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Preface

We study data structures so that we can learn to write more efficient programs.
But why must programs be efficient when new computers are faster every year?
The reason is that our ambitions grow with our capabilities. Instead of rendering
efficiency needs obsolete, the modern revolution in computing power and storage
capability merely raises the efficiency stakes as we attempt more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “program-
ming tricks” but rather is based on good organization of information and good al-
gorithms. A programmer who has not mastered the basic principles of clear design
is not likely to write efficient programs. Conversely, concerns related to develop-
ment costs and maintainability should not be used as an excuse to justify inefficient
performance. Generality in design can and should be achieved without sacrificing
performance, but this can only be done if the designer understands how to measure
performance and does so as an integral part of the design and implementation pro-
cess. Most computer science curricula recognize that good programming skills be-
gin with a strong emphasis on fundamental software engineering principles. Then,
once a programmer has learned the principles of clear program design and imple-
mentation, the next step is to study the effects of data organization and algorithms
on program efficiency.

Approach: This book describes many techniques for representing data. These
techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the significant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all

xiii
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phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid rein-
venting the wheel. Thus, programmers need to learn the commonly used
data structures, their related algorithms, and the most frequently encountered
design patterns found in programming.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in Principles 1, 2, and 3.

As I have taught data structures through the years, I have found that design
issues have played an ever greater role in my courses. This can be traced through
the various editions of this textbook by the increasing coverage for design patterns
and generic interfaces. The first edition had no mention of design patterns. The
second edition had limited coverage of a few example patterns, and introduced the
dictionary ADT and comparator classes. With the third edition, there is explicit
coverage of some design patterns that are encountered when programming the basic
data structures and algorithms covered in the book.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

Within an undergraduate program, this textbook is designed for use in either an
advanced lower division (sophomore or junior level) data structures course, or for
a senior level algorithms course. New material has been added in the third edition
to support its use in an algorithms course. Normally, this text would be used in a
course beyond the standard freshman level “CS2” course that often serves as the
initial introduction to data structures. Readers of this book should typically have
two semesters of the equivalent of programming experience, including at least some
exposure to C++. Readers who are already familiar with recursion will have an
advantage. Students of data structures will also benefit from having first completed
a good course in Discrete Mathematics. Nonetheless, Chapter 2 attempts to give
a reasonably complete survey of the prerequisite mathematical topics at the level
necessary to understand their use in this book. Readers may wish to refer back
to the appropriate sections as needed when encountering unfamiliar mathematical
material.
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A sophomore-level class where students have only a little background in basic
data structures or analysis (that is, background equivalent to what would be had
from a traditional CS2 course) might cover Chapters 1-11 in detail, as well as se-
lected topics from Chapter 13. That is how I use the book for my own sophomore-
level class. Students with greater background might cover Chapter 1, skip most
of Chapter 2 except for reference, briefly cover Chapters 3 and 4, and then cover
chapters 5-12 in detail. Again, only certain topics from Chapter 13 might be cov-
ered, depending on the programming assignments selected by the instructor. A
senior-level algorithms course would focus on Chapters 11 and 14-17.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable
difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 17.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Most chapters end with a section entitled “Further Reading.” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Use of C++: The programming examples are written in C++, but I do not wish to
discourage those unfamiliar with C++ from reading this book. I have attempted to
make the examples as clear as possible while maintaining the advantages of C++.
C++ is used here strictly as a tool to illustrate data structures concepts. In particu-
lar, I make use of C++’s support for hiding implementation details, including fea-
tures such as classes, private class members, constructors, and destructors. These
features of the language support the crucial concept of separating logical design, as
embodied in the abstract data type, from physical implementation as embodied in
the data structure.
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To keep the presentation as clear as possible, some important features of C++

are avoided here. I deliberately minimize use of certain features commonly used
by experienced C++ programmers such as class hierarchy, inheritance, and virtual
functions. Operator and function overloading is used sparingly. C-like initialization
syntax is preferred to some of the alternatives offered by C++.

While the C++ features mentioned above have valid design rationale in real
programs, they tend to obscure rather than enlighten the principles espoused in
this book. For example, inheritance is an important tool that helps programmers
avoid duplication, and thus minimize bugs. From a pedagogical standpoint, how-
ever, inheritance often makes code examples harder to understand since it tends to
spread the description for one logical unit among several classes. Thus, my class
definitions only use inheritance where inheritance is explicitly relevant to the point
illustrated (e.g., Section 5.3.1). This does not mean that a programmer should do
likewise. Avoiding code duplication and minimizing errors are important goals.
Treat the programming examples as illustrations of data structure principles, but do
not copy them directly into your own programs.

One painful decision I had to make was whether to use templates in the code
examples. In the first edition of this book, the decision was to leave templates out
as it was felt that their syntax obscures the meaning of the code for those not famil-
iar with C++. In the years following, the use of C++ in computer science curricula
has greatly expanded. I now assume that readers of the text will be familiar with
template syntax. Thus, templates are now used extensively in the code examples.

My implementations are meant to provide concrete illustrations of data struc-
ture principles, as an aid to the textual exposition. Code examples should not be
read or used in isolation from the associated text because the bulk of each exam-
ple’s documentation is contained in the text, not the code. The code complements
the text, not the other way around. They are not meant to be a series of commercial-
quality class implementations. If you are looking for a complete implementation
of a standard data structure for use in your own code, you would do well to do an
Internet search.

For instance, the code examples provide less parameter checking than is sound
programming practice, since including such checking would obscure rather than il-
luminate the text. Some parameter checking and testing for other constraints (e.g.,
whether a value is being removed from an empty container) is included in the form
of a call to Assert. The inputs to Assert are a Boolean expression and a charac-
ter string. If this expression evaluates to false, then a message is printed and the
program terminates immediately. Terminating a program when a function receives
a bad parameter is generally considered undesirable in real programs, but is quite
adequate for understanding how a data structure is meant to operate. In real pro-
gramming applications, C++’s exception handling features should be used to deal
with input data errors. However, assertions provide a simpler mechanism for indi-
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cating required conditions in a way that is both adequate for clarifying how a data
structure is meant to operate, and is easily modified into true exception handling.
See the Appendix for the implementation of Assert.

I make a distinction in the text between “C++ implementations” and “pseu-
docode.” Code labeled as a C++ implementation has actually been compiled and
tested on one or more C++ compilers. Pseudocode examples often conform closely
to C++ syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpler,
but less precise, description.

Exercises and Projects: Proper implementation and analysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works
best in a given situation.

One of the most important aspects of a course in data structures is that it is
where students really learn to program using pointers and dynamic memory al-
location, by implementing data structures such as linked lists and trees. It is often
where students truly learn recursion. In our curriculum, this is the first course where
students do significant design, because it often requires real data structures to mo-
tivate significant design exercises. Finally, the fundamental differences between
memory-based and disk-based data access cannot be appreciated without practical
programming experience. For all of these reasons, a data structures course cannot
succeed without a significant programming component. In our department, the data
structures course is one of the most difficult programming course in the curriculum.

Students should also work problems to develop their analytical abilities. I pro-
vide over 450 exercises and suggestions for programming projects. I urge readers
to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt.edu. Alternatively, comments can be mailed to

Cliff Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061

The electronic posting of this book, along with a set of lecture notes for use in
class can be obtained at

http://www.cs.vt.edu/˜shaffer/book.html.

The code examples used in the book are available at the same site. Online Web
pages for Virginia Tech’s sophomore-level data structures class can be found at
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http://courses.cs.vt.edu/˜cs3114.

This book was typeset by the author using LATEX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures were
mostly drawn with Xfig. Figures 3.1 and 9.10 were partially created using Math-
ematica.
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Data Structures and Algorithms

How many cities with more than 250,000 people lie within 500 miles of Dallas,
Texas? How many people in my company make over $100,000 per year? Can we
connect all of our telephone customers with less than 1,000 miles of cable? To
answer questions like these, it is not enough to have the necessary information. We
must organize that information in a way that allows us to find the answers in time
to satisfy our needs.

Representing information is fundamental to computer science. The primary
purpose of most computer programs is not to perform calculations, but to store and
retrieve information — usually as fast as possible. For this reason, the study of
data structures and the algorithms that manipulate them is at the heart of computer
science. And that is what this book is about — helping you to understand how to
structure information to support efficient processing.

This book has three primary goals. The first is to present the commonly used
data structures. These form a programmer’s basic data structure “toolkit.” For
many problems, some data structure in the toolkit provides a good solution.

The second goal is to introduce the idea of tradeoffs and reinforce the concept
that there are costs and benefits associated with every data structure. This is done
by describing, for each data structure, the amount of space and time required for
typical operations.

The third goal is to teach how to measure the effectiveness of a data structure or
algorithm. Only through such measurement can you determine which data structure
in your toolkit is most appropriate for a new problem. The techniques presented
also allow you to judge the merits of new data structures that you or others might
invent.

There are often many approaches to solving a problem. How do we choose
between them? At the heart of computer program design are two (sometimes con-
flicting) goals:

1. To design an algorithm that is easy to understand, code, and debug.
2. To design an algorithm that makes efficient use of the computer’s resources.

3
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Ideally, the resulting program is true to both of these goals. We might say that
such a program is “elegant.” While the algorithms and program code examples pre-
sented here attempt to be elegant in this sense, it is not the purpose of this book to
explicitly treat issues related to goal (1). These are primarily concerns of the disci-
pline of Software Engineering. Rather, this book is mostly about issues relating to
goal (2).

How do we measure efficiency? Chapter 3 describes a method for evaluating
the efficiency of an algorithm or computer program, called asymptotic analysis.
Asymptotic analysis also allows you to measure the inherent difficulty of a problem.
The remaining chapters use asymptotic analysis techniques to estimate the time cost
for every algorithm presented. This allows you to see how each algorithm compares
to other algorithms for solving the same problem in terms of its efficiency.

This first chapter sets the stage for what is to follow, by presenting some higher-
order issues related to the selection and use of data structures. We first examine the
process by which a designer selects a data structure appropriate to the task at hand.
We then consider the role of abstraction in program design. We briefly consider
the concept of a design pattern and see some examples. The chapter ends with an
exploration of the relationship between problems, algorithms, and programs.

1.1 A Philosophy of Data Structures

1.1.1 The Need for Data Structures

You might think that with ever more powerful computers, program efficiency is
becoming less important. After all, processor speed and memory size still con-
tinue to improve. Won’t any efficiency problem we might have today be solved by
tomorrow’s hardware?

As we develop more powerful computers, our history so far has always been to
use that additional computing power to tackle more complex problems, be it in the
form of more sophisticated user interfaces, bigger problem sizes, or new problems
previously deemed computationally infeasible. More complex problems demand
more computation, making the need for efficient programs even greater. Worse yet,
as tasks become more complex, they become less like our everyday experience.
Today’s computer scientists must be trained to have a thorough understanding of the
principles behind efficient program design, because their ordinary life experiences
often do not apply when designing computer programs.

In the most general sense, a data structure is any data representation and its
associated operations. Even an integer or floating point number stored on the com-
puter can be viewed as a simple data structure. More commonly, people use the
term “data structure” to mean an organization or structuring for a collection of data
items. A sorted list of integers stored in an array is an example of such a structuring.
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Given sufficient space to store a collection of data items, it is always possible to
search for specified items within the collection, print or otherwise process the data
items in any desired order, or modify the value of any particular data item. Thus,
it is possible to perform all necessary operations on any data structure. However,
using the proper data structure can make the difference between a program running
in a few seconds and one requiring many days.

A solution is said to be efficient if it solves the problem within the required
resource constraints. Examples of resource constraints include the total space
available to store the data — possibly divided into separate main memory and disk
space constraints — and the time allowed to perform each subtask. A solution is
sometimes said to be efficient if it requires fewer resources than known alternatives,
regardless of whether it meets any particular requirements. The cost of a solution is
the amount of resources that the solution consumes. Most often, cost is measured
in terms of one key resource such as time, with the implied assumption that the
solution meets the other resource constraints.

It should go without saying that people write programs to solve problems. How-
ever, it is crucial to keep this truism in mind when selecting a data structure to solve
a particular problem. Only by first analyzing the problem to determine the perfor-
mance goals that must be achieved can there be any hope of selecting the right data
structure for the job. Poor program designers ignore this analysis step and apply a
data structure that they are familiar with but which is inappropriate to the problem.
The result is typically a slow program. Conversely, there is no sense in adopting
a complex representation to “improve” a program that can meet its performance
goals when implemented using a simpler design.

When selecting a data structure to solve a problem, you should follow these
steps.

1. Analyze your problem to determine the basic operations that must be sup-
ported. Examples of basic operations include inserting a data item into the
data structure, deleting a data item from the data structure, and finding a
specified data item.

2. Quantify the resource constraints for each operation.
3. Select the data structure that best meets these requirements.

This three-step approach to selecting a data structure operationalizes a data-
centered view of the design process. The first concern is for the data and the op-
erations to be performed on them, the next concern is the representation for those
data, and the final concern is the implementation of that representation.

Resource constraints on certain key operations, such as search, inserting data
records, and deleting data records, normally drive the data structure selection pro-
cess. Many issues relating to the relative importance of these operations are ad-
dressed by the following three questions, which you should ask yourself whenever
you must choose a data structure:
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• Are all data items inserted into the data structure at the beginning, or are
insertions interspersed with other operations? Static applications (where the
data are loaded at the beginning and never change) typically require only
simpler data structures to get an efficient implementation than do dynamic
applications.

• Can data items be deleted? If so, this will probably make the implementation
more complicated.

• Are all data items processed in some well-defined order, or is search for spe-
cific data items allowed? “Random access” search generally requires more
complex data structures.

1.1.2 Costs and Benefits

Each data structure has associated costs and benefits. In practice, it is hardly ever
true that one data structure is better than another for use in all situations. If one
data structure or algorithm is superior to another in all respects, the inferior one
will usually have long been forgotten. For nearly every data structure and algorithm
presented in this book, you will see examples of where it is the best choice. Some
of the examples might surprise you.

A data structure requires a certain amount of space for each data item it stores,
a certain amount of time to perform a single basic operation, and a certain amount
of programming effort. Each problem has constraints on available space and time.
Each solution to a problem makes use of the basic operations in some relative pro-
portion, and the data structure selection process must account for this. Only after a
careful analysis of your problem’s characteristics can you determine the best data
structure for the task.

Example 1.1 A bank must support many types of transactions with its
customers, but we will examine a simple model where customers wish to
open accounts, close accounts, and add money or withdraw money from
accounts. We can consider this problem at two distinct levels: (1) the re-
quirements for the physical infrastructure and workflow process that the
bank uses in its interactions with its customers, and (2) the requirements
for the database system that manages the accounts.

The typical customer opens and closes accounts far less often than he
or she accesses the account. Customers are willing to wait many minutes
while accounts are created or deleted but are typically not willing to wait
more than a brief time for individual account transactions such as a deposit
or withdrawal. These observations can be considered as informal specifica-
tions for the time constraints on the problem.

It is common practice for banks to provide two tiers of service. Hu-
man tellers or automated teller machines (ATMs) support customer access
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to account balances and updates such as deposits and withdrawals. Spe-
cial service representatives are typically provided (during restricted hours)
to handle opening and closing accounts. Teller and ATM transactions are
expected to take little time. Opening or closing an account can take much
longer (perhaps up to an hour from the customer’s perspective).

From a database perspective, we see that ATM transactions do not mod-
ify the database significantly. For simplicity, assume that if money is added
or removed, this transaction simply changes the value stored in an account
record. Adding a new account to the database is allowed to take several
minutes. Deleting an account need have no time constraint, because from
the customer’s point of view all that matters is that all the money be re-
turned (equivalent to a withdrawal). From the bank’s point of view, the
account record might be removed from the database system after business
hours, or at the end of the monthly account cycle.

When considering the choice of data structure to use in the database
system that manages customer accounts, we see that a data structure that
has little concern for the cost of deletion, but is highly efficient for search
and moderately efficient for insertion, should meet the resource constraints
imposed by this problem. Records are accessible by unique account number
(sometimes called an exact-match query). One data structure that meets
these requirements is the hash table described in Chapter 9.4. Hash tables
allow for extremely fast exact-match search. A record can be modified
quickly when the modification does not affect its space requirements. Hash
tables also support efficient insertion of new records. While deletions can
also be supported efficiently, too many deletions lead to some degradation
in performance for the remaining operations. However, the hash table can
be reorganized periodically to restore the system to peak efficiency. Such
reorganization can occur offline so as not to affect ATM transactions.

Example 1.2 A company is developing a database system containing in-
formation about cities and towns in the United States. There are many
thousands of cities and towns, and the database program should allow users
to find information about a particular place by name (another example of
an exact-match query). Users should also be able to find all places that
match a particular value or range of values for attributes such as location or
population size. This is known as a range query.

A reasonable database system must answer queries quickly enough to
satisfy the patience of a typical user. For an exact-match query, a few sec-
onds is satisfactory. If the database is meant to support range queries that
can return many cities that match the query specification, the entire opera-
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tion may be allowed to take longer, perhaps on the order of a minute. To
meet this requirement, it will be necessary to support operations that pro-
cess range queries efficiently by processing all cities in the range as a batch,
rather than as a series of operations on individual cities.

The hash table suggested in the previous example is inappropriate for
implementing our city database, because it cannot perform efficient range
queries. The B+-tree of Section 10.5.1 supports large databases, insertion
and deletion of data records, and range queries. However, a simple linear in-
dex as described in Section 10.1 would be more appropriate if the database
is created once, and then never changed, such as an atlas distributed on a
CD or accessed from a website.

1.2 Abstract Data Types and Data Structures

The previous section used the terms “data item” and “data structure” without prop-
erly defining them. This section presents terminology and motivates the design
process embodied in the three-step approach to selecting a data structure. This mo-
tivation stems from the need to manage the tremendous complexity of computer
programs.

A type is a collection of values. For example, the Boolean type consists of the
values true and false. The integers also form a type. An integer is a simple
type because its values contain no subparts. A bank account record will typically
contain several pieces of information such as name, address, account number, and
account balance. Such a record is an example of an aggregate type or composite
type. A data item is a piece of information or a record whose value is drawn from
a type. A data item is said to be a member of a type.

A data type is a type together with a collection of operations to manipulate
the type. For example, an integer variable is a member of the integer data type.
Addition is an example of an operation on the integer data type.

A distinction should be made between the logical concept of a data type and its
physical implementation in a computer program. For example, there are two tra-
ditional implementations for the list data type: the linked list and the array-based
list. The list data type can therefore be implemented using a linked list or an ar-
ray. Even the term “array” is ambiguous in that it can refer either to a data type
or an implementation. “Array” is commonly used in computer programming to
mean a contiguous block of memory locations, where each memory location stores
one fixed-length data item. By this meaning, an array is a physical data structure.
However, array can also mean a logical data type composed of a (typically ho-
mogeneous) collection of data items, with each data item identified by an index
number. It is possible to implement arrays in many different ways. For exam-
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ple, Section 12.2 describes the data structure used to implement a sparse matrix, a
large two-dimensional array that stores only a relatively few non-zero values. This
implementation is quite different from the physical representation of an array as
contiguous memory locations.

An abstract data type (ADT) is the realization of a data type as a software
component. The interface of the ADT is defined in terms of a type and a set of
operations on that type. The behavior of each operation is determined by its inputs
and outputs. An ADT does not specify how the data type is implemented. These
implementation details are hidden from the user of the ADT and protected from
outside access, a concept referred to as encapsulation.

A data structure is the implementation for an ADT. In an object-oriented lan-
guage such as C++, an ADT and its implementation together make up a class.
Each operation associated with the ADT is implemented by a member function or
method. The variables that define the space required by a data item are referred
to as data members. An object is an instance of a class, that is, something that is
created and takes up storage during the execution of a computer program.

The term “data structure” often refers to data stored in a computer’s main mem-
ory. The related term file structure often refers to the organization of data on
peripheral storage, such as a disk drive or CD.

Example 1.3 The mathematical concept of an integer, along with oper-
ations that manipulate integers, form a data type. The C++ int variable
type is a physical representation of the abstract integer. The int variable
type, along with the operations that act on an int variable, form an ADT.
Unfortunately, the int implementation is not completely true to the ab-
stract integer, as there are limitations on the range of values an int variable
can store. If these limitations prove unacceptable, then some other repre-
sentation for the ADT “integer” must be devised, and a new implementation
must be used for the associated operations.

Example 1.4 An ADT for a list of integers might specify the following
operations:

• Insert a new integer at a particular position in the list.
• Return true if the list is empty.
• Reinitialize the list.
• Return the number of integers currently in the list.
• Delete the integer at a particular position in the list.
From this description, the input and output of each operation should be

clear, but the implementation for lists has not been specified.
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One application that makes use of some ADT might use particular member
functions of that ADT more than a second application, or the two applications might
have different time requirements for the various operations. These differences in the
requirements of applications are the reason why a given ADT might be supported
by more than one implementation.

Example 1.5 Two popular implementations for large disk-based database
applications are hashing (Section 9.4) and the B+-tree (Section 10.5). Both
support efficient insertion and deletion of records, and both support exact-
match queries. However, hashing is more efficient than the B+-tree for
exact-match queries. On the other hand, the B+-tree can perform range
queries efficiently, while hashing is hopelessly inefficient for range queries.
Thus, if the database application limits searches to exact-match queries,
hashing is preferred. On the other hand, if the application requires support
for range queries, the B+-tree is preferred. Despite these performance is-
sues, both implementations solve versions of the same problem: updating
and searching a large collection of records.

The concept of an ADT can help us to focus on key issues even in non-comp-
uting applications.

Example 1.6 When operating a car, the primary activities are steering,
accelerating, and braking. On nearly all passenger cars, you steer by turn-
ing the steering wheel, accelerate by pushing the gas pedal, and brake by
pushing the brake pedal. This design for cars can be viewed as an ADT
with operations “steer,” “accelerate,” and “brake.” Two cars might imple-
ment these operations in radically different ways, say with different types
of engine, or front- versus rear-wheel drive. Yet, most drivers can oper-
ate many different cars because the ADT presents a uniform method of
operation that does not require the driver to understand the specifics of any
particular engine or drive design. These differences are deliberately hidden.

The concept of an ADT is one instance of an important principle that must be
understood by any successful computer scientist: managing complexity through
abstraction. A central theme of computer science is complexity and techniques
for handling it. Humans deal with complexity by assigning a label to an assembly
of objects or concepts and then manipulating the label in place of the assembly.
Cognitive psychologists call such a label a metaphor. A particular label might be
related to other pieces of information or other labels. This collection can in turn be
given a label, forming a hierarchy of concepts and labels. This hierarchy of labels
allows us to focus on important issues while ignoring unnecessary details.
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Example 1.7 We apply the label “hard drive” to a collection of hardware
that manipulates data on a particular type of storage device, and we ap-
ply the label “CPU” to the hardware that controls execution of computer
instructions. These and other labels are gathered together under the label
“computer.” Because even the smallest home computers today have mil-
lions of components, some form of abstraction is necessary to comprehend
how a computer operates.

Consider how you might go about the process of designing a complex computer
program that implements and manipulates an ADT. The ADT is implemented in
one part of the program by a particular data structure. While designing those parts
of the program that use the ADT, you can think in terms of operations on the data
type without concern for the data structure’s implementation. Without this ability
to simplify your thinking about a complex program, you would have no hope of
understanding or implementing it.

Example 1.8 Consider the design for a relatively simple database system
stored on disk. Typically, records on disk in such a program are accessed
through a buffer pool (see Section 8.3) rather than directly. Variable length
records might use a memory manager (see Section 12.3) to find an appro-
priate location within the disk file to place the record. Multiple index struc-
tures (see Chapter 10) will typically be used to access records in various
ways. Thus, we have a chain of classes, each with its own responsibili-
ties and access privileges. A database query from a user is implemented
by searching an index structure. This index requests access to the record
by means of a request to the buffer pool. If a record is being inserted or
deleted, such a request goes through the memory manager, which in turn
interacts with the buffer pool to gain access to the disk file. A program such
as this is far too complex for nearly any human programmer to keep all of
the details in his or her head at once. The only way to design and imple-
ment such a program is through proper use of abstraction and metaphors.
In object-oriented programming, such abstraction is handled using classes.

Data types have both a logical and a physical form. The definition of the data
type in terms of an ADT is its logical form. The implementation of the data type as
a data structure is its physical form. Figure 1.1 illustrates this relationship between
logical and physical forms for data types. When you implement an ADT, you
are dealing with the physical form of the associated data type. When you use an
ADT elsewhere in your program, you are concerned with the associated data type’s
logical form. Some sections of this book focus on physical implementations for a
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Data Type

Data Structure:
Storage Space
Subroutines

ADT:
Type
Operations

Data Items:

Data Items:
  Physical Form

  Logical Form

Figure 1.1 The relationship between data items, abstract data types, and data
structures. The ADT defines the logical form of the data type. The data structure
implements the physical form of the data type.

given data structure. Other sections use the logical ADT for the data structure in
the context of a higher-level task.

Example 1.9 A particular C++ environment might provide a library that
includes a list class. The logical form of the list is defined by the public
functions, their inputs, and their outputs that define the class. This might be
all that you know about the list class implementation, and this should be all
you need to know. Within the class, a variety of physical implementations
for lists is possible. Several are described in Section 4.1.

1.3 Design Patterns

At a higher level of abstraction than ADTs are abstractions for describing the design
of programs — that is, the interactions of objects and classes. Experienced software
designers learn and reuse patterns for combining software components. These have
come to be referred to as design patterns.

A design pattern embodies and generalizes important design concepts for a
recurring problem. A primary goal of design patterns is to quickly transfer the
knowledge gained by expert designers to newer programmers. Another goal is
to allow for efficient communication between programmers. It is much easier to
discuss a design issue when you share a technical vocabulary relevant to the topic.

Specific design patterns emerge from the realization that a particular design
problem appears repeatedly in many contexts. They are meant to solve real prob-
lems. Design patterns are a bit like templates. They describe the structure for a
design solution, with the details filled in for any given problem. Design patterns
are a bit like data structures: Each one provides costs and benefits, which implies



Sec. 1.3 Design Patterns 13

that tradeoffs are possible. Therefore, a given design pattern might have variations
on its application to match the various tradeoffs inherent in a given situation.

The rest of this section introduces a few simple design patterns that are used
later in the book.

1.3.1 Flyweight

The Flyweight design pattern is meant to solve the following problem. You have an
application with many objects. Some of these objects are identical in the informa-
tion that they contain, and the role that they play. But they must be reached from
various places, and conceptually they really are distinct objects. Because there is
so much duplication of the same information, we would like to take advantage of
the opportunity to reduce memory cost by sharing that space. An example comes
from representing the layout for a document. The letter “C” might reasonably be
represented by an object that describes that character’s strokes and bounding box.
However, we do not want to create a separate “C” object everywhere in the doc-
ument that a “C” appears. The solution is to allocate a single copy of the shared
representation for “C” objects. Then, every place in the document that needs a
“C” in a given font, size, and typeface will reference this single copy. The various
instances of references to a specific form of “C” are called flyweights.

We could describe the layout of text on a page by using a tree structure. The
root of the tree represents the entire page. The page has multiple child nodes, one
for each column. The column nodes have child nodes for each row. And the rows
have child nodes for each character. These representations for characters are the fly-
weights. The flyweight includes the reference to the shared shape information, and
might contain additional information specific to that instance. For example, each
instance for “C” will contain a reference to the shared information about strokes
and shapes, and it might also contain the exact location for that instance of the
character on the page.

Flyweights are used in the implementation for the PR quadtree data structure
for storing collections of point objects, described in Section 13.3. In a PR quadtree,
we again have a tree with leaf nodes. Many of these leaf nodes represent empty
areas, and so the only information that they store is the fact that they are empty.
These identical nodes can be implemented using a reference to a single instance of
the flyweight for better memory efficiency.

1.3.2 Visitor

Given a tree of objects to describe a page layout, we might wish to perform some
activity on every node in the tree. Section 5.2 discusses tree traversal, which is the
process of visiting every node in the tree in a defined order. A simple example for
our text composition application might be to count the number of nodes in the tree



14 Chap. 1 Data Structures and Algorithms

that represents the page. At another time, we might wish to print a listing of all the
nodes for debugging purposes.

We could write a separate traversal function for each such activity that we in-
tend to perform on the tree. A better approach would be to write a generic traversal
function, and pass in the activity to be performed at each node. This organization
constitutes the visitor design pattern. The visitor design pattern is used in Sec-
tions 5.2 (tree traversal) and 11.3 (graph traversal).

1.3.3 Composite

There are two fundamental approaches to dealing with the relationship between
a collection of actions and a hierarchy of object types. First consider the typical
procedural approach. Say we have a base class for page layout entities, with a sub-
class hierarchy to define specific subtypes (page, columns, rows, figures, charac-
ters, etc.). And say there are actions to be performed on a collection of such objects
(such as rendering the objects to the screen). The procedural design approach is for
each action to be implemented as a method that takes as a parameter a pointer to
the base class type. Each action such method will traverse through the collection
of objects, visiting each object in turn. Each action method contains something
like a switch statement that defines the details of the action for each subclass in the
collection (e.g., page, column, row, character). We can cut the code down some by
using the visitor design pattern so that we only need to write the traversal once, and
then write a visitor subroutine for each action that might be applied to the collec-
tion of objects. But each such visitor subroutine must still contain logic for dealing
with each of the possible subclasses.

In our page composition application, there are only a few activities that we
would like to perform on the page representation. We might render the objects in
full detail. Or we might want a “rough draft” rendering that prints only the bound-
ing boxes of the objects. If we come up with a new activity to apply to the collection
of objects, we do not need to change any of the code that implements the existing
activities. But adding new activities won’t happen often for this application. In
contrast, there could be many object types, and we might frequently add new ob-
ject types to our implementation. Unfortunately, adding a new object type requires
that we modify each activity, and the subroutines implementing the activities get
rather long switch statements to distinguish the behavior of the many subclasses.

An alternative design is to have each object subclass in the hierarchy embody
the action for each of the various activities that might be performed. Each subclass
will have code to perform each activity (such as full rendering or bounding box
rendering). Then, if we wish to apply the activity to the collection, we simply call
the first object in the collection and specify the action (as a method call on that
object). In the case of our page layout and its hierarchical collection of objects,
those objects that contain other objects (such as a row objects that contains letters)
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will call the appropriate method for each child. If we want to add a new activity
with this organization, we have to change the code for every subclass. But this is
relatively rare for our text compositing application. In contrast, adding a new object
into the subclass hierarchy (which for this application is far more likely than adding
a new rendering function) is easy. Adding a new subclass does not require changing
any of the existing subclasses. It merely requires that we define the behavior of each
activity that can be performed on the new subclass.

This second design approach of burying the functional activity in the subclasses
is called the Composite design pattern. A detailed example for using the Composite
design pattern is presented in Section 5.3.1.

1.3.4 Strategy

Our final example of a design pattern lets us encapsulate and make interchangeable
a set of alternative actions that might be performed as part of some larger activity.
Again continuing our text compositing example, each output device that we wish
to render to will require its own function for doing the actual rendering. That is,
the objects will be broken down into constituent pixels or strokes, but the actual
mechanics of rendering a pixel or stroke will depend on the output device. We
don’t want to build this rendering functionality into the object subclasses. Instead,
we want to pass to the subroutine performing the rendering action a method or class
that does the appropriate rendering details for that output device. That is, we wish
to hand to the object the appropriate “strategy” for accomplishing the details of the
rendering task. Thus, this approach is called the Strategy design pattern.

The Strategy design pattern will be discussed further in Chapter 7. There, a
sorting function is given a class (called a comparator) that understands how to
extract and compare the key values for records to be sorted. In this way, the sorting
function does not need to know any details of how its record type is implemented.

One of the biggest challenges to understanding design patterns is that some-
times one is only subtly different from another. For example, you might be con-
fused about the difference between the composite pattern and the visitor pattern.
The distinction is that the composite design pattern is about whether to give control
of the traversal process to the nodes of the tree or to the tree itself. Both approaches
can make use of the visitor design pattern to avoid rewriting the traversal function
many times, by encapsulating the activity performed at each node.

But isn’t the strategy design pattern doing the same thing? The difference be-
tween the visitor pattern and the strategy pattern is more subtle. Here the difference
is primarily one of intent and focus. In both the strategy design pattern and the visi-
tor design pattern, an activity is being passed in as a parameter. The strategy design
pattern is focused on encapsulating an activity that is part of a larger process, so
that different ways of performing that activity can be substituted. The visitor de-
sign pattern is focused on encapsulating an activity that will be performed on all
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members of a collection so that completely different activities can be substituted
within a generic method that accesses all of the collection members.

1.4 Problems, Algorithms, and Programs

Programmers commonly deal with problems, algorithms, and computer programs.
These are three distinct concepts.

Problems: As your intuition would suggest, a problem is a task to be performed.
It is best thought of in terms of inputs and matching outputs. A problem definition
should not include any constraints on how the problem is to be solved. The solution
method should be developed only after the problem is precisely defined and thor-
oughly understood. However, a problem definition should include constraints on
the resources that may be consumed by any acceptable solution. For any problem
to be solved by a computer, there are always such constraints, whether stated or
implied. For example, any computer program may use only the main memory and
disk space available, and it must run in a “reasonable” amount of time.

Problems can be viewed as functions in the mathematical sense. A function
is a matching between inputs (the domain) and outputs (the range). An input
to a function might be a single value or a collection of information. The values
making up an input are called the parameters of the function. A specific selection
of values for the parameters is called an instance of the problem. For example,
the input parameter to a sorting function might be an array of integers. A particular
array of integers, with a given size and specific values for each position in the array,
would be an instance of the sorting problem. Different instances might generate the
same output. However, any problem instance must always result in the same output
every time the function is computed using that particular input.

This concept of all problems behaving like mathematical functions might not
match your intuition for the behavior of computer programs. You might know of
programs to which you can give the same input value on two separate occasions,
and two different outputs will result. For example, if you type “date” to a typical
UNIX command line prompt, you will get the current date. Naturally the date will
be different on different days, even though the same command is given. However,
there is obviously more to the input for the date program than the command that you
type to run the program. The date program computes a function. In other words,
on any particular day there can only be a single answer returned by a properly
running date program on a completely specified input. For all computer programs,
the output is completely determined by the program’s full set of inputs. Even a
“random number generator” is completely determined by its inputs (although some
random number generating systems appear to get around this by accepting a random
input from a physical process beyond the user’s control). The relationship between
programs and functions is explored further in Section 17.3.
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Algorithms: An algorithm is a method or a process followed to solve a problem.
If the problem is viewed as a function, then an algorithm is an implementation for
the function that transforms an input to the corresponding output. A problem can be
solved by many different algorithms. A given algorithm solves only one problem
(i.e., computes a particular function). This book covers many problems, and for
several of these problems I present more than one algorithm. For the important
problem of sorting I present nearly a dozen algorithms!

