binkley and Gallagher, 1996; Harman and Hi-
erons, 2001; Tip, 1995), originally introduced by Weiser (1979, 1982, 1984),
is a technique used to extract statements, which may affect or be affected by
the values of variables of interest computed at some point of interest, from
a program. A slice of a program is taken wrt a (point of interest, variable
of interest) pair, referred to as the slicing criterion. The point of interest
may be specified with a line number from the program. The resulting slice
consists of all program statements which may affect or be affected by the
value of the variable at the specified point.

Slices such as that shown in Table 5 (center), which Weiser first artic-
ulated, are called executable backward static slices (Binkley and Gallagher,
1996; Horwitz et al., 1990; Venkatesh, 1991) (referred to here as simply back-

ward slices). They are executable because the slice is required to be an ex-
ecutable program. The slice is backward since this is the direction in which
dependencies are followed to sources in the program. Contrast this with a
forward slice (Horwitz et al., 1990) which consists of the program statements
affected by the value of a particular variable at a particular statement (see
Table 5, right). Backward slices contain data and control predecessors, while
forward slices consist of data and control successors. The slice is static be-

19

cause it is computed without consideration of program input. Dynamic slic-
ing techniques are covered in (Perugini, 2004, appendix B). For an introduc-
tion to program slicing, techniques for computing slices, and applications, we
refer the reader to (Binkley and Gallagher, 1996; Harman and Hierons, 2001;
Tip, 1995).

We relate FP to the program intersection of two unions of forward slices.
Researchers in the programming languages community consider a union of
slices as a slice and trivial to compute. The slicing criteria ‘can be easily
extended to slicing wrt a collection of locations and a collection of variables
at each location by taking the union of the individual slices’ (Binkley and
Gallagher, 1996). The first union consists of the forward slices of the pro-
gram wrt the variable modeling the out-of-turn input at every occurrence
of it in the program. The second union consists of the forward slices of the
program wrt the variable indexing the leaf vertices at every occurrence of
it in the program. The intersection of these two unions results in several
occurrences of the variable indexing the leaf vertices (e.g., page in Table 4).
Each occurrence is at a point in the program which is affected by the variable
corresponding to the out-of-turn input. In graph terms, this procedure re-
sults in the set of leaf vertices classified by all browsing interaction sequences
involving the out-of-turn input.

The set of program fragments, thus obtained from FP , can be thought
of as slicing criteria input to BP which is then the union of backward slices,
each wrt every (point, variable) pair resulting from the initial forward slic-
ing procedure. Intuitively, given valid input, a forward slice is performed
wrt the corresponding program variable to determine the terminal webpages
which are reachable from that point. These webpages are collected and back-
propagated with backward slicing so that only those paths that reach these
pages are retained. Notice that these two operations implicitly capture ex-
clusions among program variables, e.g., when the user says ‘Honda’ the slices
remove any program segments which involve Toyotas. Such a combination of
forward and backward slicing is similar to the zoom operator for interactively
pruning information hierarchies (Sacco, 2000). Thus, we call this composite
program transformation technique zoom.

The idea of performing set-theoretic operations on forward and backward
slices is closely related to the concepts of program dicing (Binkley and Gal-
lagher, 1996; Lyle and Weiser, 1987) and program chopping (Jackson and
Rollins, 1994b). Performing set-theoretic operations on one or more back-
ward program slices yields a program dice (Binkley and Gallagher, 1996; Lyle

20

Table 6: Comparison of partial evaluation and program slicing along a syntax- vs.
semantic-preserving dichotomy.

Syntax-preserving Semantic-preserving

Partial evaluation × √
Program slicing

√ ×

and Weiser, 1987). Originally program dicing was limited to backward slices.
Program chopping, on the other hand, which also is a generalization of slic-
ing (Jackson and Rollins, 1994b), is an extension of dicing to forward slices.
Forward slices increase the usefulness of dicing (Binkley and Gallagher, 1996).
Chopping identifies the statements which transmit values from one statement
to another. In other words, it shows all the ways which one set of program
points affect another set of points. A program chop (Jackson and Rollins,
1994b,a; Reps and Rosay, 1995) therefore consists of all program points af-
fected between one point (the chop source) and another (the chop target)
(Anderson et al., 2003). It also is the subset of the intersection of a forward
and backward slice (Anderson, P., personal communication, November 10,
2003). In the absence of procedures, a chop ‘can be viewed as a generalized
kind of program dice’ (Binkley and Gallagher, 1996).

Table 6 compares partial evaluation and program slicing. It reinforces
that while partial evaluation is semantic-preserving, it is not syntax-preserving.
Conversely, while the variants of program slicing considered in this article
are syntax-preserving, they are not semantic-preserving. However, there are
variants of program slicing (e.g., amorphous slicing, also known as seman-

tic slicing) which are the reverse, i.e., semantic-preserving, but not syntax-
preserving (see Perugini, 2004, appendix B for more details).

3.3. Notation: Programs as Data Objects

To succinctly describe our program transformation techniques (e.g., the
above notion of zoom) we adopt a slightly modified notation for describing
the semantic function of a programming language used in a textbook on par-
tial evaluation (Jones et al., 1993). A specification language, defined by a
context-free grammar, for program transformations is introduced in (Hildum
and Cohen, 1990). While the language is imperative, here, for purposes
of presentation, we use a declarative style. GrammaTech, Inc., the company
which develops and produces a program slicer for ANSI C called CodeSurfer is
currently working on a textual representation, employing a Lisp-like syntax,

21

for set-theoretic operations over program slices for a future release, e.g., (in-
tersect (slice A) (slice B)) (Anderson, P., personal communication, April 8,
2004).� [[int]][PD, x1 = 1, x2 = 0, . . . , xn = 1] denotes ‘partially, interpret the pro-

grammatic representation of DAG D (PD) wrt the partial assignment
of variables x1 = 1, x2 = 0, . . . , xn = 1.’ [[int]] denotes the applica-
tion of a stepwise interpreter. We use interpretation here as a program
transformation.� [[mix]][PD, x1 = 1, x2 = 0, . . . , xn = 1] denotes ‘partially evaluate (non-
sequentially interpret) the programmatic representation of DAG D (PD)
wrt the partial assignment of variables x1 = 1, x2 = 0, . . . , xn = 1.’
[[mix]] is the conventional way to denote a partial evaluator (Jones,
1996, 1997; Jones et al., 1993). It refers to mixed computation since
a partial evaluator performs a mixture of interpretation and code-
generation (Jones, 1996).� [[forward]][PD, x] denotes ‘union each forward slice of the programmatic
representation of DAG D (PD) wrt the variable x at every program point
containing x.’� [[backward]][PD, x1, x2, . . . , xn] denotes ‘union each backward slice of the
the programmatic representation of DAG D (PD) wrt the variable x at
program points 1, 2, . . . , n.’

Using this notation, [[zoom]] is formally defined as

[[zoom]][PD, input] = [[backward]][PD, [[forward]][PD, input] ∩ [[forward]][PD, page]],

where input is the program variable representing the out-of-turn input and
page is the variable indexing the leaf vertices. We define [[sp]], the program-
matic analog to select paths (SP), as

[[sp]][PD, x] = [[forward]][PD, x] ∪ [[backward]][PD, x].

We define [[te]][PD], the programmatic analog to term extraction (TE), as
the union of all program data successors of each structural variable at its
declaration. A program data successor is a restriction to a forward slice
in that rather than including transitive dependencies, it just contains the

22

Table 7: Relating interaction techniques in DAG models of a websites to compositions
of program transformations. Notice that [[SL]] is a meta-program-transformation, i.e., it
represents any program transformation which returns a set of program points containing
the variable page.

Interaction technique Program transformation technique

Browsing [[int]] [PD, input = 1]
Interp. 1 of OOT Interaction [[mix]] [[[zoom]] [PD, input], input = 1]
Interp. 2 of OOT Interaction [[mix]] [[[sp]] [PD, input], input = 1]
Gen. Interp. 1 of OOT Interaction [[mix]] [[[backward]] [PD, [[SL]] [PD, input]], input = 1]
Gen. Interp. 2 of OOT Interaction [[mix]] [[[sp]] [[[backward]] [PD, [[SL]] [PD, input]], input], input = 1]

immediate dependency of a program point. Specifically, ‘a program point’s
data successors are the points where the variables that were modified at
that point are used’ (Anderson et al., 2003). Since structural variables’ sole
presence in these programs arises in the context of an if (...) expression,
we might just as easily think of conducting [[te]][PD] with a regular expression.

Armed with these formalisms, we can relate interpretations of interaction
techniques, including browsing, to classical program transformations. In Ta-
ble 7 we present program transformation techniques to realize browsing and
the four interpretations of out-of-turn interaction given above. Program slic-
ing is typically used for debugging, safety, and security. Only few have used
slicing for web applications (Ricca and Tonella, 2001b). Our use of program
slicing helps marry it with information personalization.

4. Evaluation

A model M = (PD, X) is a program (representation, transformation)
pair. We would like to evaluate a model by assessing its capability to realize
a desired set of interaction sequences. To do so we measure how close the
model comes to realizing the targeted interaction paradigm P. Ideally, we
would like to have

M I ↔ I ∈ P,

where denotes stages, i.e., M stages interaction sequence I iff I is in the
interaction paradigm P. A model stages an interaction sequence if successive
applications of its transformation technique to its programmatic representa-
tion, given user input, realize the interaction sequence. In this manner, the
model stages the user’s interaction.

23

deficit

excess

PR

Figure 5: Venn diagram highlighting the intersection between the set of sequences R (left)
staged by an incomplete, unsound model and its intended interaction paradigm P (right).

Soundness of a Model: M I → I ∈ P
A model M is sound for an interaction paradigm P if each interaction

sequence which M stages is in P. In other words, if the model can stage an
interaction sequence, then the sequence is in the paradigm.

Completeness of a Model: I ∈ P → M I

A model M is complete for an interaction paradigm P if M can stage
each interaction sequence in P. In other words, if an interaction sequence is
in the paradigm, then the model can stage it.

The models presented in Table 7 are each sound and complete for the cor-
responding out-of-turn paradigm presented in this article. The completeness
of each model holds under the assumption that no path from the root of the
website to each leaf contains more than one hyperlink with the same label.
Intuitively, this is because communicating (in-turn or out-of-turn) informa-
tion initiates a transformation which simplifies the site wrt all hyperlinks
labeled with that input, some of which may lie along the same path. This
assumption is captured by our definition of interaction set and (browsing)
interaction sequence. As a result, our definition of browsing is slightly dif-
ferent than its traditional interpretation. The soundness of the model holds
under the assumption that all terms supplied in any interaction sequence lie
along a single path. This is always true in a tree, but may not be true in a
DAG. This assumption is captured by the definition of interaction set and
(out-of-turn) interaction sequence.

We can identify both the excess and deficit of a model. A complete,
but unsound, model has excess – interaction sequences not in its intended
paradigm which it stages. On the other hand, a sound, but incomplete, model
has deficit – sequences in its intended interaction paradigm which it fails to

24

stage. An unsound and incomplete model exhibits both excess and deficit
wrt its targeted paradigm. A sufficiency metric for a model is formulated
akin to the recall measure in IR (Baeza-Yates and Ribeiro-Neto, 1999):

sufficiency =
|R ∩ P|

|P| =
|R ∩ P|
SOP (D)

,

where R represents the set of sequences staged by the model and

SOP (D) =
∑

Ii ∈ SQ(D)

|gIS(Ii)|!,

where gIS (get Interaction Set) is a total function gIS : I → S which given
an interaction sequence Ii returns the interaction set over which it is defined.
We use S to denote the universal set of sets. Fig. 5 illustrates how excess
and deficit arise.

