
Basic Memory Manager

Assignment:
You will write a memory management package for storing variable-length records in a large

memory space. For background on this project, view the tutorial on sequential fit memory managers
available at http://research.cs.vt.edu/algoviz/MMtutorial/tutorial.php.

Your memory pool will consist of a large array of bytes. You will use a doubly linked list to
keep track of the free blocks in the memory pool. This list will be referred to as the freeblock
list. The freeblock list should store the free blocks in descending order by size of the free block.
If two or more blocks are of the same length, then they should appear in ascending order of their
position in the memory pool. You will use the worst fit rule for selecting which free block to use for
a memory request. That is, the first free block in the linked list (which is the largest block) will be
used to service the request if possible. If not all space of this block is needed, then the remaining
space will make up a new free block and be returned to the free list.

Be sure to merge adjacent free blocks whenever a block is released. To do the merge, it will
be necessary to search through the freeblock list, looking for blocks that are adjacent to either the
beginning or the end of the block being returned. Do not merge the free blocks at the beginning
and end of the memory pool. That is, the memory pool itself is not considered to be circular.

The records that you will store will contain the xy-coordinates and name for a city. Aside from
the memory manager’s memory pool and freeblock list, the other major data structure for your
project will be the record array, an array that stores the “handles” to the data records that are
currently stored in the memory pool. A handle is the value returned by the memory manager when
a request is made to insert a new record into the memory pool. This handle is used to recover
the record. (Note that the record array is something of an artificial construct that is being used
to simplify testing the memory manager for this project. It will be replaced by something more
appropriate in later projects. The idea is that the record array gives us an easy way to identify the
records independent of their placement in the memory pool.)

Invocation and I/O Files:
The program will be invoked from the command-line as:
java memman <pool-size> <num-recs> <command-file>

The name of the program is memman. Parameter <pool-size> is the size of the memory pool
(in bytes) that is to be allocated. Parameter <num-recs> is the size of the record array that
holds the handles to the records stored in the memory pool. Your program will read from text
file <command-file> a series of commands, with one command per line. The program should
terminate after reading the end of the file. No command line will require more than 80 characters.
The formats for the commands are as follows. The commands are free-format in that any number of
spaces may come before, between, or after the command name and its parameters. All coordinates
will be signed values small enough to fit in an int variable.

insert recnum x y name

Parameter recnum specifies which slot in the record array will hold the handle for this record.
An error should be reported if the value of recnum is outside of the range 0 to num-recs − 1.
Parameters x and y are the xy-coordinates for the record, and name is the name of the city for this
record. name may consist of upper and lower case letters and the underscore symbol. If there is

1



already a record stored at position recnum in the record array, then that earlier record should first
be removed from the memory pool. If there is no room in the memory pool to handle the request,
print a suitable message and do not modify the memory pool in any way. If the insert command
is to a recnum that is already used, then the first step will be to delete the old record, and the
second step will be to attempt to insert the new record. Should this attempt to insert fail, then
the old record will remain deleted.

remove recnum
Remove the record whose handle is stored in position recnum of the record array. If there is

no record there, print a suitable message. An error should be reported if the value of recnum is
outside of the range 0 to num-recs − 1.

print recnum
Print out the record (coordinates and name) whose handle is stored in position recnum of the

record array. If there is no record there, print a suitable message. An error should be reported if
the value of recnum is outside of the range 0 to num-recs − 1.

print
Dump out a complete listing of the contents of the memory pool. This listing should contain

two parts. The first part is the listing of city records currently stored in the memory pool, in order
of the record number. Print the value of the position handle along with the record. The second
part is a listing of the free blocks, in order of their occurrence in the freeblock list.

Design Considerations:
Your main design concern for this project will be how to construct the interface for the memory

manager class. While you are not required to do it exactly this way, we recommend that your
memory manager class include something equivalent to the following methods.

// constructor

MemManager(int poolsize);

// Insert a record and return its position handle.

// space contains the record to be inserted, of length size.

Handle insert(byte[] space, int size);

// Free a block at posHandle. Merge adjacent blocks if appropriate.

void remove(Handle theHandle);

// Return the record with handle posHandle, up to size bytes.

// Place the record into space.

void get(byte[] space, Handle theHandle, int size);

// Dump a printout of the freeblock list

void dump();

Another design consideration is how to deal with the fact that the records are variable length.
One option is to store the record’s handle and length in the record array. An alternative is to

2



store the record’s length in the memory pool along with the record. Both implementations have
advantages and disadvantages. We will adopt the second approach.

The records stored in the memory pool must have the following format. The first byte will
be the length of the record, in bytes. Thus, the total length of a record may not be more than
256 bytes. The next four bytes will be the x-coordinate. The following four bytes will be the
y-coordinate. Note that the coordinates are stored in binary format, not ASCII. The city name
then follows the coordinates. You should not store a NULL terminator byte for the string in the
memory pool.

3