The advantage of knowing several solutions to a problem is that solution A
might be more efficient than solution B for a specific variation of the problem,
or for a specific class of inputs to the problem, while solution B might be more
efficient than A for another variation or class of inputs. For example, one sorting
algorithm might be the best for sorting a small collection of integers (which is
important if you need to do this many times). Another might be the best for sorting
a large collection of integers. A third might be the best for sorting a collection of
variable-length strings.

By definition, something can only be called an algorithm if it has all of the
following properties.

1. It must be correct. In other words, it must compute the desired function,
converting each input to the correct output. Note that every algorithm im-
plements some function, because every algorithm maps every input to some
output (even if that output is a program crash). At issue here is whether a
given algorithm implements the intended function.

2. It is composed of a series of concrete steps. Concrete means that the action
described by that step is completely understood — and doable — by the
person or machine that must perform the algorithm. Each step must also be
doable in a finite amount of time. Thus, the algorithm gives us a “recipe” for
solving the problem by performing a series of steps, where each such step
is within our capacity to perform. The ability to perform a step can depend
on who or what is intended to execute the recipe. For example, the steps of
a cookie recipe in a cookbook might be considered sufficiently concrete for
instructing a human cook, but not for programming an automated cookie-
making factory.

3. There can be no ambiguity as to which step will be performed next. Often it
is the next step of the algorithm description. Selection (e.g., the if statement
in C++) is normally a part of any language for describing algorithms. Selec-
tion allows a choice for which step will be performed next, but the selection
process is unambiguous at the time when the choice is made.

4. It must be composed of a finite number of steps. If the description for the alg-
orithm were made up of an infinite number of steps, we could never hope to
write it down, nor implement it as a computer program. Most languages for
describing algorithms (including English and “pseudocode”) provide some
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way to perform repeated actions, known as iteration. Examples of iteration
in programming languages include the while and for loop constructs of
C++. Iteration allows for short descriptions, with the number of steps actu-
ally performed controlled by the input.

5. It must terminate. In other words, it may not go into an infinite loop.

Programs: We often think of a computer program as an instance, or concrete
representation, of an algorithm in some programming language. In this book,
nearly all of the algorithms are presented in terms of programs, or parts of pro-
grams. Naturally, there are many programs that are instances of the same alg-
orithm, because any modern computer programming language can be used to im-
plement the same collection of algorithms (although some programming languages
can make life easier for the programmer). To simplify presentation, I often use
the terms “algorithm” and “program” interchangeably, despite the fact that they are
really separate concepts. By definition, an algorithm must provide sufficient detail
that it can be converted into a program when needed.

The requirement that an algorithm must terminate means that not all computer
programs meet the technical definition of an algorithm. Your operating system is
one such program. However, you can think of the various tasks for an operating sys-
tem (each with associated inputs and outputs) as individual problems, each solved
by specific algorithms implemented by a part of the operating system program, and
each one of which terminates once its output is produced.

To summarize: A problem is a function or a mapping of inputs to outputs.
An algorithm is a recipe for solving a problem whose steps are concrete and un-
ambiguous. Algorithms must be correct, of finite length, and must terminate for all
inputs. A program is an instantiation of an algorithm in a programming language.

1.5 Further Reading

An early authoritative work on data structures and algorithms was the series of
books The Art of Computer Programming by Donald E. Knuth, with Volumes 1
and 3 being most relevant to the study of data structures [Knu97, Knu98]. A mod-
ern encyclopedic approach to data structures and algorithms that should be easy
to understand once you have mastered this book is Algorithms by Robert Sedge-
wick [Sed11]. For an excellent and highly readable (but more advanced) teaching
introduction to algorithms, their design, and their analysis, see Introduction to Al-
gorithms: A Creative Approach by Udi Manber [Man89]. For an advanced, en-
cyclopedic approach, see Introduction to Algorithms by Cormen, Leiserson, and
Rivest [CLRS09]. Steven S. Skiena’s The Algorithm Design Manual [Ski10] pro-
vides pointers to many implementations for data structures and algorithms that are
available on the Web.
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The claim that all modern programming languages can implement the same
algorithms (stated more precisely, any function that is computable by one program-
ming language is computable by any programming language with certain standard
capabilities) is a key result from computability theory. For an easy introduction to
this field see James L. Hein, Discrete Structures, Logic, and Computability [Hei09].

Much of computer science is devoted to problem solving. Indeed, this is what
attracts many people to the field. How to Solve It by George Pólya [Pól57] is con-
sidered to be the classic work on how to improve your problem-solving abilities. If
you want to be a better student (as well as a better problem solver in general), see
Strategies for Creative Problem Solving by Folger and LeBlanc [FL95], Effective
Problem Solving by Marvin Levine [Lev94], and Problem Solving & Comprehen-
sion by Arthur Whimbey and Jack Lochhead [WL99], and Puzzle-Based Learning
by Zbigniew and Matthew Michaelewicz [MM08].

See The Origin of Consciousness in the Breakdown of the Bicameral Mind by
Julian Jaynes [Jay90] for a good discussion on how humans use the concept of
metaphor to handle complexity. More directly related to computer science educa-
tion and programming, see “Cogito, Ergo Sum! Cognitive Processes of Students
Dealing with Data Structures” by Dan Aharoni [Aha00] for a discussion on mov-
ing from programming-context thinking to higher-level (and more design-oriented)
programming-free thinking.

On a more pragmatic level, most people study data structures to write better
programs. If you expect your program to work correctly and efficiently, it must
first be understandable to yourself and your co-workers. Kernighan and Pike’s The
Practice of Programming [KP99] discusses a number of practical issues related to
programming, including good coding and documentation style. For an excellent
(and entertaining!) introduction to the difficulties involved with writing large pro-
grams, read the classic The Mythical Man-Month: Essays on Software Engineering
by Frederick P. Brooks [Bro95].

If you want to be a successful C++ programmer, you need good reference
manuals close at hand. The standard reference for C++ is The C++ Program-
ming Language by Bjarne Stroustrup [Str00], with further information provided in
The Annotated C++ Reference Manual by Ellis and Stroustrup [ES90]. No C++

programmer should be without Stroustrup’s book, as it provides the definitive de-
scription of the language and also includes a great deal of information about the
principles of object-oriented design. Unfortunately, it is a poor text for learning
how to program in C++. A good, gentle introduction to the basics of the language
is Patrick Henry Winston’s On to C++ [Win94]. A good introductory teaching text
for a wider range of C++ is Deitel and Deitel’s C++ How to Program [DD08].

After gaining proficiency in the mechanics of program writing, the next step
is to become proficient in program design. Good design is difficult to learn in any
discipline, and good design for object-oriented software is one of the most difficult
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of arts. The novice designer can jump-start the learning process by studying well-
known and well-used design patterns. The classic reference on design patterns
is Design Patterns: Elements of Reusable Object-Oriented Software by Gamma,
Helm, Johnson, and Vlissides [GHJV95] (this is commonly referred to as the “gang
of four” book). Unfortunately, this is an extremely difficult book to understand,
in part because the concepts are inherently difficult. A number of Web sites are
available that discuss design patterns, and which provide study guides for the De-
sign Patterns book. Two other books that discuss object-oriented software design
are Object-Oriented Software Design and Construction with C++ by Dennis Ka-
fura [Kaf98], and Object-Oriented Design Heuristics by Arthur J. Riel [Rie96].

1.6 Exercises

The exercises for this chapter are different from those in the rest of the book. Most
of these exercises are answered in the following chapters. However, you should
not look up the answers in other parts of the book. These exercises are intended to
make you think about some of the issues to be covered later on. Answer them to
the best of your ability with your current knowledge.

1.1 Think of a program you have used that is unacceptably slow. Identify the spe-
cific operations that make the program slow. Identify other basic operations
that the program performs quickly enough.

1.2 Most programming languages have a built-in integer data type. Normally
this representation has a fixed size, thus placing a limit on how large a value
can be stored in an integer variable. Describe a representation for integers
that has no size restriction (other than the limits of the computer’s available
main memory), and thus no practical limit on how large an integer can be
stored. Briefly show how your representation can be used to implement the
operations of addition, multiplication, and exponentiation.

1.3 Define an ADT for character strings. Your ADT should consist of typical
functions that can be performed on strings, with each function defined in
terms of its input and output. Then define two different physical representa-
tions for strings.

1.4 Define an ADT for a list of integers. First, decide what functionality your
ADT should provide. Example 1.4 should give you some ideas. Then, spec-
ify your ADT in C++ in the form of an abstract class declaration, showing
the functions, their parameters, and their return types.

1.5 Briefly describe how integer variables are typically represented on a com-
puter. (Look up one’s complement and two’s complement arithmetic in an
introductory computer science textbook if you are not familiar with these.)
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Why does this representation for integers qualify as a data structure as de-
fined in Section 1.2?

1.6 Define an ADT for a two-dimensional array of integers. Specify precisely
the basic operations that can be performed on such arrays. Next, imagine an
application that stores an array with 1000 rows and 1000 columns, where less
than 10,000 of the array values are non-zero. Describe two different imple-
mentations for such arrays that would be more space efficient than a standard
two-dimensional array implementation requiring one million positions.

1.7 Imagine that you have been assigned to implement a sorting program. The
goal is to make this program general purpose, in that you don’t want to define
in advance what record or key types are used. Describe ways to generalize
a simple sorting algorithm (such as insertion sort, or any other sort you are
familiar with) to support this generalization.

1.8 Imagine that you have been assigned to implement a simple sequential search
on an array. The problem is that you want the search to be as general as pos-
sible. This means that you need to support arbitrary record and key types.
Describe ways to generalize the search function to support this goal. Con-
sider the possibility that the function will be used multiple times in the same
program, on differing record types. Consider the possibility that the func-
tion will need to be used on different keys (possibly with the same or differ-
ent types) of the same record. For example, a student data record might be
searched by zip code, by name, by salary, or by GPA.

1.9 Does every problem have an algorithm?
1.10 Does every algorithm have a C++ program?
1.11 Consider the design for a spelling checker program meant to run on a home

computer. The spelling checker should be able to handle quickly a document
of less than twenty pages. Assume that the spelling checker comes with a
dictionary of about 20,000 words. What primitive operations must be imple-
mented on the dictionary, and what is a reasonable time constraint for each
operation?

1.12 Imagine that you have been hired to design a database service containing
information about cities and towns in the United States, as described in Ex-
ample 1.2. Suggest two possible implementations for the database.

1.13 Imagine that you are given an array of records that is sorted with respect to
some key field contained in each record. Give two different algorithms for
searching the array to find the record with a specified key value. Which one
do you consider “better” and why?

1.14 How would you go about comparing two proposed algorithms for sorting an
array of integers? In particular,

(a) What would be appropriate measures of cost to use as a basis for com-
paring the two sorting algorithms?
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(b) What tests or analysis would you conduct to determine how the two
algorithms perform under these cost measures?

1.15 A common problem for compilers and text editors is to determine if the
parentheses (or other brackets) in a string are balanced and properly nested.
For example, the string “((())())()” contains properly nested pairs of paren-
theses, but the string “)()(” does not; and the string “())” does not contain
properly matching parentheses.

(a) Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false if otherwise. Hint: At no time
while scanning a legal string from left to right will you have encoun-
tered more right parentheses than left parentheses.

(b) Give an algorithm that returns the position in the string of the first of-
fending parenthesis if the string is not properly nested and balanced.
That is, if an excess right parenthesis is found, return its position; if
there are too many left parentheses, return the position of the first ex-
cess left parenthesis. Return −1 if the string is properly balanced and
nested.

1.16 A graph consists of a set of objects (called vertices) and a set of edges, where
each edge connects two vertices. Any given pair of vertices can be connected
by only one edge. Describe at least two different ways to represent the con-
nections defined by the vertices and edges of a graph.

1.17 Imagine that you are a shipping clerk for a large company. You have just
been handed about 1000 invoices, each of which is a single sheet of paper
with a large number in the upper right corner. The invoices must be sorted by
this number, in order from lowest to highest. Write down as many different
approaches to sorting the invoices as you can think of.

1.18 How would you sort an array of about 1000 integers from lowest value to
highest value? Write down at least five approaches to sorting the array. Do
not write algorithms in C++ or pseudocode. Just write a sentence or two for
each approach to describe how it would work.

1.19 Think of an algorithm to find the maximum value in an (unsorted) array.
Now, think of an algorithm to find the second largest value in the array.
Which is harder to implement? Which takes more time to run (as measured
by the number of comparisons performed)? Now, think of an algorithm to
find the third largest value. Finally, think of an algorithm to find the middle
value. Which is the most difficult of these problems to solve?

1.20 An unsorted list allows for constant-time insert by adding a new element at
the end of the list. Unfortunately, searching for the element with key valueX
requires a sequential search through the unsorted list until X is found, which
on average requires looking at half the list element. On the other hand, a
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sorted array-based list of n elements can be searched in log n time with a
binary search. Unfortunately, inserting a new element requires a lot of time
because many elements might be shifted in the array if we want to keep it
sorted. How might data be organized to support both insertion and search in
log n time?





2

Mathematical Preliminaries

This chapter presents mathematical notation, background, and techniques used
throughout the book. This material is provided primarily for review and reference.
You might wish to return to the relevant sections when you encounter unfamiliar
notation or mathematical techniques in later chapters.

Section 2.7 on estimation might be unfamiliar to many readers. Estimation is
not a mathematical technique, but rather a general engineering skill. It is enor-
mously useful to computer scientists doing design work, because any proposed
solution whose estimated resource requirements fall well outside the problem’s re-
source constraints can be discarded immediately, allowing time for greater analysis
of more promising solutions.

2.1 Sets and Relations

The concept of a set in the mathematical sense has wide application in computer
science. The notations and techniques of set theory are commonly used when de-
scribing and implementing algorithms because the abstractions associated with sets
often help to clarify and simplify algorithm design.

A set is a collection of distinguishable members or elements. The members
are typically drawn from some larger population known as the base type. Each
member of a set is either a primitive element of the base type or is a set itself.
There is no concept of duplication in a set. Each value from the base type is either
in the set or not in the set. For example, a set named P might consist of the three
integers 7, 11, and 42. In this case, P’s members are 7, 11, and 42, and the base
type is integer.

Figure 2.1 shows the symbols commonly used to express sets and their rela-
tionships. Here are some examples of this notation in use. First define two sets, P
and Q.

P = {2, 3, 5}, Q = {5, 10}.

25
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{1, 4} A set composed of the members 1 and 4
{x | x is a positive integer} A set definition using a set former

Example: the set of all positive integers
x ∈ P x is a member of set P
x /∈ P x is not a member of set P
∅ The null or empty set
|P| Cardinality: size of set P

or number of members for set P
P ⊆ Q, Q ⊇ P Set P is included in set Q,

set P is a subset of set Q,
set Q is a superset of set P

P ∪ Q Set Union:
all elements appearing in P OR Q

P ∩ Q Set Intersection:
all elements appearing in P AND Q

P − Q Set difference:
all elements of set P NOT in set Q

Figure 2.1 Set notation.

|P| = 3 (because P has three members) and |Q| = 2 (because Q has two members).
The union of P and Q, written P∪Q, is the set of elements in either P or Q, which
is {2, 3, 5, 10}. The intersection of P and Q, written P ∩ Q, is the set of elements
that appear in both P and Q, which is {5}. The set difference of P and Q, written
P − Q, is the set of elements that occur in P but not in Q, which is {2, 3}. Note
that P ∪ Q = Q ∪ P and that P ∩ Q = Q ∩ P, but in general P − Q 6= Q − P.
In this example, Q − P = {10}. Note that the set {4, 3, 5} is indistinguishable
from set P, because sets have no concept of order. Likewise, set {4, 3, 4, 5} is also
indistinguishable from P, because sets have no concept of duplicate elements.

The powerset of a set S is the set of all possible subsets for S. Consider the set
S = {a, b, c}. The powerset of S is

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

A collection of elements with no order (like a set), but with duplicate-valued el-
ements is called a bag.1 To distinguish bags from sets, I use square brackets []
around a bag’s elements. For example, bag [3, 4, 5, 4] is distinct from bag [3, 4, 5],
while set {3, 4, 5, 4} is indistinguishable from set {3, 4, 5}. However, bag [3, 4, 5,
4] is indistinguishable from bag [3, 4, 4, 5].

1The object referred to here as a bag is sometimes called a multilist. But, I reserve the term
multilist for a list that may contain sublists (see Section 12.1).
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A sequence is a collection of elements with an order, and which may contain
duplicate-valued elements. A sequence is also sometimes called a tuple or a vec-
tor. In a sequence, there is a 0th element, a 1st element, 2nd element, and so
on. I indicate a sequence by using angle brackets 〈〉 to enclose its elements. For
example, 〈3, 4, 5, 4〉 is a sequence. Note that sequence 〈3, 5, 4, 4〉 is distinct from
sequence 〈3, 4, 5, 4〉, and both are distinct from sequence 〈3, 4, 5〉.

A relation R over set S is a set of ordered pairs from S. As an example of a
relation, if S is {a, b, c}, then

{〈a, c〉, 〈b, c〉, 〈c, b〉}

is a relation, and
{〈a, a〉, 〈a, c〉, 〈b, b〉, 〈b, c〉, 〈c, c〉}

is a different relation. If tuple 〈x, y〉 is in relation R, we may use the infix notation
xRy. We often use relations such as the less than operator (<) on the natural
numbers, which includes ordered pairs such as 〈1, 3〉 and 〈2, 23〉, but not 〈3, 2〉 or
〈2, 2〉. Rather than writing the relationship in terms of ordered pairs, we typically
use an infix notation for such relations, writing 1 < 3.

Define the properties of relations as follows, withR a binary relation over set S.

• R is reflexive if aRa for all a ∈ S.
• R is symmetric if whenever aRb, then bRa, for all a, b ∈ S.
• R is antisymmetric if whenever aRb and bRa, then a = b, for all a, b ∈ S.
• R is transitive if whenever aRb and bRc, then aRc, for all a, b, c ∈ S.

As examples, for the natural numbers, < is antisymmetric (because there is
no case where aRb and bRa) and transitive; ≤ is reflexive, antisymmetric, and
transitive, and = is reflexive, symmetric (and antisymmetric!), and transitive. For
people, the relation “is a sibling of” is symmetric and transitive. If we define a
person to be a sibling of himself, then it is reflexive; if we define a person not to be
a sibling of himself, then it is not reflexive.

R is an equivalence relation on set S if it is reflexive, symmetric, and transitive.
An equivalence relation can be used to partition a set into equivalence classes. If
two elements a and b are equivalent to each other, we write a ≡ b. A partition of
a set S is a collection of subsets that are disjoint from each other and whose union
is S. An equivalence relation on set S partitions the set into subsets whose elements
are equivalent. See Section 6.2 for a discussion on how to represent equivalence
classes on a set. One application for disjoint sets appears in Section 11.5.2.

Example 2.1 For the integers, = is an equivalence relation that partitions
each element into a distinct subset. In other words, for any integer a, three
things are true.

1. a = a,
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2. if a = b then b = a, and
3. if a = b and b = c, then a = c.

Of course, for distinct integers a, b, and c there are never cases where
a = b, b = a, or b = c. So the claims that = is symmetric and transitive are
vacuously true (there are never examples in the relation where these events
occur). But because the requirements for symmetry and transitivity are not
violated, the relation is symmetric and transitive.

Example 2.2 If we clarify the definition of sibling to mean that a person
is a sibling of him- or herself, then the sibling relation is an equivalence
relation that partitions the set of people.

Example 2.3 We can use the modulus function (defined in the next sec-
tion) to define an equivalence relation. For the set of integers, use the mod-
ulus function to define a binary relation such that two numbers x and y are
in the relation if and only if x mod m = y mod m. Thus, for m = 4,
〈1, 5〉 is in the relation because 1 mod 4 = 5 mod 4. We see that modulus
used in this way defines an equivalence relation on the integers, and this re-
lation can be used to partition the integers into m equivalence classes. This
relation is an equivalence relation because

1. x mod m = x mod m for all x;
2. if x mod m = y mod m, then y mod m = x mod m; and
3. if x mod m = y mod m and y mod m = z mod m, then x mod
m = z mod m.

A binary relation is called a partial order if it is antisymmetric and transitive.2

The set on which the partial order is defined is called a partially ordered set or a
poset. Elements x and y of a set are comparable under a given relation if either
xRy or yRx. If every pair of distinct elements in a partial order are comparable,
then the order is called a total order or linear order.

Example 2.4 For the integers, relations < and ≤ define partial orders.
Operation < is a total order because, for every pair of integers x and y such
that x 6= y, either x < y or y < x. Likewise, ≤ is a total order because, for
every pair of integers x and y such that x 6= y, either x ≤ y or y ≤ x.

2Not all authors use this definition for partial order. I have seen at least three significantly different
definitions in the literature. I have selected the one that lets < and ≤ both define partial orders on the
integers, because this seems the most natural to me.
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Example 2.5 For the powerset of the integers, the subset operator defines
a partial order (because it is antisymmetric and transitive). For example,
{1, 2} ⊆ {1, 2, 3}. However, sets {1, 2} and {1, 3} are not comparable by
the subset operator, because neither is a subset of the other. Therefore, the
subset operator does not define a total order on the powerset of the integers.

2.2 Miscellaneous Notation

Units of measure: I use the following notation for units of measure. “B” will
be used as an abbreviation for bytes, “b” for bits, “KB” for kilobytes (210 =
1024 bytes), “MB” for megabytes (220 bytes), “GB” for gigabytes (230 bytes), and
“ms” for milliseconds (a millisecond is 1

1000 of a second). Spaces are not placed be-
tween the number and the unit abbreviation when a power of two is intended. Thus
a disk drive of size 25 gigabytes (where a gigabyte is intended as 230 bytes) will be
written as “25GB.” Spaces are used when a decimal value is intended. An amount
of 2000 bits would therefore be written “2 Kb” while “2Kb” represents 2048 bits.
2000 milliseconds is written as 2000 ms. Note that in this book large amounts of
storage are nearly always measured in powers of two and times in powers of ten.

Factorial function: The factorial function, written n! for n an integer greater
than 0, is the product of the integers between 1 and n, inclusive. Thus, 5! =
1 · 2 · 3 · 4 · 5 = 120. As a special case, 0! = 1. The factorial function grows
quickly as n becomes larger. Because computing the factorial function directly
is a time-consuming process, it can be useful to have an equation that provides a
good approximation. Stirling’s approximation states that n! ≈

√
2πn(ne )n, where

e ≈ 2.71828 (e is the base for the system of natural logarithms).3 Thus we see that
while n! grows slower than nn (because

√
2πn/en < 1), it grows faster than cn for

any positive integer constant c.

Permutations: A permutation of a sequence S is simply the members of S ar-
ranged in some order. For example, a permutation of the integers 1 through n
would be those values arranged in some order. If the sequence contains n distinct
members, then there are n! different permutations for the sequence. This is because
there are n choices for the first member in the permutation; for each choice of first
member there are n − 1 choices for the second member, and so on. Sometimes
one would like to obtain a random permutation for a sequence, that is, one of the
n! possible permutations is selected in such a way that each permutation has equal
probability of being selected. A simple C++ function for generating a random per-
mutation is as follows. Here, the n values of the sequence are stored in positions 0

3The symbol “≈” means “approximately equal.”
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through n − 1 of array A, function swap(A, i, j) exchanges elements i and
j in array A, and Random(n) returns an integer value in the range 0 to n− 1 (see
the Appendix for more information on swap and Random).

// Randomly permute the "n" values of array "A"
template<typename E>
void permute(E A[], int n) {

for (int i=n; i>0; i--)
swap(A, i-1, Random(i));

}

Boolean variables: A Boolean variable is a variable (of type bool in C++)
that takes on one of the two values true and false. These two values are often
associated with the values 1 and 0, respectively, although there is no reason why
this needs to be the case. It is poor programming practice to rely on the corre-
spondence between 0 and false, because these are logically distinct objects of
different types.

Logic Notation: We will occasionally make use of the notation of symbolic or
Boolean logic. A ⇒ B means “A implies B” or “If A then B.” A ⇔ B means “A
if and only if B” or “A is equivalent to B.” A ∨ B means “A or B” (useful both in
the context of symbolic logic or when performing a Boolean operation). A ∧ B
means “A and B.” ∼A and A both mean “not A” or the negation of A where A is a
Boolean variable.

Floor and ceiling: The floor of x (written bxc) takes real value x and returns the
greatest integer ≤ x. For example, b3.4c = 3, as does b3.0c, while b−3.4c = −4
and b−3.0c = −3. The ceiling of x (written dxe) takes real value x and returns
the least integer ≥ x. For example, d3.4e = 4, as does d4.0e, while d−3.4e =
d−3.0e = −3.

Modulus operator: The modulus (or mod) function returns the remainder of an
integer division. Sometimes written n mod m in mathematical expressions, the
syntax for the C++ modulus operator is n % m. From the definition of remainder,
n mod m is the integer r such that n = qm + r for q an integer, and |r| < |m|.
Therefore, the result of n mod m must be between 0 and m− 1 when n and m are
positive integers. For example, 5 mod 3 = 2; 25 mod 3 = 1, 5 mod 7 = 5, and
5 mod 5 = 0.

There is more than one way to assign values to q and r, depending on how in-
teger division is interpreted. The most common mathematical definition computes
the mod function as n mod m = n − mbn/mc. In this case, −3 mod 5 = 2.
However, Java and C++ compilers typically use the underlying processor’s ma-
chine instruction for computing integer arithmetic. On many computers this is done
by truncating the resulting fraction, meaning n mod m = n − m(trunc(n/m)).
Under this definition, −3 mod 5 = −3.
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Unfortunately, for many applications this is not what the user wants or expects.
For example, many hash systems will perform some computation on a record’s key
value and then take the result modulo the hash table size. The expectation here
would be that the result is a legal index into the hash table, not a negative number.
Implementers of hash functions must either insure that the result of the computation
is always positive, or else add the hash table size to the result of the modulo function
when that result is negative.

2.3 Logarithms

A logarithm of base b for value y is the power to which b is raised to get y. Nor-
mally, this is written as logb y = x. Thus, if logb y = x then bx = y, and blogby = y.

Logarithms are used frequently by programmers. Here are two typical uses.

Example 2.6 Many programs require an encoding for a collection of ob-
jects. What is the minimum number of bits needed to represent n distinct
code values? The answer is dlog2 ne bits. For example, if you have 1000
codes to store, you will require at least dlog2 1000e = 10 bits to have 1000
different codes (10 bits provide 1024 distinct code values).

Example 2.7 Consider the binary search algorithm for finding a given
value within an array sorted by value from lowest to highest. Binary search
first looks at the middle element and determines if the value being searched
for is in the upper half or the lower half of the array. The algorithm then
continues splitting the appropriate subarray in half until the desired value
is found. (Binary search is described in more detail in Section 3.5.) How
many times can an array of size n be split in half until only one element
remains in the final subarray? The answer is dlog2 ne times.

In this book, nearly all logarithms used have a base of two. This is because
data structures and algorithms most often divide things in half, or store codes with
binary bits. Whenever you see the notation log n in this book, either log2 n is meant
or else the term is being used asymptotically and so the actual base does not matter.
Logarithms using any base other than two will show the base explicitly.

Logarithms have the following properties, for any positive values of m, n, and
r, and any positive integers a and b.

1. log(nm) = log n+ logm.
2. log(n/m) = logn− logm.
3. log(nr) = r log n.
4. loga n = logb n/ logb a.
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The first two properties state that the logarithm of two numbers multiplied (or
divided) can be found by adding (or subtracting) the logarithms of the two num-
bers.4 Property (3) is simply an extension of property (1). Property (4) tells us that,
for variable n and any two integer constants a and b, loga n and logb n differ by
the constant factor logb a, regardless of the value of n. Most runtime analyses in
this book are of a type that ignores constant factors in costs. Property (4) says that
such analyses need not be concerned with the base of the logarithm, because this
can change the total cost only by a constant factor. Note that 2logn = n.

When discussing logarithms, exponents often lead to confusion. Property (3)
tells us that log n2 = 2 log n. How do we indicate the square of the logarithm
(as opposed to the logarithm of n2)? This could be written as (log n)2, but it is
traditional to use log2 n. On the other hand, we might want to take the logarithm of
the logarithm of n. This is written log logn.

A special notation is used in the rare case when we need to know how many
times we must take the log of a number before we reach a value ≤ 1. This quantity
is written log∗ n. For example, log∗ 1024 = 4 because log 1024 = 10, log 10 ≈
3.33, log 3.33 ≈ 1.74, and log 1.74 < 1, which is a total of 4 log operations.

2.4 Summations and Recurrences

Most programs contain loop constructs. When analyzing running time costs for
programs with loops, we need to add up the costs for each time the loop is executed.
This is an example of a summation. Summations are simply the sum of costs for
some function applied to a range of parameter values. Summations are typically
written with the following “Sigma” notation:

n∑
i=1

f(i).

This notation indicates that we are summing the value of f(i) over some range of
(integer) values. The parameter to the expression and its initial value are indicated
below the

∑
symbol. Here, the notation i = 1 indicates that the parameter is i and

that it begins with the value 1. At the top of the
∑

symbol is the expression n. This
indicates the maximum value for the parameter i. Thus, this notation means to sum
the values of f(i) as i ranges across the integers from 1 through n. This can also be

4These properties are the idea behind the slide rule. Adding two numbers can be viewed as joining
two lengths together and measuring their combined length. Multiplication is not so easily done.
However, if the numbers are first converted to the lengths of their logarithms, then those lengths can
be added and the inverse logarithm of the resulting length gives the answer for the multiplication (this
is simply logarithm property (1)). A slide rule measures the length of the logarithm for the numbers,
lets you slide bars representing these lengths to add up the total length, and finally converts this total
length to the correct numeric answer by taking the inverse of the logarithm for the result.



Sec. 2.4 Summations and Recurrences 33

written f(1) + f(2) + · · · + f(n− 1) + f(n). Within a sentence, Sigma notation
is typeset as

∑n
i=1 f(i).

Given a summation, you often wish to replace it with an algebraic equation
with the same value as the summation. This is known as a closed-form solution,
and the process of replacing the summation with its closed-form solution is known
as solving the summation. For example, the summation

∑n
i=1 1 is simply the ex-

pression “1” summed n times (remember that i ranges from 1 to n). Because the
sum of n 1s is n, the closed-form solution is n. The following is a list of useful
summations, along with their closed-form solutions.

n∑
i=1

i =
n(n+ 1)

2
. (2.1)

n∑
i=1

i2 =
2n3 + 3n2 + n

6
=
n(2n+ 1)(n+ 1)

6
. (2.2)

logn∑
i=1

n = n log n. (2.3)

∞∑
i=0

ai =
1

1− a
for 0 < a < 1. (2.4)

n∑
i=0

ai =
an+1 − 1

a− 1
for a 6= 1. (2.5)

As special cases to Equation 2.5,
n∑
i=1

1

2i
= 1− 1

2n
, (2.6)

and
n∑
i=0

2i = 2n+1 − 1. (2.7)

As a corollary to Equation 2.7,
logn∑
i=0

2i = 2logn+1 − 1 = 2n− 1. (2.8)

Finally,
n∑
i=1

i

2i
= 2− n+ 2

2n
. (2.9)

The sum of reciprocals from 1 to n, called the Harmonic Series and written
Hn, has a value between loge n and loge n+ 1. To be more precise, as n grows, the
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summation grows closer to

Hn ≈ loge n+ γ +
1

2n
, (2.10)

where γ is Euler’s constant and has the value 0.5772...
Most of these equalities can be proved easily by mathematical induction (see

Section 2.6.3). Unfortunately, induction does not help us derive a closed-form solu-
tion. It only confirms when a proposed closed-form solution is correct. Techniques
for deriving closed-form solutions are discussed in Section 14.1.

The running time for a recursive algorithm is most easily expressed by a recur-
sive expression because the total time for the recursive algorithm includes the time
to run the recursive call(s). A recurrence relation defines a function by means
of an expression that includes one or more (smaller) instances of itself. A classic
example is the recursive definition for the factorial function:

n! = (n− 1)! · n for n > 1; 1! = 0! = 1.

Another standard example of a recurrence is the Fibonacci sequence:

Fib(n) = Fib(n− 1) + Fib(n− 2) for n > 2; Fib(1) = Fib(2) = 1.

From this definition, the first seven numbers of the Fibonacci sequence are

1, 1, 2, 3, 5, 8, and 13.

Notice that this definition contains two parts: the general definition for Fib(n) and
the base cases for Fib(1) and Fib(2). Likewise, the definition for factorial contains
a recursive part and base cases.

Recurrence relations are often used to model the cost of recursive functions. For
example, the number of multiplications required by function fact of Section 2.5
for an input of size n will be zero when n = 0 or n = 1 (the base cases), and it will
be one plus the cost of calling fact on a value of n− 1. This can be defined using
the following recurrence:

T(n) = T(n− 1) + 1 for n > 1; T(0) = T(1) = 0.

As with summations, we typically wish to replace the recurrence relation with
a closed-form solution. One approach is to expand the recurrence by replacing any
occurrences of T on the right-hand side with its definition.

Example 2.8 If we expand the recurrence T(n) = T(n− 1) + 1, we get

T(n) = T(n− 1) + 1

= (T(n− 2) + 1) + 1.
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We can expand the recurrence as many steps as we like, but the goal is
to detect some pattern that will permit us to rewrite the recurrence in terms
of a summation. In this example, we might notice that

(T(n− 2) + 1) + 1 = T(n− 2) + 2

and if we expand the recurrence again, we get

T(n) = T(n− 2) + 2 = T(n− 3) + 1 + 2 = T(n− 3) + 3

which generalizes to the pattern T(n) = T(n− i) + i. We might conclude
that

T(n) = T(n− (n− 1)) + (n− 1)

= T(1) + n− 1

= n− 1.

Because we have merely guessed at a pattern and not actually proved
that this is the correct closed form solution, we should use an induction
proof to complete the process (see Example 2.13).