Lemma 4.1. Any complete model for an out-of-turn interaction paradigm

is also complete for a browsing paradigm.

A sketch of the proof of Lemma 4.1 is given in (Perugini, 2004, Ch. 4).
Intuitively, this lemma indicates any browsing paradigm is a proper subset
of the corresponding out-of-turn interaction paradigm or, in other words,
out-of-turn interaction subsumes browsing. This is a significant result as it

means that we can support the union of these two interaction paradigms with

a single program transformation technique. In other words, no anticipation of

in-turn or out-of-turn input is necessary to discern a program transformation

technique. Thus, we achieve uniform processing of input. For interaction this
means that the user can interleave hyperlink clicks (in-turn browsing inputs)
and voice utterances (out-of-turn inputs) in any order she desires (Perugini
and Ramakrishnan, 2003b) to achieve a mixed-initiative mode of information
seeking (Allen, 1999). Mixed-initiative interaction is a flexible interaction
strategy where each participant can play an equal role in steering the pro-
gression of the interaction (Hearst, 1999).

Beyond soundness and completeness, we developed a measure which es-
timates the compression achieved in a model – the ratio of interaction se-
quences realizable through interpretation (and hence directly stated in the
representation) to the total number of sequences realizable through transfor-
mation:

25

compression =
|R − E|
|R| ,

where E represents the set of interaction sequences stageable from PD with an
interpreter ([[int]]). Intuitively, the compression ratio quantifies the percent-
age of sequences which we get ‘for free’ by using the program transformation
technique.

An effective model is one which maximizes both sufficiency and compres-
sion. However, these measures are bipolar and exhibit a tradeoff similar
to that between precision and recall in IR (Baeza-Yates and Ribeiro-Neto,
1999). To maximize sufficiency, we might choose to explicitly model each
interaction sequence in the representation, affecting the compression ratio
negatively.

There are alternate applicable evaluation criteria for this research (Ra-
makrishnan and Perugini, 2001). Evaluating personalization applications for
traditional user-satisfaction and task completion metrics is another practice.
In addition to measuring satisfaction, studies with users can improve our
understanding of an extant interaction paradigm or yield new paradigms
to model (Perugini, 2004, Ch. 6) (Perugini et al., 2007). Personalization
applications also can be evaluated wrt classical IR metrics (Dhyani et al.,
2002). For example, Sacco (2000) studies how the application of zoom as
well as bucket size (i.e., number of documents classified under each terminal
concept) affect the maximum resolution of a taxonomy. Maximum resolu-
tion, which is a measure of retrieval effectiveness, is the average minimum
number of documents the user has to manually inspect.

5. Graph-theoretic Classes of Hierarchical Hypermedia

While the transformation techniques in Table 7 work on any DAG, we
identify classes of hierarchical hypermedia for insight into the possibility of
using specialized program transformation techniques to realize out-of-turn
interaction for each class. We begin by defining a few terms.

The maximum depth of a DAG D is the level of an edge-label in D which
is greater than or equal to the level of all other edge-labels in D. A cluster c

is a term-level set such that no edge label in it labels an edge in a different
term-level set. If the maximum depth of D equals the number of clusters
in D, then D is levelwise DAG. Intuitively, a levelwise DAG is one where

26

Computer Science Mathematics

AdjeridRamakrishnan Beattie Green

Computer Science Mathematics

AdjeridRamakrishnan Adjerid Green

California Virginia

House Senate House Senate

Figure 6: Simple levelwise DAGs. (left) non-mutually exclusive. (center) weak-mutually
exclusive. (right) strong-mutually exclusive.

each level of the DAG corresponds to a facet (Taylor, 2000) of information
assessment in the website it models or, in other words, each term ti ∈ TE(D)
resides at exactly one level. Therefore, sometimes such sites are referred to
as faceted.

Each DAG shown in Fig. 6 is levelwise. The DAG in Fig. 6 (left) models
a simplified path through the online Virginia Tech timetable of courses. Its
clusters are {Computer Science, Mathematics} and {Ramakrishnan, Adjerid,
Beattie, Green} implying that the two levels shown correspond to department

and instructor facets, respectively. Notice that symbolic links, such as those
illustrated in Fig. 6 (left and center) by the edge labeled ‘Adjerid’ emanating
from the target of the edge labeled ‘Computer Science,’ are necessary to
model the presence of cross-listed courses. The DAG in Fig. 6 (right), which
models the Congressional portion of the Project Vote Smart (PVS at http://
votesmart.org) website, also is levelwise, albeit without symbolic links. Its
clusters are {California, Virginia} and {House, Senate} implying that the two
levels shown correspond to state and branch of Congress facets, respectively.
In contrast to those shown in Fig. 6, notice that the DAG in Fig. 1 is non-
levelwise, or sometimes called unfaceted (Perugini, 2009).

We now introduce the concept of mutual exclusivity in DAG models of
websites. If no leaf vertex of D lies at the end of two paths from D which each
involve a distinct edge-label from a term-co-occurrence set T , then we say
that T is a mutually exclusive term-co-occurrence set. While there are mul-
tiple mutually exclusive term-co-occurrence sets (e.g., {Computer Science,
Green}) in the DAGs shown in Fig. 6 (left and center), none are clusters.

27

http://votesmart.org
http://votesmart.org

On the other hand, the term-level sets {California, Virginia} and {House,
Senate} of the DAG shown in Fig. 6 (right) are mutually exclusive and clus-
ters. If D is levelwise and has at least one mutually exclusive cluster, then
D is a weak-mutually exclusive DAG. If a DAG D is levelwise and no leaf
vertex of D lies at the end of two distinct paths from D, where each path
contains a distinct term from the same cluster, then D is strong-mutually

exclusive DAG. Note that the mutually exclusivity of DAGs subsumes the
levelwise property by definition. Notice further that replacing only one edge-
label (i.e., ‘Beattie’ to ‘Adjerid’) in the DAG shown in Fig. 6 (left) makes it
a weak-mutually exclusive DAG (see Fig. 6, center); its cluster at level-two is
mutually exclusive, but that at level one is not due to the symbolic link. This
DAG models a course in the online Virginia Tech timetable which presum-
ably has two sections, each taught by a different instructor, from different
departments. If there is a unique simple path from the root of a DAG D to
each vertex in D, then D is an edge-labeled, rooted tree (hereafter referred
to as a tree), e.g., Fig. 6 (right). Observe also that we develop the above
classes of hierarchical hypermedia without reference to semantics; these no-
tions are purely syntactic, e.g., the levelwise property does not take into
account polysemy of terms.

Lemma 5.1. A DAG D is levelwise and each term-level set of D is a cluster

and mutually exclusive iff D is strong-mutually exclusive.

Lemma 5.2. A strong-mutually exclusive DAG which is not a tree does not

exist, given our definition of a DAG.

Lemma 5.3. Interpretation 1 of out-of-turn interaction over a tree D is

functionally equivalent to interpretation 2 of out-of-turn interaction over D.

Lemma 5.4. Generalized interpretation 1 of out-of-turn interaction over a

tree D is functionally equivalent to generalized interpretation 2 of out-of-turn

interaction over D.

Lemma 5.5. The interpretations of out-of-turn interaction considered in

this article preserve the levelwise property in DAGs.

Lemma 5.6. If a DAG D is a levelwise tree, then D is a strong-mutually

exclusive tree.

28

Non- leve lwise t ree 1 Other non-levelwise DAG 2
Mutual ly exclus ive

t r e e

3 Weak
mutua l ly exc lus ive

DAG

4 O t h e r
non-mutua l ly exc lus ive

DAG

5

DAG

Non-levelwise DAG Levelwise DAG

Figure 7: Partial order of classes of hierarchical hypermedia. Superscripts help connect
these classes to those in Table 8.

Table 8: Alternate view of classes of hierarchical hypermedia making the five considered
classes (leaves of the tree in Fig. 7) salient. Superscripts help connect these classes to those
in Fig. 7. Legend: lw = levelwise, me = mutually exclusive; symbols

√
and ⊥ denote

defined and undefined, respectively.

DAG non-me me

non-lw
√2 ⊥

lw
√5 √4

Tree non-me me

non-lw
√1 ⊥

lw ⊥ √3

Corollary 1. The interpretations of out-of-turn interaction considered in

this article preserve the strong-mutually exclusive property in trees.

Lemmas 5.2 and 5.6 make the type of mutually exclusivity unequivocal in
DAGs. Thus, unless stated otherwise, we refrain from qualifying mutually
exclusivity as weak or strong in such contexts.

Sketches of the proofs of Lemmas 5.1–5.6 are given in (Perugini, 2004, Ch.
4). The proof for 5.4 follows analogously from Lemma 5.3. We can construct
its outline by replacing all occurrences of FP in the proof of Lemma 5.3 with
SL, since FP is an instance of SL. The proof of Corollary 1 follows directly
from Lemmas 5.5 and 5.6.

A Hasse diagram for a partial order of these classes of hierarchical hyper-
media is shown in Fig. 7. The leaf vertices in this Hasse diagram are the five
classes considered here. Examples of sites modeled after non-levelwise trees
are GAMS at http://gams.nist.gov and the Google directory at http://
directory.google.com. Examples of other non-levelwise DAGs are the Ya-

hoo! directory and ODP.2 PVS and the Kelley Blue Book at http://kbb.com

2Formally, the Yahoo! directory and ODP are not DAGs due to the presence of cycles

29

http://gams.nist.gov
http://directory.google.com
http://directory.google.com
http://kbb.com

each can be modeled as a mutually exclusive tree. The Virginia Tech online
timetable of classes can be modeled as a weak mutually exclusive DAG. The
mutually exclusive tree class is the primary focus of our user studies (Perug-
ini, 2004, Ch. 6) (Perugini et al., 2007). Note that the other non-mutually
exclusive DAG class does not contain any trees, by Lemma 5.6, as shown in
Fig. 7. An alternate view of these five classes is given in Table 8.

We describe methods for automatically identifying these classes of hi-
erarchical hypermedia in (Perugini, 2004, Ch. 4). The application of any
interpretation of out-of-turn interaction to a DAG may result in a mutu-
ally exclusive DAG. Therefore, to take advantage of program transformation
techniques specialized for these classes, which we develop below, we need to
apply these identification procedures after each out-of-turn interaction.

6. Mining Web Functional Dependencies for Automatic Query Ex-

pansion

Before re-entering the program-theoretic domain, we must develop a few
more graph-theoretic terms and tools which help provide intuition for the
relations to some of the program transformation techniques to follow. Specif-
ically, we illustrate how mining dependencies underlying websites helps ex-
pand input for out-of-turn interaction.

A path-term-co-occurrence set is a term-co-occurrence set which only con-
tains the terms from D which co-occur with a particular term along paths
through D. Build path-term-co-occurrence set is total function BPTC :
(D × T) → P (T) which given D and a term t ∈ T = TE(D) returns a
path-term-co-occurrence set. It is defined as

BPTC(D, t) =
⋃

Iti
∈ GS(t, SQ(D))

GIS(Iti) − {t},

where Iti is an interaction sequence from D containing term ti. The set
{Adjerid, Green} is the path-term-co-occurrence set in the DAG illustrated
in Fig. 6 (center) wrt the term ‘Mathematics.’