Example 2.9 A slightly more complicated recurrence is

T(n) = T(n− 1) + n; T (1) = 1.

Expanding this recurrence a few steps, we get

T(n) = T(n− 1) + n

= T(n− 2) + (n− 1) + n

= T(n− 3) + (n− 2) + (n− 1) + n.

We should then observe that this recurrence appears to have a pattern that
leads to

T(n) = T(n− (n− 1)) + (n− (n− 2)) + · · ·+ (n− 1) + n

= 1 + 2 + · · ·+ (n− 1) + n.

This is equivalent to the summation
∑n

i=1 i, for which we already know the
closed-form solution.

Techniques to find closed-form solutions for recurrence relations are discussed
in Section 14.2. Prior to Chapter 14, recurrence relations are used infrequently in
this book, and the corresponding closed-form solution and an explanation for how
it was derived will be supplied at the time of use.
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2.5 Recursion

An algorithm is recursive if it calls itself to do part of its work. For this approach
to be successful, the “call to itself” must be on a smaller problem then the one
originally attempted. In general, a recursive algorithm must have two parts: the
base case, which handles a simple input that can be solved without resorting to
a recursive call, and the recursive part which contains one or more recursive calls
to the algorithm where the parameters are in some sense “closer” to the base case
than those of the original call. Here is a recursive C++ function to compute the
factorial of n. A trace of fact’s execution for a small value of n is presented in
Section 4.2.4.

long fact(int n) { // Compute n! recursively
// To fit n! into a long variable, we require n <= 12
Assert((n >= 0) && (n <= 12), "Input out of range");
if (n <= 1) return 1; // Base case: return base solution
return n * fact(n-1); // Recursive call for n > 1

}

The first two lines of the function constitute the base cases. If n ≤ 1, then one
of the base cases computes a solution for the problem. If n > 1, then fact calls
a function that knows how to find the factorial of n − 1. Of course, the function
that knows how to compute the factorial of n − 1 happens to be fact itself. But
we should not think too hard about this while writing the algorithm. The design
for recursive algorithms can always be approached in this way. First write the base
cases. Then think about solving the problem by combining the results of one or
more smaller — but similar — subproblems. If the algorithm you write is correct,
then certainly you can rely on it (recursively) to solve the smaller subproblems.
The secret to success is: Do not worry about how the recursive call solves the
subproblem. Simply accept that it will solve it correctly, and use this result to in
turn correctly solve the original problem. What could be simpler?

Recursion has no counterpart in everyday, physical-world problem solving. The
concept can be difficult to grasp because it requires you to think about problems in
a new way. To use recursion effectively, it is necessary to train yourself to stop
analyzing the recursive process beyond the recursive call. The subproblems will
take care of themselves. You just worry about the base cases and how to recombine
the subproblems.

The recursive version of the factorial function might seem unnecessarily com-
plicated to you because the same effect can be achieved by using a while loop.
Here is another example of recursion, based on a famous puzzle called “Towers of
Hanoi.” The natural algorithm to solve this problem has multiple recursive calls. It
cannot be rewritten easily using while loops.

The Towers of Hanoi puzzle begins with three poles and n rings, where all rings
start on the leftmost pole (labeled Pole 1). The rings each have a different size, and
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(a) (b)

Figure 2.2 Towers of Hanoi example. (a) The initial conditions for a problem
with six rings. (b) A necessary intermediate step on the road to a solution.

are stacked in order of decreasing size with the largest ring at the bottom, as shown
in Figure 2.2(a). The problem is to move the rings from the leftmost pole to the
rightmost pole (labeled Pole 3) in a series of steps. At each step the top ring on
some pole is moved to another pole. There is one limitation on where rings may be
moved: A ring can never be moved on top of a smaller ring.

How can you solve this problem? It is easy if you don’t think too hard about
the details. Instead, consider that all rings are to be moved from Pole 1 to Pole 3.
It is not possible to do this without first moving the bottom (largest) ring to Pole 3.
To do that, Pole 3 must be empty, and only the bottom ring can be on Pole 1.
The remaining n − 1 rings must be stacked up in order on Pole 2, as shown in
Figure 2.2(b). How can you do this? Assume that a function X is available to
solve the problem of moving the top n− 1 rings from Pole 1 to Pole 2. Then move
the bottom ring from Pole 1 to Pole 3. Finally, again use function X to move the
remaining n− 1 rings from Pole 2 to Pole 3. In both cases, “function X” is simply
the Towers of Hanoi function called on a smaller version of the problem.

The secret to success is relying on the Towers of Hanoi algorithm to do the
work for you. You need not be concerned about the gory details of how the Towers
of Hanoi subproblem will be solved. That will take care of itself provided that two
things are done. First, there must be a base case (what to do if there is only one
ring) so that the recursive process will not go on forever. Second, the recursive call
to Towers of Hanoi can only be used to solve a smaller problem, and then only one
of the proper form (one that meets the original definition for the Towers of Hanoi
problem, assuming appropriate renaming of the poles).

Here is an implementation for the recursive Towers of Hanoi algorithm. Func-
tion move(start, goal) takes the top ring from Pole start and moves it to
Pole goal. If move were to print the values of its parameters, then the result of
calling TOH would be a list of ring-moving instructions that solves the problem.
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void TOH(int n, Pole start, Pole goal, Pole temp) {
if (n == 0) return; // Base case
TOH(n-1, start, temp, goal); // Recursive call: n-1 rings
move(start, goal); // Move bottom disk to goal
TOH(n-1, temp, goal, start); // Recursive call: n-1 rings

}

Those who are unfamiliar with recursion might find it hard to accept that it is
used primarily as a tool for simplifying the design and description of algorithms.
A recursive algorithm usually does not yield the most efficient computer program
for solving the problem because recursion involves function calls, which are typi-
cally more expensive than other alternatives such as a while loop. However, the
recursive approach usually provides an algorithm that is reasonably efficient in the
sense discussed in Chapter 3. (But not always! See Exercise 2.11.) If necessary,
the clear, recursive solution can later be modified to yield a faster implementation,
as described in Section 4.2.4.

Many data structures are naturally recursive, in that they can be defined as be-
ing made up of self-similar parts. Tree structures are an example of this. Thus,
the algorithms to manipulate such data structures are often presented recursively.
Many searching and sorting algorithms are based on a strategy of divide and con-
quer. That is, a solution is found by breaking the problem into smaller (similar)
subproblems, solving the subproblems, then combining the subproblem solutions
to form the solution to the original problem. This process is often implemented
using recursion. Thus, recursion plays an important role throughout this book, and
many more examples of recursive functions will be given.

2.6 Mathematical Proof Techniques

Solving any problem has two distinct parts: the investigation and the argument.
Students are too used to seeing only the argument in their textbooks and lectures.
But to be successful in school (and in life after school), one needs to be good at
both, and to understand the differences between these two phases of the process.
To solve the problem, you must investigate successfully. That means engaging the
problem, and working through until you find a solution. Then, to give the answer
to your client (whether that “client” be your instructor when writing answers on
a homework assignment or exam, or a written report to your boss), you need to
be able to make the argument in a way that gets the solution across clearly and
succinctly. The argument phase involves good technical writing skills — the ability
to make a clear, logical argument.

Being conversant with standard proof techniques can help you in this process.
Knowing how to write a good proof helps in many ways. First, it clarifies your
thought process, which in turn clarifies your explanations. Second, if you use one of
the standard proof structures such as proof by contradiction or an induction proof,
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then both you and your reader are working from a shared understanding of that
structure. That makes for less complexity to your reader to understand your proof,
because the reader need not decode the structure of your argument from scratch.

This section briefly introduces three commonly used proof techniques: (i) de-
duction, or direct proof; (ii) proof by contradiction, and (iii) proof by mathematical
induction.

2.6.1 Direct Proof

In general, a direct proof is just a “logical explanation.” A direct proof is some-
times referred to as an argument by deduction. This is simply an argument in terms
of logic. Often written in English with words such as “if ... then,” it could also
be written with logic notation such as “P ⇒ Q.” Even if we don’t wish to use
symbolic logic notation, we can still take advantage of fundamental theorems of
logic to structure our arguments. For example, if we want to prove that P and Q
are equivalent, we can first prove P ⇒ Q and then prove Q⇒ P .

In some domains, proofs are essentially a series of state changes from a start
state to an end state. Formal predicate logic can be viewed in this way, with the vari-
ous “rules of logic” being used to make the changes from one formula or combining
a couple of formulas to make a new formula on the route to the destination. Sym-
bolic manipulations to solve integration problems in introductory calculus classes
are similar in spirit, as are high school geometry proofs.

2.6.2 Proof by Contradiction

The simplest way to disprove a theorem or statement is to find a counterexample
to the theorem. Unfortunately, no number of examples supporting a theorem is
sufficient to prove that the theorem is correct. However, there is an approach that
is vaguely similar to disproving by counterexample, called Proof by Contradiction.
To prove a theorem by contradiction, we first assume that the theorem is false. We
then find a logical contradiction stemming from this assumption. If the logic used
to find the contradiction is correct, then the only way to resolve the contradiction is
to recognize that the assumption that the theorem is false must be incorrect. That
is, we conclude that the theorem must be true.

Example 2.10 Here is a simple proof by contradiction.

Theorem 2.1 There is no largest integer.
Proof: Proof by contradiction.

Step 1. Contrary assumption: Assume that there is a largest integer.
Call it B (for “biggest”).

Step 2. Show this assumption leads to a contradiction: Consider
C = B + 1. C is an integer because it is the sum of two integers. Also,
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C > B, which means that B is not the largest integer after all. Thus, we
have reached a contradiction. The only flaw in our reasoning is the initial
assumption that the theorem is false. Thus, we conclude that the theorem is
correct. 2

A related proof technique is proving the contrapositive. We can prove that
P ⇒ Q by proving (not Q)⇒ (not P ).

2.6.3 Proof by Mathematical Induction

Mathematical induction can be used to prove a wide variety of theorems. Induction
also provides a useful way to think about algorithm design, because it encourages
you to think about solving a problem by building up from simple subproblems.
Induction can help to prove that a recursive function produces the correct result..
Understanding recursion is a big step toward understanding induction, and vice
versa, since they work by essentially the same process.

Within the context of algorithm analysis, one of the most important uses for
mathematical induction is as a method to test a hypothesis. As explained in Sec-
tion 2.4, when seeking a closed-form solution for a summation or recurrence we
might first guess or otherwise acquire evidence that a particular formula is the cor-
rect solution. If the formula is indeed correct, it is often an easy matter to prove
that fact with an induction proof.

Let Thrm be a theorem to prove, and express Thrm in terms of a positive
integer parameter n. Mathematical induction states that Thrm is true for any value
of parameter n (for n ≥ c, where c is some constant) if the following two conditions
are true:

1. Base Case: Thrm holds for n = c, and
2. Induction Step: If Thrm holds for n− 1, then Thrm holds for n.

Proving the base case is usually easy, typically requiring that some small value
such as 1 be substituted for n in the theorem and applying simple algebra or logic
as necessary to verify the theorem. Proving the induction step is sometimes easy,
and sometimes difficult. An alternative formulation of the induction step is known
as strong induction. The induction step for strong induction is:

2a. Induction Step: If Thrm holds for all k, c ≤ k < n, then Thrm holds for n.

Proving either variant of the induction step (in conjunction with verifying the base
case) yields a satisfactory proof by mathematical induction.

The two conditions that make up the induction proof combine to demonstrate
that Thrm holds for n = 2 as an extension of the fact that Thrm holds for n = 1.
This fact, combined again with condition (2) or (2a), indicates that Thrm also holds
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for n = 3, and so on. Thus, Thrm holds for all values of n (larger than the base
cases) once the two conditions have been proved.

What makes mathematical induction so powerful (and so mystifying to most
people at first) is that we can take advantage of the assumption that Thrm holds
for all values less than n as a tool to help us prove that Thrm holds for n. This is
known as the induction hypothesis. Having this assumption to work with makes
the induction step easier to prove than tackling the original theorem itself. Being
able to rely on the induction hypothesis provides extra information that we can
bring to bear on the problem.

Recursion and induction have many similarities. Both are anchored on one or
more base cases. A recursive function relies on the ability to call itself to get the
answer for smaller instances of the problem. Likewise, induction proofs rely on the
truth of the induction hypothesis to prove the theorem. The induction hypothesis
does not come out of thin air. It is true if and only if the theorem itself is true, and
therefore is reliable within the proof context. Using the induction hypothesis it do
work is exactly the same as using a recursive call to do work.

Example 2.11 Here is a sample proof by mathematical induction. Call
the sum of the first n positive integers S(n).

Theorem 2.2 S(n) = n(n+ 1)/2.
Proof: The proof is by mathematical induction.

1. Check the base case. For n = 1, verify that S(1) = 1(1 + 1)/2. S(1)
is simply the sum of the first positive number, which is 1. Because
1(1 + 1)/2 = 1, the formula is correct for the base case.

2. State the induction hypothesis. The induction hypothesis is

S(n− 1) =
n−1∑
i=1

i =
(n− 1)((n− 1) + 1)

2
=

(n− 1)(n)

2
.

3. Use the assumption from the induction hypothesis for n − 1 to
show that the result is true for n. The induction hypothesis states
that S(n− 1) = (n − 1)(n)/2, and because S(n) = S(n− 1) + n,
we can substitute for S(n− 1) to get

n∑
i=1

i =

(
n−1∑
i=1

i

)
+ n =

(n− 1)(n)

2
+ n

=
n2 − n+ 2n

2
=
n(n+ 1)

2
.

Thus, by mathematical induction,

S(n) =
n∑
i=1

i = n(n+ 1)/2.
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2

Note carefully what took place in this example. First we cast S(n) in terms
of a smaller occurrence of the problem: S(n) = S(n− 1) + n. This is important
because once S(n− 1) comes into the picture, we can use the induction hypothesis
to replace S(n− 1) with (n − 1)(n)/2. From here, it is simple algebra to prove
that S(n− 1) + n equals the right-hand side of the original theorem.

Example 2.12 Here is another simple proof by induction that illustrates
choosing the proper variable for induction. We wish to prove by induction
that the sum of the first n positive odd numbers is n2. First we need a way
to describe the nth odd number, which is simply 2n − 1. This also allows
us to cast the theorem as a summation.

Theorem 2.3
∑n

i=1(2i− 1) = n2.
Proof: The base case of n = 1 yields 1 = 12, which is true. The induction
hypothesis is

n−1∑
i=1

(2i− 1) = (n− 1)2.

We now use the induction hypothesis to show that the theorem holds true
for n. The sum of the first n odd numbers is simply the sum of the first
n− 1 odd numbers plus the nth odd number. In the second line below, we
will use the induction hypothesis to replace the partial summation (shown
in brackets in the first line) with its closed-form solution. After that, algebra
takes care of the rest.

n∑
i=1

(2i− 1) =

[
n−1∑
i=1

(2i− 1)

]
+ 2n− 1

= [(n− 1)2] + 2n− 1

= n2 − 2n+ 1 + 2n− 1

= n2.

Thus, by mathematical induction,
∑n

i=1(2i− 1) = n2. 2

Example 2.13 This example shows how we can use induction to prove
that a proposed closed-form solution for a recurrence relation is correct.

Theorem 2.4 The recurrence relation T(n) = T(n−1)+1; T(1) = 0
has closed-form solution T(n) = n− 1.
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Proof: To prove the base case, we observe that T(1) = 1 − 1 = 0. The
induction hypothesis is that T(n− 1) = n − 2. Combining the definition
of the recurrence with the induction hypothesis, we see immediately that

T(n) = T(n− 1) + 1 = n− 2 + 1 = n− 1

for n > 1. Thus, we have proved the theorem correct by mathematical
induction. 2

Example 2.14 This example uses induction without involving summa-
tions or other equations. It also illustrates a more flexible use of base cases.

Theorem 2.5 2¢ and 5¢ stamps can be used to form any value (for values
≥ 4).
Proof: The theorem defines the problem for values ≥ 4 because it does
not hold for the values 1 and 3. Using 4 as the base case, a value of 4¢
can be made from two 2¢ stamps. The induction hypothesis is that a value
of n − 1 can be made from some combination of 2¢ and 5¢ stamps. We
now use the induction hypothesis to show how to get the value n from 2¢
and 5¢ stamps. Either the makeup for value n − 1 includes a 5¢ stamp, or
it does not. If so, then replace a 5¢ stamp with three 2¢ stamps. If not,
then the makeup must have included at least two 2¢ stamps (because it is
at least of size 4 and contains only 2¢ stamps). In this case, replace two of
the 2¢ stamps with a single 5¢ stamp. In either case, we now have a value
of n made up of 2¢ and 5¢ stamps. Thus, by mathematical induction, the
theorem is correct. 2

Example 2.15 Here is an example using strong induction.

Theorem 2.6 For n > 1, n is divisible by some prime number.
Proof: For the base case, choose n = 2. 2 is divisible by the prime num-
ber 2. The induction hypothesis is that any value a, 2 ≤ a < n, is divisible
by some prime number. There are now two cases to consider when proving
the theorem for n. If n is a prime number, then n is divisible by itself. If n
is not a prime number, then n = a× b for a and b, both integers less than
n but greater than 1. The induction hypothesis tells us that a is divisible by
some prime number. That same prime number must also divide n. Thus,
by mathematical induction, the theorem is correct. 2
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Figure 2.3 A two-coloring for the regions formed by three lines in the plane.

Our next example of mathematical induction proves a theorem from geometry.
It also illustrates a standard technique of induction proof where we take n objects
and remove some object to use the induction hypothesis.

Example 2.16 Define a two-coloring for a set of regions as a way of as-
signing one of two colors to each region such that no two regions sharing a
side have the same color. For example, a chessboard is two-colored. Fig-
ure 2.3 shows a two-coloring for the plane with three lines. We will assume
that the two colors to be used are black and white.

Theorem 2.7 The set of regions formed by n infinite lines in the plane can
be two-colored.
Proof: Consider the base case of a single infinite line in the plane. This line
splits the plane into two regions. One region can be colored black and the
other white to get a valid two-coloring. The induction hypothesis is that the
set of regions formed by n − 1 infinite lines can be two-colored. To prove
the theorem for n, consider the set of regions formed by the n − 1 lines
remaining when any one of the n lines is removed. By the induction hy-
pothesis, this set of regions can be two-colored. Now, put the nth line back.
This splits the plane into two half-planes, each of which (independently)
has a valid two-coloring inherited from the two-coloring of the plane with
n − 1 lines. Unfortunately, the regions newly split by the nth line violate
the rule for a two-coloring. Take all regions on one side of the nth line and
reverse their coloring (after doing so, this half-plane is still two-colored).
Those regions split by the nth line are now properly two-colored, because
the part of the region to one side of the line is now black and the region
to the other side is now white. Thus, by mathematical induction, the entire
plane is two-colored. 2
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Compare the proof of Theorem 2.7 with that of Theorem 2.5. For Theorem 2.5,
we took a collection of stamps of size n − 1 (which, by the induction hypothesis,
must have the desired property) and from that “built” a collection of size n that
has the desired property. We therefore proved the existence of some collection of
stamps of size n with the desired property.

For Theorem 2.7 we must prove that any collection of n lines has the desired
property. Thus, our strategy is to take an arbitrary collection of n lines, and “re-
duce” it so that we have a set of lines that must have the desired property because
it matches the induction hypothesis. From there, we merely need to show that re-
versing the original reduction process preserves the desired property.

In contrast, consider what is required if we attempt to “build” from a set of lines
of size n − 1 to one of size n. We would have great difficulty justifying that all
possible collections of n lines are covered by our building process. By reducing
from an arbitrary collection of n lines to something less, we avoid this problem.

This section’s final example shows how induction can be used to prove that a
recursive function produces the correct result.

Example 2.17 We would like to prove that function fact does indeed
compute the factorial function. There are two distinct steps to such a proof.
The first is to prove that the function always terminates. The second is to
prove that the function returns the correct value.

Theorem 2.8 Function fact will terminate for any value of n.
Proof: For the base case, we observe that fact will terminate directly
whenever n ≤ 0. The induction hypothesis is that fact will terminate for
n − 1. For n, we have two possibilities. One possibility is that n ≥ 12.
In that case, fact will terminate directly because it will fail its assertion
test. Otherwise, fact will make a recursive call to fact(n-1). By the
induction hypothesis, fact(n-1) must terminate. 2

Theorem 2.9 Function fact does compute the factorial function for any
value in the range 0 to 12.
Proof: To prove the base case, observe that when n = 0 or n = 1,
fact(n) returns the correct value of 1. The induction hypothesis is that
fact(n-1) returns the correct value of (n− 1)!. For any value n within
the legal range, fact(n) returns n ∗ fact(n-1). By the induction hy-
pothesis, fact(n-1) = (n− 1)!, and because n ∗ (n− 1)! = n!, we have
proved that fact(n) produces the correct result. 2

We can use a similar process to prove many recursive programs correct. The
general form is to show that the base cases perform correctly, and then to use the
induction hypothesis to show that the recursive step also produces the correct result.
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Prior to this, we must prove that the function always terminates, which might also
be done using an induction proof.

2.7 Estimation

One of the most useful life skills that you can gain from your computer science
training is the ability to perform quick estimates. This is sometimes known as “back
of the napkin” or “back of the envelope” calculation. Both nicknames suggest
that only a rough estimate is produced. Estimation techniques are a standard part
of engineering curricula but are often neglected in computer science. Estimation
is no substitute for rigorous, detailed analysis of a problem, but it can serve to
indicate when a rigorous analysis is warranted: If the initial estimate indicates that
the solution is unworkable, then further analysis is probably unnecessary.

Estimation can be formalized by the following three-step process:

1. Determine the major parameters that affect the problem.
2. Derive an equation that relates the parameters to the problem.
3. Select values for the parameters, and apply the equation to yield an estimated

solution.

When doing estimations, a good way to reassure yourself that the estimate is
reasonable is to do it in two different ways. In general, if you want to know what
comes out of a system, you can either try to estimate that directly, or you can
estimate what goes into the system (assuming that what goes in must later come
out). If both approaches (independently) give similar answers, then this should
build confidence in the estimate.

When calculating, be sure that your units match. For example, do not add feet
and pounds. Verify that the result is in the correct units. Always keep in mind that
the output of a calculation is only as good as its input. The more uncertain your
valuation for the input parameters in Step 3, the more uncertain the output value.
However, back of the envelope calculations are often meant only to get an answer
within an order of magnitude, or perhaps within a factor of two. Before doing an
estimate, you should decide on acceptable error bounds, such as within 25%, within
a factor of two, and so forth. Once you are confident that an estimate falls within
your error bounds, leave it alone! Do not try to get a more precise estimate than
necessary for your purpose.

Example 2.18 How many library bookcases does it take to store books
containing one million pages? I estimate that a 500-page book requires
one inch on the library shelf (it will help to look at the size of any handy
book), yielding about 200 feet of shelf space for one million pages. If a
shelf is 4 feet wide, then 50 shelves are required. If a bookcase contains
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5 shelves, this yields about 10 library bookcases. To reach this conclusion,
I estimated the number of pages per inch, the width of a shelf, and the
number of shelves in a bookcase. None of my estimates are likely to be
precise, but I feel confident that my answer is correct to within a factor of
two. (After writing this, I went to Virginia Tech’s library and looked at
some real bookcases. They were only about 3 feet wide, but typically had
7 shelves for a total of 21 shelf-feet. So I was correct to within 10% on
bookcase capacity, far better than I expected or needed. One of my selected
values was too high, and the other too low, which canceled out the errors.)

Example 2.19 Is it more economical to buy a car that gets 20 miles per
gallon, or one that gets 30 miles per gallon but costs $3000 more? The
typical car is driven about 12,000 miles per year. If gasoline costs $3/gallon,
then the yearly gas bill is $1800 for the less efficient car and $1200 for the
more efficient car. If we ignore issues such as the payback that would be
received if we invested $3000 in a bank, it would take 5 years to make
up the difference in price. At this point, the buyer must decide if price is
the only criterion and if a 5-year payback time is acceptable. Naturally,
a person who drives more will make up the difference more quickly, and
changes in gasoline prices will also greatly affect the outcome.

Example 2.20 When at the supermarket doing the week’s shopping, can
you estimate about how much you will have to pay at the checkout? One
simple way is to round the price of each item to the nearest dollar, and add
this value to a mental running total as you put the item in your shopping
cart. This will likely give an answer within a couple of dollars of the true
total.

2.8 Further Reading

Most of the topics covered in this chapter are considered part of Discrete Math-
ematics. An introduction to this field is Discrete Mathematics with Applications
by Susanna S. Epp [Epp10]. An advanced treatment of many mathematical topics
useful to computer scientists is Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth, and Patashnik [GKP94].

See “Technically Speaking” from the February 1995 issue of IEEE Spectrum
[Sel95] for a discussion on the standard for indicating units of computer storage
used in this book.
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Introduction to Algorithms by Udi Manber [Man89] makes extensive use of
mathematical induction as a technique for developing algorithms.

For more information on recursion, see Thinking Recursively by Eric S. Roberts
[Rob86]. To learn recursion properly, it is worth your while to learn the program-
ming languages LISP or Scheme, even if you never intend to write a program in
either language. In particular, Friedman and Felleisen’s “Little” books (including
The Little LISPer[FF89] and The Little Schemer[FFBS95]) are designed to teach
you how to think recursively as well as teach you the language. These books are
entertaining reading as well.

A good book on writing mathematical proofs is Daniel Solow’s How to Read
and Do Proofs [Sol09]. To improve your general mathematical problem-solving
abilities, see The Art and Craft of Problem Solving by Paul Zeitz [Zei07]. Zeitz
also discusses the three proof techniques presented in Section 2.6, and the roles of
investigation and argument in problem solving.

For more about estimation techniques, see two Programming Pearls by John
Louis Bentley entitled The Back of the Envelope and The Envelope is Back [Ben84,
Ben00, Ben86, Ben88]. Genius: The Life and Science of Richard Feynman by
James Gleick [Gle92] gives insight into how important back of the envelope calcu-
lation was to the developers of the atomic bomb, and to modern theoretical physics
in general.

2.9 Exercises

2.1 For each relation below, explain why the relation does or does not satisfy
each of the properties reflexive, symmetric, antisymmetric, and transitive.

(a) “isBrotherOf” on the set of people.
(b) “isFatherOf” on the set of people.
(c) The relation R = {〈x, y〉 |x2 + y2 = 1} for real numbers x and y.
(d) The relation R = {〈x, y〉 |x2 = y2} for real numbers x and y.
(e) The relation R = {〈x, y〉 |x mod y = 0} for x, y ∈ {1, 2, 3, 4}.
(f) The empty relation ∅ (i.e., the relation with no ordered pairs for which

it is true) on the set of integers.
(g) The empty relation ∅ (i.e., the relation with no ordered pairs for which

it is true) on the empty set.
2.2 For each of the following relations, either prove that it is an equivalence

relation or prove that it is not an equivalence relation.
(a) For integers a and b, a ≡ b if and only if a+ b is even.
(b) For integers a and b, a ≡ b if and only if a+ b is odd.
(c) For nonzero rational numbers a and b, a ≡ b if and only if a× b > 0.
(d) For nonzero rational numbers a and b, a ≡ b if and only if a/b is an

integer.



Sec. 2.9 Exercises 49

(e) For rational numbers a and b, a ≡ b if and only if a− b is an integer.
(f) For rational numbers a and b, a ≡ b if and only if |a− b| ≤ 2.

2.3 State whether each of the following relations is a partial ordering, and explain
why or why not.

(a) “isFatherOf” on the set of people.
(b) “isAncestorOf” on the set of people.
(c) “isOlderThan” on the set of people.
(d) “isSisterOf” on the set of people.
(e) {〈a, b〉, 〈a, a〉, 〈b, a〉} on the set {a, b}.
(f) {〈2, 1〉, 〈1, 3〉, 〈2, 3〉} on the set {1, 2, 3}.

2.4 How many total orderings can be defined on a set with n elements? Explain
your answer.

2.5 Define an ADT for a set of integers (remember that a set has no concept of
duplicate elements, and has no concept of order). Your ADT should consist
of the functions that can be performed on a set to control its membership,
check the size, check if a given element is in the set, and so on. Each function
should be defined in terms of its input and output.

2.6 Define an ADT for a bag of integers (remember that a bag may contain du-
plicates, and has no concept of order). Your ADT should consist of the func-
tions that can be performed on a bag to control its membership, check the
size, check if a given element is in the set, and so on. Each function should
be defined in terms of its input and output.

2.7 Define an ADT for a sequence of integers (remember that a sequence may
contain duplicates, and supports the concept of position for its elements).
Your ADT should consist of the functions that can be performed on a se-
quence to control its membership, check the size, check if a given element is
in the set, and so on. Each function should be defined in terms of its input
and output.

2.8 An investor places $30,000 into a stock fund. 10 years later the account has
a value of $69,000. Using logarithms and anti-logarithms, present a formula
for calculating the average annual rate of increase. Then use your formula to
determine the average annual growth rate for this fund.

2.9 Rewrite the factorial function of Section 2.5 without using recursion.
2.10 Rewrite the for loop for the random permutation generator of Section 2.2

as a recursive function.
2.11 Here is a simple recursive function to compute the Fibonacci sequence:

long fibr(int n) { // Recursive Fibonacci generator
// fibr(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
if ((n == 1) || (n == 2)) return 1; // Base cases
return fibr(n-1) + fibr(n-2); // Recursion

}
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This algorithm turns out to be very slow, calling Fibr a total of Fib(n) times.
Contrast this with the following iterative algorithm:

long fibi(int n) { // Iterative Fibonacci generator
// fibi(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
long past, prev, curr; // Store temporary values
past = prev = curr = 1; // initialize
for (int i=3; i<=n; i++) { // Compute next value

past = prev; // past holds fibi(i-2)
prev = curr; // prev holds fibi(i-1)
curr = past + prev; // curr now holds fibi(i)

}
return curr;

}

Function Fibi executes the for loop n− 2 times.
(a) Which version is easier to understand? Why?
(b) Explain why Fibr is so much slower than Fibi.

2.12 Write a recursive function to solve a generalization of the Towers of Hanoi
problem where each ring may begin on any pole so long as no ring sits on
top of a smaller ring.

2.13 Revise the recursive implementation for Towers of Hanoi from Section 2.5
to return the list of moves needed to solve the problem.

2.14 Consider the following function:

void foo (double val) {
if (val != 0.0)

foo(val/2.0);
}

This function makes progress towards the base case on every recursive call.
In theory (that is, if double variables acted like true real numbers), would
this function ever terminate for input val a nonzero number? In practice (an
actual computer implementation), will it terminate?

2.15 Write a function to print all of the permutations for the elements of an array
containing n distinct integer values.

2.16 Write a recursive algorithm to print all of the subsets for the set of the first n
positive integers.

2.17 The Largest Common Factor (LCF) for two positive integers n and m is
the largest integer that divides both n and m evenly. LCF(n, m) is at least
one, and at most m, assuming that n ≥ m. Over two thousand years ago,
Euclid provided an efficient algorithm based on the observation that, when
n mod m 6= 0, LCF(n, m) = LCF(m, n mod m). Use this fact to write two
algorithms to find the LCF for two positive integers. The first version should
compute the value iteratively. The second version should compute the value
using recursion.
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2.18 Prove by contradiction that the number of primes is infinite.
2.19 (a) Use induction to show that n2 − n is always even.

(b) Give a direct proof in one or two sentences that n2 − n is always even.
(c) Show that n3 − n is always divisible by three.
(d) Is n5 − n aways divisible by 5? Explain your answer.

2.20 Prove that
√

2 is irrational.
2.21 Explain why

n∑
i=1

i =
n∑
i=1

(n− i+ 1) =
n−1∑
i=0

(n− i).

2.22 Prove Equation 2.2 using mathematical induction.
2.23 Prove Equation 2.6 using mathematical induction.
2.24 Prove Equation 2.7 using mathematical induction.
2.25 Find a closed-form solution and prove (using induction) that your solution is

correct for the summation
n∑
i=1

3i.

2.26 Prove that the sum of the first n even numbers is n2 + n

(a) by assuming that the sum of the first n odd numbers is n2.
(b) by mathematical induction.

2.27 Give a closed-form formula for the summation
∑n

i=a i where a is an integer
between 1 and n.

2.28 Prove that Fib(n) < (53)n.
2.29 Prove, for n ≥ 1, that

n∑
i=1

i3 =
n2(n+ 1)2

4
.

2.30 The following theorem is called the Pigeonhole Principle.

Theorem 2.10 When n + 1 pigeons roost in n holes, there must be some
hole containing at least two pigeons.

(a) Prove the Pigeonhole Principle using proof by contradiction.
(b) Prove the Pigeonhole Principle using mathematical induction.

2.31 For this problem, you will consider arrangements of infinite lines in the plane
such that three or more lines never intersect at a single point and no two lines
are parallel.

(a) Give a recurrence relation that expresses the number of regions formed
by n lines, and explain why your recurrence is correct.

(b) Give the summation that results from expanding your recurrence.
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(c) Give a closed-form solution for the summation.

2.32 Prove (using induction) that the recurrence T(n) = T(n− 1) +n; T(1) = 1
has as its closed-form solution T(n) = n(n+ 1)/2.

2.33 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) = 2T(n− 1) + 1 for n > 0; T(0) = 0.

2.34 Expand the following recurrence to help you find a closed-form solution, and
then use induction to prove your answer is correct.

T(n) = T(n− 1) + 3n+ 1 for n > 0; T(0) = 1.

2.35 Assume that an n-bit integer (represented by standard binary notation) takes
any value in the range 0 to 2n − 1 with equal probability.

(a) For each bit position, what is the probability of its value being 1 and
what is the probability of its value being 0?

(b) What is the average number of “1” bits for an n-bit random number?
(c) What is the expected value for the position of the leftmost “1” bit? In

other words, how many positions on average must we examine when
moving from left to right before encountering a “1” bit? Show the
appropriate summation.

2.36 What is the total volume of your body in liters (or, if you prefer, gallons)?
2.37 An art historian has a database of 20,000 full-screen color images.

(a) About how much space will this require? How many CDs would be
required to store the database? (A CD holds about 600MB of data). Be
sure to explain all assumptions you made to derive your answer.

(b) Now, assume that you have access to a good image compression tech-
nique that can store the images in only 1/10 of the space required for
an uncompressed image. Will the entire database fit onto a single CD
if the images are compressed?

2.38 How many cubic miles of water flow out of the mouth of the Mississippi
River each day? DO NOT look up the answer or any supplemental facts. Be
sure to describe all assumptions made in arriving at your answer.

2.39 When buying a home mortgage, you often have the option of paying some
money in advance (called “discount points”) to get a lower interest rate. As-
sume that you have the choice between two 15-year fixed-rate mortgages:
one at 8% with no up-front charge, and the other at 73

4% with an up-front
charge of 1% of the mortgage value. How long would it take to recover the
1% charge when you take the mortgage at the lower rate? As a second, more
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precise estimate, how long would it take to recover the charge plus the in-
terest you would have received if you had invested the equivalent of the 1%
charge in the bank at 5% interest while paying the higher rate? DO NOT use
a calculator to help you answer this question.

2.40 When you build a new house, you sometimes get a “construction loan” which
is a temporary line of credit out of which you pay construction costs as they
occur. At the end of the construction period, you then replace the construc-
tion loan with a regular mortgage on the house. During the construction loan,
you only pay each month for the interest charged against the actual amount
borrowed so far. Assume that your house construction project starts at the
beginning of April, and is complete at the end of six months. Assume that
the total construction cost will be $300,000 with the costs occurring at the be-
ginning of each month in $50,000 increments. The construction loan charges
6% interest. Estimate the total interest payments that must be paid over the
life of the construction loan.

2.41 Here are some questions that test your working knowledge of how fast com-
puters operate. Is disk drive access time normally measured in milliseconds
(thousandths of a second) or microseconds (millionths of a second)? Does
your RAM memory access a word in more or less than one microsecond?
How many instructions can your CPU execute in one year if the machine is
left running at full speed all the time? DO NOT use paper or a calculator to
derive your answers.

2.42 Does your home contain enough books to total one million pages? How
many total pages are stored in your school library building? Explain how
you got your answer.

2.43 How many words are in this book? Explain how you got your answer.
2.44 How many hours are one million seconds? How many days? Answer these

questions doing all arithmetic in your head. Explain how you got your an-
swer.

2.45 How many cities and towns are there in the United States? Explain how you
got your answer.

2.46 How many steps would it take to walk from Boston to San Francisco? Ex-
plain how you got your answer.

2.47 A man begins a car trip to visit his in-laws. The total distance is 60 miles,
and he starts off at a speed of 60 miles per hour. After driving exactly 1 mile,
he loses some of his enthusiasm for the journey, and (instantaneously) slows
down to 59 miles per hour. After traveling another mile, he again slows to
58 miles per hour. This continues, progressively slowing by 1 mile per hour
for each mile traveled until the trip is complete.

(a) How long does it take the man to reach his in-laws?
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(b) How long would the trip take in the continuous case where the speed
smoothly diminishes with the distance yet to travel?



3

Algorithm Analysis

How long will it take to process the company payroll once we complete our planned
merger? Should I buy a new payroll program from vendor X or vendor Y? If a
particular program is slow, is it badly implemented or is it solving a hard problem?
Questions like these ask us to consider the difficulty of a problem, or the relative
efficiency of two or more approaches to solving a problem.

This chapter introduces the motivation, basic notation, and fundamental tech-
niques of algorithm analysis. We focus on a methodology known as asymptotic
algorithm analysis, or simply asymptotic analysis. Asymptotic analysis attempts
to estimate the resource consumption of an algorithm. It allows us to compare the
relative costs of two or more algorithms for solving the same problem. Asymptotic
analysis also gives algorithm designers a tool for estimating whether a proposed
solution is likely to meet the resource constraints for a problem before they imple-
ment an actual program. After reading this chapter, you should understand

• the concept of a growth rate, the rate at which the cost of an algorithm grows
as the size of its input grows;

• the concept of upper and lower bounds for a growth rate, and how to estimate
these bounds for a simple program, algorithm, or problem; and

• the difference between the cost of an algorithm (or program) and the cost of
a problem.

The chapter concludes with a brief discussion of the practical difficulties encoun-
tered when empirically measuring the cost of a program, and some principles for
code tuning to improve program efficiency.

3.1 Introduction

How do you compare two algorithms for solving some problem in terms of effi-
ciency? We could implement both algorithms as computer programs and then run

55
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them on a suitable range of inputs, measuring how much of the resources in ques-
tion each program uses. This approach is often unsatisfactory for four reasons.
First, there is the effort involved in programming and testing two algorithms when
at best you want to keep only one. Second, when empirically comparing two al-
gorithms there is always the chance that one of the programs was “better written”
than the other, and therefor the relative qualities of the underlying algorithms are
not truly represented by their implementations. This can easily occur when the
programmer has a bias regarding the algorithms. Third, the choice of empirical
test cases might unfairly favor one algorithm. Fourth, you could find that even the
better of the two algorithms does not fall within your resource budget. In that case
you must begin the entire process again with yet another program implementing a
new algorithm. But, how would you know if any algorithm can meet the resource
budget? Perhaps the problem is simply too difficult for any implementation to be
within budget.

These problems can often be avoided by using asymptotic analysis. Asymp-
totic analysis measures the efficiency of an algorithm, or its implementation as a
program, as the input size becomes large. It is actually an estimating technique and
does not tell us anything about the relative merits of two programs where one is
always “slightly faster” than the other. However, asymptotic analysis has proved
useful to computer scientists who must determine if a particular algorithm is worth
considering for implementation.

The critical resource for a program is most often its running time. However,
you cannot pay attention to running time alone. You must also be concerned with
other factors such as the space required to run the program (both main memory and
disk space). Typically you will analyze the time required for an algorithm (or the
instantiation of an algorithm in the form of a program), and the space required for
a data structure.

Many factors affect the running time of a program. Some relate to the environ-
ment in which the program is compiled and run. Such factors include the speed of
the computer’s CPU, bus, and peripheral hardware. Competition with other users
for the computer’s (or the network’s) resources can make a program slow to a crawl.
The programming language and the quality of code generated by a particular com-
piler can have a significant effect. The “coding efficiency” of the programmer who
converts the algorithm to a program can have a tremendous impact as well.

If you need to get a program working within time and space constraints on a
particular computer, all of these factors can be relevant. Yet, none of these factors
address the differences between two algorithms or data structures. To be fair, pro-
grams derived from two algorithms for solving the same problem should both be
compiled with the same compiler and run on the same computer under the same
conditions. As much as possible, the same amount of care should be taken in the
programming effort devoted to each program to make the implementations “equally
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efficient.” In this sense, all of the factors mentioned above should cancel out of the
comparison because they apply to both algorithms equally.

If you truly wish to understand the running time of an algorithm, there are other
factors that are more appropriate to consider than machine speed, programming
language, compiler, and so forth. Ideally we would measure the running time of
the algorithm under standard benchmark conditions. However, we have no way
to calculate the running time reliably other than to run an implementation of the
algorithm on some computer. The only alternative is to use some other measure as
a surrogate for running time.

Of primary consideration when estimating an algorithm’s performance is the
number of basic operations required by the algorithm to process an input of a
certain size. The terms “basic operations” and “size” are both rather vague and
depend on the algorithm being analyzed. Size is often the number of inputs pro-
cessed. For example, when comparing sorting algorithms, the size of the problem
is typically measured by the number of records to be sorted. A basic operation
must have the property that its time to complete does not depend on the particular
values of its operands. Adding or comparing two integer variables are examples
of basic operations in most programming languages. Summing the contents of an
array containing n integers is not, because the cost depends on the value of n (i.e.,
the size of the input).

Example 3.1 Consider a simple algorithm to solve the problem of finding
the largest value in an array of n integers. The algorithm looks at each
integer in turn, saving the position of the largest value seen so far. This
algorithm is called the largest-value sequential search and is illustrated by
the following function:

// Return position of largest value in "A" of size "n"
int largest(int A[], int n) {

int currlarge = 0; // Holds largest element position
for (int i=1; i<n; i++) // For each array element
if (A[currlarge] < A[i]) // if A[i] is larger

currlarge = i; // remember its position
return currlarge; // Return largest position

}

Here, the size of the problem is A.length, the number of integers stored
in array A. The basic operation is to compare an integer’s value to that of
the largest value seen so far. It is reasonable to assume that it takes a fixed
amount of time to do one such comparison, regardless of the value of the
two integers or their positions in the array.

Because the most important factor affecting running time is normally
size of the input, for a given input size n we often express the time T to run
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the algorithm as a function of n, written as T(n). We will always assume
T(n) is a non-negative value.

Let us call c the amount of time required to compare two integers in
function largest. We do not care right now what the precise value of c
might be. Nor are we concerned with the time required to increment vari-
able i because this must be done for each value in the array, or the time
for the actual assignment when a larger value is found, or the little bit of
extra time taken to initialize currlarge. We just want a reasonable ap-
proximation for the time taken to execute the algorithm. The total time
to run largest is therefore approximately cn, because we must make n
comparisons, with each comparison costing c time. We say that function
largest (and by extension ,the largest-value sequential search algorithm
for any typical implementation) has a running time expressed by the equa-
tion

T(n) = cn.

This equation describes the growth rate for the running time of the largest-
value sequential search algorithm.

Example 3.2 The running time of a statement that assigns the first value
of an integer array to a variable is simply the time required to copy the value
of the first array value. We can assume this assignment takes a constant
amount of time regardless of the value. Let us call c1 the amount of time
necessary to copy an integer. No matter how large the array on a typical
computer (given reasonable conditions for memory and array size), the time
to copy the value from the first position of the array is always c1. Thus, the
equation for this algorithm is simply

T(n) = c1,

indicating that the size of the input n has no effect on the running time.
This is called a constant running time.

Example 3.3 Consider the following code:

sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum++;

What is the running time for this code fragment? Clearly it takes longer
to run when n is larger. The basic operation in this example is the increment
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Figure 3.1 Two views of a graph illustrating the growth rates for six equations.
The bottom view shows in detail the lower-left portion of the top view. The hor-
izontal axis represents input size. The vertical axis can represent time, space, or
any other measure of cost.

operation for variable sum. We can assume that incrementing takes constant
time; call this time c2. (We can ignore the time required to initialize sum,
and to increment the loop counters i and j. In practice, these costs can
safely be bundled into time c2.) The total number of increment operations
is n2. Thus, we say that the running time is T(n) = c2n

2.
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n log log n log n n n log n n2 n3 2n

16 2 4 24 4 · 24 = 26 28 212 216

256 3 8 28 8 · 28 = 211 216 224 2256

1024 ≈ 3.3 10 210 10 · 210 ≈ 213 220 230 21024

64K 4 16 216 16 · 216 = 220 232 248 264K

1M ≈ 4.3 20 220 20 · 220 ≈ 224 240 260 21M

1G ≈ 4.9 30 230 30 · 230 ≈ 235 260 290 21G

Figure 3.2 Costs for growth rates representative of most computer algorithms.

The growth rate for an algorithm is the rate at which the cost of the algorithm
grows as the size of its input grows. Figure 3.1 shows a graph for six equations, each
meant to describe the running time for a particular program or algorithm. A variety
of growth rates representative of typical algorithms are shown. The two equations
labeled 10n and 20n are graphed by straight lines. A growth rate of cn (for c any
positive constant) is often referred to as a linear growth rate or running time. This
means that as the value of n grows, the running time of the algorithm grows in the
same proportion. Doubling the value of n roughly doubles the running time. An
algorithm whose running-time equation has a highest-order term containing a factor
of n2 is said to have a quadratic growth rate. In Figure 3.1, the line labeled 2n2

represents a quadratic growth rate. The line labeled 2n represents an exponential
growth rate. This name comes from the fact that n appears in the exponent. The
line labeled n! is also growing exponentially.

As you can see from Figure 3.1, the difference between an algorithm whose
running time has cost T(n) = 10n and another with cost T(n) = 2n2 becomes
tremendous as n grows. For n > 5, the algorithm with running time T(n) = 2n2 is
already much slower. This is despite the fact that 10n has a greater constant factor
than 2n2. Comparing the two curves marked 20n and 2n2 shows that changing the
constant factor for one of the equations only shifts the point at which the two curves
cross. For n > 10, the algorithm with cost T(n) = 2n2 is slower than the algorithm
with cost T(n) = 20n. This graph also shows that the equation T(n) = 5n log n
grows somewhat more quickly than both T(n) = 10n and T(n) = 20n, but not
nearly so quickly as the equation T(n) = 2n2. For constants a, b > 1, na grows
faster than either logb n or log nb. Finally, algorithms with cost T(n) = 2n or
T(n) = n! are prohibitively expensive for even modest values of n. Note that for
constants a, b ≥ 1, an grows faster than nb.

We can get some further insight into relative growth rates for various algorithms
from Figure 3.2. Most of the growth rates that appear in typical algorithms are
shown, along with some representative input sizes. Once again, we see that the
growth rate has a tremendous effect on the resources consumed by an algorithm.
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3.2 Best, Worst, and Average Cases

Consider the problem of finding the factorial of n. For this problem, there is only
one input of a given “size” (that is, there is only a single instance for each size of
n). Now consider our largest-value sequential search algorithm of Example 3.1,
which always examines every array value. This algorithm works on many inputs of
a given size n. That is, there are many possible arrays of any given size. However,
no matter what array of size n that the algorithm looks at, its cost will always be
the same in that it always looks at every element in the array one time.

For some algorithms, different inputs of a given size require different amounts
of time. For example, consider the problem of searching an array containing n
integers to find the one with a particular value K (assume that K appears exactly
once in the array). The sequential search algorithm begins at the first position in
the array and looks at each value in turn until K is found. Once K is found, the
algorithm stops. This is different from the largest-value sequential search algorithm
of Example 3.1, which always examines every array value.

There is a wide range of possible running times for the sequential search alg-
orithm. The first integer in the array could have value K, and so only one integer
is examined. In this case the running time is short. This is the best case for this
algorithm, because it is not possible for sequential search to look at less than one
value. Alternatively, if the last position in the array contains K, then the running
time is relatively long, because the algorithm must examine n values. This is the
worst case for this algorithm, because sequential search never looks at more than
n values. If we implement sequential search as a program and run it many times
on many different arrays of size n, or search for many different values of K within
the same array, we expect the algorithm on average to go halfway through the array
before finding the value we seek. On average, the algorithm examines about n/2
values. We call this the average case for this algorithm.

When analyzing an algorithm, should we study the best, worst, or average case?
Normally we are not interested in the best case, because this might happen only
rarely and generally is too optimistic for a fair characterization of the algorithm’s
running time. In other words, analysis based on the best case is not likely to be
representative of the behavior of the algorithm. However, there are rare instances
where a best-case analysis is useful — in particular, when the best case has high
probability of occurring. In Chapter 7 you will see some examples where taking
advantage of the best-case running time for one sorting algorithm makes a second
more efficient.

How about the worst case? The advantage to analyzing the worst case is that
you know for certain that the algorithm must perform at least that well. This is es-
pecially important for real-time applications, such as for the computers that monitor
an air traffic control system. Here, it would not be acceptable to use an algorithm
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that can handle n airplanes quickly enough most of the time, but which fails to
perform quickly enough when all n airplanes are coming from the same direction.

For other applications — particularly when we wish to aggregate the cost of
running the program many times on many different inputs — worst-case analy-
sis might not be a representative measure of the algorithm’s performance. Often
we prefer to know the average-case running time. This means that we would like
to know the typical behavior of the algorithm on inputs of size n. Unfortunately,
average-case analysis is not always possible. Average-case analysis first requires
that we understand how the actual inputs to the program (and their costs) are dis-
tributed with respect to the set of all possible inputs to the program. For example, it
was stated previously that the sequential search algorithm on average examines half
of the array values. This is only true if the element with value K is equally likely
to appear in any position in the array. If this assumption is not correct, then the
algorithm does not necessarily examine half of the array values in the average case.
See Section 9.2 for further discussion regarding the effects of data distribution on
the sequential search algorithm.

The characteristics of a data distribution have a significant effect on many
search algorithms, such as those based on hashing (Section 9.4) and search trees
(e.g., see Section 5.4). Incorrect assumptions about data distribution can have dis-
astrous consequences on a program’s space or time performance. Unusual data
distributions can also be used to advantage, as shown in Section 9.2.

In summary, for real-time applications we are likely to prefer a worst-case anal-
ysis of an algorithm. Otherwise, we often desire an average-case analysis if we
know enough about the distribution of our input to compute the average case. If
not, then we must resort to worst-case analysis.

3.3 A Faster Computer, or a Faster Algorithm?

Imagine that you have a problem to solve, and you know of an algorithm whose
running time is proportional to n2. Unfortunately, the resulting program takes ten
times too long to run. If you replace your current computer with a new one that
is ten times faster, will the n2 algorithm become acceptable? If the problem size
remains the same, then perhaps the faster computer will allow you to get your work
done quickly enough even with an algorithm having a high growth rate. But a funny
thing happens to most people who get a faster computer. They don’t run the same
problem faster. They run a bigger problem! Say that on your old computer you
were content to sort 10,000 records because that could be done by the computer
during your lunch break. On your new computer you might hope to sort 100,000
records in the same time. You won’t be back from lunch any sooner, so you are
better off solving a larger problem. And because the new machine is ten times
faster, you would like to sort ten times as many records.
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f(n) n n′ Change n′/n
10n 1000 10, 000 n′ = 10n 10
20n 500 5000 n′ = 10n 10

5n log n 250 1842
√

10n < n′ < 10n 7.37

2n2 70 223 n′ =
√

10n 3.16
2n 13 16 n′ = n + 3 −−

Figure 3.3 The increase in problem size that can be run in a fixed period of time
on a computer that is ten times faster. The first column lists the right-hand sides
for each of five growth rate equations from Figure 3.1. For the purpose of this
example, arbitrarily assume that the old machine can run 10,000 basic operations
in one hour. The second column shows the maximum value for n that can be run
in 10,000 basic operations on the old machine. The third column shows the value
for n′, the new maximum size for the problem that can be run in the same time
on the new machine that is ten times faster. Variable n′ is the greatest size for the
problem that can run in 100,000 basic operations. The fourth column shows how
the size of n changed to become n′ on the new machine. The fifth column shows
the increase in the problem size as the ratio of n′ to n.

If your algorithm’s growth rate is linear (i.e., if the equation that describes the
running time on input size n is T(n) = cn for some constant c), then 100,000
records on the new machine will be sorted in the same time as 10,000 records on
the old machine. If the algorithm’s growth rate is greater than cn, such as c1n2,
then you will not be able to do a problem ten times the size in the same amount of
time on a machine that is ten times faster.

How much larger a problem can be solved in a given amount of time by a faster
computer? Assume that the new machine is ten times faster than the old. Say that
the old machine could solve a problem of size n in an hour. What is the largest
problem that the new machine can solve in one hour? Figure 3.3 shows how large
a problem can be solved on the two machines for five of the running-time functions
from Figure 3.1.

This table illustrates many important points. The first two equations are both
linear; only the value of the constant factor has changed. In both cases, the machine
that is ten times faster gives an increase in problem size by a factor of ten. In other
words, while the value of the constant does affect the absolute size of the problem
that can be solved in a fixed amount of time, it does not affect the improvement in
problem size (as a proportion to the original size) gained by a faster computer. This
relationship holds true regardless of the algorithm’s growth rate: Constant factors
never affect the relative improvement gained by a faster computer.

An algorithm with time equation T(n) = 2n2 does not receive nearly as great
an improvement from the faster machine as an algorithm with linear growth rate.
Instead of an improvement by a factor of ten, the improvement is only the square
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root of that:
√

10 ≈ 3.16. Thus, the algorithm with higher growth rate not only
solves a smaller problem in a given time in the first place, it also receives less of
a speedup from a faster computer. As computers get ever faster, the disparity in
problem sizes becomes ever greater.

The algorithm with growth rate T(n) = 5n log n improves by a greater amount
than the one with quadratic growth rate, but not by as great an amount as the algo-
rithms with linear growth rates.

Note that something special happens in the case of the algorithm whose running
time grows exponentially. In Figure 3.1, the curve for the algorithm whose time is
proportional to 2n goes up very quickly. In Figure 3.3, the increase in problem
size on the machine ten times as fast is shown to be about n + 3 (to be precise,
it is n + log2 10). The increase in problem size for an algorithm with exponential
growth rate is by a constant addition, not by a multiplicative factor. Because the
old value of n was 13, the new problem size is 16. If next year you buy another
computer ten times faster yet, then the new computer (100 times faster than the
original computer) will only run a problem of size 19. If you had a second program
whose growth rate is 2n and for which the original computer could run a problem
of size 1000 in an hour, than a machine ten times faster can run a problem only of
size 1003 in an hour! Thus, an exponential growth rate is radically different than
the other growth rates shown in Figure 3.3. The significance of this difference is
explored in Chapter 17.

Instead of buying a faster computer, consider what happens if you replace an
algorithm whose running time is proportional to n2 with a new algorithm whose
running time is proportional to n log n. In the graph of Figure 3.1, a fixed amount of
time would appear as a horizontal line. If the line for the amount of time available
to solve your problem is above the point at which the curves for the two growth
rates in question meet, then the algorithm whose running time grows less quickly
is faster. An algorithm with running time T(n) = n2 requires 1024 × 1024 =
1, 048, 576 time steps for an input of size n = 1024. An algorithm with running
time T(n) = n log n requires 1024 × 10 = 10, 240 time steps for an input of
size n = 1024, which is an improvement of much more than a factor of ten when
compared to the algorithm with running time T(n) = n2. Because n2 > 10n log n
whenever n > 58, if the typical problem size is larger than 58 for this example, then
you would be much better off changing algorithms instead of buying a computer
ten times faster. Furthermore, when you do buy a faster computer, an algorithm
with a slower growth rate provides a greater benefit in terms of larger problem size
that can run in a certain time on the new computer.
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3.4 Asymptotic Analysis

Despite the larger constant for the curve labeled 10n in Figure 3.1, 2n2 crosses
it at the relatively small value of n = 5. What if we double the value of the
constant in front of the linear equation? As shown in the graph, 20n is surpassed
by 2n2 once n = 10. The additional factor of two for the linear growth rate does
not much matter. It only doubles the x-coordinate for the intersection point. In
general, changes to a constant factor in either equation only shift where the two
curves cross, not whether the two curves cross.

When you buy a faster computer or a faster compiler, the new problem size
that can be run in a given amount of time for a given growth rate is larger by the
same factor, regardless of the constant on the running-time equation. The time
curves for two algorithms with different growth rates still cross, regardless of their
running-time equation constants. For these reasons, we usually ignore the con-
stants when we want an estimate of the growth rate for the running time or other
resource requirements of an algorithm. This simplifies the analysis and keeps us
thinking about the most important aspect: the growth rate. This is called asymp-
totic algorithm analysis. To be precise, asymptotic analysis refers to the study of
an algorithm as the input size “gets big” or reaches a limit (in the calculus sense).
However, it has proved to be so useful to ignore all constant factors that asymptotic
analysis is used for most algorithm comparisons.

It is not always reasonable to ignore the constants. When comparing algorithms
meant to run on small values of n, the constant can have a large effect. For exam-
ple, if the problem is to sort a collection of exactly five records, then an algorithm
designed for sorting thousands of records is probably not appropriate, even if its
asymptotic analysis indicates good performance. There are rare cases where the
constants for two algorithms under comparison can differ by a factor of 1000 or
more, making the one with lower growth rate impractical for most purposes due to
its large constant. Asymptotic analysis is a form of “back of the envelope” esti-
mation for algorithm resource consumption. It provides a simplified model of the
running time or other resource needs of an algorithm. This simplification usually
helps you understand the behavior of your algorithms. Just be aware of the limi-
tations to asymptotic analysis in the rare situation where the constant is important.

3.4.1 Upper Bounds

Several terms are used to describe the running-time equation for an algorithm.
These terms — and their associated symbols — indicate precisely what aspect of
the algorithm’s behavior is being described. One is the upper bound for the growth
of the algorithm’s running time. It indicates the upper or highest growth rate that
the algorithm can have.
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Because the phrase “has an upper bound to its growth rate of f(n)” is long and
often used when discussing algorithms, we adopt a special notation, called big-Oh
notation. If the upper bound for an algorithm’s growth rate (for, say, the worst
case) is f(n), then we would write that this algorithm is “in the set O(f(n))in the
worst case” (or just “in O(f(n))in the worst case”). For example, if n2 grows as
fast as T(n) (the running time of our algorithm) for the worst-case input, we would
say the algorithm is “in O(n2) in the worst case.”

The following is a precise definition for an upper bound. T(n) represents the
true running time of the algorithm. f(n) is some expression for the upper bound.

For T(n) a non-negatively valued function, T(n) is in set O(f(n))
if there exist two positive constants c and n0 such that T(n) ≤ cf(n)
for all n > n0.

Constant n0 is the smallest value of n for which the claim of an upper bound holds
true. Usually n0 is small, such as 1, but does not need to be. You must also be
able to pick some constant c, but it is irrelevant what the value for c actually is.
In other words, the definition says that for all inputs of the type in question (such
as the worst case for all inputs of size n) that are large enough (i.e., n > n0), the
algorithm always executes in less than cf(n) steps for some constant c.

Example 3.4 Consider the sequential search algorithm for finding a spec-
ified value in an array of integers. If visiting and examining one value in
the array requires cs steps where cs is a positive number, and if the value
we search for has equal probability of appearing in any position in the ar-
ray, then in the average case T(n) = csn/2. For all values of n > 1,
csn/2 ≤ csn. Therefore, by the definition, T(n) is in O(n) for n0 = 1 and
c = cs.

Example 3.5 For a particular algorithm, T(n) = c1n
2 + c2n in the av-

erage case where c1 and c2 are positive numbers. Then, c1n2 + c2n ≤
c1n

2 + c2n
2 ≤ (c1 + c2)n

2 for all n > 1. So, T(n) ≤ cn2 for c = c1 + c2,
and n0 = 1. Therefore, T(n) is in O(n2) by the second definition.

Example 3.6 Assigning the value from the first position of an array to
a variable takes constant time regardless of the size of the array. Thus,
T(n) = c (for the best, worst, and average cases). We could say in this
case that T(n) is in O(c). However, it is traditional to say that an algorithm
whose running time has a constant upper bound is in O(1).
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If someone asked you out of the blue “Who is the best?” your natural reaction
should be to reply “Best at what?” In the same way, if you are asked “What is
the growth rate of this algorithm,” you would need to ask “When? Best case?
Average case? Or worst case?” Some algorithms have the same behavior no matter
which input instance they receive. An example is finding the maximum in an array
of integers. But for many algorithms, it makes a big difference, such as when
searching an unsorted array for a particular value. So any statement about the
upper bound of an algorithm must be in the context of some class of inputs of size
n. We measure this upper bound nearly always on the best-case, average-case, or
worst-case inputs. Thus, we cannot say, “this algorithm has an upper bound to
its growth rate of n2.” We must say something like, “this algorithm has an upper
bound to its growth rate of n2 in the average case.”

Knowing that something is in O(f(n)) says only how bad things can be. Per-
haps things are not nearly so bad. Because sequential search is in O(n) in the worst
case, it is also true to say that sequential search is in O(n2). But sequential search
is practical for large n, in a way that is not true for some other algorithms in O(n2).
We always seek to define the running time of an algorithm with the tightest (low-
est) possible upper bound. Thus, we prefer to say that sequential search is in O(n).
This also explains why the phrase “is in O(f(n))” or the notation “∈ O(f(n))” is
used instead of “is O(f(n))” or “= O(f(n)).” There is no strict equality to the use
of big-Oh notation. O(n) is in O(n2), but O(n2) is not in O(n).

3.4.2 Lower Bounds

Big-Oh notation describes an upper bound. In other words, big-Oh notation states
a claim about the greatest amount of some resource (usually time) that is required
by an algorithm for some class of inputs of size n (typically the worst such input,
the average of all possible inputs, or the best such input).

Similar notation is used to describe the least amount of a resource that an alg-
orithm needs for some class of input. Like big-Oh notation, this is a measure of the
algorithm’s growth rate. Like big-Oh notation, it works for any resource, but we
most often measure the least amount of time required. And again, like big-Oh no-
tation, we are measuring the resource required for some particular class of inputs:
the worst-, average-, or best-case input of size n.

The lower bound for an algorithm (or a problem, as explained later) is denoted
by the symbol Ω, pronounced “big-Omega” or just “Omega.” The following defi-
nition for Ω is symmetric with the definition of big-Oh.

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n))
if there exist two positive constants c and n0 such that T(n) ≥ cg(n)
for all n > n0.1

1An alternate (non-equivalent) definition for Ω is
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Example 3.7 Assume T(n) = c1n
2 + c2n for c1 and c2 > 0. Then,

c1n
2 + c2n ≥ c1n2

for all n > 1. So, T(n) ≥ cn2 for c = c1 and n0 = 1. Therefore, T(n) is
in Ω(n2) by the definition.

It is also true that the equation of Example 3.7 is in Ω(n). However, as with
big-Oh notation, we wish to get the “tightest” (for Ω notation, the largest) bound
possible. Thus, we prefer to say that this running time is in Ω(n2).

Recall the sequential search algorithm to find a value K within an array of
integers. In the average and worst cases this algorithm is in Ω(n), because in both
the average and worst cases we must examine at least cn values (where c is 1/2 in
the average case and 1 in the worst case).

3.4.3 Θ Notation

The definitions for big-Oh and Ω give us ways to describe the upper bound for an
algorithm (if we can find an equation for the maximum cost of a particular class of
inputs of size n) and the lower bound for an algorithm (if we can find an equation
for the minimum cost for a particular class of inputs of size n). When the upper
and lower bounds are the same within a constant factor, we indicate this by using
Θ (big-Theta) notation. An algorithm is said to be Θ(h(n)) if it is in O(h(n)) and

T(n) is in the set Ω(g(n)) if there exists a positive constant c such that T(n) ≥
cg(n) for an infinite number of values for n.

This definition says that for an “interesting” number of cases, the algorithm takes at least cg(n)
time. Note that this definition is not symmetric with the definition of big-Oh. For g(n) to be a lower
bound, this definition does not require that T(n) ≥ cg(n) for all values of n greater than some
constant. It only requires that this happen often enough, in particular that it happen for an infinite
number of values for n. Motivation for this alternate definition can be found in the following example.

Assume a particular algorithm has the following behavior:

T(n) =

{
n for all odd n ≥ 1
n2/100 for all even n ≥ 0

From this definition, n2/100 ≥ 1
100

n2 for all even n ≥ 0. So, T(n) ≥ cn2 for an infinite number
of values of n (i.e., for all even n) for c = 1/100. Therefore, T(n) is in Ω(n2) by the definition.

For this equation for T(n), it is true that all inputs of size n take at least cn time. But an infinite
number of inputs of size n take cn2 time, so we would like to say that the algorithm is in Ω(n2).
Unfortunately, using our first definition will yield a lower bound of Ω(n) because it is not possible to
pick constants c and n0 such that T(n) ≥ cn2 for all n > n0. The alternative definition does result
in a lower bound of Ω(n2) for this algorithm, which seems to fit common sense more closely. Fortu-
nately, few real algorithms or computer programs display the pathological behavior of this example.
Our first definition for Ω generally yields the expected result.

As you can see from this discussion, asymptotic bounds notation is not a law of nature. It is merely
a powerful modeling tool used to describe the behavior of algorithms.
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it is in Ω(h(n)). Note that we drop the word “in” for Θ notation, because there
is a strict equality for two equations with the same Θ. In other words, if f(n) is
Θ(g(n)), then g(n) is Θ(f(n)).

Because the sequential search algorithm is both in O(n) and in Ω(n) in the
average case, we say it is Θ(n) in the average case.

Given an algebraic equation describing the time requirement for an algorithm,
the upper and lower bounds always meet. That is because in some sense we have
a perfect analysis for the algorithm, embodied by the running-time equation. For
many algorithms (or their instantiations as programs), it is easy to come up with
the equation that defines their runtime behavior. Most algorithms presented in this
book are well understood and we can almost always give a Θ analysis for them.
However, Chapter 17 discusses a whole class of algorithms for which we have no
Θ analysis, just some unsatisfying big-Oh and Ω analyses. Exercise 3.14 presents
a short, simple program fragment for which nobody currently knows the true upper
or lower bounds.

While some textbooks and programmers will casually say that an algorithm is
“order of” or “big-Oh” of some cost function, it is generally better to use Θ notation
rather than big-Oh notation whenever we have sufficient knowledge about an alg-
orithm to be sure that the upper and lower bounds indeed match. Throughout this
book, Θ notation will be used in preference to big-Oh notation whenever our state
of knowledge makes that possible. Limitations on our ability to analyze certain
algorithms may require use of big-Oh or Ω notations. In rare occasions when the
discussion is explicitly about the upper or lower bound of a problem or algorithm,
the corresponding notation will be used in preference to Θ notation.

3.4.4 Simplifying Rules

Once you determine the running-time equation for an algorithm, it really is a simple
matter to derive the big-Oh, Ω, and Θ expressions from the equation. You do not
need to resort to the formal definitions of asymptotic analysis. Instead, you can use
the following rules to determine the simplest form.

1. If f(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).
3. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), then f1(n) + f2(n) is in

O(max(g1(n), g2(n))).
4. If f1(n) is in O(g1(n)) and f2(n) is in O(g2(n)), then f1(n)f2(n) is in

O(g1(n)g2(n)).

The first rule says that if some function g(n) is an upper bound for your cost
function, then any upper bound for g(n) is also an upper bound for your cost func-
tion. A similar property holds true for Ω notation: If g(n) is a lower bound for your
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cost function, then any lower bound for g(n) is also a lower bound for your cost
function. Likewise for Θ notation.

The significance of rule (2) is that you can ignore any multiplicative constants
in your equations when using big-Oh notation. This rule also holds true for Ω and
Θ notations.

Rule (3) says that given two parts of a program run in sequence (whether two
statements or two sections of code), you need consider only the more expensive
part. This rule applies to Ω and Θ notations as well: For both, you need consider
only the more expensive part.

Rule (4) is used to analyze simple loops in programs. If some action is repeated
some number of times, and each repetition has the same cost, then the total cost is
the cost of the action multiplied by the number of times that the action takes place.
This rule applies to Ω and Θ notations as well.

Taking the first three rules collectively, you can ignore all constants and all
lower-order terms to determine the asymptotic growth rate for any cost function.
The advantages and dangers of ignoring constants were discussed near the begin-
ning of this section. Ignoring lower-order terms is reasonable when performing an
asymptotic analysis. The higher-order terms soon swamp the lower-order terms in
their contribution to the total cost as n becomes larger. Thus, if T(n) = 3n4 + 5n2,
then T(n) is in O(n4). The n2 term contributes relatively little to the total cost for
large n.