Given a set of leaves from D reachable through paths containing a par-
ticular term t (i.e., Lt = FP (D, t)), a leaf-term-co-occurrence set is a term-
co-occurrence set which only contains the terms from D, excluding t, which

induced by symbolic links.

30

lie along all of the paths from D which reach all of the leaves in Lt. Build

leaf-term-co-occurrence set is total function BLTC : (D× T) → P (T) which
given D and term t ∈ T = TE(D) returns a leaf-term-co-occurrence set. It
is defined as

BLTC(D, t) = TE(BP (FP (D, t))) − {t}.

The set {Computer Science, Adjerid, Green} is the leaf-term-co-occurrence
set in the DAG illustrated in Fig. 6 (center) wrt the term ‘Mathematics.’

Lemma 6.1. If a DAG D is a tree, then any path-term-co-occurrence set wrt

a term t in D is a leaf-term-co-occurrence set wrt t in D. In other words, if

a DAG D is a tree, then BPTC(D, t) = BLTC(D, t).

A sketch of the proof of Lemma 6.1 is given in (Perugini, 2004, Ch. 4).

Corollary 2. If a DAG D is a tree, then the complete set of path-term-co-

occurrence sets in D equals the complete set of leaf-term-co-occurrence sets

in D. In other words, if a DAG D is a tree, then

⋃

ti ∈ TE(D)

{BPTC(D, ti)} =
⋃

ti ∈ TE(D)

{BLTC(D, ti)}.

The proof for Corollary 2 follows directly from Lemma 6.1.
Identifying structural relationships in data-intensive websites, in domains

such as e-commerce (e.g., Amazon), digital libraries (e.g., CITIDEL at http://
citidel.org), and scientific computing (e.g., GAMS at http://gams.nist.
gov) is becoming a precursor to personalizing information access (Abiteboul
et al., 2000). Deploying out-of-turn interaction involves addressing some
practical considerations, including the identification of such relationships.
Specifically, when the targeted website contains dependencies between and
across the levels of its DAG model, an out-of-turn interaction can result in
the system soliciting information from the user which can be inferred from
the previous input. For instance, consider a user’s interaction with the Kelley
Blue Book, an automobile website which progressively solicits for automo-
bile attributes, in an order pre-determined by the site designer, and forces
users to communicate those attributes in this manner to access a vehicle web-
page. KBB is modeled as mutually exclusive tree. If a user communicates
an out-of-turn input which causes all paths save for one to be pruned from

31

http://citidel.org
http://citidel.org
http://gams.nist.gov
http://gams.nist.gov

the site, then that user is required to click through a series of webpages each
only containing one link (leading to the next page). For instance, if saying
‘Civic’ out-of-turn results in one car, then the user may still have to click
the ‘sedan’ hyperlink on the resulting page and the ‘Honda’ hyperlink on the
penultimate page en route to the leaf webpage.

Classic menu design research states that no menu should contain less than
two items. Therefore, in such cases, we would like to consolidate the path
and lead the user directly to the terminal webpage in one stroke. Thus, when
the user says ‘Civic’ out-of-turn we can infer ‘sedan Honda’ by functional de-
pendency and safely expand the input to ‘Civic sedan Honda’ without losing
any information. The ‘Civic → Honda’ web FD asserts that all of the paths
through the site involving ‘Civic’ also involve ‘Honda.’ Clearly, the reverse
does not hold as Honda makes several automobile models. We call such a
dependency a positive-path web FD. We detect such dependencies between
the site’s levels (in this case, vehicle-type, -maker, and -model) and leverage
these positive web FDs for query expansion. When such dependencies are
employed, it is important to provide real-time feedback to users so that the
information contained on the rhs of the web FD is not lost. This can be
done by collecting the rhs of each web FD triggered and augmenting the leaf
webpage with this information. Alternatively, we could present an ‘Input so
far:’ label in the browser’s status bar and, at each step in the interaction,
incrementally include the rhs of any fired web FDs. Notice that triggering
such web FDs affects the stageable interaction sequences and thus the realiz-
able (browsing and out-of-turn) interaction paradigms. Thus, we may have
to update our definition of an interaction sequence so that it can be defined
over a subset of an interaction set.

Using web FDs to expand user out-of-turn input ultimately creates invis-
ible shortcuts through the website for the user. For example, saying ‘Wash-
ington, DC’ out-of-turn at the top level of PVS expands to ‘Washington, DC
House Democrat District-at-large’ (because only one congressperson repre-
sents Washington, DC) and directly reaches the webpage of an individual
congressional official. In levelwise sites, a cursory understanding of the un-
derlying domain is necessary to manually identify a majority of the web
FDs. For instance, in KBB, several web FDs fit the model → make

template (e.g., ‘Civic → Honda’). Web FDs are less salient in sites which
are non-levelwise such as large web directories such as Yahoo! and ODP.
Thus, techniques from association rule mining, especially those designed for
the web (Eirinaki and Vazirgiannis, 2003; Mobasher et al., 2000; Mulvenna

32

et al., 2000; Srivastava et al., 2000), become important and applicable in
both classes.

6.1. Mining Positive Web Functional Dependencies

Positive-path Web Functional Dependencies

Discovering positive-path web FDs entails identifying pairs of hyperlink
labels where all of the paths through the site involving one also involve the
other. Then when a user supplies out-of-turn input, we consult the precom-
puted set of web FDs to answer the question: what terms in the complete
set of terms, TE(D), lie along each path involving a hyperlink labeled with
the out-of-turn input? An instance of such a web FD in KBB is ‘Civic →
Honda.’

Since the number of paths remaining through the site is reduced as a result
of each (in-turn or out-of-turn) interaction, the number of positive-path web
FDs satisfied by a site dynamically changes after each interaction. Therefore,
while the number of such web FDs (say p) in a site is potentially exponential
in its size, just as in traditional data mining algorithms, the number of web
FDs reduces dramatically as we drill through the levels. We have developed
an algorithm, which is output-sensitive with complexity O(p), to mine all
of the possible positive-path web FDs a priori (Perugini and Ramakrishnan,
2007).

An alternate approach is to mine a new set of web FDs at each step in
the interaction. However, since positive-path web FDs can only exist among
terms which co-occur on a path, we need not examine TE(D) terms per term.
Rather we can make use of a path-term-co-occurrence set and examine only
the terms which co-occur on a path with the particular term (corresponding
to the out-of-turn input). This approach implies computing a path-term-co-
occurrence set after the user supplies an out-of-turn input and using it to
discover any positive-path web FDs relevant to the user’s interaction. Mine

positive-path-FD set is total function mFDspp : (D×T) → P (T) which given
D and a term ti ∈ T = TE(D) returns a term-co-occurrence set. It is defined
as

mFDspp(D, ti) =
⋃

tj ∈ BPTC(D, ti)

{tj} such that GS(ti, SQ(D)) ⊆ GS(tj, SQ(D)).

This function finds web FDs of the form ti → tj . A positive-path-FD set of
D is any term-co-occurrence set returned from mFDspp. The complete set
of positive-path web FDs satisfied by the DAG in Fig. 6 (left) is

33

{Ramakrishnan → Computer Science,
Adjerid → Computer Science,
Beattie → Mathematics,
Green → Mathematics}.

No positive-path web FDs hold in the DAG shown in Fig. 6 (right).

Positive-leaf Web Functional Dependencies

Positive-leaf web FDs are more general than positive-path web FDs in
that all positive-path web FDs also are positive-leaf web FDs. Discovering
positive-leaf web FDs entails identifying pairs of hyperlink labels where all
of the leaves classified under paths involving one label also are classified
under paths involving the other. Then when a user supplies out-of-turn
input, we consult the set of web FDs to answer the question: what terms in
the complete set of terms, TE(D), lie along paths which classify all leaves
reachable by paths involving a hyperlink labeled with the out-of-turn input?
The number of positive-leaf web FDs in a site changes after every interaction
because the number of leaves remaining in the site is reduced as a result of
each interaction. Thus, we can mine a new set of positive leaf web FDs at
each step. Since positive-leaf web FDs can only exist among terms which co-
occur wrt leaves, we need not examine TE(D) terms per term. Rather we can
make use of a leaf-term-co-occurrence set and examine only the terms which
co-occur with a particular term (corresponding to the out-of-turn input) wrt
leaves. This approach implies computing a leaf-term-co-occurrence set after
the user supplies an out-of-turn input and using it to discover any positive-
leaf web FDs relevant to the user’s interaction. Mine positive-leaf-FD set

is total function mFDspl : (D × T) → P (T) which given D and a term
ti ∈ T = TE(D) returns a term-co-occurrence set. It is defined as

mFDspl(D, ti) =
⋃

tj ∈ BLTC(D, ti)

{tj} such that FP (D, ti) ⊆ FP (D, tj).

This function mines web FDs of the form ti → tj . A positive-leaf-FD set of
D is any term-co-occurrence set returned from mFDspl. The complete set
of positive-leaf web FDs satisfied by the DAG in Fig. 6 (left) is

{Ramakrishnan → Computer Science,
Adjerid → Computer Science,
Adjerid → Mathematics,
Adjerid → Beattie,
Beattie → Computer Science,
Beattie → Mathematics,
Beattie → Adjerid,
Green → Mathematics}.

34

The DAG shown in Fig. 6 (right) does not satisfy any positive-leaf web FDs.

Lemma 6.2. Any positive-path web FD in a DAG D is a positive-leaf web

FD in D.

Corollary 3. Any positive-path web FD set wrt a term ti in a DAG D

is a subset of the positive-leaf web FD set wrt ti in D. In other words,

mFDspp(D, ti) ⊆ mFDspl(D, ti).

We leave it to the reader to convince thyself that the converse of Lemma 6.2
(i.e., any positive-leaf web FD is a positive-path web FD) is not true. How-
ever, we have:

Lemma 6.3. If a DAG D is a tree, then any positive-leaf web FD in D is a

positive-path web FD in D.

Corollary 4. If a DAG D is a tree, than any positive-path web FD set wrt a

term ti in D equals the positive-leaf web FD set wrt ti in D. In other words,

if D is a tree, then mFDspp(D, ti) = mFDspl(D, ti).

Corollary 5. If a DAG D is a tree, then the complete set of positive-path

web FDs in D equals the complete set of positive-leaf web FDs in D.

Notice that Lemma 6.3 uses if, not iff; we leave it to the reader to convince
thyself that the converse of Lemma 6.3 (i.e., if any positive-leaf web FD in a
DAG D is a positive-path web FD in D, then DAG D is a tree) is not true.

Identifying and employing instances of positive web FDs is helpful for
usability purposes, but not necessary for realizing out-of-turn interaction.
What is non-intuitive, however, is that a related concept, negative web FDs,
is helpful in developing an alternate program transformation technique for
out-of-turn interaction and specializations of it for the mutually exclusive
classes of hierarchical hypermedia (when we use the phrase mutually exclusive

classes we refer to a mutually exclusive tree and a weak mutually exclusive

DAG, not a general connotation to two (or more) classes which are mutually
exclusive with each other). Specifically, partially evaluating a programmatic
representation of a website wrt the variables representing the terms on the
rhs of a negative-path or -leaf FD set each assigned zero prunes the site.