Throughout the rest of this book, these simplifying rules are used when dis-
cussing the cost for a program or algorithm.

3.4.5 Classifying Functions

Given functions f(n) and g(n) whose growth rates are expressed as algebraic equa-
tions, we might like to determine if one grows faster than the other. The best way
to do this is to take the limit of the two functions as n grows towards infinity,

lim
n→∞

f(n)

g(n)
.

If the limit goes to ∞, then f(n) is in Ω(g(n)) because f(n) grows faster. If the
limit goes to zero, then f(n) is in O(g(n)) because g(n) grows faster. If the limit
goes to some constant other than zero, then f(n) = Θ(g(n)) because both grow at
the same rate.

Example 3.8 If f(n) = 2n log n and g(n) = n2, is f(n) in O(g(n)),
Ω(g(n)), or Θ(g(n))? Because

n2

2n log n
=

n

2 log n
,
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we easily see that

lim
n→∞

n2

2n log n
=∞

because n grows faster than 2 log n. Thus, n2 is in Ω(2n log n).

3.5 Calculating the Running Time for a Program

This section presents the analysis for several simple code fragments.

Example 3.9 We begin with an analysis of a simple assignment to an
integer variable.

a = b;

Because the assignment statement takes constant time, it is Θ(1).

Example 3.10 Consider a simple for loop.
sum = 0;
for (i=1; i<=n; i++)

sum += n;

The first line is Θ(1). The for loop is repeated n times. The third
line takes constant time so, by simplifying rule (4) of Section 3.4.4, the
total cost for executing the two lines making up the for loop is Θ(n). By
rule (3), the cost of the entire code fragment is also Θ(n).

Example 3.11 We now analyze a code fragment with several for loops,
some of which are nested.
sum = 0;
for (i=1; i<=n; i++) // First for loop

for (j=1; j<=i; j++) // is a double loop
sum++;

for (k=0; k<n; k++) // Second for loop
A[k] = k;

This code fragment has three separate statements: the first assignment
statement and the two for loops. Again the assignment statement takes
constant time; call it c1. The second for loop is just like the one in Exam-
ple 3.10 and takes c2n = Θ(n) time.

The first for loop is a double loop and requires a special technique. We
work from the inside of the loop outward. The expression sum++ requires
constant time; call it c3. Because the inner for loop is executed i times, by
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simplifying rule (4) it has cost c3i. The outer for loop is executed n times,
but each time the cost of the inner loop is different because it costs c3i with
i changing each time. You should see that for the first execution of the outer
loop, i is 1. For the second execution of the outer loop, i is 2. Each time
through the outer loop, i becomes one greater, until the last time through
the loop when i = n. Thus, the total cost of the loop is c3 times the sum of
the integers 1 through n. From Equation 2.1, we know that

n∑
i=1

i =
n(n+ 1)

2
,

which is Θ(n2). By simplifying rule (3), Θ(c1 + c2n + c3n
2) is simply

Θ(n2).

Example 3.12 Compare the asymptotic analysis for the following two
code fragments:

sum1 = 0;
for (i=1; i<=n; i++) // First double loop

for (j=1; j<=n; j++) // do n times
sum1++;

sum2 = 0;
for (i=1; i<=n; i++) // Second double loop

for (j=1; j<=i; j++) // do i times
sum2++;

In the first double loop, the inner for loop always executes n times.
Because the outer loop executes n times, it should be obvious that the state-
ment sum1++ is executed precisely n2 times. The second loop is similar
to the one analyzed in the previous example, with cost

∑n
j=1 j. This is ap-

proximately 1
2n

2. Thus, both double loops cost Θ(n2), though the second
requires about half the time of the first.

Example 3.13 Not all doubly nested for loops are Θ(n2). The follow-
ing pair of nested loops illustrates this fact.

sum1 = 0;
for (k=1; k<=n; k*=2) // Do log n times

for (j=1; j<=n; j++) // Do n times
sum1++;

sum2 = 0;
for (k=1; k<=n; k*=2) // Do log n times

for (j=1; j<=k; j++) // Do k times
sum2++;
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When analyzing these two code fragments, we will assume that n is
a power of two. The first code fragment has its outer for loop executed
log n + 1 times because on each iteration k is multiplied by two until it
reaches n. Because the inner loop always executes n times, the total cost for
the first code fragment can be expressed as

∑logn
i=0 n. Note that a variable

substitution takes place here to create the summation, with k = 2i. From
Equation 2.3, the solution for this summation is Θ(n log n). In the second
code fragment, the outer loop is also executed log n + 1 times. The inner
loop has cost k, which doubles each time. The summation can be expressed
as
∑logn

i=0 2i where n is assumed to be a power of two and again k = 2i.
From Equation 2.8, we know that this summation is simply Θ(n).

What about other control statements? While loops are analyzed in a manner
similar to for loops. The cost of an if statement in the worst case is the greater
of the costs for the then and else clauses. This is also true for the average case,
assuming that the size of n does not affect the probability of executing one of the
clauses (which is usually, but not necessarily, true). For switch statements, the
worst-case cost is that of the most expensive branch. For subroutine calls, simply
add the cost of executing the subroutine.

There are rare situations in which the probability for executing the various
branches of an if or switch statement are functions of the input size. For exam-
ple, for input of size n, the then clause of an if statement might be executed with
probability 1/n. An example would be an if statement that executes the then
clause only for the smallest of n values. To perform an average-case analysis for
such programs, we cannot simply count the cost of the if statement as being the
cost of the more expensive branch. In such situations, the technique of amortized
analysis (see Section 14.3) can come to the rescue.

Determining the execution time of a recursive subroutine can be difficult. The
running time for a recursive subroutine is typically best expressed by a recurrence
relation. For example, the recursive factorial function fact of Section 2.5 calls
itself with a value one less than its input value. The result of this recursive call is
then multiplied by the input value, which takes constant time. Thus, the cost of
the factorial function, if we wish to measure cost in terms of the number of multi-
plication operations, is one more than the number of multiplications made by the
recursive call on the smaller input. Because the base case does no multiplications,
its cost is zero. Thus, the running time for this function can be expressed as

T(n) = T(n− 1) + 1 for n > 1; T (1) = 0.

We know from Examples 2.8 and 2.13 that the closed-form solution for this recur-
rence relation is Θ(n).
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Key

Position 0 2 3 4 5 6 7 8

26 29 36

10 11 12 13 14 15

11 13 21 41 45 51 54

1

56 65 72 77

9

8340

Figure 3.4 An illustration of binary search on a sorted array of 16 positions.
Consider a search for the position with value K = 45. Binary search first checks
the value at position 7. Because 41 < K, the desired value cannot appear in any
position below 7 in the array. Next, binary search checks the value at position 11.
Because 56 > K, the desired value (if it exists) must be between positions 7
and 11. Position 9 is checked next. Again, its value is too great. The final search
is at position 8, which contains the desired value. Thus, function binary returns
position 8. Alternatively, if K were 44, then the same series of record accesses
would be made. After checking position 8, binary would return a value of n,
indicating that the search is unsuccessful.

The final example of algorithm analysis for this section will compare two algo-
rithms for performing search in an array. Earlier, we determined that the running
time for sequential search on an array where the search value K is equally likely
to appear in any location is Θ(n) in both the average and worst cases. We would
like to compare this running time to that required to perform a binary search on
an array whose values are stored in order from lowest to highest.

Binary search begins by examining the value in the middle position of the ar-
ray; call this position mid and the corresponding value kmid. If kmid = K, then
processing can stop immediately. This is unlikely to be the case, however. Fortu-
nately, knowing the middle value provides useful information that can help guide
the search process. In particular, if kmid > K, then you know that the value K
cannot appear in the array at any position greater than mid. Thus, you can elim-
inate future search in the upper half of the array. Conversely, if kmid < K, then
you know that you can ignore all positions in the array less than mid. Either way,
half of the positions are eliminated from further consideration. Binary search next
looks at the middle position in that part of the array where value K may exist. The
value at this position again allows us to eliminate half of the remaining positions
from consideration. This process repeats until either the desired value is found, or
there are no positions remaining in the array that might contain the value K. Fig-
ure 3.4 illustrates the binary search method. Figure 3.5 shows an implementation
for binary search.

To find the cost of this algorithm in the worst case, we can model the running
time as a recurrence and then find the closed-form solution. Each recursive call
to binary cuts the size of the array approximately in half, so we can model the
worst-case cost as follows, assuming for simplicity that n is a power of two.

T(n) = T(n/2) + 1 for n > 1; T(1) = 1.
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// Return the position of an element in sorted array "A" of
// size "n" with value "K". If "K" is not in "A", return
// the value "n".
int binary(int A[], int n, int K) {

int l = -1;
int r = n; // l and r are beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Check middle of remaining subarray
if (K < A[i]) r = i; // In left half
if (K == A[i]) return i; // Found it
if (K > A[i]) l = i; // In right half

}
return n; // Search value not in A

}

Figure 3.5 Implementation for binary search.

If we expand the recurrence, we find that we can do so only log n times before
we reach the base case, and each expansion adds one to the cost. Thus, the closed-
form solution for the recurrence is T(n) = log n.

Function binary is designed to find the (single) occurrence of K and return
its position. A special value is returned if K does not appear in the array. This
algorithm can be modified to implement variations such as returning the position
of the first occurrence of K in the array if multiple occurrences are allowed, and
returning the position of the greatest value less than K when K is not in the array.

Comparing sequential search to binary search, we see that as n grows, the Θ(n)
running time for sequential search in the average and worst cases quickly becomes
much greater than the Θ(log n) running time for binary search. Taken in isolation,
binary search appears to be much more efficient than sequential search. This is
despite the fact that the constant factor for binary search is greater than that for
sequential search, because the calculation for the next search position in binary
search is more expensive than just incrementing the current position, as sequential
search does.

Note however that the running time for sequential search will be roughly the
same regardless of whether or not the array values are stored in order. In contrast,
binary search requires that the array values be ordered from lowest to highest. De-
pending on the context in which binary search is to be used, this requirement for a
sorted array could be detrimental to the running time of a complete program, be-
cause maintaining the values in sorted order requires to greater cost when inserting
new elements into the array. This is an example of a tradeoff between the advan-
tage of binary search during search and the disadvantage related to maintaining a
sorted array. Only in the context of the complete problem to be solved can we know
whether the advantage outweighs the disadvantage.
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3.6 Analyzing Problems

You most often use the techniques of “algorithm” analysis to analyze an algorithm,
or the instantiation of an algorithm as a program. You can also use these same
techniques to analyze the cost of a problem. It should make sense to you to say that
the upper bound for a problem cannot be worse than the upper bound for the best
algorithm that we know for that problem. But what does it mean to give a lower
bound for a problem?

Consider a graph of cost over all inputs of a given size n for some algorithm
for a given problem. Define A to be the collection of all algorithms that solve
the problem (theoretically, there are an infinite number of such algorithms). Now,
consider the collection of all the graphs for all of the (infinitely many) algorithms
in A. The worst case lower bound is the least of all the highest points on all the
graphs.

It is much easier to show that an algorithm (or program) is in Ω(f(n)) than it
is to show that a problem is in Ω(f(n)). For a problem to be in Ω(f(n)) means
that every algorithm that solves the problem is in Ω(f(n)), even algorithms that we
have not thought of!

So far all of our examples of algorithm analysis give “obvious” results, with
big-Oh always matching Ω. To understand how big-Oh, Ω, and Θ notations are
properly used to describe our understanding of a problem or an algorithm, it is best
to consider an example where you do not already know a lot about the problem.

Let us look ahead to analyzing the problem of sorting to see how this process
works. What is the least possible cost for any sorting algorithm in the worst case?
The algorithm must at least look at every element in the input, just to determine
that the input is truly sorted. Thus, any sorting algorithm must take at least cn time.
For many problems, this observation that each of the n inputs must be looked at
leads to an easy Ω(n) lower bound.

In your previous study of computer science, you have probably seen an example
of a sorting algorithm whose running time is in O(n2) in the worst case. The simple
Bubble Sort and Insertion Sort algorithms typically given as examples in a first year
programming course have worst case running times in O(n2). Thus, the problem
of sorting can be said to have an upper bound in O(n2). How do we close the
gap between Ω(n) and O(n2)? Can there be a better sorting algorithm? If you can
think of no algorithm whose worst-case growth rate is better than O(n2), and if you
have discovered no analysis technique to show that the least cost for the problem
of sorting in the worst case is greater than Ω(n), then you cannot know for sure
whether or not there is a better algorithm.

Chapter 7 presents sorting algorithms whose running time is in O(n log n) for
the worst case. This greatly narrows the gap. With this new knowledge, we now
have a lower bound in Ω(n) and an upper bound in O(n log n). Should we search
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for a faster algorithm? Many have tried, without success. Fortunately (or perhaps
unfortunately?), Chapter 7 also includes a proof that any sorting algorithm must
have running time in Ω(n log n) in the worst case.2 This proof is one of the most
important results in the field of algorithm analysis, and it means that no sorting
algorithm can possibly run faster than cn log n for the worst-case input of size n.
Thus, we can conclude that the problem of sorting is Θ(n log n) in the worst case,
because the upper and lower bounds have met.

Knowing the lower bound for a problem does not give you a good algorithm.
But it does help you to know when to stop looking. If the lower bound for the
problem matches the upper bound for the algorithm (within a constant factor), then
we know that we can find an algorithm that is better only by a constant factor.

3.7 Common Misunderstandings

Asymptotic analysis is one of the most intellectually difficult topics that undergrad-
uate computer science majors are confronted with. Most people find growth rates
and asymptotic analysis confusing and so develop misconceptions about either the
concepts or the terminology. It helps to know what the standard points of confusion
are, in hopes of avoiding them.

One problem with differentiating the concepts of upper and lower bounds is
that, for most algorithms that you will encounter, it is easy to recognize the true
growth rate for that algorithm. Given complete knowledge about a cost function,
the upper and lower bound for that cost function are always the same. Thus, the
distinction between an upper and a lower bound is only worthwhile when you have
incomplete knowledge about the thing being measured. If this distinction is still not
clear, reread Section 3.6. We use Θ-notation to indicate that there is no meaningful
difference between what we know about the growth rates of the upper and lower
bound (which is usually the case for simple algorithms).

It is a common mistake to confuse the concepts of upper bound or lower bound
on the one hand, and worst case or best case on the other. The best, worst, or
average cases each give us a concrete input instance (or concrete set of instances)
that we can apply to an algorithm description to get a cost measure. The upper and
lower bounds describe our understanding of the growth rate for that cost measure.
So to define the growth rate for an algorithm or problem, we need to determine
what we are measuring (the best, worst, or average case) and also our description
for what we know about the growth rate of that cost measure (big-Oh, Ω, or Θ).

The upper bound for an algorithm is not the same as the worst case for that
algorithm for a given input of size n. What is being bounded is not the actual cost
(which you can determine for a given value of n), but rather the growth rate for the

2While it is fortunate to know the truth, it is unfortunate that sorting is Θ(n logn) rather than
Θ(n)!
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cost. There cannot be a growth rate for a single point, such as a particular value
of n. The growth rate applies to the change in cost as a change in input size occurs.
Likewise, the lower bound is not the same as the best case for a given size n.

Another common misconception is thinking that the best case for an algorithm
occurs when the input size is as small as possible, or that the worst case occurs
when the input size is as large as possible. What is correct is that best- and worse-
case instances exist for each possible size of input. That is, for all inputs of a given
size, say i, one (or more) of the inputs of size i is the best and one (or more) of the
inputs of size i is the worst. Often (but not always!), we can characterize the best
input case for an arbitrary size, and we can characterize the worst input case for an
arbitrary size. Ideally, we can determine the growth rate for the characterized best,
worst, and average cases as the input size grows.

Example 3.14 What is the growth rate of the best case for sequential
search? For any array of size n, the best case occurs when the value we
are looking for appears in the first position of the array. This is true regard-
less of the size of the array. Thus, the best case (for arbitrary size n) occurs
when the desired value is in the first of n positions, and its cost is 1. It is
not correct to say that the best case occurs when n = 1.

Example 3.15 Imagine drawing a graph to show the cost of finding the
maximum value among n values, as n grows. That is, the x axis would
be n, and the y value would be the cost. Of course, this is a diagonal line
going up to the right, as n increases (you might want to sketch this graph
for yourself before reading further).

Now, imagine the graph showing the cost for each instance of the prob-
lem of finding the maximum value among (say) 20 elements in an array.
The first position along the x axis of the graph might correspond to having
the maximum element in the first position of the array. The second position
along the x axis of the graph might correspond to having the maximum el-
ement in the second position of the array, and so on. Of course, the cost is
always 20. Therefore, the graph would be a horizontal line with value 20.
You should sketch this graph for yourself.

Now, let us switch to the problem of doing a sequential search for a
given value in an array. Think about the graph showing all the problem
instances of size 20. The first problem instance might be when the value
we search for is in the first position of the array. This has cost 1. The second
problem instance might be when the value we search for is in the second
position of the array. This has cost 2. And so on. If we arrange the problem
instances of size 20 from least expensive on the left to most expensive on
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the right, we see that the graph forms a diagonal line from lower left (with
value 0) to upper right (with value 20). Sketch this graph for yourself.

Finally, let us consider the cost for performing sequential search as the
size of the array n gets bigger. What will this graph look like? Unfortu-
nately, there’s not one simple answer, as there was for finding the maximum
value. The shape of this graph depends on whether we are considering the
best case cost (that would be a horizontal line with value 1), the worst case
cost (that would be a diagonal line with value i at position i along the x
axis), or the average cost (that would be a a diagonal line with value i/2 at
position i along the x axis). This is why we must always say that function
f(n) is in O(g(n)) in the best, average, or worst case! If we leave off which
class of inputs we are discussing, we cannot know which cost measure we
are referring to for most algorithms.

3.8 Multiple Parameters

Sometimes the proper analysis for an algorithm requires multiple parameters to de-
scribe the cost. To illustrate the concept, consider an algorithm to compute the rank
ordering for counts of all pixel values in a picture. Pictures are often represented by
a two-dimensional array, and a pixel is one cell in the array. The value of a pixel is
either the code value for the color, or a value for the intensity of the picture at that
pixel. Assume that each pixel can take any integer value in the range 0 to C − 1.
The problem is to find the number of pixels of each color value and then sort the
color values with respect to the number of times each value appears in the picture.
Assume that the picture is a rectangle with P pixels. A pseudocode algorithm to
solve the problem follows.

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all of the pixels
count[value(i)]++; // Increment a pixel value count

sort(count, C); // Sort pixel value counts

In this example, count is an array of size C that stores the number of pixels for
each color value. Function value(i) returns the color value for pixel i.

The time for the first for loop (which initializes count) is based on the num-
ber of colors, C. The time for the second loop (which determines the number of
pixels with each color) is Θ(P ). The time for the final line, the call to sort, de-
pends on the cost of the sorting algorithm used. From the discussion of Section 3.6,
we can assume that the sorting algorithm has cost Θ(P logP ) if P items are sorted,
thus yielding Θ(P logP ) as the total algorithm cost.
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Is this a good representation for the cost of this algorithm? What is actu-
ally being sorted? It is not the pixels, but rather the colors. What if C is much
smaller than P ? Then the estimate of Θ(P logP ) is pessimistic, because much
fewer than P items are being sorted. Instead, we should use P as our analysis vari-
able for steps that look at each pixel, and C as our analysis variable for steps that
look at colors. Then we get Θ(C) for the initialization loop, Θ(P ) for the pixel
count loop, and Θ(C logC) for the sorting operation. This yields a total cost of
Θ(P + C logC).

Why can we not simply use the value of C for input size and say that the cost
of the algorithm is Θ(C logC)? Because, C is typically much less than P . For
example, a picture might have 1000 × 1000 pixels and a range of 256 possible
colors. So, P is one million, which is much larger than C logC. But, if P is
smaller, or C larger (even if it is still less than P ), then C logC can become the
larger quantity. Thus, neither variable should be ignored.

3.9 Space Bounds

Besides time, space is the other computing resource that is commonly of concern
to programmers. Just as computers have become much faster over the years, they
have also received greater allotments of memory. Even so, the amount of available
disk space or main memory can be significant constraints for algorithm designers.

The analysis techniques used to measure space requirements are similar to those
used to measure time requirements. However, while time requirements are nor-
mally measured for an algorithm that manipulates a particular data structure, space
requirements are normally determined for the data structure itself. The concepts of
asymptotic analysis for growth rates on input size apply completely to measuring
space requirements.

Example 3.16 What are the space requirements for an array of n inte-
gers? If each integer requires c bytes, then the array requires cn bytes,
which is Θ(n).

Example 3.17 Imagine that we want to keep track of friendships between
n people. We can do this with an array of size n×n. Each row of the array
represents the friends of an individual, with the columns indicating who has
that individual as a friend. For example, if person j is a friend of person
i, then we place a mark in column j of row i in the array. Likewise, we
should also place a mark in column i of row j if we assume that friendship
works both ways. For n people, the total size of the array is Θ(n2).
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A data structure’s primary purpose is to store data in a way that allows efficient
access to those data. To provide efficient access, it may be necessary to store addi-
tional information about where the data are within the data structure. For example,
each node of a linked list must store a pointer to the next value on the list. All such
information stored in addition to the actual data values is referred to as overhead.
Ideally, overhead should be kept to a minimum while allowing maximum access.
The need to maintain a balance between these opposing goals is what makes the
study of data structures so interesting.

One important aspect of algorithm design is referred to as the space/time trade-
off principle. The space/time tradeoff principle says that one can often achieve a
reduction in time if one is willing to sacrifice space or vice versa. Many programs
can be modified to reduce storage requirements by “packing” or encoding informa-
tion. “Unpacking” or decoding the information requires additional time. Thus, the
resulting program uses less space but runs slower. Conversely, many programs can
be modified to pre-store results or reorganize information to allow faster running
time at the expense of greater storage requirements. Typically, such changes in time
and space are both by a constant factor.

A classic example of a space/time tradeoff is the lookup table. A lookup table
pre-stores the value of a function that would otherwise be computed each time it is
needed. For example, 12! is the greatest value for the factorial function that can be
stored in a 32-bit int variable. If you are writing a program that often computes
factorials, it is likely to be much more time efficient to simply pre-compute and
store the 12 values in a table. Whenever the program needs the value of n! it can
simply check the lookup table. (If n > 12, the value is too large to store as an int
variable anyway.) Compared to the time required to compute factorials, it may be
well worth the small amount of additional space needed to store the lookup table.

Lookup tables can also store approximations for an expensive function such as
sine or cosine. If you compute this function only for exact degrees or are willing
to approximate the answer with the value for the nearest degree, then a lookup
table storing the computation for exact degrees can be used instead of repeatedly
computing the sine function. Note that initially building the lookup table requires
a certain amount of time. Your application must use the lookup table often enough
to make this initialization worthwhile.

Another example of the space/time tradeoff is typical of what a programmer
might encounter when trying to optimize space. Here is a simple code fragment for
sorting an array of integers. We assume that this is a special case where there are n
integers whose values are a permutation of the integers from 0 to n− 1. This is an
example of a Binsort, which is discussed in Section 7.7. Binsort assigns each value
to an array position corresponding to its value.

for (i=0; i<n; i++)
B[A[i]] = A[i];
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This is efficient and requires Θ(n) time. However, it also requires two arrays
of size n. Next is a code fragment that places the permutation in order but does so
within the same array (thus it is an example of an “in place” sort).

for (i=0; i<n; i++)
while (A[i] != i)

swap(A, i, A[i]);

Function swap(A, i, j) exchanges elements i and j in array A. It may
not be obvious that the second code fragment actually sorts the array. To see that
this does work, notice that each pass through the for loop will at least move the
integer with value i to its correct position in the array, and that during this iteration,
the value of A[i] must be greater than or equal to i. A total of at most n swap
operations take place, because an integer cannot be moved out of its correct position
once it has been placed there, and each swap operation places at least one integer in
its correct position. Thus, this code fragment has cost Θ(n). However, it requires
more time to run than the first code fragment. On my computer the second version
takes nearly twice as long to run as the first, but it only requires half the space.

A second principle for the relationship between a program’s space and time
requirements applies to programs that process information stored on disk, as dis-
cussed in Chapter 8 and thereafter. Strangely enough, the disk-based space/time
tradeoff principle is almost the reverse of the space/time tradeoff principle for pro-
grams using main memory.

The disk-based space/time tradeoff principle states that the smaller you can
make your disk storage requirements, the faster your program will run. This is be-
cause the time to read information from disk is enormous compared to computation
time, so almost any amount of additional computation needed to unpack the data is
going to be less than the disk-reading time saved by reducing the storage require-
ments. Naturally this principle does not hold true in all cases, but it is good to keep
in mind when designing programs that process information stored on disk.

3.10 Speeding Up Your Programs

In practice, there is not such a big difference in running time between an algorithm
with growth rate Θ(n) and another with growth rate Θ(n log n). There is, however,
an enormous difference in running time between algorithms with growth rates of
Θ(n log n) and Θ(n2). As you shall see during the course of your study of common
data structures and algorithms, it is not unusual that a problem whose obvious solu-
tion requires Θ(n2) time also has a solution requiring Θ(n log n) time. Examples
include sorting and searching, two of the most important computer problems.

Example 3.18 The following is a true story. A few years ago, one of
my graduate students had a big problem. His thesis work involved several
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intricate operations on a large database. He was now working on the final
step. “Dr. Shaffer,” he said, “I am running this program and it seems to
be taking a long time.” After examining the algorithm we realized that its
running time was Θ(n2), and that it would likely take one to two weeks
to complete. Even if we could keep the computer running uninterrupted
for that long, he was hoping to complete his thesis and graduate before
then. Fortunately, we realized that there was a fairly easy way to convert
the algorithm so that its running time was Θ(n log n). By the next day he
had modified the program. It ran in only a few hours, and he finished his
thesis on time.

While not nearly so important as changing an algorithm to reduce its growth
rate, “code tuning” can also lead to dramatic improvements in running time. Code
tuning is the art of hand-optimizing a program to run faster or require less storage.
For many programs, code tuning can reduce running time by a factor of ten, or
cut the storage requirements by a factor of two or more. I once tuned a critical
function in a program — without changing its basic algorithm — to achieve a factor
of 200 speedup. To get this speedup, however, I did make major changes in the
representation of the information, converting from a symbolic coding scheme to a
numeric coding scheme on which I was able to do direct computation.

Here are some suggestions for ways to speed up your programs by code tuning.
The most important thing to realize is that most statements in a program do not
have much effect on the running time of that program. There are normally just a
few key subroutines, possibly even key lines of code within the key subroutines,
that account for most of the running time. There is little point to cutting in half the
running time of a subroutine that accounts for only 1% of the total running time.
Focus your attention on those parts of the program that have the most impact.

When tuning code, it is important to gather good timing statistics. Many com-
pilers and operating systems include profilers and other special tools to help gather
information on both time and space use. These are invaluable when trying to make
a program more efficient, because they can tell you where to invest your effort.

A lot of code tuning is based on the principle of avoiding work rather than
speeding up work. A common situation occurs when we can test for a condition
that lets us skip some work. However, such a test is never completely free. Care
must be taken that the cost of the test does not exceed the amount of work saved.
While one test might be cheaper than the work potentially saved, the test must
always be made and the work can be avoided only some fraction of the time.

Example 3.19 A common operation in computer graphics applications is
to find which among a set of complex objects contains a given point in
space. Many useful data structures and algorithms have been developed to
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deal with variations of this problem. Most such implementations involve
the following tuning step. Directly testing whether a given complex ob-
ject contains the point in question is relatively expensive. Instead, we can
screen for whether the point is contained within a bounding box for the
object. The bounding box is simply the smallest rectangle (usually defined
to have sides perpendicular to the x and y axes) that contains the object.
If the point is not in the bounding box, then it cannot be in the object. If
the point is in the bounding box, only then would we conduct the full com-
parison of the object versus the point. Note that if the point is outside the
bounding box, we saved time because the bounding box test is cheaper than
the comparison of the full object versus the point. But if the point is inside
the bounding box, then that test is redundant because we still have to com-
pare the point against the object. Typically the amount of work avoided by
making this test is greater than the cost of making the test on every object.

Example 3.20 Section 7.2.3 presents a sorting algorithm named Selec-
tion Sort. The chief distinguishing characteristic of this algorithm is that
it requires relatively few swaps of records stored in the array to be sorted.
However, it sometimes performs an unnecessary swap operation where it
tries to swap a record with itself. This work could be avoided by testing
whether the two indices being swapped are the same. However, this event
does not occurr often. Because the cost of the test is high enough compared
to the work saved when the test is successful, adding the test typically will
slow down the program rather than speed it up.

Be careful not to use tricks that make the program unreadable. Most code tun-
ing is simply cleaning up a carelessly written program, not taking a clear program
and adding tricks. In particular, you should develop an appreciation for the capa-
bilities of modern compilers to make extremely good optimizations of expressions.
“Optimization of expressions” here means a rearrangement of arithmetic or logical
expressions to run more efficiently. Be careful not to damage the compiler’s ability
to do such optimizations for you in an effort to optimize the expression yourself.
Always check that your “optimizations” really do improve the program by running
the program before and after the change on a suitable benchmark set of input. Many
times I have been wrong about the positive effects of code tuning in my own pro-
grams. Most often I am wrong when I try to optimize an expression. It is hard to
do better than the compiler.

The greatest time and space improvements come from a better data structure or
algorithm. The final thought for this section is

First tune the algorithm, then tune the code.
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3.11 Empirical Analysis

This chapter has focused on asymptotic analysis. This is an analytic tool, whereby
we model the key aspects of an algorithm to determine the growth rate of the alg-
orithm as the input size grows. As pointed out previously, there are many limita-
tions to this approach. These include the effects at small problem size, determining
the finer distinctions between algorithms with the same growth rate, and the inher-
ent difficulty of doing mathematical modeling for more complex problems.

An alternative to analytical approaches are empirical ones. The most obvious
empirical approach is simply to run two competitors and see which performs better.
In this way we might overcome the deficiencies of analytical approaches.

Be warned that comparative timing of programs is a difficult business, often
subject to experimental errors arising from uncontrolled factors (system load, the
language or compiler used, etc.). The most important point is not to be biased in
favor of one of the programs. If you are biased, this is certain to be reflected in
the timings. One look at competing software or hardware vendors’ advertisements
should convince you of this. The most common pitfall when writing two programs
to compare their performance is that one receives more code-tuning effort than the
other. As mentioned in Section 3.10, code tuning can often reduce running time by
a factor of ten. If the running times for two programs differ by a constant factor
regardless of input size (i.e., their growth rates are the same), then differences in
code tuning might account for any difference in running time. Be suspicious of
empirical comparisons in this situation.

Another approach to analysis is simulation. The idea of simulation is to model
the problem with a computer program and then run it to get a result. In the con-
text of algorithm analysis, simulation is distinct from empirical comparison of two
competitors because the purpose of the simulation is to perform analysis that might
otherwise be too difficult. A good example of this appears in Figure 9.10. This
figure shows the cost for inserting or deleting a record from a hash table under two
different assumptions for the policy used to find a free slot in the table. The y axes
is the cost in number of hash table slots evaluated, and the x axes is the percentage
of slots in the table that are full. The mathematical equations for these curves can
be determined, but this is not so easy. A reasonable alternative is to write simple
variations on hashing. By timing the cost of the program for various loading con-
ditions, it is not difficult to construct a plot similar to Figure 9.10. The purpose of
this analysis is not to determine which approach to hashing is most efficient, so we
are not doing empirical comparison of hashing alternatives. Instead, the purpose
is to analyze the proper loading factor that would be used in an efficient hashing
system to balance time cost versus hash table size (space cost).
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3.12 Further Reading

Pioneering works on algorithm analysis include The Art of Computer Programming
by Donald E. Knuth [Knu97, Knu98], and The Design and Analysis of Computer
Algorithms by Aho, Hopcroft, and Ullman [AHU74]. The alternate definition for
Ω comes from [AHU83]. The use of the notation “T(n) is in O(f(n))” rather
than the more commonly used “T(n) = O(f(n))” I derive from Brassard and
Bratley [BB96], though certainly this use predates them. A good book to read for
further information on algorithm analysis techniques is Compared to What? by
Gregory J.E. Rawlins [Raw92].

Bentley [Ben88] describes one problem in numerical analysis for which, be-
tween 1945 and 1988, the complexity of the best known algorithm had decreased
from O(n7) to O(n3). For a problem of size n = 64, this is roughly equivalent
to the speedup achieved from all advances in computer hardware during the same
time period.

While the most important aspect of program efficiency is the algorithm, much
improvement can be gained from efficient coding of a program. As cited by Freder-
ick P. Brooks in The Mythical Man-Month [Bro95], an efficient programmer can of-
ten produce programs that run five times faster than an inefficient programmer, even
when neither takes special efforts to speed up their code. For excellent and enjoy-
able essays on improving your coding efficiency, and ways to speed up your code
when it really matters, see the books by Jon Bentley [Ben82, Ben00, Ben88]. The
situation described in Example 3.18 arose when we were working on the project
reported on in [SU92].

As an interesting aside, writing a correct binary search algorithm is not easy.
Knuth [Knu98] notes that while the first binary search was published in 1946, the
first bug-free algorithm was not published until 1962! Bentley (“Writing Correct
Programs” in [Ben00]) has found that 90% of the computer professionals he tested
could not write a bug-free binary search in two hours.

3.13 Exercises

3.1 For each of the six expressions of Figure 3.1, give the range of values of n
for which that expression is most efficient.

3.2 Graph the following expressions. For each expression, state the range of
values of n for which that expression is the most efficient.

4n2 log3 n 3n 20n 2 log2 n n2/3

3.3 Arrange the following expressions by growth rate from slowest to fastest.

4n2 log3 n n! 3n 20n 2 log2 n n2/3

See Stirling’s approximation in Section 2.2 for help in classifying n!.
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3.4 (a) Suppose that a particular algorithm has time complexity T(n) = 3 ×
2n, and that executing an implementation of it on a particular machine
takes t seconds for n inputs. Now suppose that we are presented with a
machine that is 64 times as fast. How many inputs could we process on
the new machine in t seconds?

(b) Suppose that another algorithm has time complexity T(n) = n2, and
that executing an implementation of it on a particular machine takes
t seconds for n inputs. Now suppose that we are presented with a ma-
chine that is 64 times as fast. How many inputs could we process on
the new machine in t seconds?