35

6.2. Mining Negative Web Functional Dependencies

Negative-path Web Functional Dependencies

Identifying negative-path web FDs entails identifying pairs of hyperlink
labels where none of the paths through the site involving one label involve the
other. Identifying negative-path web FDs involves answering the question:
what terms in the complete set of terms, TE(D), never lie along any of the
paths involving a hyperlink labeled with a particular term? An example
of such a web FD in KBB is ‘Honda → ¬ Toyota.’ Intuitively, this means
that none of the paths through the site involving the term ‘Honda’ involve
the term ‘Toyota.’ Mine negative-path-FD set is total function mFDsnp :
(D × T) → P (T) which given D and a term ti ∈ T = TE(D) returns a
term-co-occurrence set. It is defined as

mFDsnp(D, ti) = TE(D) − {ti} − BPTC(D, ti).

A negative-path-FD set of D is any term-co-occurrence set returned from
mFDsnp. The complete set of negative-path web FDs satisfied by the DAG
in Fig. 6 (left) is

{Computer Science → ¬ Mathematics,
Computer Science → ¬ Beattie,
Computer Science → ¬ Green,

Mathematics → ¬ Computer Science,
Mathematics → ¬ Ramakrishnan,
Mathematics → ¬ Adjerid,

Ramakrishnan → ¬ Mathematics,
Ramakrishnan → ¬ Adjerid,
Ramakrishnan → ¬ Beattie,
Ramakrishnan → ¬ Green,

Adjerid → ¬ Mathematics,
Adjerid → ¬ Ramakrishnan,
Adjerid → ¬ Beattie,
Adjerid → ¬ Green,
Beattie → ¬ Computer Science,
Beattie → ¬ Ramakrishnan,
Beattie → ¬ Adjerid,
Beattie → ¬ Green,
Green → ¬ Computer Science,
Green → ¬ Ramakrishnan,
Green → ¬ Adjerid,
Green → ¬ Beattie}.

Likewise, the complete set of negative-path web FDs satisfied the DAG in
Fig. 6 (right) is

{California → ¬ Virginia,
Virginia → ¬ California,

House → ¬ Senate,
Senate → ¬ House}.

36

Negative-leaf Web Functional Dependencies

Identifying negative-leaf web FDs entails identifying pairs of hyperlink
labels where none of the leaves classified under paths involving one label are
classified under paths involving the other. Identifying negative-leaf web FDs
involves answering the question: what terms in the complete set of terms,
TE(D), do not lie along paths from the root of D to its leaves which classify
any of the leaves reachable by paths involving a hyperlink labeled with a
particular term? An example of such a web FD in KBB is ‘Honda → ¬
Toyota.’ Unlike the discussion of negative-path web FDs, this type of web
FD must be interpreted as ‘none of the leaves classified by paths involving
the term ‘House’ are classified by the paths involving the term ‘Senior seat.”
Mine negative-leaf-FD set is total function mFDsnl : (D×T) → P (T) which
given D and a term ti ∈ T = TE(D) returns a term-co-occurrence set. It is
defined as

mFDsnl(D, ti) = TE(D) − {ti} − BLTC(D, ti).

A negative-leaf-FD set of a DAG D is any term-co-occurrence set returned
from mFDsnl. The complete set of negative-leaf web FDs satisfied by the
DAG in Fig. 6 (left) is

{Computer Science → ¬ Green,
Mathematics → ¬ Ramakrishnan,

Ramakrishnan → ¬ Mathematics,
Ramakrishnan → ¬ Adjerid,
Ramakrishnan → ¬ Beattie,
Ramakrishnan → ¬ Green,

Adjerid → ¬ Ramakrishnan,
Adjerid → ¬ Green,
Beattie → ¬ Ramakrishnan,
Beattie → ¬ Green,
Green → ¬ Computer Science,
Green → ¬ Ramakrishnan,
Green → ¬ Adjerid,
Green → ¬ Beattie}.

The complete set of negative-leaf web FDs satisfied by the DAG D in Fig. 6 (right)
is (the complete set of negative-path web FDs satisfied by the D)

{California → ¬ Virginia,
Virginia → ¬ California,

House → ¬ Senate,
Senate → ¬ House}.

Note that the ¬ symbol is always on the rhs of a negative web FD. Notice
further that negative (-path and -leaf) and positive (-path and -leaf) web

37

FDs are not complements of each other, i.e., the presence of x → y does
not necessarily imply the presence of x → ¬ {TE(D) − y}. Similarly, a site
which satisfies x → ¬y may not satisfy x → {TE(D) − y}.

Lemma 6.4. Any negative web FD x → ¬ y considered here also implies

y → ¬ x.

Lemma 6.5. Any negative-leaf web FD in a DAG D is a negative-path web

FD in D.

Notice that the claim in Lemma 6.5 is the contrapositive of the claim in
Lemma 6.2.

Corollary 6. Any negative-leaf-FD set wrt a term ti in D is a subset of

the negative-path-FD set wrt ti in D. In other words, mFDsnl(D, ti) ⊆
mFDsnp(D, ti).

We leave it to the reader to convince thyself that the converse of Lemma 6.5
(i.e., any negative-path web FD is a negative-leaf web FD) is not true.

Lemma 6.6. If a DAG D is a tree, then any negative-path web FD in D is

a negative-leaf web FD in D.

Corollary 7. If a DAG D is a tree, then any negative-path-FD set wrt a

term ti in D equals the negative-leaf-FD set wrt ti in D. In other words, if

D is a tree, then mFDsnp(D, ti) = mFDsnl(D, ti).

Corollary 8. If a DAG D is a tree, then the complete set of negative-path

web FDs in D equals the complete set of negative-leaf web FDs in D.

Sketches of the proofs of Lemmas 6.2–6.6 are given in (Perugini, 2004, Ch.
4). The proof of Corollary 3 follows directly from Lemma 6.2. The proof
of Corollary 4 follows directly from Lemmas 6.2 and 6.3, and the proof of
Corollary 5 follows directly from Corollary 4. The proof of Corollary 6 follows
directly from Lemma 6.5, and the proof of Corollary 7 follows directly from
Lemmas 6.5 and 6.6.

Any DAG without an interaction set containing all terms from the site it
model satisfies negative web FDs (Perugini, 2009). Moreover, any DAG with
more than one distinct term satisfies either positive or negative web FDs or
both (Perugini, 2009).

38

We have developed algorithms for mining web FDs as well as a theory of
reasoning with web FDs. We have used the algorithm and theory to mine
web FDs from a variety of websites to demonstrate that web hierarchies are
teeming with dependencies reflecting the nature of the underlying domain
and how they can be exploited in a user information-seeking interface for
automatic query expansion (Perugini and Ramakrishnan, 2007).

7. Mining Web Functional Dependencies by Program Transforma-

tion

Interestingly, the classes of web FDs defined above not only can be ex-
ploited by program transformation techniques, but also can be mined through
program transformation.

The following program transformation technique can mine a positive-
path-FD set wrt a particular term:

[[ppfd]][PD, input] =
⋃

ti ∈ [[bptc]][PD, input]

{ti},

if ([[zoom]][PD, input] ∩ [[zoom]][PD, ti]) = [[zoom]][PD, input],

where [[bptc]] = [[te]][[[sp]][PD, input]] − input and is the program transfor-
mation technique we associate with BPTC. Notice that the above expression
closely reflects the textual definition of a positive-path web FD. Intuitively,
this program transformation technique mines positive-path web FDs of the
form input → ti. We can mine a positive-leaf-FD set analogously:

[[plfd]][PD, input] =
⋃

ti ∈ [[bltc]][PD, input]

{ti},

if ([[zoom]][PD, input] ∩ [[zoom]][PD, ti]) = [[zoom]][PD, input],

where [[bltc]] = [[te]][[[zoom]][PD , input]] − input and is the program trans-
formation technique we associate with BLTC. Similarly, this program trans-
formation technique mines positive-leaf web FDs of the form input → ti.
Since identifying negative web FDs does not involve containment, program
transformation techniques for doing so are more simplistic than those for

39

mining positive web FDs. Mining a negative-path-FD set entails using [[te]]
to extract all of the conditional variables from the programmatic complement
of [[sp]][PD, input]:

[[npfd]][PD, input] = [[te]][PD − [[sp]][PD, input]],

where the − symbol (i.e., minus sign) means complement. Similarly, discov-
ering a negative-leaf-FD set entails using [[te]] to extract all of the conditional
variables from the complement of [[zoom]][PD, input]:

[[nlfd]][PD, input] = [[te]][PD − [[zoom]][PD, input]].

8. A Duality in Uses of Program Slicing

We have used partial evaluation and program slicing primarily as pruning
operators. There is a relationship and tradeoff between these two program
transformations in the context of our research. Specifically, one can think of
program slicing as a transformation for

1. directly pruning a website, or

2. extracting information about what to prune from the website and par-
tially evaluating this information away to conduct the same site pruning
in (1).

Table 7 (second row) illustrates how program slicing can play role (1) above to
realize interpretation 1 of out-of-turn interaction. In the previous section, we
show that program slicing can also be used to mine web FDs. The members
of the negative-leaf-FD set wrt some relevant term t label only the edges to be
pruned from a DAG model of a website when the user communicates term t

out-of-turn. Therefore, partially evaluating wrt each variable modeling each
term in the negative-leaf-FD set of a particular term set to zero is sufficient
to prune the undesired paths from a website to realize interpretation 1 of
out-of-turn interaction.

The following expression captures these two methods of realizing inter-
pretation 1 of out-of-turn interaction and also captures the dual role played
by program slicing, i.e., role (1) above is played by [[zoom]] on the lhs and
role (2) above is played by [[nlfd]] on the rhs:

[[mix]][[[zoom]][PD, input], input = 1] ≡ [[mix]][PD, [[[nlfd]] [PD, input]] = 0, input = 1],

40

where the notation

[[[nlfd]] [PD, input]] = 0,

denotes ‘the assignment of zero to each variable modeling each member of
the negative-leaf-FD set of the term modeled by the variable input.’

We use the word sufficient above, rather than necessary. This is because
all terms labeling edges along the tails of paths to prune, when the user
communicates term t out-of-turn, are members of t’s negative-leaf-FD set.
However, to remove that tail, we need not partially evaluate wrt all vari-
ables modeling the terms along that tail set to zero. We need only partially
evaluate wrt the variable modeling the term with the minimum depth set
to zero. Such a partial evaluation removes the remainder of the path by
default. Intuitively, this means that we need only consider the members of
the negative-leaf-FD which have the minimum depth in each path through
a DAG. Considering this optimization compromises the clarity of the equiv-
alence which we have just outlined as well as the duality in uses of program
slicing. Therefore, we do not incorporate it into our presentation and expres-
sion. Also notice that when dealing with trees, we can replace [[nlfd]] with
[[npfd]] in the above expression by Corollary 7.

Now let us consider how we might develop an analogous equivalence to
the program transformation technique given in Table 7 (third row) for in-
terpretation 2 of out-of-turn interaction. Recall to support interpretation 2
we replace [[zoom]] with [[sp]] on the lhs of the above equivalence expression.
Thus, it is natural to consider replacing [[nlfd]] with [[npfd]] on the rhs of the
above expression to form an analogous equivalence expression for interpreta-
tion 2 of out-of-turn interaction. However, upon careful examination we see
that the rhs is not equal to the lhs and, thus, does not realize interpretation 2
of out-of-turn interaction. This is because if PD models a non-tree DAG, then
our use of partial evaluation, as described above, to remove undesired paths
may also remove leaves which lie at the end of desired paths! For example,
consider partially evaluating a programmatic representation of the website
illustrated in Fig. 6 (left) wrt the negative-path-FD set of ‘Adjerid.’ This
transformation removes the source (leaf) of the edge labeled ‘Adjerid’ which
is unfaithful to interpretation two. However, the equivalence expression for
interpretation 1 can serve as a surrogate equivalence expression for interpre-
tation 2 of out-of-turn interaction with trees (by Corollary 4), where [[zoom]]

41

and [[nlfd]] can be replaced by [[sp]] and [[npfd]], respectively. We are unable
to develop equivalence expressions for the generalizations of these interpre-
tations of out-of-turn interaction here due to their template-oriented nature,
i.e., the presence of [[SL]].

Studying this duality reveals that there might be simpler methods for
discerning which branches must be removed in specialized DAG classes. The
following program transformation technique realizes out-of-turn interaction,
but is specifically tailored toward taking advantage of the mutually exclusive
property in DAGs and trees:

[[dead−code]][[[mix]][PD , [[[tle]][PD, input] − input] = 0, input = 1]],

where [[dead−end]] represents a dead-code detection and elimination trans-
formation (Chen et al., 2001; Wegman and Zadeck, 1991). Static slicing
methods can detect dead-code (Bergeretti and Carré, 1985). Detection is
typically conducted in a debugging context since such statements are usu-
ally unexecutable due to the presence of a bug (Tip, 1995). This approach
illustrates that partial evaluation is a specialization of program slicing wrt
programmatic representations of levelwise, mutually exclusive DAG models
of websites. Here [[tle]] supports TLE programmatically and involves ex-
tracting all the structural variables at a particular level of nesting. It is
intended to be polymorphic in that its input can be either given extension-
ally as a level number or intensionally as a term which occurs at the desired
level. Notice that the latter usage is unambiguous only in the case of mutu-
ally exclusive classes (which are the only classes it is used for here).

Other researchers have echoed similar connections between partial evalu-
ation and slicing; the two techniques have been shown to yield similar results
in some situations and different results in others (Reps and Turnidge, 1996).

9. Program Transformations for Supplemental Personalized Inter-

actions

To target our formal model for representing and reasoning about personal-
ized interaction in hierarchical websites, we illustrate how the formalisms can
be augmented to support supplementary personalized interactions. More-
over, the success of a personalization system relies on those finer touches
which deliver a compelling experience to the end-user. Studies of out-of-
turn interaction have revealed that users desire supplemental interactions to

42

enhance the personalized experience while interacting with hierarchical hy-
permedia (Perugini, 2004, Ch. 6). We showcase a suite of such interactions
and relate them to program transformation techniques.

Meta-enquery: What May I Say?

To employ an interactive information system effectively, users need a
mechanism to stay abreast of its underlying vocabulary during the interac-
tion. Keeping users attuned to the communicable information is an issue
all information systems must address. Yankelovich echoes this issue as ‘how
do users know what to say?’ (Yankelovich, 1996). While each hyperlink
label is always available, a new (or causal) user of a site may be unfamil-
iar with or unaware of subsequent solicitations for input and, hence, the
terms of information seeking the designer has modeled which are available
to supply out-of-turn. This is a classic problem in IR research, has been
identified and described by many (Bodner and Chignell, 1999; Croft and
Thompson, 1987; Marchionini, 1997; Sacco, 2000; Williams, 1984), and is
endemic to all IR systems. Users typically have a ‘limited knowledge of a
given database’ (Williams, 1984) and thus experience ‘difficulty expressing
their information need’ (Bodner and Chignell, 1999).

The naive what may I say? interaction permits the user to determine
what partial information remains unspecified thus far in her interaction with
a system. It can be trivially supported by TE. Supporting this interaction
programmatically entails using [[te]] to extract all unique structural variables,
which correspond to the partial information available to commit the system,
from the representation.

In a voluminous space such a set of terms may be large and overload
the user and, therefore, we provide a similar interaction, called what may

I say?, which entails clustering terms by level (facet), using TLE, to help
orient users. This approach is, of course, applicable only to levelwise sites.
When used in this manner, this interaction also updates the user on how their
previous interactions have affected the remaining choices and, thus, provides
context. Supporting this interaction programmatically entails using [[tle]] to
extract all unique structural variables at a desired level of nesting from the
representation.

Restructure Classification

Notice that while an out-of-turn interaction paradigm subsumes the corre-
sponding browsing paradigm (see Lemma 4.1), interaction sequences deriv-

43

able through out-of-turn interaction are not describable by browsing. The
restructure classification interaction, which is only applicable to levelwise
sites, enables the creation of a personalized browsing hierarchy, which can
be further navigated by browsing or out-of-turn interaction. For example, a
website organized along an author-journal-title motif could be restructured
into a journal-author-title organization to support interactive aggregation
scenarios.

Approaches to this interaction are to permit a user to restructure an entire
enumerative classification a priori or incrementally (Perugini and Ramakr-
ishnan, 2006; Perugini, 2006). The semistructured data community (Abite-
boul et al., 2000; Florescu et al., 1998) has advocated restructuring websites
through declarative queries (Fernández et al., 1997, 1998). Such an approach
restructures an entire organization in one-stroke. A similar approach is taken
in User-Defined Hierarchies (Wilson and Bergeron, 1999). An alternate ap-
proach is to permit the user to define the ensuing interaction incremen-
tally while browsing. This interaction style has been echoed metaphorically
as ‘magically [laying] down track to suggest useful directions to go based on
where [one has] been so far and what [one is] trying to do’ (Hearst, 2000).
These ideas have been studied in the Flamenco Search System Project (Hearst
et al., 2002). Flamenco explores faceted classification in various catalogs and
websites. The adaptive hypermedia community (Bodner and Chignell, 1999;
Brusilovsky, 2001) is a proponent of such an incremental approach to classi-
fication specification. In adaptive hypermedia, links are dynamic (Pokorny,
2001) and lead to different destinations for different users.

Counterintuitively, our nested-conditional representation of interaction
need not be restructured at all to accommodate this interaction! A method to
extract structural variables corresponding to a particular level of conditional
nesting is sufficient. These variables can be used to create hyperlinks on a
generated webpage, each initiating an interaction which appears to be brows-
ing, but is actually out-of-turn interaction wrt the program representation.
This, yet again, emphasizes the importance of investing in representation,
and the flexibility in our programmatic representations.

Thus, support for this interaction requires level-order, edge-label extrac-
tion, TLE. Supporting this interaction programmatically entails the same
code extraction used for automatic query expansion in mutually exclusive
classes of hierarchical hypermedia, i.e., [[tle]]. Notice that the edge-label
extraction for this interaction is wrt one particular level and is, thus, a spe-
cialization of the edge-label extraction required for (naive) what may I say?

44

which is wrt all levels. In other words, the terms returned from TLE are a
subset of those returned from TE.

Collect Results

This is a termination interaction which allows the user to request that
the classification be flattened and re-presented as a flat list of hyperlinks
to relevant content pages. For instance, while drilling-down a hierarchical
website a user may wish to curb further interaction at a particular point and
retrieve a flat list of the terminal webpage reachable from that point. At
such a point, the user may not care to pursue further distinctions or depen-
dencies. Effectively, the user has prematurely declared that the interaction
is over. This interaction involves the forward-propagation used to support
out-of-turn interaction and is defined by CR introduced above. We support
CR programmatically with the [[cr]] = [[forward]][PD, page] program trans-
formation technique – a specialization of [[zoom]] which only extracts termi-
nal variables from the representation. Notice that collect results suggests the
need to invert the factoring of terminal information which we built into the
programmatic representation with nesting. Observe that the function which
supports collect results also can be used to generate information previews —
hyperlink annotations, typically parenthesized and containing a frequency
count of the documents reachable from the hyperlink it decorates — which
have been shown important in situations where the user is confronted with
a decision regarding where to go next (Plaisant et al., 1999). Such previews
are now a de facto standard in most faceted browsing and search systems
and web directories.

Inverse Personalization

Inverse personalization is so named not because its goals run contrary to
personalization, but because in a given representation it conducts a mapping
from terminal (e.g., leaf pages) to structural information (e.g., hyperlink la-
bels). This interaction helps support situations where the user knows what
information she wants, but is interested in determining how to retrieve that
information and, in this manner, permits users to conduct ‘what if’ analyzes.
For instance, using inverse personalization with an online apartment recom-
mender system, a user can issue a request such as ‘under what conditions will
the Georgetown apartments be the only choice?’ Such a user is interested in
the terms along the interaction sequences leading to that terminal informa-
tion (e.g., if you want a swimming pool, covered parking, and free wi-fi). Such

45

(in te rpre ta t ion 1 o f)
Out-of- turn Interact ion

Col lect Resul ts

forward-propogat ion

Inverse Personal iza t ion

back-p ropaga t ion

Naive What May I Say? (all levels)

p e r p a t h

Restructur ing Class i f icat ion

 one level

Figure 8: A taxonomy of supplementary interactions. Directed arrows represent special-
ization relations.

Table 9: Program transformation techniques for and observations on the supplemental
personalized interactions. (legend: Sup Int = Supplemental interaction, Ind = Indepen-
dent, Pgm Trans Tech = Program transformation technique, NWhat? = naive what may

I say?, What? = what may I say?, RC = restructuring classification, CR = collect results,
and P-1 = inverse personalization).

Sup Int Read-only Closed Ind Pgm Trans Tech

NWhat?
√ √ × ∪ {[[te]] [PD, x]}, for every structural variable x

What?
√ √ × ∪ {[[tle]] [PD, x]}, for every level x

RC
√ √ √

[[tle]] [PD, x], for one level x
CR × × √

[[forward]] [PD, page]
P-1

√ √ √
[[te]] [[[sp]] [[[backward]] [[[SL]] [PD, input]]]]

personalized interactions are supported in our approach by back-propagating
from the leaf webpages returned by SL and optionally extracting each term
in each path from the root as a whole, using TE, or per interaction sequence,
using TE ◦ SP .

Inverse personalization is similar to generalized interpretation 1 of out-of-
turn interaction, as evidenced by its use of SL. However, akin to collect re-

sults, this interaction is a specialized form of out-of-turn interaction. Honing
in on leaves (i.e., forward-propagation) is unnecessary; back-propagation is
sufficient and, therefore, defines this interaction. In a nested conditional rep-
resentation, terminal information is indexed by a terminal variable (e.g., page)
which is not user-modifiable (as is structural information, e.g., software).
Therefore, we need a transformation capable of exploiting terminal variables
such as backward slicing. Collecting the terms along the resulting paths re-
quires an extraction similar to that required for naive what may I say?, i.e.,
[[te]].

Fig. 8 illustrates the relationships between these supplemental personal-

46

ized interactions.
Table 9 contains program transformation techniques for these supple-

mental personalized interactions. Notice that the what may I say? and
restructuring classification interactions require slight variations of the same
transformation technique. Since collect results and inverse personalization

are each specializations of out-of-turn interaction, they relate to forms of
forward and backward slicing, respectively (and code extraction) and, thus,
when combined come close to realizing out-of-turn interaction.