(c) A third algorithm has time complexity T(n) = 8n. Executing an im-
plementation of it on a particular machine takes t seconds for n inputs.
Given a new machine that is 64 times as fast, how many inputs could
we process in t seconds?

3.5 Hardware vendor XYZ Corp. claims that their latest computer will run 100
times faster than that of their competitor, Prunes, Inc. If the Prunes, Inc.
computer can execute a program on input of size n in one hour, what size
input can XYZ’s computer execute in one hour for each algorithm with the
following growth rate equations?

n n2 n3 2n

3.6 (a) Find a growth rate that squares the run time when we double the input
size. That is, if T(n) = X , then T(2n) = x2

(b) Find a growth rate that cubes the run time when we double the input
size. That is, if T(n) = X , then T(2n) = x3

3.7 Using the definition of big-Oh, show that 1 is in O(1) and that 1 is in O(n).
3.8 Using the definitions of big-Oh and Ω, find the upper and lower bounds for

the following expressions. Be sure to state appropriate values for c and n0.

(a) c1n
(b) c2n3 + c3
(c) c4n log n+ c5n

(d) c62n + c7n
6

3.9 (a) What is the smallest integer k such that
√
n = O(nk)?

(b) What is the smallest integer k such that n log n = O(nk)?
3.10 (a) Is 2n = Θ(3n)? Explain why or why not.

(b) Is 2n = Θ(3n)? Explain why or why not.
3.11 For each of the following pairs of functions, either f(n) is in O(g(n)), f(n)

is in Ω(g(n)), or f(n) = Θ(g(n)). For each pair, determine which relation-
ship is correct. Justify your answer, using the method of limits discussed in
Section 3.4.5.
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(a) f(n) = log n2; g(n) = log n+ 5.
(b) f(n) =

√
n; g(n) = logn2.

(c) f(n) = log2 n; g(n) = log n.
(d) f(n) = n; g(n) = log2n.
(e) f(n) = n log n+ n; g(n) = log n.
(f) f(n) = log n2; g(n) = (log n)2.
(g) f(n) = 10; g(n) = log 10.
(h) f(n) = 2n; g(n) = 10n2.
(i) f(n) = 2n; g(n) = n log n.
(j) f(n) = 2n; g(n) = 3n.
(k) f(n) = 2n; g(n) = nn.

3.12 Determine Θ for the following code fragments in the average case. Assume
that all variables are of type int.

(a) a = b + c;
d = a + e;

(b) sum = 0;
for (i=0; i<3; i++)

for (j=0; j<n; j++)
sum++;

(c) sum=0;
for (i=0; i<n*n; i++)

sum++;

(d) for (i=0; i < n-1; i++)
for (j=i+1; j < n; j++) {

tmp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = tmp;

}

(e) sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j*=2)
sum++;

(f) sum = 0;
for (i=1; i<=n; i*=2)

for (j=1; j<=n; j++)
sum++;

(g) Assume that array A contains n values, Random takes constant time,
and sort takes n log n steps.

for (i=0; i<n; i++) {
for (j=0; j<n; j++)

A[i] = Random(n);
sort(A, n);

}
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(h) Assume array A contains a random permutation of the values from 0 to
n− 1.
sum = 0;
for (i=0; i<n; i++)

for (j=0; A[j]!=i; j++)
sum++;

(i) sum = 0;
if (EVEN(n))

for (i=0; i<n; i++)
sum++;

else
sum = sum + n;

3.13 Show that big-Theta notation (Θ) defines an equivalence relation on the set
of functions.

3.14 Give the best lower bound that you can for the following code fragment, as a
function of the initial value of n.

while (n > 1)
if (ODD(n))

n = 3 * n + 1;
else

n = n / 2;

Do you think that the upper bound is likely to be the same as the answer you
gave for the lower bound?

3.15 Does every algorithm have a Θ running-time equation? In other words, are
the upper and lower bounds for the running time (on any specified class of
inputs) always the same?

3.16 Does every problem for which there exists some algorithm have a Θ running-
time equation? In other words, for every problem, and for any specified
class of inputs, is there some algorithm whose upper bound is equal to the
problem’s lower bound?

3.17 Given an array storing integers ordered by value, modify the binary search
routine to return the position of the first integer with value K in the situation
where K can appear multiple times in the array. Be sure that your algorithm
is Θ(log n), that is, do not resort to sequential search once an occurrence of
K is found.

3.18 Given an array storing integers ordered by value, modify the binary search
routine to return the position of the integer with the greatest value less than
K when K itself does not appear in the array. Return ERROR if the least
value in the array is greater than K.

3.19 Modify the binary search routine to support search in an array of infinite
size. In particular, you are given as input a sorted array and a key value
K to search for. Call n the position of the smallest value in the array that
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is equal to or larger than X . Provide an algorithm that can determine n in
O(log n) comparisons in the worst case. Explain why your algorithm meets
the required time bound.

3.20 It is possible to change the way that we pick the dividing point in a binary
search, and still get a working search routine. However, where we pick the
dividing point could affect the performance of the algorithm.

(a) If we change the dividing point computation in function binary from
i = (l + r)/2 to i = (l + ((r − l)/3)), what will the worst-case run-
ning time be in asymptotic terms? If the difference is only a constant
time factor, how much slower or faster will the modified program be
compared to the original version of binary?

(b) If we change the dividing point computation in function binary from
i = (l+ r)/2 to i = r− 2, what will the worst-case running time be in
asymptotic terms? If the difference is only a constant time factor, how
much slower or faster will the modified program be compared to the
original version of binary?

3.21 Design an algorithm to assemble a jigsaw puzzle. Assume that each piece
has four sides, and that each piece’s final orientation is known (top, bottom,
etc.). Assume that you have available a function

bool compare(Piece a, Piece b, Side ad)

that can tell, in constant time, whether piece a connects to piece b on a’s
side ad and b’s opposite side bd. The input to your algorithm should consist
of an n ×m array of random pieces, along with dimensions n and m. The
algorithm should put the pieces in their correct positions in the array. Your
algorithm should be as efficient as possible in the asymptotic sense. Write
a summation for the running time of your algorithm on n pieces, and then
derive a closed-form solution for the summation.

3.22 Can the average case cost for an algorithm be worse than the worst case cost?
Can it be better than the best case cost? Explain why or why not.

3.23 Prove that if an algorithm is Θ(f(n)) in the average case, then it is Ω(f(n))
in the worst case.

3.24 Prove that if an algorithm is Θ(f(n)) in the average case, then it is O(f(n))
in the best case.

3.14 Projects

3.1 Imagine that you are trying to store 32 Boolean values, and must access
them frequently. Compare the time required to access Boolean values stored
alternatively as a single bit field, a character, a short integer, or a long integer.
There are two things to be careful of when writing your program. First, be
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sure that your program does enough variable accesses to make meaningful
measurements. A single access takes much less time than a single unit of
measurement (typically milliseconds) for all four methods. Second, be sure
that your program spends as much time as possible doing variable accesses
rather than other things such as calling timing functions or incrementing for
loop counters.

3.2 Implement sequential search and binary search algorithms on your computer.
Run timings for each algorithm on arrays of size n = 10i for i ranging from
1 to as large a value as your computer’s memory and compiler will allow. For
both algorithms, store the values 0 through n − 1 in order in the array, and
use a variety of random search values in the range 0 to n − 1 on each size
n. Graph the resulting times. When is sequential search faster than binary
search for a sorted array?

3.3 Implement a program that runs and gives timings for the two Fibonacci se-
quence functions provided in Exercise 2.11. Graph the resulting running
times for as many values of n as your computer can handle.
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4

Lists, Stacks, and Queues

If your program needs to store a few things — numbers, payroll records, or job de-
scriptions for example — the simplest and most effective approach might be to put
them in a list. Only when you have to organize and search through a large number
of things do more sophisticated data structures usually become necessary. (We will
study how to organize and search through medium amounts of data in Chapters 5, 7,
and 9, and discuss how to deal with large amounts of data in Chapters 8–10.) Many
applications don’t require any form of search, and they do not require that any or-
dering be placed on the objects being stored. Some applications require processing
in a strict chronological order, processing objects in the order that they arrived, or
perhaps processing objects in the reverse of the order that they arrived. For all these
situations, a simple list structure is appropriate.

This chapter describes representations for lists in general, as well as two impor-
tant list-like structures called the stack and the queue. Along with presenting these
fundamental data structures, the other goals of the chapter are to: (1) Give examples
of separating a logical representation in the form of an ADT from a physical im-
plementation for a data structure. (2) Illustrate the use of asymptotic analysis in the
context of some simple operations that you might already be familiar with. In this
way you can begin to see how asymptotic analysis works, without the complica-
tions that arise when analyzing more sophisticated algorithms and data structures.
(3) Introduce the concept and use of dictionaries.

We begin by defining an ADT for lists in Section 4.1. Two implementations for
the list ADT — the array-based list and the linked list — are covered in detail and
their relative merits discussed. Sections 4.2 and 4.3 cover stacks and queues, re-
spectively. Sample implementations for each of these data structures are presented.
Section 4.4 presents the Dictionary ADT for storing and retrieving data, which sets
a context for implementing search structures such as the Binary Search Tree of
Section 5.4.

95
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4.1 Lists

We all have an intuitive understanding of what we mean by a “list.” Our first step is
to define precisely what is meant so that this intuitive understanding can eventually
be converted into a concrete data structure and its operations. The most important
concept related to lists is that of position. In other words, we perceive that there
is a first element in the list, a second element, and so on. We should view a list as
embodying the mathematical concepts of a sequence, as defined in Section 2.1.

We define a list to be a finite, ordered sequence of data items known as ele-
ments. “Ordered” in this definition means that each element has a position in the
list. (We will not use “ordered” in this context to mean that the list elements are
sorted by value.) Each list element has a data type. In the simple list implemen-
tations discussed in this chapter, all elements of the list have the same data type,
although there is no conceptual objection to lists whose elements have differing
data types if the application requires it (see Section 12.1). The operations defined
as part of the list ADT do not depend on the elemental data type. For example, the
list ADT can be used for lists of integers, lists of characters, lists of payroll records,
even lists of lists.

A list is said to be empty when it contains no elements. The number of ele-
ments currently stored is called the length of the list. The beginning of the list is
called the head, the end of the list is called the tail. There might or might not be
some relationship between the value of an element and its position in the list. For
example, sorted lists have their elements positioned in ascending order of value,
while unsorted lists have no particular relationship between element values and
positions. This section will consider only unsorted lists. Chapters 7 and 9 treat the
problems of how to create and search sorted lists efficiently.

When presenting the contents of a list, we use the same notation as was in-
troduced for sequences in Section 2.1. To be consistent with C++ array indexing,
the first position on the list is denoted as 0. Thus, if there are n elements in the
list, they are given positions 0 through n− 1 as 〈a0, a1, ..., an−1〉. The subscript
indicates an element’s position within the list. Using this notation, the empty list
would appear as 〈〉.

Before selecting a list implementation, a program designer should first consider
what basic operations the implementation must support. Our common intuition
about lists tells us that a list should be able to grow and shrink in size as we insert
and remove elements. We should be able to insert and remove elements from any-
where in the list. We should be able to gain access to any element’s value, either to
read it or to change it. We must be able to create and clear (or reinitialize) lists. It
is also convenient to access the next or previous element from the “current” one.

The next step is to define the ADT for a list object in terms of a set of operations
on that object. We will use the C++ notation of anabstract class to formally define
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the list ADT. An abstract class is one whose member functions are all declared to be
“pure virtual” as indicated by the “=0” notation at the end of the member function
declarations. Class List defines the member functions that any list implementa-
tion inheriting from it must support, along with their parameters and return types.
We increase the flexibility of the list ADT by writing it as a C++ template.

True to the notion of an ADT, anabstract class does not specify how operations
are implemented. Two complete implementations are presented later in this sec-
tion, both of which use the same list ADT to define their operations, but they are
considerably different in approaches and in their space/time tradeoffs.

Figure 4.1 presents our list ADT. Class List is a template of one parameter,
named E for “element”. E serves as a placeholder for whatever element type the
user would like to store in a list. The comments given in Figure 4.1 describe pre-
cisely what each member function is intended to do. However, some explanation
of the basic design is in order. Given that we wish to support the concept of a se-
quence, with access to any position in the list, the need for many of the member
functions such as insert and moveToPos is clear. The key design decision em-
bodied in this ADT is support for the concept of a current position. For example,
member moveToStart sets the current position to be the first element on the list,
while methods next and prev move the current position to the next and previ-
ous elements, respectively. The intention is that any implementation for this ADT
support the concept of a current position. The current position is where any action
such as insertion or deletion will take place.

Since insertions take place at the current position, and since we want to be able
to insert to the front or the back of the list as well as anywhere in between, there are
actually n+ 1 possible “current positions” when there are n elements in the list.

It is helpful to modify our list display notation to show the position of the
current element. I will use a vertical bar, such as 〈20, 23 | 12, 15〉 to indicate
the list of four elements, with the current position being to the right of the bar at
element 12. Given this configuration, calling insert with value 10 will change
the list to be 〈20, 23 | 10, 12, 15〉.

If you examine Figure 4.1, you should find that the list member functions pro-
vided allow you to build a list with elements in any desired order, and to access
any desired position in the list. You might notice that the clear method is not
necessary, in that it could be implemented by means of the other member functions
in the same asymptotic time. It is included merely for convenience.

Method getValue returns a pointer to the current element. It is considered a
violation of getValue’s preconditions to ask for the value of a non-existent ele-
ment (i.e., there must be something to the right of the vertical bar). In our concrete
list implementations, assertions are used to enforce such preconditions. In a com-
mercial implementation, such violations would be best implemented by the C++

exception mechanism.
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template <typename E> class List { // List ADT
private:

void operator =(const List&) {} // Protect assignment
List(const List&) {} // Protect copy constructor

public:
List() {} // Default constructor
virtual ˜List() {} // Base destructor

// Clear contents from the list, to make it empty.
virtual void clear() = 0;

// Insert an element at the current location.
// item: The element to be inserted
virtual void insert(const E& item) = 0;

// Append an element at the end of the list.
// item: The element to be appended.
virtual void append(const E& item) = 0;

// Remove and return the current element.
// Return: the element that was removed.
virtual E remove() = 0;

// Set the current position to the start of the list
virtual void moveToStart() = 0;

// Set the current position to the end of the list
virtual void moveToEnd() = 0;

// Move the current position one step left. No change
// if already at beginning.
virtual void prev() = 0;

// Move the current position one step right. No change
// if already at end.
virtual void next() = 0;

// Return: The number of elements in the list.
virtual int length() const = 0;

// Return: The position of the current element.
virtual int currPos() const = 0;

// Set current position.
// pos: The position to make current.
virtual void moveToPos(int pos) = 0;

// Return: The current element.
virtual const E& getValue() const = 0;

};

Figure 4.1 The ADT for a list.
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A list can be iterated through as shown in the following code fragment.

for (L.moveToStart(); L.currPos()<L.length(); L.next()) {
it = L.getValue();
doSomething(it);

}

In this example, each element of the list in turn is stored in it, and passed to the
doSomething function. The loop terminates when the current position reaches
the end of the list.

The declaration for abstract class List also makes private the class copy con-
structor and an overloading for the assignment operator. This protects the class
from accidentally being copied. This is done in part to simplify the example code
used in this book. A full-featured list implementation would likely support copying
and assigning list objects.

The list class declaration presented here is just one of many possible interpreta-
tions for lists. Figure 4.1 provides most of the operations that one naturally expects
to perform on lists and serves to illustrate the issues relevant to implementing the
list data structure. As an example of using the list ADT, we can create a function
to return true if there is an occurrence of a given integer in the list, and false
otherwise. The find method needs no knowledge about the specific list imple-
mentation, just the list ADT.

// Return true if "K" is in list "L", false otherwise
bool find(List<int>& L, int K) {

int it;
for (L.moveToStart(); L.currPos()<L.length(); L.next()) {

it = L.getValue();
if (K == it) return true; // Found K

}
return false; // K not found

}

While this implementation for find could be written as a template with respect
to the element type, it would still be limited in its ability to handle different data
types stored on the list. In particular, it only works when the description for the
object being searched for (k in the function) is of the same type as the objects
themselves, and that can meaningfully be compared when using the == comparison
operator. A more typical situation is that we are searching for a record that contains
a key field who’s value matches k. Similar functions to find and return a composite
element based on a key value can be created using the list implementation, but to
do so requires some agreement between the list ADT and the find function on the
concept of a key, and on how keys may be compared. This topic will be discussed
in Section 4.4.
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4.1.1 Array-Based List Implementation

There are two standard approaches to implementing lists, the array-based list, and
the linked list. This section discusses the array-based approach. The linked list is
presented in Section 4.1.2. Time and space efficiency comparisons for the two are
discussed in Section 4.1.3.

Figure 4.2 shows the array-based list implementation, named AList. AList
inherits from abstract class List and so must implement all of the member func-
tions of List.

Class AList’s private portion contains the data members for the array-based
list. These include listArray, the array which holds the list elements. Because
listArray must be allocated at some fixed size, the size of the array must be
known when the list object is created. Note that an optional parameter is declared
for the AList constructor. With this parameter, the user can indicate the maximum
number of elements permitted in the list. The phrase “=defaultSize” indicates
that the parameter is optional. If no parameter is given, then it takes the value
defaultSize, which is assumed to be a suitably defined constant value.

Because each list can have a differently sized array, each list must remember
its maximum permitted size. Data member maxSize serves this purpose. At any
given time the list actually holds some number of elements that can be less than the
maximum allowed by the array. This value is stored in listSize. Data member
curr stores the current position. Because listArray, maxSize, listSize,
and curr are all declared to be private, they may only be accessed by methods
of Class AList.

Class AList stores the list elements in the first listSize contiguous array
positions. Array positions correspond to list positions. In other words, the element
at position i in the list is stored at array cell i. The head of the list is always at
position 0. This makes random access to any element in the list quite easy. Given
some position in the list, the value of the element in that position can be accessed
directly. Thus, access to any element using the moveToPos method followed by
the getValue method takes Θ(1) time.

Because the array-based list implementation is defined to store list elements in
contiguous cells of the array, the insert, append, and remove methods must
maintain this property. Inserting or removing elements at the tail of the list is easy,
so the append operation takes Θ(1) time. But if we wish to insert an element at
the head of the list, all elements currently in the list must shift one position toward
the tail to make room, as illustrated by Figure 4.3. This process takes Θ(n) time
if there are n elements already in the list. If we wish to insert at position i within
a list of n elements, then n − i elements must shift toward the tail. Removing an
element from the head of the list is similar in that all remaining elements must shift
toward the head by one position to fill in the gap. To remove the element at position
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template <typename E> // Array-based list implementation
class AList : public List<E> {
private:

int maxSize; // Maximum size of list
int listSize; // Number of list items now
int curr; // Position of current element
E* listArray; // Array holding list elements

public:
AList(int size=defaultSize) { // Constructor

maxSize = size;
listSize = curr = 0;
listArray = new E[maxSize];

}

˜AList() { delete [] listArray; } // Destructor

void clear() { // Reinitialize the list
delete [] listArray; // Remove the array
listSize = curr = 0; // Reset the size
listArray = new E[maxSize]; // Recreate array

}

// Insert "it" at current position
void insert(const E& it) {

Assert(listSize < maxSize, "List capacity exceeded");
for(int i=listSize; i>curr; i--) // Shift elements up

listArray[i] = listArray[i-1]; // to make room
listArray[curr] = it;
listSize++; // Increment list size

}

void append(const E& it) { // Append "it"
Assert(listSize < maxSize, "List capacity exceeded");
listArray[listSize++] = it;

}

// Remove and return the current element.
E remove() {

Assert((curr>=0) && (curr < listSize), "No element");
E it = listArray[curr]; // Copy the element
for(int i=curr; i<listSize-1; i++) // Shift them down

listArray[i] = listArray[i+1];
listSize--; // Decrement size
return it;

}

Figure 4.2 An array-based list implementation.
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void moveToStart() { curr = 0; } // Reset position
void moveToEnd() { curr = listSize; } // Set at end
void prev() { if (curr != 0) curr--; } // Back up
void next() { if (curr < listSize) curr++; } // Next

// Return list size
int length() const { return listSize; }

// Return current position
int currPos() const { return curr; }

// Set current list position to "pos"
void moveToPos(int pos) {

Assert ((pos>=0)&&(pos<=listSize), "Pos out of range");
curr = pos;

}

const E& getValue() const { // Return current element
Assert((curr>=0)&&(curr<listSize),"No current element");
return listArray[curr];

}
};

Figure 4.2 (continued)
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Figure 4.3 Inserting an element at the head of an array-based list requires shift-
ing all existing elements in the array by one position toward the tail. (a) A list
containing five elements before inserting an element with value 23. (b) The list
after shifting all existing elements one position to the right. (c) The list after 23
has been inserted in array position 0. Shading indicates the unused part of the
array.

i, n − i − 1 elements must shift toward the head. In the average case, insertion or
removal requires moving half of the elements, which is Θ(n).

Most of the other member functions for Class AList simply access the current
list element or move the current position. Such operations all require Θ(1) time.
Aside from insert and remove, the only other operations that might require
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// Singly linked list node
template <typename E> class Link {
public:

E element; // Value for this node
Link *next; // Pointer to next node in list
// Constructors
Link(const E& elemval, Link* nextval =NULL)

{ element = elemval; next = nextval; }
Link(Link* nextval =NULL) { next = nextval; }

};

Figure 4.4 A simple singly linked list node implementation.

more than constant time are the constructor, the destructor, and clear. These
three member functions each make use of the system free-storeoperators new and
delete. As discussed further in Section 4.1.2, system free-store operations can
be expensive. In particular, the cost to delete listArray depends in part on the
type of elements it stores, and whether the delete operator must call a destructor
on each one.

4.1.2 Linked Lists

The second traditional approach to implementing lists makes use of pointers and is
usually called a linked list. The linked list uses dynamic memory allocation, that
is, it allocates memory for new list elements as needed.

A linked list is made up of a series of objects, called the nodes of the list.
Because a list node is a distinct object (as opposed to simply a cell in an array), it is
good practice to make a separate list node class. An additional benefit to creating a
list node class is that it can be reused by the linked implementations for the stack
and queue data structures presented later in this chapter. Figure 4.4 shows the
implementation for list nodes, called the Link class. Objects in the Link class
contain an element field to store the element value, and a next field to store a
pointer to the next node on the list. The list built from such nodes is called a singly
linked list, or a one-way list, because each list node has a single pointer to the next
node on the list.

The Link class is quite simple. There are two forms for its constructor, one
with an initial element value and one without. Because the Link class is also
used by the stack and queue implementations presented later, its data members are
made public. While technically this is breaking encapsulation, in practice the Link
class should be implemented as a private class of the linked list (or stack or queue)
implementation, and thus not visible to the rest of the program.

Figure 4.5(a) shows a graphical depiction for a linked list storing four integers.
The value stored in a pointer variable is indicated by an arrow “pointing” to some-
thing. C++ uses the special symbol NULL for a pointer value that points nowhere,
such as for the last list node’s next field. A NULL pointer is indicated graphically
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Figure 4.5 Illustration of a faulty linked-list implementation where curr points
directly to the current node. (a) Linked list prior to inserting element with
value 10. (b) Desired effect of inserting element with value 10.

by a diagonal slash through a pointer variable’s box. The vertical line between the
nodes labeled 23 and 12 in Figure 4.5(a) indicates the current position (immediately
to the right of this line).

The list’s first node is accessed from a pointer named head. To speed access
to the end of the list, and to allow the append method to be performed in constant
time, a pointer named tail is also kept to the last link of the list. The position of
the current element is indicated by another pointer, named curr. Finally, because
there is no simple way to compute the length of the list simply from these three
pointers, the list length must be stored explicitly, and updated by every operation
that modifies the list size. The value cnt stores the length of the list.

Class LList also includes private helper methods init and removeall.
They are used by LList’s constructor, destructor, and clear methods.

Note that LList’s constructor maintains the optional parameter for minimum
list size introduced for Class AList. This is done simply to keep the calls to the
constructor the same for both variants. Because the linked list class does not need
to declare a fixed-size array when the list is created, this parameter is unnecessary
for linked lists. It is ignored by the implementation.

A key design decision for the linked list implementation is how to represent
the current position. The most reasonable choices appear to be a pointer to the
current element. But there is a big advantage to making curr point to the element
preceding the current element.

Figure 4.5(a) shows the list’s curr pointer pointing to the current element. The
vertical line between the nodes containing 23 and 12 indicates the logical position
of the current element. Consider what happens if we wish to insert a new node with
value 10 into the list. The result should be as shown in Figure 4.5(b). However,
there is a problem. To “splice” the list node containing the new element into the
list, the list node storing 23 must have its next pointer changed to point to the new
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15
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Figure 4.6 Insertion using a header node, with curr pointing one node head of
the current element. (a) Linked list before insertion. The current node contains 12.
(b) Linked list after inserting the node containing 10.

node. Unfortunately, there is no convenient access to the node preceding the one
pointed to by curr.

There is an easy solution to this problem. If we set curr to point directly to
the preceding element, there is no difficulty in adding a new element after curr.
Figure 4.6 shows how the list looks when pointer variable curr is set to point to the
node preceding the physical current node. See Exercise 4.5 for further discussion
of why making curr point directly to the current element fails.

We encounter a number of potential special cases when the list is empty, or
when the current position is at an end of the list. In particular, when the list is empty
we have no element for head, tail, and curr to point to. Implementing special
cases for insert and remove increases code complexity, making it harder to
understand, and thus increases the chance of introducing a programming bug.

These special cases can be eliminated by implementing linked lists with an
additional header node as the first node of the list. This header node is a link
node like any other, but its value is ignored and it is not considered to be an actual
element of the list. The header node saves coding effort because we no longer need
to consider special cases for empty lists or when the current position is at one end
of the list. The cost of this simplification is the space for the header node. However,
there are space savings due to smaller code size, because statements to handle the
special cases are omitted. In practice, this reduction in code size typically saves
more space than that required for the header node, depending on the number of
lists created. Figure 4.7 shows the state of an initialized or empty list when using a
header node.

Figure 4.8 shows the definition for the linked list class, named LList. Class
LList inherits from the abstract list class and thus must implement all of Class
List’s member functions.
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Figure 4.7 Initial state of a linked list when using a header node.

Implementations for most member functions of the list class are straightfor-
ward. However, insert and remove should be studied carefully.

Inserting a new element is a three-step process. First, the new list node is
created and the new element is stored into it. Second, the next field of the new
list node is assigned to point to the current node (the one after the node that curr
points to). Third, the next field of node pointed to by curr is assigned to point to
the newly inserted node. The following line in the insert method of Figure 4.8
does all three of these steps.

curr->next = new Link<E>(it, curr->next);

Operator new creates the new link node and calls the Link class constructor, which
takes two parameters. The first is the element. The second is the value to be placed
in the list node’s next field, in this case“curr->next.” Figure 4.9 illustrates
this three-step process. Once the new node is added, tail is pushed forward if the
new element was added to the end of the list. Insertion requires Θ(1) time.

Removing a node from the linked list requires only that the appropriate pointer
be redirected around the node to be deleted. The following lines from the remove
method of Figure 4.8 do precisely this.

Link<E>* ltemp = curr->next; // Remember link node
curr->next = curr->next->next; // Remove from list

We must be careful not to “lose” the memory for the deleted link node. So, tem-
porary pointer ltemp is first assigned to point to the node being removed. A call
to delete is later used to return the old node to free storage. Figure 4.10 illus-
trates the remove method.Assuming that the free-store delete operator requires
constant time, removing an element requires Θ(1) time.

Method next simply moves curr one position toward the tail of the list,
which takes Θ(1) time. Method prev moves curr one position toward the head
of the list, but its implementation is more difficult. In a singly linked list, there is
no pointer to the previous node. Thus, the only alternative is to march down the list
from the beginning until we reach the current node (being sure always to remember
the node before it, because that is what we really want). This takes Θ(n) time in
the average and worst cases. Implementation of method moveToPos is similar in
that finding the ith position requires marching down i positions from the head of
the list, taking Θ(i) time.

Implementations for the remaining operations each require Θ(1) time.
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// Linked list implementation
template <typename E> class LList: public List<E> {
private:

Link<E>* head; // Pointer to list header
Link<E>* tail; // Pointer to last element
Link<E>* curr; // Access to current element
int cnt; // Size of list

void init() { // Intialization helper method
curr = tail = head = new Link<E>;
cnt = 0;

}

void removeall() { // Return link nodes to free store
while(head != NULL) {

curr = head;
head = head->next;
delete curr;

}
}

public:
LList(int size=defaultSize) { init(); } // Constructor
˜LList() { removeall(); } // Destructor
void print() const; // Print list contents
void clear() { removeall(); init(); } // Clear list

// Insert "it" at current position
void insert(const E& it) {

curr->next = new Link<E>(it, curr->next);
if (tail == curr) tail = curr->next; // New tail
cnt++;

}

void append(const E& it) { // Append "it" to list
tail = tail->next = new Link<E>(it, NULL);
cnt++;

}

// Remove and return current element
E remove() {

Assert(curr->next != NULL, "No element");
E it = curr->next->element; // Remember value
Link<E>* ltemp = curr->next; // Remember link node
if (tail == curr->next) tail = curr; // Reset tail
curr->next = curr->next->next; // Remove from list
delete ltemp; // Reclaim space
cnt--; // Decrement the count
return it;

}

Figure 4.8 A linked list implementation.
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void moveToStart() // Place curr at list start
{ curr = head; }

void moveToEnd() // Place curr at list end
{ curr = tail; }

// Move curr one step left; no change if already at front
void prev() {

if (curr == head) return; // No previous element
Link<E>* temp = head;
// March down list until we find the previous element
while (temp->next!=curr) temp=temp->next;
curr = temp;

}

// Move curr one step right; no change if already at end
void next()

{ if (curr != tail) curr = curr->next; }

int length() const { return cnt; } // Return length

// Return the position of the current element
int currPos() const {

Link<E>* temp = head;
int i;
for (i=0; curr != temp; i++)

temp = temp->next;
return i;

}

// Move down list to "pos" position
void moveToPos(int pos) {

Assert ((pos>=0)&&(pos<=cnt), "Position out of range");
curr = head;
for(int i=0; i<pos; i++) curr = curr->next;

}

const E& getValue() const { // Return current element
Assert(curr->next != NULL, "No value");
return curr->next->element;

}
};

Figure 4.8 (continued)
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Figure 4.9 The linked list insertion process. (a) The linked list before insertion.
(b) The linked list after insertion. 1 marks the element field of the new link
node. 2 marks the next field of the new link node, which is set to point to what
used to be the current node (the node with value 12). 3 marks the next field of
the node preceding the current position. It used to point to the node containing 12;
now it points to the new node containing 10.
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Figure 4.10 The linked list removal process. (a) The linked list before removing
the node with value 10. (b) The linked list after removal. 1 marks the list node
being removed. it is set to point to the element. 2 marks the next field of
the preceding list node, which is set to point to the node following the one being
deleted.
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Freelists

TheC++ free-store management operators new and delete are relatively expen-
sive to use. Section 12.3 discusses how general-purpose memory managers are
implemented. The expense comes from the fact that free-store routines must be ca-
pable of handling requests to and from free store with no particular pattern, as well
as memory requests of vastly different sizes. Thismakes them inefficient compared
to what might be implemented for more controlled patterns of memory access.

List nodes are created and deleted in a linked list implementation in a way
that allows the Link class programmer to provide simple but efficient memory
management routines. Instead of making repeated calls to new and delete, the
Link class can handle its own freelist. A freelist holds those list nodes that are not
currently being used. When a node is deleted from a linked list, it is placed at the
head of the freelist. When a new element is to be added to a linked list, the freelist
is checked to see if a list node is available. If so, the node is taken from the freelist.
If the freelist is empty, the standard new operator must then be called.

Freelists are particularly useful for linked lists that periodically grow and then
shrink. The freelist will never grow larger than the largest size yet reached by the
linked list. Requests for new nodes (after the list has shrunk) can be handled by
the freelist. Another good opportunity to use a freelist occurs when a program uses
multiple lists. So long as they do not all grow and shrink together, the free list can
let link nodes move between the lists.

One approach to implementing freelists would be to create two new operators
to use instead of the standard free-store routines new and delete. This requires
that the user’s code, such as the linked list class implementation of Figure 4.8, be
modified to call these freelist operators. A second approach is to use C++ operator
overloading to replace the meaning of new and delete when operating on Link
class objects. In this way, programs that use the LList class need not be modified
at all to take advantage of a freelist. Whether the Link class is implemented with
freelists, or relies on the regular free-store mechanism, is entirely hidden from the
list class user. Figure 4.11 shows the reimplementation for the Link classwith
freelist methods overloading the standard free-store operators. Note how simple
they are, because they need only remove and add an element to the front of the
freelist, respectively. The freelist versions of new and delete both run in Θ(1)
time, except in the case where the freelist is exhausted and the new operation must
be called. On my computer, a call to the overloaded new and delete operators
requires about one tenth of the time required by the system free-store operators.