Table 9 also summarizes our observations on these personalized interac-
tions. The top row of the matrix lists attributes of the interactions listed on
the far left. A read-only interaction is one which only manipulates the rep-
resentation rather than modifying it. An interaction is closed if it accepts a
representation and returns a representation and, thus, does not curb further
interaction. Independent interactions are those which not only complement
out-of-turn interaction, but are also defined, applicable, and useful in its
absence.

10. Related Research

Three main ideas underly the work presented here:

1. explicit modeling of interaction,

2. capture of partial information,

3. use of program transformations.

Any information systems context where one or more of the above ideas apply
is ground for applying the techniques presented in this article.

Modeling interaction is has been recognized as important in multiple in-
teractive information retrieval projects, especially to manage interaction and
maintain state. Belkin et al. (1995) introduced the idea of an interaction

script which can be thought of as a program for interaction, though expressed
in English rather than program codes, and is intended to be interpreted.
Graunke et al. (2001) describe an approach to automatically restructure
batch programs for interactive use on the web. An important issue addressed
is maintaining state across web interactions which use the stateless HTTP
protocol. The approach involves capturing first-class continuations (Fried-
man et al., 2001) through the call/cc (call-with-current-continuation) facil-
ity in Scheme. Since first-class continuations can be saved and resumed, they

47

are an ideal construct for capturing and restoring state between user inter-
actions over the web. Using a similar idea based on continuations, Queinnec
(2000) developed a model for a web server intended to address state main-
tenance problems caused by connections terminated prematurely, pressing
the back button, and window cloning. Moreover, Quan et al. (2003) use
continuations and currying (Ullman, 1997) with explicit representations to
postpone, save, and resume interactions with intrusive dialog boxes, including
partially-filled boxes, in traditional application software, such word proces-
sors and e-mail clients. The common theme of these efforts, including our
research, is the appeal to concepts from programming languages to achieve a
rich and expressive form of a human-computer interaction. Our work differs
from these efforts in its focus on out-of-turn interactions. Nevertheless, these
projects reinforce our viewpoint that information system design can benefit
from investing in representations of interaction, and exploring concepts from
programming languages.

Until recently, the issue of context in information systems has received
comparatively little attention. With the proliferation of mobile environments
and information appliances (Bergman, 2000), coupled with an improved un-
derstanding of their usages (Perry et al., 2001), capturing and reusing context
has become important. Context can be viewed as a rich form of partial infor-
mation, allowing the work presented here to be applied toward exploiting it.
This property is attractive because the partial information can potentially
be multi-faceted – information about a user’s preferences (e.g., in a recom-
mender system), a user’s location (e.g., in a mobile environment; Hightower
and Borriello, 2001), or a user’s partially completed interaction (e.g., a shop-
ping cart at Amazon). The representations studied in this article can be
generalized to accommodate such richer forms of partial information.

Finally, the use of program transformations as presented here is relatable
to the larger community which aims to systematize and automate the soft-
ware engineering of complex, interactive web applications (Graunke et al.,
2001). It finds relevance in many website re-structuring and re-engineering
efforts (Ricca et al., 2001; Ricca and Tonella, 2001a,b; Ricca et al., 2002),
especially in the adaptive and semantic web contexts, declarative site speci-
fication (Fernández et al., 1998), and improving site usability (Spiliopoulou,
2000). Work (Gonçalves et al., 2001; Perugini et al., 2004a) has also been
done to incorporate program transformations for personalization into models
for digital libraries, e.g., 5S (Gonçalves et al., 2004). While there are es-
tablished and effective models for classical information retrieval, e.g., vector-

48

space (Baeza-Yates and Ribeiro-Neto, 1999), models for solutions to informa-
tion personalization problems are in their infancy. We believe that program
transformations, which are under-explored in the personalization community,
suggest helpful metaphors for developing such models.

11. Discussion

We implemented the graph-theoretic transformations described here in
ML (Meta-Language) using SML/NJ (Ullman, 1997) and explored the fea-
sibility of the website – program associations by conducting verification ex-
periments on programmatic representations of interaction with PVS, ODP,
and the Virginia Tech online timetable of courses using program transfor-
mation software systems (Narayan et al., 2004). The set calculator of Code-

Surfer (Anderson et al., 2003), a program slicing system, was especially help-
ful for performing set-theoretic operations over slices. We discuss the details
of the program transformation systems we used in (Perugini, 2004, appendix
C).

11.1. Putting It All Together

We have developed a tool and markup language for automatically gen-
erating web user interfaces with support for a combination of the supple-
mental personalized interactions introduced in Section 9 (Perugini et al.,
2004b). Moreover, the following three software components, and an interac-
tion manager for coordination, constitute a customizable software framework
for creating web personalization systems which support mixed-initiative in-
teraction (Narayan et al., 2004):� Web Transformation Engine: a web service which prunes a hier-

archical website when given out-of-turn input. The engine is based
on the program transformation techniques in Table 7 and implements
a form of forward followed by backward program slicing using XSLT.
Since it handles in-turn and out-of-turn inputs (captured by interac-
tion interfaces below) in a uniform manner, it enables out-of-turn in-
teraction without requiring the site designer to anticipate the points at
which out-of-turn interaction can happen. Using a single transforma-
tion technique this engine supports out-of-turn interaction with both
faceted and unfaceted sites.

49

� Speech UI : a voice interface, implemented with VoiceXML and X+V,
which permits the user to supply out-of-turn inputs through speech and
enables multimodal interaction when used in conjunction with hyper-
links.� Extempore: a cross-platform toolbar plugin embedded into the Mozilla
Firefox web browser; the analog of the speech user interface using a tex-
tual modality.

Extempore (Perugini and Ramakrishnan, 2003b) and a variety of alternate
interaction interfaces (Perugini and Ramakrishnan, 2006; Perugini, 2006) are
are available for demonstration from our group’s webpage at http://oot.

cps.udayton.edu. We have instantiated this framework for the following
case studies which afford interactions initiated by these interfaces, coordi-
nated by this interaction manager, and staged by this transformation engine:� GAMS (Guide to Available Mathematical Software) at http://gams.

nist.gov (Perugini et al., 2000; Ramakrishnan and Perugini, 2001),� Project Vote Smart at http://votesmart.org (Narayan et al., 2004;
Perugini and Ramakrishnan, 2003b),� Pigments through the Ages at http://webexhibits.org/pigments/,� CITIDEL (Computing and Information Technology Interactive Dig-
ital Educational Library) at http://citidel.org (Perugini et al.,
2004a,b),� Open Directory Project at http://dmoz.org (Narayan et al., 2004),
and� Online Virginia Tech Timetables of Classes accessible through http://

vt.edu (Perugini and Ramakrishnan, 2007).

These sites are an assortment of the classes of hierarchical hypermedia intro-
duced in Section 5.

50

http://oot.cps.udayton.edu
http://oot.cps.udayton.edu
http://gams.nist.gov
http://gams.nist.gov
http://votesmart.org
http://webexhibits.org/pigments/
http://citidel.org
http://dmoz.org
http://vt.edu
http://vt.edu

11.2. Contributions

Our research, and specifically out-of-turn interaction, is part of a larger
research effort which seeks to marry navigational (e.g., the Yahoo! directory)
and direct search (e.g., Google) (Sacco and Tzitzikas, 2009). Our research
has made the following contributions to the interactive information retrieval,
personalization, dialog management, and programming languages communi-
ties.� New approach to personalization: We applied program transfor-

mations, seemingly unrelated techniques predominately used in com-
pilers and debuggers, to a problem in interactive information retrieval.
While viewing a website as a program and website transformation for
personalization as program transformation is unorthodox, it offers a
new way of thinking about personalized interaction, especially with hi-
erarchical hypermedia. While others have studied personalization in
information hierarchies using more traditional approaches, e.g., Dala-
magas et al. (2007) take a data mining approach to this problem, to the
best of our knowledge, no one has taken a program transformation ap-
proach to personalizing interaction in hierarchical domains. This new
approach lead to the following contributions.� Unifies search in faceted and unfaceted domains: Our nested
conditionals representation of hierarchical hypermedia can be used to
model faceted sites (e.g., PVS) and unfaceted sites (e.g., ODP). As a
result, a single program transformation technique, e.g., any technique
in Table 7, can be used to personalize interaction in both domains
and, thereby, unifies search with two fundamentally distinct forms of
hypermedia. Currently, there are toolkits available for building faceted
browsing and search applications (e.g., Flamenco at http://flamenco.
berkeley.edu). However, search over unfaceted spaces such as the
Yahoo! directory or ODP is different. We can personalize both spaces
with the same transformation using our approach.� New line of dialog management research: It is important to note
that our research aims to model a user’s interaction with a site, rather
than simply a site schema. While traditional data-oriented approaches,
such as XML or a relational database, might be appropriate for the lat-
ter, programming languages offer attractive constructs (e.g., booleans,

51

http://flamenco.berkeley.edu
http://flamenco.berkeley.edu

conditionals, functions, gotos) for modeling interaction as we have
demonstrated above. While it is easy to presume that modeling a
user’s interaction with a hierarchical website as a program is equiva-
lent to modeling it as an XML document or in a database relation,
there is an important distinction between the two. An imperative pro-
gram, like the only possible style of interaction with the static, rigid,
one-size-fits-all organization of an information hierarchy, has a default
order of execution; there is no such analog in an XML document3 or
database relation. This distinction is significant because it compelled
us to explicitly recognize orders of execution and identify alternate do-
mains where order is relevant. One such domain is human-computer
dialogs; often a dialog script also has a default order of evaluation.

Thus, our experience using programs to represent interaction with hier-
archical sites helped connect our work to human-computer dialog man-
agement and, in particular, mixed-initiative interaction (Allen, 1999).
Specifically, we recognized that supporting the user in interleaving in-
turn and out-of-turn inputs while browsing a website is simple form of
mixed-initiative interaction (Perugini and Ramakrishnan, 2003b) and
were compelled to study computational models for human-computer
dialogs (Haller and McRoy, 1997). This connection may not have been
fostered had we approached personalized interaction from a more tra-
ditional perspective.

Dialogs are now pervasive in computer systems and used in automated
teller machines and airport kiosks. While the fluidity inherent in dialog
is essential to provide a natural experience to the user, it is also a vice
for the implementor due to the directions in which the user might steer
the dialog, which must all be captured in the implementation. These
problems are difficult since dialogs range in complexity from those mod-
eled after a simple pre-defined series of questions and answers (some-
times referred to as slot-fillers) to those which give the user a great deal
of control over the direction in which to steer the dialog (Allen, 1999;
Ferguson and Allen, 1998). The connection we have fostered is that

3We do not intend to imply that in using the program transformation approach
we cannot or should not implement the transformation techniques using tools such as
XML/XSLT. Rather, we are saying that we may not have made the connection to dialogs
had we started out with such a database approach.