There is an additional efficiency gain to be had from a freelist implementation.
The implementation of Figure 4.11 makes a separate call to the system new oper-
ator for each link node requested whenever the freelist is empty. These link nodes
tend to be small — only a few bytes more than the size of the element field. If at
some point in time the program requires thousands of active link nodes, these will
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// Singly linked list node with freelist support
template <typename E> class Link {
private:

static Link<E>* freelist; // Reference to freelist head
public:

E element; // Value for this node
Link* next; // Point to next node in list

// Constructors
Link(const E& elemval, Link* nextval =NULL)

{ element = elemval; next = nextval; }
Link(Link* nextval =NULL) { next = nextval; }

void* operator new(size t) { // Overloaded new operator
if (freelist == NULL) return ::new Link; // Create space
Link<E>* temp = freelist; // Can take from freelist
freelist = freelist->next;
return temp; // Return the link

}

// Overloaded delete operator
void operator delete(void* ptr) {

((Link<E>*)ptr)->next = freelist; // Put on freelist
freelist = (Link<E>*)ptr;

}
};

// The freelist head pointer is actually created here
template <typename E>
Link<E>* Link<E>::freelist = NULL;

Figure 4.11 Implementation for the Link class with a freelist. Note that the
redefinition for new refers to ::new on the third line. This indicates that the
standard C++ new operator is used, rather than the redefined new operator. If
the colons had not been used, then the Link class new operator would be called,
setting up an infinite recursion. The static declaration for member freelist
means that all Link class objects share the same freelist pointer variable instead
of each object storing its own copy.

have been created by many calls to the system version of new. An alternative is to
allocate many link nodes in a single call to the system version of new, anticipating
that if the freelist is exhausted now, more nodes will be needed soon. It is faster to
make one call to new to get space for 100 link nodes, and then load all 100 onto
the freelist at once, rather than to make 100 separate calls to new. The following
statement will assign ptr to point to an array of 100 link nodes.

ptr = ::new Link[100];

The implementation for the new operator in the link class could then place each
of these 100 nodes onto the freelist.
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The freelist variable declaration uses the keyword static. This creates
a single variable shared among all instances of the Link nodes. We want only a
single freelist for all Link nodes of a given type. A program might create multiple
lists. If they are all of the same type (that is, their element types are the same), then
they can and should share the same freelist. This will happen with the implemen-
tation of Figure 4.11. If lists are created that have different element types, because
this code is implemented with a template, the need for different list implementa-
tions will be discovered by the compiler at compile time. Separate versions of the
list class will be generated for each element type. Thus, each element type will
also get its own separate copy of the Link class. And each distinct Link class
implementation will get a separate freelist.

4.1.3 Comparison of List Implementations

Now that you have seen two substantially different implementations for lists, it is
natural to ask which is better. In particular, if you must implement a list for some
task, which implementation should you choose?

Array-based lists have the disadvantage that their size must be predetermined
before the array can be allocated. Array-based lists cannot grow beyond their pre-
determined size. Whenever the list contains only a few elements, a substantial
amount of space might be tied up in a largely empty array. Linked lists have the
advantage that they only need space for the objects actually on the list. There is
no limit to the number of elements on a linked list, as long as there is free-store
memory available. The amount of space required by a linked list is Θ(n), while the
space required by the array-based list implementation is Ω(n), but can be greater.

Array-based lists have the advantage that there is no wasted space for an in-
dividual element. Linked lists require that an extra pointer be added to every list
node. If the element size is small, then the overhead for links can be a significant
fraction of the total storage. When the array for the array-based list is completely
filled, there is no storage overhead. The array-based list will then be more space
efficient, by a constant factor, than the linked implementation.

A simple formula can be used to determine whether the array-based list or
linked list implementation will be more space efficient in a particular situation.
Call n the number of elements currently in the list, P the size of a pointer in stor-
age units (typically four bytes), E the size of a data element in storage units (this
could be anything, from one bit for a Boolean variable on up to thousands of bytes
or more for complex records), and D the maximum number of list elements that
can be stored in the array. The amount of space required for the array-based list is
DE, regardless of the number of elements actually stored in the list at any given
time. The amount of space required for the linked list is n(P + E). The smaller
of these expressions for a given value n determines the more space-efficient imple-
mentation for n elements. In general, the linked implementation requires less space
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than the array-based implementation when relatively few elements are in the list.
Conversely, the array-based implementation becomes more space efficient when
the array is close to full. Using the equation, we can solve for n to determine
the break-even point beyond which the array-based implementation is more space
efficient in any particular situation. This occurs when

n > DE/(P + E).

If P = E, then the break-even point is at D/2. This would happen if the element
field is either a four-byte int value or a pointer, and the next field is a typical four-
byte pointer. That is, the array-based implementation would be more efficient (if
the link field and the element field are the same size) whenever the array is more
than half full.

As a rule of thumb, linked lists are more space efficient when implementing
lists whose number of elements varies widely or is unknown. Array-based lists are
generally more space efficient when the user knows in advance approximately how
large the list will become.

Array-based lists are faster for random access by position. Positions can easily
be adjusted forwards or backwards by the next and prev methods. These opera-
tions always take Θ(1) time. In contrast, singly linked lists have no explicit access
to the previous element, and access by position requires that we march down the
list from the front (or the current position) to the specified position. Both of these
operations require Θ(n) time in the average and worst cases, if we assume that
each position on the list is equally likely to be accessed on any call to prev or
moveToPos.

Given a pointer to a suitable location in the list, the insert and remove
methods for linked lists require only Θ(1) time. Array-based lists must shift the re-
mainder of the list up or down within the array. This requires Θ(n) time in the aver-
age and worst cases. For many applications, the time to insert and delete elements
dominates all other operations. For this reason, linked lists are often preferred to
array-based lists.

When implementing the array-based list, an implementor could allow the size
of the array to grow and shrink depending on the number of elements that are
actually stored. This data structure is known as a dynamic array. Both the Java and
C++/STL Vector classes implement a dynamic array. Dynamic arrays allow the
programmer to get around the limitation on the standard array that its size cannot
be changed once the array has been created. This also means that space need not
be allocated to the dynamic array until it is to be used. The disadvantage of this
approach is that it takes time to deal with space adjustments on the array. Each time
the array grows in size, its contents must be copied. A good implementation of the
dynamic array will grow and shrink the array in such a way as to keep the overall
cost for a series of insert/delete operations relatively inexpensive, even though an
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occasional insert/delete operation might be expensive. A simple rule of thumb is
to double the size of the array when it becomes full, and to cut the array size in
half when it becomes one quarter full. To analyze the overall cost of dynamic array
operations over time, we need to use a technique known as amortized analysis,
which is discussed in Section 14.3.

4.1.4 Element Implementations

List users must decide whether they wish to store a copy of any given element on
each list that contains it. For small elements such as an integer, this makes sense.
If the elements are payroll records, it might be desirable for the list node to store a
pointer to the record rather than store a copy of the record itself. This change would
allow multiple list nodes (or other data structures) to point to the same record,
rather than make repeated copies of the record. Not only might this save space, but
it also means that a modification to an element’s value is automatically reflected
at all locations where it is referenced. The disadvantage of storing a pointer to
each element is that the pointer requires space of its own. If elements are never
duplicated, then this additional space adds unnecessary overhead.

The C++ implementations for lists presented in this section give the user of the
list the choice of whether to store copies of elements or pointers to elements. The
user can declare E to be, for example, a pointer to a payroll record. In this case,
multiple lists can point to the same copy of the record. On the other hand, if the
user declares E to be the record itself, then a new copy of the record will be made
when it is inserted into the list.

Whether it is more advantageous to use pointers to shared elements or separate
copies depends on the intended application. In general, the larger the elements and
the more they are duplicated, the more likely that pointers to shared elements is the
better approach.

A second issue faced by implementors of a list class (or any other data structure
that stores a collection of user-defined data elements) is whether the elements stored
are all required to be of the same type. This is known as homogeneity in a data
structure. In some applications, the user would like to define the class of the data
element that is stored on a given list, and then never permit objects of a different
class to be stored on that same list. In other applications, the user would like to
permit the objects stored on a single list to be of differing types.

For the list implementations presented in this section, the compiler requires
that all objects stored on the list be of the same type. In fact, because the lists are
implemented using templates, a new class is created by the compiler for each data
type. For implementors who wish to minimize the number of classes created by
the compiler, the lists can all store a void* pointer, with the user performing the
necessary casting to and from the actual object type for each element. However, this
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approach requires that the user do his or her own type checking, either to enforce
homogeneity or to differentiate between the various object types.

Besides C++ templates, there are other techniques that implementors of a list
class can use to ensure that the element type for a given list remains fixed, while
still permitting different lists to store different element types. One approach is to
store an object of the appropriate type in the header node of the list (perhaps an
object of the appropriate type is supplied as a parameter to the list constructor), and
then check that all insert operations on that list use the same element type.

The third issue that users of the list implementations must face is primarily of
concern when programming in languages that do not support automatic garbage
collection. That is how to deal with the memory of the objects stored on the list
when the list is deleted or the clear method is called. The list destructor and the
clear method are problematic in that there is a potential that they will bemisused,
thus causing a memory leak. The type of the element stored determines whether
there is a potential for trouble here. If the elements are of a simple type such as an
int, then there is no need to delete the elements explicitly. If the elements are of a
user-defined class, then their own destructor will be called. However, what if the list
elements are pointers to objects? Then deleting listArray in the array-based
implementation, or deleting a link node in the linked list implementation, might
remove the only reference to an object, leaving its memory space inaccessible.
Unfortunately, there is no way for the list implementation to know whether a given
object is pointed to in another part of the program or not. Thus, the user of the list
must be responsible for deleting these objects when that is appropriate.

4.1.5 Doubly Linked Lists

The singly linked list presented in Section 4.1.2 allows for direct access from a
list node only to the next node in the list. A doubly linked list allows convenient
access from a list node to the next node and also to the preceding node on the list.
The doubly linked list node accomplishes this in the obvious way by storing two
pointers: one to the node following it (as in the singly linked list), and a second
pointer to the node preceding it. The most common reason to use a doubly linked
list is because it is easier to implement than a singly linked list. While the code for
the doubly linked implementation is a little longer than for the singly linked version,
it tends to be a bit more “obvious” in its intention, and so easier to implement
and debug. Figure 4.12 illustrates the doubly linked list concept. Whether a list
implementation is doubly or singly linked should be hidden from the List class
user.

Like our singly linked list implementation, the doubly linked list implementa-
tion makes use of a header node. We also add a tailer node to the end of the list.
The tailer is similar to the header, in that it is a node that contains no value, and it
always exists. When the doubly linked list is initialized, the header and tailer nodes
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Figure 4.12 A doubly linked list.

are created. Data member head points to the header node, and tail points to
the tailer node. The purpose of these nodes is to simplify the insert, append,
and remove methods by eliminating all need for special-case code when the list
is empty, or when we insert at the head or tail of the list.

For singly linked lists we set curr to point to the node preceding the node that
contained the actual current element, due to lack of access to the previous node
during insertion and deletion. Since we do have access to the previous node in a
doubly linked list, this is no longer necessary. We could set curr to point directly
to the node containing the current element. However, I have chosen to keep the
same convention for the curr pointer as we set up for singly linked lists, purely
for the sake of consistency.

Figure 4.13 shows the complete implementation for a Link class to be used
with doubly linked lists. This code is a little longer than that for the singly linked list
node implementation since the doubly linked list nodes have an extra data member.

Figure 4.14 shows the implementation for the insert, append, remove,
and prev doubly linked list methods. The class declaration and the remaining
member functions for the doubly linked list class are nearly identical to the singly
linked list version.

The insert method is especially simple for our doubly linked list implemen-
tation, because most of the work is done by the node’s constructor. Figure 4.15
shows the list before and after insertion of a node with value 10.

The three parameters to the new operator allow the list node class constructor
to set the element, prev, and next fields, respectively, for the new link node.
The new operator returns a pointer to the newly created node. The nodes to either
side have their pointers updated to point to the newly created node. The existence
of the header and tailer nodes mean that there are no special cases to worry about
when inserting into an empty list.

The appendmethod is also simple. Again, the Link class constructor sets the
element, prev, and next fields of the node when the new operator is executed.

Method remove (illustrated by Figure 4.16) is straightforward, though the
code is somewhat longer. First, the variable it is assigned the value being re-
moved. Note that we must separate the element, which is returned to the caller,
from the link object. The following lines then adjust the list.
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// Doubly linked list link node with freelist support
template <typename E> class Link {
private:

static Link<E>* freelist; // Reference to freelist head

public:
E element; // Value for this node
Link* next; // Pointer to next node in list
Link* prev; // Pointer to previous node

// Constructors
Link(const E& it, Link* prevp, Link* nextp) {

element = it;
prev = prevp;
next = nextp;

}
Link(Link* prevp =NULL, Link* nextp =NULL) {

prev = prevp;
next = nextp;

}

void* operator new(size t) { // Overloaded new operator
if (freelist == NULL) return ::new Link; // Create space
Link<E>* temp = freelist; // Can take from freelist
freelist = freelist->next;
return temp; // Return the link

}

// Overloaded delete operator
void operator delete(void* ptr) {

((Link<E>*)ptr)->next = freelist; // Put on freelist
freelist = (Link<E>*)ptr;

}
};

// The freelist head pointer is actually created here
template <typename E>
Link<E>* Link<E>::freelist = NULL;

Figure 4.13 Doubly linked list node implementation with a freelist.
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// Insert "it" at current position
void insert(const E& it) {

curr->next = curr->next->prev =
new Link<E>(it, curr, curr->next);

cnt++;
}

// Append "it" to the end of the list.
void append(const E& it) {

tail->prev = tail->prev->next =
new Link<E>(it, tail->prev, tail);

cnt++;
}

// Remove and return current element
E remove() {

if (curr->next == tail) // Nothing to remove
return NULL;

E it = curr->next->element; // Remember value
Link<E>* ltemp = curr->next; // Remember link node
curr->next->next->prev = curr;
curr->next = curr->next->next; // Remove from list
delete ltemp; // Reclaim space
cnt--; // Decrement cnt
return it;

}

// Move fence one step left; no change if left is empty
void prev() {

if (curr != head) // Can’t back up from list head
curr = curr->prev;

}

Figure 4.14 Implementations for doubly linked list insert, append,
remove, and prev methods.

Link<E>* ltemp = curr->next; // Remember link node
curr->next->next->prev = curr;
curr->next = curr->next->next; // Remove from list
delete ltemp; // Reclaim space

The first line sets a temporary pointer to the node being removed. The second
line makes the next node’s prev pointer point to the left of the node being removed.
Finally, the next field of the node preceding the one being deleted is adjusted. The
final steps of method remove are to update the listlength, return the deleted node
to free store, and return the value of the deleted element.

The only disadvantage of the doubly linked list as compared to the singly linked
list is the additional space used. The doubly linked list requires two pointers per
node, and so in the implementation presented it requires twice as much overhead
as the singly linked list.
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Figure 4.15 Insertion for doubly linked lists. The labels 1 , 2 , and 3 cor-
respond to assignments done by the linked list node constructor. 4 marks the
assignment to curr->next. 5 marks the assignment to the prev pointer of
the node following the newly inserted node.
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Figure 4.16 Doubly linked list removal. Element it stores the element of the
node being removed. Then the nodes to either side have their pointers adjusted.
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Example 4.1 There is a space-saving technique that can be employed to
eliminate the additional space requirement, though it will complicate the
implementation and be somewhat slower. Thus, this is an example of a
space/time tradeoff. It is based on observing that, if we store the sum of
two values, then we can get either value back by subtracting the other. That
is, if we store a+ b in variable c, then b = c− a and a = c− b. Of course,
to recover one of the values out of the stored summation, the other value
must be supplied. A pointer to the first node in the list, along with the value
of one of its two link fields, will allow access to all of the remaining nodes
of the list in order. This is because the pointer to the node must be the same
as the value of the following node’s prev pointer, as well as the previous
node’s next pointer. It is possible to move down the list breaking apart
the summed link fields as though you were opening a zipper. Details for
implementing this variation are left as an exercise.

The principle behind this technique is worth remembering, as it has
many applications. The following code fragment will swap the contents
of two variables without using a temporary variable (at the cost of three
arithmetic operations).

a = a + b;
b = a - b; // Now b contains original value of a
a = a - b; // Now a contains original value of b

A similar effect can be had by using the exclusive-or operator. This fact
is widely used in computer graphics. A region of the computer screen can
be highlighted by XORing the outline of a box around it. XORing the box
outline a second time restores the original contents of the screen.

4.2 Stacks

The stack is a list-like structure in which elements may be inserted or removed
from only one end. While this restriction makes stacks less flexible than lists, it
also makes stacks both efficient (for those operations they can do) and easy to im-
plement. Many applications require only the limited form of insert and remove
operations that stacks provide. In such cases, it is more efficient to use the sim-
pler stack data structure rather than the generic list. For example, the freelist of
Section 4.1.2 is really a stack.

Despite their restrictions, stacks have many uses. Thus, a special vocabulary
for stacks has developed. Accountants used stacks long before the invention of the
computer. They called the stack a “LIFO” list, which stands for “Last-In, First-
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// Stack abtract class
template <typename E> class Stack {
private:

void operator =(const Stack&) {} // Protect assignment
Stack(const Stack&) {} // Protect copy constructor

public:
Stack() {} // Default constructor
virtual ˜Stack() {} // Base destructor

// Reinitialize the stack. The user is responsible for
// reclaiming the storage used by the stack elements.
virtual void clear() = 0;

// Push an element onto the top of the stack.
// it: The element being pushed onto the stack.
virtual void push(const E& it) = 0;

// Remove the element at the top of the stack.
// Return: The element at the top of the stack.
virtual E pop() = 0;

// Return: A copy of the top element.
virtual const E& topValue() const = 0;

// Return: The number of elements in the stack.
virtual int length() const = 0;

};

Figure 4.17 The stack ADT.

Out.” Note that one implication of the LIFO policy is that stacks remove elements
in reverse order of their arrival.

The accessible element of the stack is called the top element. Elements are not
said to be inserted, they are pushed onto the stack. When removed, an element is
said to be popped from the stack. Figure 4.17 shows a sample stack ADT.

As with lists, there are many variations on stack implementation. The two ap-
proaches presented here are array-based and linked stacks, which are analogous
to array-based and linked lists, respectively.

4.2.1 Array-Based Stacks

Figure 4.18 shows a complete implementation for the array-based stack class. As
with the array-based list implementation, listArray must be declared of fixed
size when the stack is created. In the stack constructor, size serves to indicate
this size. Method top acts somewhat like a current position value (because the
“current” position is always at the top of the stack), as well as indicating the number
of elements currently in the stack.
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// Array-based stack implementation
template <typename E> class AStack: public Stack<E> {
private:

int maxSize; // Maximum size of stack
int top; // Index for top element
E *listArray; // Array holding stack elements

public:
AStack(int size =defaultSize) // Constructor

{ maxSize = size; top = 0; listArray = new E[size]; }

˜AStack() { delete [] listArray; } // Destructor

void clear() { top = 0; } // Reinitialize

void push(const E& it) { // Put "it" on stack
Assert(top != maxSize, "Stack is full");
listArray[top++] = it;

}

E pop() { // Pop top element
Assert(top != 0, "Stack is empty");
return listArray[--top];

}

const E& topValue() const { // Return top element
Assert(top != 0, "Stack is empty");
return listArray[top-1];

}

int length() const { return top; } // Return length
};

Figure 4.18 Array-based stack class implementation.

The array-based stack implementation is essentially a simplified version of the
array-based list. The only important design decision to be made is which end of
the array should represent the top of the stack. One choice is to make the top be
at position 0 in the array. In terms of list functions, all insert and remove
operations would then be on the element in position 0. This implementation is
inefficient, because now every push or pop operation will require that all elements
currently in the stack be shifted one position in the array, for a cost of Θ(n) if there
are n elements. The other choice is have the top element be at position n− 1 when
there are n elements in the stack. In other words, as elements are pushed onto
the stack, they are appended to the tail of the list. Method pop removes the tail
element. In this case, the cost for each push or pop operation is only Θ(1).

For the implementation of Figure 4.18, top is defined to be the array index of
the first free position in the stack. Thus, an empty stack has top set to 0, the first
available free position in the array. (Alternatively, top could have been defined to
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be the index for the top element in the stack, rather than the first free position. If
this had been done, the empty list would initialize top as−1.) Methods push and
pop simply place an element into, or remove an element from, the array position
indicated by top. Because top is assumed to be at the first free position, push
first inserts its value into the top position and then increments top, while pop first
decrements top and then removes the top element.
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// Linked stack implementation
template <typename E> class LStack: public Stack<E> {
private:

Link<E>* top; // Pointer to first element
int size; // Number of elements

public:
LStack(int sz =defaultSize) // Constructor

{ top = NULL; size = 0; }

˜LStack() { clear(); } // Destructor

void clear() { // Reinitialize
while (top != NULL) { // Delete link nodes

Link<E>* temp = top;
top = top->next;
delete temp;

}
size = 0;

}

void push(const E& it) { // Put "it" on stack
top = new Link<E>(it, top);
size++;

}

E pop() { // Remove "it" from stack
Assert(top != NULL, "Stack is empty");
E it = top->element;
Link<E>* ltemp = top->next;
delete top;
top = ltemp;
size--;
return it;

}

const E& topValue() const { // Return top value
Assert(top != 0, "Stack is empty");
return top->element;

}

int length() const { return size; } // Return length
};

Figure 4.19 Linked stack class implementation.

4.2.2 Linked Stacks

The linked stack implementation is quite simple. The freelist of Section 4.1.2 is
an example of a linked stack. Elements are inserted and removed only from the
head of the list. A header node is not used because no special-case code is required
for lists of zero or one elements. Figure 4.19 shows the complete linked stack
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top1 top2

Figure 4.20 Two stacks implemented within in a single array, both growing
toward the middle.

implementation. The only data member is top, a pointer to the first (top) link node
of the stack. Method push first modifies the next field of the newly created link
node to point to the top of the stack and then sets top to point to the new link
node. Method pop is also quite simple. Variable temp stores the top nodes’ value,
while ltemp links to the top node as it is removed from the stack. The stack is
updated by setting top to point to the next link in the stack. The old top node is
then returned to free store (or the freelist), and the element value is returned.

4.2.3 Comparison of Array-Based and Linked Stacks

All operations for the array-based and linked stack implementations take constant
time, so from a time efficiency perspective, neither has a significant advantage.
Another basis for comparison is the total space required. The analysis is similar to
that done for list implementations. The array-based stack must declare a fixed-size
array initially, and some of that space is wasted whenever the stack is not full. The
linked stack can shrink and grow but requires the overhead of a link field for every
element.

When multiple stacks are to be implemented, it is possible to take advantage of
the one-way growth of the array-based stack. This can be done by using a single
array to store two stacks. One stack grows inward from each end as illustrated by
Figure 4.20, hopefully leading to less wasted space. However, this only works well
when the space requirements of the two stacks are inversely correlated. In other
words, ideally when one stack grows, the other will shrink. This is particularly
effective when elements are taken from one stack and given to the other. If instead
both stacks grow at the same time, then the free space in the middle of the array
will be exhausted quickly.

4.2.4 Implementing Recursion

Perhaps the most common computer application that uses stacks is not even visible
to its users. This is the implementation of subroutine calls in most programming
language runtime environments. A subroutine call is normally implemented by
placing necessary information about the subroutine (including the return address,
parameters, and local variables) onto a stack. This information is called an ac-
tivation record. Further subroutine calls add to the stack. Each return from a
subroutine pops the top activation record off the stack. Figure 4.21 illustrates the
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Figure 4.21 Implementing recursion with a stack. β values indicate the address
of the program instruction to return to after completing the current function call.
On each recursive function call to fact (as implemented in Section 2.5), both the
return address and the current value of n must be saved. Each return from fact
pops the top activation record off the stack.

implementation of the recursive factorial function of Section 2.5 from the runtime
environment’s point of view.

Consider what happens when we call fact with the value 4. We use β to
indicate the address of the program instruction where the call to fact is made.
Thus, the stack must first store the address β, and the value 4 is passed to fact.
Next, a recursive call to fact is made, this time with value 3. We will name the
program address from which the call is made β1. The address β1, along with the
current value for n (which is 4), is saved on the stack. Function fact is invoked
with input parameter 3.

In similar manner, another recursive call is made with input parameter 2, re-
quiring that the address from which the call is made (say β2) and the current value
for n (which is 3) are stored on the stack. A final recursive call with input parame-
ter 1 is made, requiring that the stack store the calling address (say β3) and current
value (which is 2).
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At this point, we have reached the base case for fact, and so the recursion
begins to unwind. Each return from fact involves popping the stored value for
n from the stack, along with the return address from the function call. The return
value for fact is multiplied by the restored value for n, and the result is returned.

Because an activation record must be created and placed onto the stack for
each subroutine call, making subroutine calls is a relatively expensive operation.
While recursion is often used to make implementation easy and clear, sometimes
you might want to eliminate the overhead imposed by the recursive function calls.
In some cases, such as the factorial function of Section 2.5, recursion can easily be
replaced by iteration.

Example 4.2 As a simple example of replacing recursion with a stack,
consider the following non-recursive version of the factorial function.

long fact(int n, Stack<int>& S) { // Compute n!
// To fit n! in a long variable, require n <= 12
Assert((n >= 0) && (n <= 12), "Input out of range");
while (n > 1) S.push(n--); // Load up the stack
long result = 1; // Holds final result
while(S.length() > 0)

result = result * S.pop(); // Compute
return result;

}

Here, we simply push successively smaller values of n onto the stack un-
til the base case is reached, then repeatedly pop off the stored values and
multiply them into the result.

An iterative form of the factorial function is both simpler and faster than the
version shown in Example 4.2. But it is not always possible to replace recursion
with iteration. Recursion, or some imitation of it, is necessary when implementing
algorithms that require multiple branching such as in the Towers of Hanoi alg-
orithm, or when traversing a binary tree. The Mergesort and Quicksort algorithms
of Chapter 7 are also examples in which recursion is required. Fortunately, it is al-
ways possible to imitate recursion with a stack. Let us now turn to a non-recursive
version of the Towers of Hanoi function, which cannot be done iteratively.

Example 4.3 The TOH function shown in Figure 2.2 makes two recursive
calls: one to move n − 1 rings off the bottom ring, and another to move
these n − 1 rings back to the goal pole. We can eliminate the recursion by
using a stack to store a representation of the three operations that TOH must
perform: two recursive calls and a move operation. To do so, we must first
come up with a representation of the various operations, implemented as a
class whose objects will be stored on the stack.
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// Operation choices: DOMOVE will move a disk
// DOTOH corresponds to a recursive call
enum TOHop { DOMOVE, DOTOH };
class TOHobj { // An operation object
public:

TOHop op; // This operation type
int num; // How many disks
Pole start, goal, tmp; // Define pole order

// DOTOH operation constructor
TOHobj(int n, Pole s, Pole g, Pole t) {

op = DOTOH; num = n;
start = s; goal = g; tmp = t;

}

// DOMOVE operation constructor
TOHobj(Pole s, Pole g)

{ op = DOMOVE; start = s; goal = g; }
};

void TOH(int n, Pole start, Pole goal, Pole tmp,
Stack<TOHobj*>& S) {

S.push(new TOHobj(n, start, goal, tmp)); // Initial
TOHobj* t;
while (S.length() > 0) { // Grab next task

t = S.pop();
if (t->op == DOMOVE) // Do a move

move(t->start, t->goal);
else if (t->num > 0) {

// Store (in reverse) 3 recursive statements
int num = t->num;
Pole tmp = t->tmp; Pole goal = t->goal;
Pole start = t->start;
S.push(new TOHobj(num-1, tmp, goal, start));
S.push(new TOHobj(start, goal));
S.push(new TOHobj(num-1, start, tmp, goal));

}
delete t; // Must delete the TOHobj we made

}
} Figure 4.22 Stack-based implementation for Towers of Hanoi.

Figure 4.22 shows such a class. We first define an enumerated type
called TOHop, with two values MOVE and TOH, to indicate calls to the
move function and recursive calls to TOH, respectively. Class TOHobj
stores five values: an operation field (indicating either a move or a new
TOH operation), the number of rings, and the three poles. Note that the
move operation actually needs only to store information about two poles.
Thus, there are two constructors: one to store the state when imitating a
recursive call, and one to store the state for a move operation.

An array-based stack is used because we know that the stack will need
to store exactly 2n+1 elements. The new version of TOH begins by placing
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on the stack a description of the initial problem for n rings. The rest of
the function is simply a while loop that pops the stack and executes the
appropriate operation. In the case of a TOH operation (for n > 0), we
store on the stack representations for the three operations executed by the
recursive version. However, these operations must be placed on the stack
in reverse order, so that they will be popped off in the correct order.

Recursive algorithms lend themselves to efficient implementation with a stack
when the amount of information needed to describe a sub-problem is small. For
example, Section 7.5 discusses a stack-based implementation for Quicksort.

4.3 Queues

Like the stack, the queue is a list-like structure that provides restricted access to
its elements. Queue elements may only be inserted at the back (called an enqueue
operation) and removed from the front (called a dequeue operation). Queues oper-
ate like standing in line at a movie theater ticket counter.1 If nobody cheats, then
newcomers go to the back of the line. The person at the front of the line is the next
to be served. Thus, queues release their elements in order of arrival. Accountants
have used queues since long before the existence of computers. They call a queue
a “FIFO” list, which stands for “First-In, First-Out.” Figure 4.23 shows a sample
queue ADT. This section presents two implementations for queues: the array-based
queue and the linked queue.

4.3.1 Array-Based Queues

The array-based queue is somewhat tricky to implement effectively. A simple con-
version of the array-based list implementation is not efficient.

Assume that there are n elements in the queue. By analogy to the array-based
list implementation, we could require that all elements of the queue be stored in the
first n positions of the array. If we choose the rear element of the queue to be in
position 0, then dequeue operations require only Θ(1) time because the front ele-
ment of the queue (the one being removed) is the last element in the array. However,
enqueue operations will require Θ(n) time, because the n elements currently in
the queue must each be shifted one position in the array. If instead we chose the
rear element of the queue to be in position n − 1, then an enqueue operation is
equivalent to an append operation on a list. This requires only Θ(1) time. But
now, a dequeue operation requires Θ(n) time, because all of the elements must
be shifted down by one position to retain the property that the remaining n − 1
queue elements reside in the first n− 1 positions of the array.

1In Britain, a line of people is called a “queue,” and getting into line to wait for service is called
“queuing up.”
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// Abstract queue class
template <typename E> class Queue {
private:

void operator =(const Queue&) {} // Protect assignment
Queue(const Queue&) {} // Protect copy constructor

public:
Queue() {} // Default
virtual ˜Queue() {} // Base destructor

// Reinitialize the queue. The user is responsible for
// reclaiming the storage used by the queue elements.
virtual void clear() = 0;

// Place an element at the rear of the queue.
// it: The element being enqueued.
virtual void enqueue(const E&) = 0;

// Remove and return element at the front of the queue.
// Return: The element at the front of the queue.
virtual E dequeue() = 0;

// Return: A copy of the front element.
virtual const E& frontValue() const = 0;

// Return: The number of elements in the queue.
virtual int length() const = 0;

};

Figure 4.23 The C++ ADT for a queue.

A far more efficient implementation can be obtained by relaxing the require-
ment that all elements of the queue must be in the first n positions of the array.
We will still require that the queue be stored be in contiguous array positions, but
the contents of the queue will be permitted to drift within the array, as illustrated
by Figure 4.24. Now, both the enqueue and the dequeue operations can be
performed in Θ(1) time because no other elements in the queue need be moved.

This implementation raises a new problem. Assume that the front element of
the queue is initially at position 0, and that elements are added to successively
higher-numbered positions in the array. When elements are removed from the
queue, the front index increases. Over time, the entire queue will drift toward
the higher-numbered positions in the array. Once an element is inserted into the
highest-numbered position in the array, the queue has run out of space. This hap-
pens despite the fact that there might be free positions at the low end of the array
where elements have previously been removed from the queue.

The “drifting queue” problem can be solved by pretending that the array is
circular and so allow the queue to continue directly from the highest-numbered
position in the array to the lowest-numbered position. This is easily implemented
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Figure 4.24 After repeated use, elements in the array-based queue will drift to
the back of the array. (a) The queue after the initial four numbers 20, 5, 12, and 17
have been inserted. (b) The queue after elements 20 and 5 are deleted, following
which 3, 30, and 4 are inserted.
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Figure 4.25 The circular queue with array positions increasing in the clockwise
direction. (a) The queue after the initial four numbers 20, 5, 12, and 17 have been
inserted. (b) The queue after elements 20 and 5 are deleted, following which 3,
30, and 4 are inserted.

through use of the modulus operator (denoted by % in C++). In this way, positions
in the array are numbered from 0 through size−1, and position size−1 is de-
fined to immediately precede position 0 (which is equivalent to position size %
size). Figure 4.25 illustrates this solution.

There remains one more serious, though subtle, problem to the array-based
queue implementation. How can we recognize when the queue is empty or full?
Assume that front stores the array index for the front element in the queue, and
rear stores the array index for the rear element. If both front and rear have the
same position, then with this scheme there must be one element in the queue. Thus,
an empty queue would be recognized by having rear be one less than front (tak-
ing into account the fact that the queue is circular, so position size−1 is actually
considered to be one less than position 0). But what if the queue is completely full?
In other words, what is the situation when a queue with n array positions available
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contains n elements? In this case, if the front element is in position 0, then the
rear element is in position size−1. But this means that the value for rear is one
less than the value for front when the circular nature of the queue is taken into
account. In other words, the full queue is indistinguishable from the empty queue!

You might think that the problem is in the assumption about front and rear
being defined to store the array indices of the front and rear elements, respectively,
and that some modification in this definition will allow a solution. Unfortunately,
the problem cannot be remedied by a simple change to the definition for front
and rear, because of the number of conditions or states that the queue can be in.
Ignoring the actual position of the first element, and ignoring the actual values of
the elements stored in the queue, how many different states are there? There can
be no elements in the queue, one element, two, and so on. At most there can be
n elements in the queue if there are n array positions. This means that there are
n+ 1 different states for the queue (0 through n elements are possible).

If the value of front is fixed, then n+ 1 different values for rear are needed
to distinguish among the n+1 states. However, there are only n possible values for
rear unless we invent a special case for, say, empty queues. This is an example of
the Pigeonhole Principle defined in Exercise 2.30. The Pigeonhole Principle states
that, given n pigeonholes and n + 1 pigeons, when all of the pigeons go into the
holes we can be sure that at least one hole contains more than one pigeon. In similar
manner, we can be sure that two of the n + 1 states are indistinguishable by the n
relative values of front and rear. We must seek some other way to distinguish
full from empty queues.

One obvious solution is to keep an explicit count of the number of elements in
the queue, or at least a Boolean variable that indicates whether the queue is empty
or not. Another solution is to make the array be of size n + 1, and only allow
n elements to be stored. Which of these solutions to adopt is purely a matter of the
implementor’s taste in such affairs. My choice is to use an array of size n+ 1.

Figure 4.26 shows an array-based queue implementation. listArray holds
the queue elements, and as usual, the queue constructor allows an optional param-
eter to set the maximum size of the queue. The array as created is actually large
enough to hold one element more than the queue will allow, so that empty queues
can be distinguished from full queues. Member maxSize is used to control the
circular motion of the queue (it is the base for the modulus operator). Member
rear is set to the position of the current rear element, while front is the position
of the current front element.