52

a dialog script, like a program, has a default order of execution, and
applying program transformations alters that order, thereby, making
the dialog flexible without having to explicitly hardcode all supported
deviations from the default order within the script itself. This is a pri-
mary contribution of our research. As a result, we have also discovered
that program transformations are helpful for specifying dialogs (Capra
et al., 2003). Putting personalized web interaction on a fundamentally
different landscape (i.e., program transformation) gave birth to this
new line of research (Ramakrishnan et al., 2002; Capra et al., 2003; Pe-
rugini et al., 2007) which may not have come to fruition had we started
with more traditional approaches (XML, databases).� Technology assimilation by reduction to theoretical principals:
Using the ideas described here, many relevant interactive applications
and dialog standards can be re-visited and re-studied by their support
for personalizing interaction. For instance, consider the VoiceXML
markup language designed to simplify the construction of interactive
voice response systems (McGlashan et al., 2001). VoiceXML markup
tags describe prompts, forms, and fields which constitute a dialog,
and support both directed and mixed-initiative dialogs. Ramakrish-
nan, Capra, and Pérez-Quiñones (2002) have shown that VoiceXML’s
form-interpretation algorithm is a partial evaluator in disguise. Such
connections are noteworthy because they reduce rapidly emerging and
constantly evolving technologies to fundamental theoretical operations
and, therefore, improve assimilation of such technologies.� Towards a model for information personalization: Our use of
program transformations casts personalization in a formal setting and
provides a systematic and implementation-neutral approach to design-
ing information personalization systems, especially those in hierarchi-
cal hypermedia domains with support for mixed-initiative interaction.
Moreover, flexibility is built into the approach. When a given program
(representation, transformation) pair is deemed inadequate to achieve
the desired form of personalization, we have two choices: keep the rep-
resentation fixed and investigate or design alternative program trans-
formation techniques capable of realizing the desired interaction or,
alternatively, develop representations wrt a fixed suite of transforma-
tion techniques. Conversely, we can develop new forms of personaliza-

53

tion by creatively applying program transformations to representation.
This ability to vary the elements of a model not only suggests the ex-
tensibility of the methodology, but also constitutes the creativity in our
research.

11.3. Future Work

The interpretations for out-of-turn interaction presented here are not
exhaustive, especially since we defined open-ended generalized interpreta-
tions of out-of-turn interaction. For instance, we might expand the scope
of addressable out-of-turn information by modeling the terms on the leaf
webpages (i.e., terminal information) and making them available as out-
of-turn input for the user to supply. In such case, we might implement
SL using a text-based search engine. Nevertheless, use of a general pro-
gram transformation, such as slicing, suggests that alternate interpretations
also can be accommodated. For instance, we intend to explore additional
program transformations, such as generalized partial evaluation (Futamura
et al., 1991; Takano, 1991) and parameterized partial evaluation (Consel and
Khoo, 1993), as well as other related programming language concepts, in-
cluding reflection (Maes, 1987), concept assignment (Harman et al., 2002),
and program schemas (Ianov, 1960), and study the personalized interactions
these techniques might enable; see (Perugini, 2004, appendix B) for more
information.

We also intend to develop a computational model, based on first-class
closures and continuations, for simplifying the implementation of mixed-in-
itiative human-computer dialogs, and develop algorithms for automatically
generating an optimal dialog script from a high-level specification of a dia-
log. While first-class closures and continuations are powerful programming
constructs, they are under-utilized outside of compilers and interpreters.

Our long term research goal is to formalize and simplify the design and
implementation of dialog-based systems, especially those involving mixed-
initiative human-computer interactions. The approach involves empirically
studying user interactions with systems and formally casting those interac-
tions through a programming languages lens.

Acknowledgments

We thank Travis Suel at the University of Dayton for re-designing and
-implementing the out-of-turn framework and multiple interface interfaces,

54

including Extempore, and for his design and implementation of new interfaces.
John Cresencia at the University of Dayton also provided software support
in a variety of ways.

Vitae

Saverio Perugini is an Assistant Professor in the Department of Computer
Science at the University of Dayton. His research interests include informa-
tion personalization, web mining, and functional programming. He has a
Ph.D. in Computer Science from Virginia Tech.

References

Abiteboul, S., Buneman, P., Suciu, D., 2000. Data on the Web: From Rela-
tions to Semistructured Data and XML. Morgan Kaufmann, San Francisco,
CA.

Allen, J., 1999. Mixed-Initiative Interaction. IEEE Intelligent Systems 14 (5),
14–16.

Anderson, P., Reps, T., Teitelbaum, T., 2003. Design and Implementation of
a Fine-Grained Software Inspection Tool. IEEE Transactions on Software
Engineering 29 (8), 721–733.

Baeza-Yates, R., Ribeiro-Neto, B., 1999. Modern Information Retrieval.
ACM Press, New York, New.

Belkin, N., Cool, C., Stein, A., Thiel, U., 1995. Cases, Scripts, and
Information-Seeking Strategies: On the Design of Interactive Information
Retrieval Systems. Expert Systems with Applications 9 (3), 379–395.

Bergeretti, J.-F., Carré, B., 1985. Information-Flow and Data-Flow Analysis
of While-Programs. ACM Transactions on Programming Languages and
Systems 7 (1), 37–61.

Bergman, E. (Ed.), 2000. Information Appliances and Beyond. The Mor-
gan Kaufmann Series on Interactive Technologies. Morgan Kaufmann, San
Francisco, CA.

Binkley, D., Gallagher, K., 1996. Program Slicing. In: Zelkowitz, M. (Ed.),
Advances in Computers. Vol. 43. Academic Press, Amsterdam, pp. 1–50.

55

Bodner, R., Chignell, M., 1999. Dynamic Hypertext: Querying and Linking.
ACM Computing Surveys 31 (4es), article No. 15.

Brusilovsky, P., 2001. Adaptive Hypermedia. User Modeling and User-
Adapted Interaction 11 (1–2), 87–110.

Capra, R., Narayan, M., Perugini, S., Ramakrishnan, N., Pérez-Quiñones,
M., 2003. The Staging Transformation Approach to Mixing Initiative. In:
Tecuci, G. (Ed.), Working Notes of the IJCAI 2003 Workshop on Mixed-
Initiative Intelligent Systems. AAAI/MIT Press, Menlo Park, CA, pp. 23–
29.

Chen, Z., Xu, B., Yang, H., 2001. Detecting Dead Statements for Concurrent
Programs. In: Proceedings of the International Conference on Software
Maintenance (SCAM). IEEE Computer Society, Los Alamitos, CA, pp.
67–72.

Consel, C., Khoo, S., 1993. Parameterized Partial Evaluation. ACM Trans-
actions on Programming Languages and Systems 15 (3), 463–493.

Croft, W., Thompson, R., 1987. I3R: A New Approach to the Design of Doc-
ument Retrieval Systems. Journal of the American Society for Information
Science 38 (6), 389–404.

Dalamagas, T., Bouros, P., Galanis, T., Eirinaki, M., Sellis, T., 2007. Mining
User Navigation Patterns for Personalizing Topic Directories. In: Fundu-
laki, I., Polyzotis, N. (Eds.), Proceedings of the Ninth Annual ACM Inter-
national Workshop on Web Information and Data Management (WIDM).
ACM Press, New York, NY, pp. 81–88.

Dhyani, D., NG, W., Bhowmick, S., 2002. A Survey of Web Metrics. ACM
Computing Surveys 34 (4), 469–503.

Eirinaki, M., Vazirgiannis, M., 2003. Web Mining for Web Personalization.
ACM Transactions on Internet Technology 3 (1), 1–27.

Ferguson, G., Allen, J., 1998. TRIPS: An Integrated Intelligent Problem-
solving Assistant. In: Mostow, J., Rich, C., Buchanan, B. (Eds.), Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence (AAAI).
AAAI Press, Menlo Park, CA, pp. 567–572.

56

Fernández, M., Florescu, D., Kang, J., Levy, A., Suciu, D., 1998. Catching
the Boat with Strudel: Experiences with a Web-Site Management System.
ACM SIGMOD Record 27 (2), 414–425.

Fernández, M., Florescu, D., Levy, A., Suciu, D., 1997. A Query Language
for a Web-Site Management System. SIGMOD Record 26 (3), 4–11.

Florescu, D., Levy, A., Mendelzon, A., 1998. Database Techniques for the
World-Wide Web: A Survey. SIGMOD Record 27 (3), 59–74.

Friedman, D., Wand, M., Haynes, C., 2001. Essentials of Programming Lan-
guages, Second Edition. MIT Press, Cambridge, MA.

Futamura, Y., Nogi, K., Takano, A., 1991. Essence of Generalized Partial
Computation. Theoretical Computer Science 90 (1), 61–79.

Gonçalves, M., Fox, E., Watson, L., Kipp, N., 2004. Streams, Structures,
Spaces, Scenarios, Societies (5S): A Formal Model for Digital Libraries.
ACM Transactions on Information Systems 22 (2), 270–312.

Gonçalves, M., Zafer, A., Ramakrishnan, N., Fox, E., 2001. Modeling and
Building Personalized Digital Libraries with PIPE and 5SL. In: Smeaton,
A., Callan, J. (Eds.), Proceedings of the Joint DELOS-NSF Workshop on
Personalisation and Recommender Systems in Digital Libraries. Dublin,
Ireland.

Graunke, P., Findler, R., Krishnamurthi, S., Felleisen, M., 2001. Automat-
ically Restructuring Programs for the Web. In: Proceedings of the Six-
teenth IEEE International Conference on Automated Software Engineering
(ASE). IEEE Computer Society, Los Alamitos, CA, pp. 211–222.

Haller, S., McRoy, S. (Eds.), 1997. Computational Models for Mixed Ini-
tiative Interaction: Papers from the 1997 AAAI Spring Symposium. No.
SS-97-04. AAAI Press, Menlo Park, CA.

Harman, M., Gold, N., Hierons, R., Binkley, D., 2002. Code Extraction
Algorithms which Unify Slicing and Concept Assignment. In: Proceedings
of the Ninth IEEE Working Conference on Reverse Engineering (WCRE).
IEEE Computer Society, Los Alamitos, CA, pp. 11–21.

57

Harman, M., Hierons, R., 2001. An Overview of Program Slicing. Software
Focus 2 (3), 85–92.

Hearst, M., 1999. Mixed-Initiative Interaction. IEEE Intelligent Systems
14 (5), 14.

Hearst, M., 2000. Next Generation Web Search: Setting Our Sites. IEEE
Data Engineering Bulletin 23 (3), 38–48.

Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Yee, K.-P.,
2002. Finding the Flow in Web Site Search. Communications of the ACM
45 (9), 42–49.

Hightower, J., Borriello, G., 2001. Location Systems for Ubiquitous Comput-
ing. IEEE Computer 34 (8), 57–66.

Hildum, D., Cohen, J., 1990. A Language for Specifying Program Transfor-
mations. IEEE Transactions on Software Engineering 16 (6), 630–638.

Horwitz, S., Reps, T., Binkley, D., 1990. Interprocedural Slicing Using De-
pendency Graphs. ACM Transactions on Programming Languages and
Systems 12 (1), 26–60.

Ianov, Y., 1960. The Logical Schemes of Algorithms. In: Problems of Cyber-
netics. Vol. 1. Pergamon Press, New York, NY, pp. 82–140.

Jackson, D., Rollins, E., 1994a. A New Model of Program Dependences for
Reverse Engineering. ACM SIGSOFT Software Engineering Notes 19 (5),
2–10.

Jackson, D., Rollins, E., 1994b. Chopping: A Generalisation of Slicing. Tech.
Rep. CMU-CS-94-169, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

Jones, N., 1996. An Introduction to Partial Evaluation. ACM Computing
Surveys 28 (3), 480–503.

Jones, N., 1997. Computability and Complexity from a Programming Per-
spective. Foundations of Computing Series. MIT Press, Cambridge, MA.

Jones, N., Gomard, C., Sestoft, P., 1993. Partial Evaluation and Automatic
Program Generation. Prentice Hall International.

58

Lyle, J., Weiser, M., 1987. Automatic Program Bug Location by Program
Slicing. In: Proceedings of the Second International Conference on Com-
puters and Applications. IEEE Computer Society, Los Alamitos, CA, pp.
877–882.

Maes, P., 1987. Concepts and Experiments in Computational Reflection. In:
Conference Proceedings on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA). ACM Press, New York, NY, pp. 147–
155.

Marchionini, G., 1997. Information Seeking in Electronic Environments.
Cambridge Series on Human-Computer Interaction. Cambridge University
Press, Cambridge, UK.

McGlashan, S., Burnett, D., Danielsen, P., Ferrans, J., Hunt, A., Karam,
G., Ladd, D., Lucas, B., Porter, B., Rehor, K., Tryphonas, S., 2001. Voice
eXtensible Markup Language: VoiceXML. Tech. rep., VoiceXML Forum,
version 2.0.

Mobasher, B., Cooley, R., Srivastava, J., 2000. Automatic Personalization
Based on Web Usage Mining. Communications of the ACM 43 (8), 142–
151.

Mulvenna, M., Anand, S., Büchner, A., 2000. Personalization on the Net
using Web Mining. Communications of the ACM 43 (8), 122–125.

Narayan, M., Williams, C., Perugini, S., Ramakrishnan, N., 2004. Staging
Transformations for Multimodal Web Interaction Management. In: Na-
jork, M., Wills, C. (Eds.), Proceedings of the Thirteenth International
ACM World Wide Web Conference (WWW13). ACM Press, New York,
NY, pp. 212–223.

Perry, M., O’Hara, K., Sellen, A., Brown, B., Harper, R., 2001. Dealing with
Mobility: Understanding Access Anytime, Anywhere. ACM Transactions
on Computer-Human Interaction 8 (4), 323–347.

Perugini, S., 2004. Program transformations for information personalization.
Ph.D. thesis, Department of Computer Science, Virginia Tech.

59

Perugini, S., 2006. Real-time Query Expansion and Procedural Interfaces for
Information Hierarchies. In: Broder, A., Maarek, Y. (Eds.), Proceedings
of the International ACM SIGIR Workshop on Faceted Search.

Perugini, S., 2008. Symbolic Links in the Open Directory Project. Informa-
tion Processing and Management 44 (2), 910–930.

Perugini, S., 2009. Supporting Multiple Paths to Objects in Information
Hierarchies: Faceted Classification, Faceted Search, and Symbolic Links.
Information Processing and ManagementDOI: 10.1016/j.ipm.2009.06.
007.

Perugini, S., Anderson, T., Moroney, W., 2007. A Study of Out-of-turn Inter-
action in Menu-based, IVR, Voicemail Systems. In: Rosson, M., Gilmore,
D. (Eds.), Proceedings of the Twenty-fifth International ACM Conference
on Human Factors in Computing Systems (CHI). ACM Press, New York,
NY, pp. 961–970.

Perugini, S., Lakshminarayanan, P., Ramakrishnan, N., 2000. Personalizing
the GAMS Cross-Index. Tech. Rep. TR-00-01, Department of Computer
Science, Virginia Tech.

Perugini, S., McDevitt, K., Richardson, R., Pérez-Quiñones, M., Shen, R.,
Ramakrishnan, N., Williams, C., Fox, E., 2004a. Enhancing Usability in
CITIDEL: Multimodal, Multilingual, and Interactive Visualization Inter-
faces. In: Chen, H., Wactlar, H., Chen, C., Lim, E.-P., Christel, M. (Eds.),
Proceedings of the Fourth International ACM/IEEE-CS Joint Conference
on Digital Libraries (JCDL). ACM Press, New York, NY, pp. 315–324.

Perugini, S., Ramakrishnan, N., 2003a. Personalizing Interactions with Infor-
mation Systems. In: Zelkowitz, M. (Ed.), Advances in Computers. Vol. 57.
Academic Press, Amsterdam, pp. 323–382.

Perugini, S., Ramakrishnan, N., 2003b. Personalizing Web Sites with Mixed-
Initiative Interaction. IEEE IT Professional 5 (2), 9–15.

Perugini, S., Ramakrishnan, N., 2005. A Generative Programming Approach
to Interactive Information Retrieval: Insights and Experiences. In: Glück,
R., Lowry, M. (Eds.), Proceedings of the Fourth International ACM Con-
ference on Generative Programming and Component Engineering (GPCE).
Vol. LNCS 3676. Springer, Berlin, pp. 205–220.

60

10.1016/j.ipm.2009.06.007
10.1016/j.ipm.2009.06.007

Perugini, S., Ramakrishnan, N., 2006. Interacting with Web Hierarchies.
IEEE IT Professional 8 (4), 19–28.

Perugini, S., Ramakrishnan, N., 2007. Mining Web Functional Dependen-
cies for Flexible Information Access. Journal of the American Society for
Information Science and Technology (JASIST) 58 (12), 1805–1819.

Perugini, S., Ramakrishnan, N., Fox, E., 2004b. Automatically Generating
Interfaces for Personalized Interaction with Digital Libraries. Tech. Rep.
cs.DL/0402022, Computing Research Repository (CoRR).

Plaisant, C., Shneiderman, B., Doan, K., Bruns, T., 1999. Interface and Data
Architecture for Query Preview in Networked Information Systems. ACM
Transactions on Information System 17 (3), 320–341.

Pokorny, J., 2001. Static Pages are Dead: How a Modular Approach is Chang-
ing Interaction Design. ACM Interactions 8 (5), 19–24.

Quan, D., Huynh, D., Karger, D., Miller, R., 2003. User Interface Continu-
ations. In: Konstan, J. (Ed.), Proceedings of the Sixteenth Annual ACM
Symposium on User Interface Software and Technology (UIST). ACM
Press, New York, NY, pp. 145–148.

Queinnec, C., 2000. The Influence of Browsers on Evaluators or, Continua-
tions to Program Web Servers. ACM SIGPLAN Notices 35 (9), 23–33.

Ramakrishnan, N., Capra, R., Pérez-Quiñones, M., 2002. Mixed-Initiative
Interaction = Mixed Computation. ACM SIGPLAN Notices 37 (3), 119–
130.

Ramakrishnan, N., Perugini, S., 2001. The Partial Evaluation Approach to
Information Personalization. Tech. Rep. cs.IR/0108003, Computing Re-
search Repository (CoRR).

Randell, B., Buxton, J. (Eds.), 1969. Software Engineering Techniques: Re-
port of a Conference sponsored by the NATO Science Committee. Brussels,
Scientific Affairs Division, NATO (1970), Rome, Italy, 164 pages.

Reps, T., Rosay, G., 1995. Precise Interprocedural Chopping. ACM SIG-
SOFT Software Engineering Notes 20 (4), 41–52.

61

Reps, T., Turnidge, T., 1996. Program specialization via Program Slicing. In:
Danvy, O., Glück, R., Thiemann, P. (Eds.), Proceedings of the Dagstuhl
Seminar on Partial Evaluation; Lecture Notes in Computer Science. Vol.
1110. Springer-Verlag, Schloss Dagstuhl, Wadern, Germany, pp. 409–429.

Ricca, F., Tonella, P., 2001a. Understanding and Restructuring Web Sites
with ReWeb. IEEE MultiMedia 8 (2), 40–51.

Ricca, F., Tonella, P., 2001b. Web Application Slicing. In: Proceedings of the
International Conference on Software Maintenance (ICSM). IEEE Com-
puter Society, Los Alamitos, CA, pp. 148–157.

Ricca, F., Tonella, P., Baxter, I., 2001. Restructuring Web Applications via
Transformation Rules. In: Proceedings of the First International Workshop
on Source Code Analysis and Manipulation (SCAM). IEEE Computer So-
ciety, Los Alamitos, CA, pp. 150–160.

Ricca, F., Tonella, P., Baxter, I., 2002. Web Application Transformations
based on Rewrite Rules. Information and Software Technology 44 (13),
811–825.

Sacco, G., 2000. Dynamic Taxonomies: A Model for Large Information Bases.
IEEE Transactions on Knowledge and Data Engineering 12 (3), 468–479.

Sacco, G., Tzitzikas, Y. (Eds.), 2009. Dynamic Taxonomies and Faceted
Search: Theory, Practice, and Experience. Springer, Berlin.

Spiliopoulou, M., 2000. Web Usage Mining for Web Site Evaluation. Com-
munications of the ACM 43 (8), 127–134.

Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N., 2000. Web Usage
Mining: Discovery and Applications of Usage Patterns from Web Data.
ACM SIGKDD Explorations 1 (2), 12–23.

Takano, A., 1991. Generalized Partial Computation for a Lazy Functional
Language. ACM SIGPLAN Notices 26 (9), 1–11.

Taylor, A. (Ed.), 2000. Waynar’s Introduction to Cataloging and Classifica-
tion, Ninth Edition. Libraries Unlimited, Inc., Englewood, CO.

Tip, F., 1995. A Survey of Program Slicing Techniques. Journal of Program-
ming Languages 3 (3), 121–189.

62

Ullman, J., 1997. Elements of ML Programming, Second Edition. Prentice
Hall, Upper Saddle River, NJ.

Venkatesh, V., 1991. The Semantic Approach to Program Slicing. ACM SIG-
PLAN Notices 26 (6), 107–119.

Wegman, W., Zadeck, F., 1991. Constant Propagation with Conditional
Branches. ACM Transactions on Programming Languages and Systems
13 (2), 181–210.

Weiser, M., 1979. Program Slices: Formal, Psychological, and Practical In-
vestigations of an Automatic Program Abstraction Method. Ph.D. disser-
tation, University of Michigan.

Weiser, M., 1982. Programmers use Slices when Debugging. Communications
of the ACM 25 (7), 446–552.

Weiser, M., 1984. Program Slicing. IEEE Transactions on Software Engineer-
ing 10 (4), 352–357.

Williams, M., 1984. What makes RABBIT run? International Journal of
Man-Machine Studies 21 (4), 333–352.

Wilson, R., Bergeron, R., 1999. Dynamic Hierarchy Specification and Vi-
sualization. In: Proceedings of the IEEE Symposium on Information Vi-
sualization (INFOVIS). IEEE Computer Society, Los Alamitos, CA, pp.
65–72.

Yankelovich, N., 1996. How Do Users Know What To Say? ACM Interactions
3 (6), 32–43.

63

	Introduction
	Objectives
	Research Methodology

	Graph-theoretic View of Personalized Interaction
	Syntactic and Semantic Notions
	Support Terms and Tools
	Interpretations of Out-of-turn Interaction

	Program-theoretic View of Personalized Interaction
	Modeling Interaction Programmatically
	Program Slicing
	Notation: Programs as Data Objects

	Evaluation
	Graph-theoretic Classes of Hierarchical Hypermedia
	Mining Web Functional Dependencies for Automatic Query Expansion
	Mining Positive Web Functional Dependencies
	Mining Negative Web Functional Dependencies

	Mining Web Functional Dependencies by Program Transformation
	A Duality in Uses of Program Slicing
	Program Transformations for Supplemental Personalized Interactions
	Related Research
	Discussion
	Putting It All Together
	Contributions
	Future Work