In this implementation, the front of the queue is defined to be toward the
lower numbered positions in the array (in the counter-clockwise direction in Fig-
ure 4.25), and the rear is defined to be toward the higher-numbered positions. Thus,
enqueue increments the rear pointer (modulus size), and dequeue increments
the front pointer. Implementation of all member functions is straightforward.
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// Array-based queue implementation
template <typename E> class AQueue: public Queue<E> {
private:

int maxSize; // Maximum size of queue
int front; // Index of front element
int rear; // Index of rear element
E *listArray; // Array holding queue elements

public:
AQueue(int size =defaultSize) { // Constructor

// Make list array one position larger for empty slot
maxSize = size+1;
rear = 0; front = 1;
listArray = new E[maxSize];

}

˜AQueue() { delete [] listArray; } // Destructor

void clear() { rear = 0; front = 1; } // Reinitialize

void enqueue(const E& it) { // Put "it" in queue
Assert(((rear+2) % maxSize) != front, "Queue is full");
rear = (rear+1) % maxSize; // Circular increment
listArray[rear] = it;

}

E dequeue() { // Take element out
Assert(length() != 0, "Queue is empty");
E it = listArray[front];
front = (front+1) % maxSize; // Circular increment
return it;

}

const E& frontValue() const { // Get front value
Assert(length() != 0, "Queue is empty");
return listArray[front];

}

virtual int length() const // Return length
{ return ((rear+maxSize) - front + 1) % maxSize; }

};

Figure 4.26 An array-based queue implementation.
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4.3.2 Linked Queues

The linked queue implementation is a straightforward adaptation of the linked list.
Figure 4.27 shows the linked queue class declaration. Methods front and rear
are pointers to the front and rear queue elements, respectively. We will use a header
link node, which allows for a simpler implementation of the enqueue operation by
avoiding any special cases when the queue is empty. On initialization, the front
and rear pointers will point to the header node, and front will always point to
the header node while rear points to the true last link node in the queue. Method
enqueue places the new element in a link node at the end of the linked list (i.e.,
the node that rear points to) and then advances rear to point to the new link
node. Method dequeue removes and returns the first element of the list.

4.3.3 Comparison of Array-Based and Linked Queues

All member functions for both the array-based and linked queue implementations
require constant time. The space comparison issues are the same as for the equiva-
lent stack implementations. Unlike the array-based stack implementation, there is
no convenient way to store two queues in the same array, unless items are always
transferred directly from one queue to the other.

4.4 Dictionaries

The most common objective of computer programs is to store and retrieve data.
Much of this book is about efficient ways to organize collections of data records
so that they can be stored and retrieved quickly. In this section we describe a
simple interface for such a collection, called a dictionary. The dictionary ADT
provides operations for storing records, finding records, and removing records from
the collection. This ADT gives us a standard basis for comparing various data
structures.

Before we can discuss the interface for a dictionary, we must first define the
concepts of a key and comparable objects. If we want to search for a given record
in a database, how should we describe what we are looking for? A database record
could simply be a number, or it could be quite complicated, such as a payroll record
with many fields of varying types. We do not want to describe what we are looking
for by detailing and matching the entire contents of the record. If we knew every-
thing about the record already, we probably would not need to look for it. Instead,
we typically define what record we want in terms of a key value. For example, if
searching for payroll records, we might wish to search for the record that matches
a particular ID number. In this example the ID number is the search key.

To implement the search function, we require that keys be comparable. At a
minimum, we must be able to take two keys and reliably determine whether they
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// Linked queue implementation
template <typename E> class LQueue: public Queue<E> {
private:

Link<E>* front; // Pointer to front queue node
Link<E>* rear; // Pointer to rear queue node
int size; // Number of elements in queue

public:
LQueue(int sz =defaultSize) // Constructor

{ front = rear = new Link<E>(); size = 0; }

˜LQueue() { clear(); delete front; } // Destructor

void clear() { // Clear queue
while(front->next != NULL) { // Delete each link node

rear = front;
delete rear;

}
rear = front;
size = 0;

}

void enqueue(const E& it) { // Put element on rear
rear->next = new Link<E>(it, NULL);
rear = rear->next;
size++;

}

E dequeue() { // Remove element from front
Assert(size != 0, "Queue is empty");
E it = front->next->element; // Store dequeued value
Link<E>* ltemp = front->next; // Hold dequeued link
front->next = ltemp->next; // Advance front
if (rear == ltemp) rear = front; // Dequeue last element
delete ltemp; // Delete link
size --;
return it; // Return element value

}

const E& frontValue() const { // Get front element
Assert(size != 0, "Queue is empty");
return front->next->element;

}

virtual int length() const { return size; }
};

Figure 4.27 Linked queue class implementation.
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are equal or not. That is enough to enable a sequential search through a database
of records and find one that matches a given key. However, we typically would
like for the keys to define a total order (see Section 2.1), which means that we
can tell which of two keys is greater than the other. Using key types with total
orderings gives the database implementor the opportunity to organize a collection
of records in a way that makes searching more efficient. An example is storing the
records in sorted order in an array, which permits a binary search. Fortunately, in
practice most fields of most records consist of simple data types with natural total
orders. For example, integers, floats, doubles, and character strings all are totally
ordered. Ordering fields that are naturally multi-dimensional, such as a point in two
or three dimensions, present special opportunities if we wish to take advantage of
their multidimensional nature. This problem is addressed in Section 13.3.

Figure 4.28 shows the definition for a simple abstract dictionary class. The
methods insert and find are the heart of the class. Method insert takes a
record and inserts it into the dictionary. Method find takes a key value and returns
some record from the dictionary whose key matches the one provided. If there are
multiple records in the dictionary with that key value, there is no requirement as to
which one is returned.

Method clear simply re-initializes the dictionary. The remove method is
similar to find, except that it also deletes the record returned from the dictionary.
Once again, if there are multiple records in the dictionary that match the desired
key, there is no requirement as to which one actually is removed and returned.
Method size returns the number of elements in the dictionary.

The remaining Method is removeAny. This is similar to remove, except
that it does not take a key value. Instead, it removes an arbitrary record from the
dictionary, if one exists. The purpose of this method is to allow a user the ability
to iterate over all elements in the dictionary (of course, the dictionary will become
empty in the process). Without the removeAny method, a dictionary user could
not get at a record of the dictionary that he didn’t already know the key value for.
With the removeAny method, the user can process all records in the dictionary as
shown in the following code fragment.

while (dict.size() > 0) {
it = dict.removeAny();
doSomething(it);

}

There are other approaches that might seem more natural for iterating though a
dictionary, such as using a “first” and a “next” function. But not all data structures
that we want to use to implement a dictionary are able to do “first” efficiently. For
example, a hash table implementation cannot efficiently locate the record in the
table with the smallest key value. By using RemoveAny, we have a mechanism
that provides generic access.



Sec. 4.4 Dictionaries 137

// The Dictionary abstract class.
template <typename Key, typename E>
class Dictionary {
private:

void operator =(const Dictionary&) {}
Dictionary(const Dictionary&) {}

public:
Dictionary() {} // Default constructor
virtual ˜Dictionary() {} // Base destructor

// Reinitialize dictionary
virtual void clear() = 0;

// Insert a record
// k: The key for the record being inserted.
// e: The record being inserted.
virtual void insert(const Key& k, const E& e) = 0;

// Remove and return a record.
// k: The key of the record to be removed.
// Return: A maching record. If multiple records match
// "k", remove an arbitrary one. Return NULL if no record
// with key "k" exists.
virtual E remove(const Key& k) = 0;

// Remove and return an arbitrary record from dictionary.
// Return: The record removed, or NULL if none exists.
virtual E removeAny() = 0;

// Return: A record matching "k" (NULL if none exists).
// If multiple records match, return an arbitrary one.
// k: The key of the record to find
virtual E find(const Key& k) const = 0;

// Return the number of records in the dictionary.
virtual int size() = 0;

};

Figure 4.28 The ADT for a simple dictionary.
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// A simple payroll entry with ID, name, address fields
class Payroll {
private:

int ID;
string name;
string address;

public:
// Constructor
Payroll(int inID, string inname, string inaddr) {

ID = inID;
name = inname;
address = inaddr;

}

˜Payroll() {} // Destructor

// Local data member access functions
int getID() { return ID; }
string getname() { return name; }
string getaddr() { return address; }

};

Figure 4.29 A payroll record implementation.

Given a database storing records of a particular type, we might want to search
for records in multiple ways. For example, we might want to store payroll records
in one dictionary that allows us to search by ID, and also store those same records
in a second dictionary that allows us to search by name.

Figure 4.29 shows an implementation for a payroll record. Class Payroll has
multiple fields, each of which might be used as a search key. Simply by varying
the type for the key, and using the appropriate field in each record as the key value,
we can define a dictionary whose search key is the ID field, another whose search
key is the name field, and a third whose search key is the address field. Figure 4.30
shows an example where Payroll objects are stored in two separate dictionaries,
one using the ID field as the key and the other using the name field as the key.

The fundamental operation for a dictionary is finding a record that matches a
given key. This raises the issue of how to extract the key from a record. We would
like any given dictionary implementation to support arbitrary record types, so we
need some mechanism for extracting keys that is sufficiently general. One approach
is to require all record types to support some particular method that returns the key
value. For example, in Java the Comparable interface can be used to provide this
effect. Unfortunately, this approach does not work when the same record type is
meant to be stored in multiple dictionaries, each keyed by a different field of the
record. This is typical in database applications. Another, more general approach
is to supply a class whose job is to extract the key from the record. Unfortunately,
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int main() {
// IDdict organizes Payroll records by ID
UALdict<int, Payroll*> IDdict;
// namedict organizes Payroll records by name
UALdict<string, Payroll*> namedict;
Payroll *foo1, *foo2, *findfoo1, *findfoo2;

foo1 = new Payroll(5, "Joe", "Anytown");
foo2 = new Payroll(10, "John", "Mytown");

IDdict.insert(foo1->getID(), foo1);
IDdict.insert(foo2->getID(), foo2);
namedict.insert(foo1->getname(), foo1);
namedict.insert(foo2->getname(), foo2);

findfoo1 = IDdict.find(5);
if (findfoo1 != NULL) cout << findfoo1;
else cout << "NULL ";
findfoo2 = namedict.find("John");
if (findfoo2 != NULL) cout << findfoo2;
else cout << "NULL ";

}

Figure 4.30 A dictionary search example. Here, payroll records are stored in
two dictionaries, one organized by ID and the other organized by name. Both
dictionaries are implemented with an unsorted array-based list.

this solution also does not work in all situations, because there are record types for
which it is not possible to write a key extraction method.2

The fundamental issue is that the key value for a record is not an intrinsic prop-
erty of the record’s class, or of any field within the class. The key for a record is
actually a property of the context in which the record is used.

A truly general alternative is to explicitly store the key associated with a given
record, as a separate field in the dictionary. That is, each entry in the dictionary
will contain both a record and its associated key. Such entries are known as key-
value pairs. It is typical that storing the key explicitly duplicates some field in the
record. However, keys tend to be much smaller than records, so this additional
space overhead will not be great. A simple class for representing key-value pairs
is shown in Figure 4.31. The insert method of the dictionary class supports the
key-value pair implementation because it takes two parameters, a record and its
associated key for that dictionary.

2One example of such a situation occurs when we have a collection of records that describe books
in a library. One of the fields for such a record might be a list of subject keywords, where the typical
record stores a few keywords. Our dictionary might be implemented as a list of records sorted by
keyword. If a book contains three keywords, it would appear three times on the list, once for each
associated keyword. However, given the record, there is no simple way to determine which keyword
on the keyword list triggered this appearance of the record. Thus, we cannot write a function that
extracts the key from such a record.
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// Container for a key-value pair
template <typename Key, typename E>
class KVpair {
private:

Key k;
E e;

public:
// Constructors
KVpair() {}
KVpair(Key kval, E eval)

{ k = kval; e = eval; }
KVpair(const KVpair& o) // Copy constructor

{ k = o.k; e = o.e; }

void operator =(const KVpair& o) // Assignment operator
{ k = o.k; e = o.e; }

// Data member access functions
Key key() { return k; }
void setKey(Key ink) { k = ink; }
E value() { return e; }

};

Figure 4.31 Implementation for a class representing a key-value pair.

Now that we have defined the dictionary ADT and settled on the design ap-
proach of storing key-value pairs for our dictionary entries, we are ready to consider
ways to implement it. Two possibilities would be to use an array-based or linked
list. Figure 4.32 shows an implementation for the dictionary using an (unsorted)
array-based list.

Examining class UALdict (UAL stands for “unsorted array-based list), we can
easily see that insert is a constant-time operation, because it simply inserts the
new record at the end of the list. However, find, and remove both require Θ(n)
time in the average and worst cases, because we need to do a sequential search.
Method remove in particular must touch every record in the list, because once the
desired record is found, the remaining records must be shifted down in the list to
fill the gap. Method removeAny removes the last record from the list, so this is a
constant-time operation.

As an alternative, we could implement the dictionary using a linked list. The
implementation would be quite similar to that shown in Figure 4.32, and the cost
of the functions should be the same asymptotically.

Another alternative would be to implement the dictionary with a sorted list. The
advantage of this approach would be that we might be able to speed up the find
operation by using a binary search. To do so, first we must define a variation on the
List ADT to support sorted lists.An implementation for the array-based sorted
list is shown in Figure 4.33. A sorted list is somewhat different from an unsorted
list in that it cannot permit the user to control where elements get inserted. Thus,



Sec. 4.4 Dictionaries 141

// Dictionary implemented with an unsorted array-based list
template <typename Key, typename E>
class UALdict : public Dictionary<Key, E> {
private:

AList<KVpair<Key,E> >* list;
public:

UALdict(int size=defaultSize) // Constructor
{ list = new AList<KVpair<Key,E> >(size); }

˜UALdict() { delete list; } // Destructor
void clear() { list->clear(); } // Reinitialize

// Insert an element: append to list
void insert(const Key&k, const E& e) {

KVpair<Key,E> temp(k, e);
list->append(temp);

}

// Use sequential search to find the element to remove
E remove(const Key& k) {

E temp = find(k); // "find" will set list position
if(temp != NULL) list->remove();
return temp;

}

E removeAny() { // Remove the last element
Assert(size() != 0, "Dictionary is empty");
list->moveToEnd();
list->prev();
KVpair<Key,E> e = list->remove();
return e.value();

}

// Find "k" using sequential search
E find(const Key& k) const {

for(list->moveToStart();
list->currPos() < list->length(); list->next()) {

KVpair<Key,E> temp = list->getValue();
if (k == temp.key())

return temp.value();
}
return NULL; // "k" does not appear in dictionary

}

Figure 4.32 A dictionary implemented with an unsorted array-based list.

int size() // Return list size
{ return list->length(); }

};

Figure 4.32 (continued)
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// Sorted array-based list
// Inherit from AList as a protected base class
template <typename Key, typename E>
class SAList: protected AList<KVpair<Key,E> > {
public:

SAList(int size=defaultSize) :
AList<KVpair<Key,E> >(size) {}

˜SAList() {} // Destructor

// Redefine insert function to keep values sorted
void insert(KVpair<Key,E>& it) { // Insert at right

KVpair<Key,E> curr;
for (moveToStart(); currPos() < length(); next()) {

curr = getValue();
if(curr.key() > it.key())

break;
}
AList<KVpair<Key,E> >::insert(it); // Do AList insert

}

// With the exception of append, all remaining methods are
// exposed from AList. Append is not available to SAlist
// class users since it has not been explicitly exposed.
AList<KVpair<Key,E> >::clear;
AList<KVpair<Key,E> >::remove;
AList<KVpair<Key,E> >::moveToStart;
AList<KVpair<Key,E> >::moveToEnd;
AList<KVpair<Key,E> >::prev;
AList<KVpair<Key,E> >::next;
AList<KVpair<Key,E> >::length;
AList<KVpair<Key,E> >::currPos;
AList<KVpair<Key,E> >::moveToPos;
AList<KVpair<Key,E> >::getValue;

};

Figure 4.33 An implementation for a sorted array-based list.

the insert method must be quite different in a sorted list than in an unsorted list.
Likewise, the user cannot be permitted to append elements onto the list. For these
reasons, a sorted list cannot be implemented with straightforward inheritance from
the List ADT.

Class SAList (SAL stands for “sorted array-based list”) does inherit from
class AList; however it does so using class AList as a protected base class. This
means that SAList has available for its use any member functions of AList, but
those member functions are not necessarily available to the user of SAList. How-
ever, many of the AList member functions are useful to the SALlist user. Thus,
most of the AListmember functions are passed along directly to the SAList user
without change. For example, the line
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AList<KVpair<Key,E> >::remove;

provides SAList’s clients with access to the remove method of AList. How-
ever, the original insert method from class AList is replaced, and the append
method of AList is kept hidden.

The dictionary ADT can easily be implemented from class SAList, as shown
in Figure 4.34. Method insert for the dictionary simply calls the insert
method of the sorted list. Method find uses a generalization of the binary search
function originally shown in Section 3.5. The cost for find in a sorted list is
Θ(log n) for a list of length n. This is a great improvement over the cost of find
in an unsorted list. Unfortunately, the cost of insert changes from constant time
in the unsorted list to Θ(n) time in the sorted list. Whether the sorted list imple-
mentation for the dictionary ADT is more or less efficient than the unsorted list
implementation depends on the relative number of insert and find operations
to be performed. If many more find operations than insert operations are used,
then it might be worth using a sorted list to implement the dictionary. In both cases,
remove requires Θ(n) time in the worst and average cases. Even if we used bi-
nary search to cut down on the time to find the record prior to removal, we would
still need to shift down the remaining records in the list to fill the gap left by the
remove operation.

Given two keys, we have not properly addressed the issue of how to compare
them. One possibility would be to simply use the basic ==, <=, and >= operators
built into C++. This is the approach taken by our implementations for dictionaries
shown inFigures 4.32 and 4.34. If the key type is int, for example, this will work
fine. However, if the key is a pointer to a string or any other type of object, then
this will not give the desired result. When we compare two strings we probably
want to know which comes first in alphabetical order, but what we will get from
the standard comparison operators is simply which object appears first in memory.
Unfortunately, the code will compile fine, but the answers probably will not be fine.

In a language like C++ that supports operator overloading, we could require
that the user of the dictionary overload the ==, <=, and >= operators for the given
key type. This requirement then becomes an obligation on the user of the dictionary
class. Unfortunately, this obligation is hidden within the code of the dictionary (and
possibly in the user’s manual) rather than exposed in the dictionary’s interface. As
a result, some users of the dictionary might neglect to implement the overloading,
with unexpected results. Again, the compiler will not catch this problem.

The most general solution is to have users supply their own definition for com-
paring keys. The concept of a class that does comparison (called a comparator) is
quite important. By making these operations be template parameters, the require-
ment to supply the comparator class becomes part of the interface. This design is an
example of the Strategy design pattern, because the “strategies” for comparing and
getting keys from records are provided by the client. In some cases, it makes sense
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// Dictionary implemented with a sorted array-based list
template <typename Key, typename E>
class SALdict : public Dictionary<Key, E> {
private:

SAList<Key,E>* list;
public:

SALdict(int size=defaultSize) // Constructor
{ list = new SAList<Key,E>(size); }

˜SALdict() { delete list; } // Destructor
void clear() { list->clear(); } // Reinitialize

// Insert an element: Keep elements sorted
void insert(const Key&k, const E& e) {

KVpair<Key,E> temp(k, e);
list->insert(temp);

}

// Use sequential search to find the element to remove
E remove(const Key& k) {

E temp = find(k);
if (temp != NULL) list->remove();
return temp;

}

E removeAny() { // Remove the last element
Assert(size() != 0, "Dictionary is empty");
list->moveToEnd();
list->prev();
KVpair<Key,E> e = list->remove();
return e.value();

}

// Find "K" using binary search
E find(const Key& k) const {

int l = -1;
int r = list->length();
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Check middle of remaining subarray
list->moveToPos(i);
KVpair<Key,E> temp = list->getValue();
if (k < temp.key()) r = i; // In left
if (k == temp.key()) return temp.value(); // Found it
if (k > temp.key()) l = i; // In right

}
return NULL; // "k" does not appear in dictionary

}

Figure 4.34 Dictionary implementation using a sorted array-based list.
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int size() // Return list size
{ return list->length(); }

};

Figure 4.34 (continued)

for the comparator class to extract the key from the record type, as an alternative to
storing key-value pairs.

Here is an example of the required class for comparing two integers.

class intintCompare { // Comparator class for integer keys
public:

static bool lt(int x, int y) { return x < y; }
static bool eq(int x, int y) { return x == y; }
static bool gt(int x, int y) { return x > y; }

};

Class intintCompare provides methods for determining if two int variables
are equal (eq), or if the first is less than the second (lt), or greater than the second
(gt).

Here is a class for comparing two C-style character strings. It makes use of the
standard library function strcmp to do the actual comparison.

class CCCompare { // Compare two character strings
public:

static bool lt(char* x, char* y)
{ return strcmp(x, y) < 0; }

static bool eq(char* x, char* y)
{ return strcmp(x, y) == 0; }

static bool gt(char* x, char* y)
{ return strcmp(x, y) > 0; }

};

We will usea comparator in Section 5.5 to implement comparison in heaps, and
in Chapter 7 to implement comparison in sorting algorithms.

4.5 Further Reading

For more discussion on choice of functions used to define the List ADT, see the
work of the Reusable Software Research Group from Ohio State. Their definition
for the List ADT can be found in [SWH93]. More information about designing
such classes can be found in [SW94].

4.6 Exercises

4.1 Assume a list has the following configuration:

〈 | 2, 23, 15, 5, 9 〉.
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Write a series of C++ statements using the ListADT of Figure 4.1 to delete
the element with value 15.

4.2 Show the list configuration resulting from each series of list operations using
the List ADT of Figure 4.1. Assume that lists L1 and L2 are empty at the
beginning of each series. Show where the current position is in the list.

(a) L1.append(10);
L1.append(20);
L1.append(15);

(b) L2.append(10);
L2.append(20);
L2.append(15);
L2.moveToStart();
L2.insert(39);
L2.next();
L2.insert(12);

4.3 Write a series of C++ statements that uses the List ADT of Figure 4.1 to
create a list capable of holding twenty elements and which actually stores the
list with the following configuration:

〈 2, 23 | 15, 5, 9 〉.

4.4 Using the list ADT of Figure 4.1, write a function to interchange the current
element and the one following it.

4.5 In the linked list implementation presented in Section 4.1.2, the current po-
sition is implemented using a pointer to the element ahead of the logical
current node. The more “natural” approach might seem to be to have curr
point directly to the node containing the current element. However, if this
was done, then the pointer of the node preceding the current one cannot be
updated properly because there is no access to this node from curr. An
alternative is to add a new node after the current element, copy the value of
the current element to this new node, and then insert the new value into the
old current node.

(a) What happens if curr is at the end of the list already? Is there still a
way to make this work? Is the resulting code simpler or more complex
than the implementation of Section 4.1.2?

(b) Will deletion always work in constant time if curr points directly to
the current node? In particular, can you make several deletions in a
row?
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4.6 Add to the LList class implementation a member function to reverse the
order of the elements on the list. Your algorithm should run in Θ(n) time for
a list of n elements.

4.7 Write a function to merge two linked lists. The input lists have their elements
in sorted order, from lowest to highest. The output list should also be sorted
from lowest to highest. Your algorithm should run in linear time on the length
of the output list.

4.8 A circular linked list is one in which the next field for the last link node
of the list points to the first link node of the list. This can be useful when
you wish to have a relative positioning for elements, but no concept of an
absolute first or last position.

(a) Modify the code of Figure 4.8 to implement circular singly linked lists.
(b) Modify the code of Figure 4.14 to implement circular doubly linked

lists.
4.9 Section 4.1.3 states “the space required by the array-based list implementa-

tion is Ω(n), but can be greater.” Explain why this is so.
4.10 Section 4.1.3 presents an equation for determining the break-even point for

the space requirements of two implementations of lists. The variables are D,
E, P , and n. What are the dimensional units for each variable? Show that
both sides of the equation balance in terms of their dimensional units.

4.11 Use the space equation of Section 4.1.3 to determine the break-even point for
an array-based list and linked list implementation for lists when the sizes for
the data field, a pointer, and the array-based list’s array are as specified. State
when the linked list needs less space than the array.

(a) The data field is eight bytes, a pointer is four bytes, and the array holds
twenty elements.

(b) The data field is two bytes, a pointer is four bytes, and the array holds
thirty elements.

(c) The data field is one byte, a pointer is four bytes, and the array holds
thirty elements.

(d) The data field is 32 bytes, a pointer is four bytes, and the array holds
forty elements.

4.12 Determine the size of an int variable, a double variable, and a pointer on
your computer. (The C++ operator sizeof might be useful here if you do
not already know the answer.)

(a) Calculate the break-even point, as a function of n, beyond which the
array-based list is more space efficient than the linked list for lists
whose elements are of type int.

(b) Calculate the break-even point, as a function of n, beyond which the
array-based list is more space efficient than the linked list for lists
whose elements are of type double.
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4.13 Modify the code of Figure 4.18 to implement two stacks sharing the same
array, as shown in Figure 4.20.

4.14 Modify the array-based queue definition of Figure 4.26 to use a separate
Boolean member to keep track of whether the queue is empty, rather than
require that one array position remain empty.

4.15 A palindrome is a string that reads the same forwards as backwards. Using
only a fixed number of stacks and queues, the stack and queue ADT func-
tions, and a fixed number of int and char variables, write an algorithm to
determine if a string is a palindrome. Assume that the string is read from
standard input one character at a time. The algorithm should output true or
false as appropriate.

4.16 Re-implement function fibr from Exercise 2.11, using a stack to replace
the recursive call as described in Section 4.2.4.

4.17 Write a recursive algorithm to compute the value of the recurrence relation

T(n) = T(dn/2e) + T(bn/2c) + n; T(1) = 1.

Then, rewrite your algorithm to simulate the recursive calls with a stack.
4.18 Let Q be a non-empty queue, and let S be an empty stack. Using only the

stack and queue ADT functions and a single element variable X , write an
algorithm to reverse the order of the elements in Q.

4.19 A common problem for compilers and text editors is to determine if the
parentheses (or other brackets) in a string are balanced and properly nested.
For example, the string “((())())()” contains properly nested pairs of paren-
theses, but the string “)()(” does not, and the string “())” does not contain
properly matching parentheses.

(a) Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false otherwise. Use a stack to keep
track of the number of left parentheses seen so far. Hint: At no time
while scanning a legal string from left to right will you have encoun-
tered more right parentheses than left parentheses.

(b) Give an algorithm that returns the position in the string of the first of-
fending parenthesis if the string is not properly nested and balanced.
That is, if an excess right parenthesis is found, return its position; if
there are too many left parentheses, return the position of the first ex-
cess left parenthesis. Return −1 if the string is properly balanced and
nested. Use a stack to keep track of the number and positions of left
parentheses seen so far.

4.20 Imagine that you are designing an application where you need to perform
the operations Insert, Delete Maximum, and Delete Minimum. For
this application, the cost of inserting is not important, because it can be done
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off-line prior to startup of the time-critical section, but the performance of
the two deletion operations are critical. Repeated deletions of either kind
must work as fast as possible. Suggest a data structure that can support this
application, and justify your suggestion. What is the time complexity for
each of the three key operations?

4.21 Write a function that reverses the order of an array of n items.

4.7 Projects

4.1 A deque (pronounced “deck”) is like a queue, except that items may be added
and removed from both the front and the rear. Write either an array-based or
linked implementation for the deque.

4.2 One solution to the problem of running out of space for an array-based list
implementation is to replace the array with a larger array whenever the origi-
nal array overflows. A good rule that leads to an implementation that is both
space and time efficient is to double the current size of the array when there
is an overflow. Re-implement the array-based List class of Figure 4.2 to
support this array-doubling rule.

4.3 Use singly linked lists to implement integers of unlimited size. Each node of
the list should store one digit of the integer. You should implement addition,
subtraction, multiplication, and exponentiation operations. Limit exponents
to be positive integers. What is the asymptotic running time for each of your
operations, expressed in terms of the number of digits for the two operands
of each function?

4.4 Implement doubly linked lists by storing the sum of the next and prev
pointers in a single pointer variable as described in Example 4.1.

4.5 Implement a city database using unordered lists. Each database record con-
tains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x and y coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched
by name or coordinate. Another operation that should be supported is to
print all records within a given distance of a specified point. Implement the
database using an array-based list implementation, and then a linked list im-
plementation. Collect running time statistics for each operation in both im-
plementations. What are your conclusions about the relative advantages and
disadvantages of the two implementations? Would storing records on the
list in alphabetical order by city name speed any of the operations? Would
keeping the list in alphabetical order slow any of the operations?

4.6 Modify the code of Figure 4.18 to support storing variable-length strings of
at most 255 characters. The stack array should have type char. A string is
represented by a series of characters (one character per stack element), with



150 Chap. 4 Lists, Stacks, and Queues

top = 10

‘a’ ‘b’ ‘c’ 3 ‘h’ ‘e’ ‘l’ ‘o’ 5

0 1 2 3 4 5 6 7 8 9 10

‘l’

Figure 4.35 An array-based stack storing variable-length strings. Each position
stores either one character or the length of the string immediately to the left of it
in the stack.

the length of the string stored in the stack element immediately above the
string itself, as illustrated by Figure 4.35. The push operation would store an
element requiring i storage units in the i positions beginning with the current
value of top and store the size in the position i storage units above top.
The value of top would then be reset above the newly inserted element. The
pop operation need only look at the size value stored in position top−1 and
then pop off the appropriate number of units. You may store the string on the
stack in reverse order if you prefer, provided that when it is popped from the
stack, it is returned in its proper order.

4.7 Define an ADT for a bag (see Section 2.1) and create an array-based imple-
mentation for bags. Be sure that your bag ADT does not rely in any way
on knowing or controlling the position of an element. Then, implement the
dictionary ADT of Figure 4.28 using your bag implementation.

4.8 Implement the dictionary ADT of Figure 4.28 using an unsorted linked list as
defined by class LList in Figure 4.8. Make the implementation as efficient
as you can, given the restriction that your implementation must use the un-
sorted linked list and its access operations to implement the dictionary. State
the asymptotic time requirements for each function member of the dictionary
ADT under your implementation.

4.9 Implement the dictionary ADT of Figure 4.28 based on stacks. Your imple-
mentation should declare and use two stacks.

4.10 Implement the dictionary ADT of Figure 4.28 based on queues. Your imple-
mentation should declare and use two queues.
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Binary Trees

The list representations of Chapter 4 have a fundamental limitation: Either search
or insert can be made efficient, but not both at the same time. Tree structures
permit both efficient access and update to large collections of data. Binary trees in
particular are widely used and relatively easy to implement. But binary trees are
useful for many things besides searching. Just a few examples of applications that
trees can speed up include prioritizing jobs, describing mathematical expressions
and the syntactic elements of computer programs, or organizing the information
needed to drive data compression algorithms.

This chapter begins by presenting definitions and some key properties of bi-
nary trees. Section 5.2 discusses how to process all nodes of the binary tree in an
organized manner. Section 5.3 presents various methods for implementing binary
trees and their nodes. Sections 5.4 through 5.6 present three examples of binary
trees used in specific applications: the Binary Search Tree (BST) for implementing
dictionaries, heaps for implementing priority queues, and Huffman coding trees for
text compression. The BST, heap, and Huffman coding tree each have distinctive
structural features that affect their implementation and use.

5.1 Definitions and Properties

A binary tree is made up of a finite set of elements called nodes. This set either
is empty or consists of a node called the root together with two binary trees, called
the left and right subtrees, which are disjoint from each other and from the root.
(Disjoint means that they have no nodes in common.) The roots of these subtrees
are children of the root. There is an edge from a node to each of its children, and
a node is said to be the parent of its children.

If n1, n2, ..., nk is a sequence of nodes in the tree such that ni is the parent of
ni+1 for 1 ≤ i < k, then this sequence is called a path from n1 to nk. The length
of the path is k− 1. If there is a path from node R to node M, then R is an ancestor
of M, and M is a descendant of R. Thus, all nodes in the tree are descendants of the

151
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G I

E F

A

CB

D

H

Figure 5.1 A binary tree. Node A is the root. Nodes B and C are A’s children.
Nodes B and D together form a subtree. Node B has two children: Its left child
is the empty tree and its right child is D. Nodes A, C, and E are ancestors of G.
Nodes D, E, and F make up level 2 of the tree; node A is at level 0. The edges
from A to C to E to G form a path of length 3. Nodes D, G, H, and I are leaves.
Nodes A, B, C, E, and F are internal nodes. The depth of I is 3. The height of this
tree is 4.

root of the tree, while the root is the ancestor of all nodes. The depth of a node M
in the tree is the length of the path from the root of the tree to M. The height of a
tree is one more than the depth of the deepest node in the tree. All nodes of depth d
are at level d in the tree. The root is the only node at level 0, and its depth is 0. A
leaf node is any node that has two empty children. An internal node is any node
that has at least one non-empty child.

Figure 5.1 illustrates the various terms used to identify parts of a binary tree.
Figure 5.2 illustrates an important point regarding the structure of binary trees.
Because all binary tree nodes have two children (one or both of which might be
empty), the two binary trees of Figure 5.2 are not the same.

Two restricted forms of binary tree are sufficiently important to warrant special
names. Each node in a full binary tree is either (1) an internal node with exactly
two non-empty children or (2) a leaf. A complete binary tree has a restricted shape
obtained by starting at the root and filling the tree by levels from left to right. In the
complete binary tree of height d, all levels except possibly level d−1 are completely
full. The bottom level has its nodes filled in from the left side.

Figure 5.3 illustrates the differences between full and complete binary trees.1

There is no particular relationship between these two tree shapes; that is, the tree of
Figure 5.3(a) is full but not complete while the tree of Figure 5.3(b) is complete but

1While these definitions for full and complete binary tree are the ones most commonly used, they
are not universal. Because the common meaning of the words “full” and “complete” are quite similar,
there is little that you can do to distinguish between them other than to memorize the definitions. Here
is a memory aid that you might find useful: “Complete” is a wider word than “full,” and complete
binary trees tend to be wider than full binary trees because each level of a complete binary tree is as
wide as possible.
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(b)
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Figure 5.2 Two different binary trees. (a) A binary tree whose root has a non-
empty left child. (b) A binary tree whose root has a non-empty right child. (c) The
binary tree of (a) with the missing right child made explicit. (d) The binary tree
of (b) with the missing left child made explicit.

(a) (b)

Figure 5.3 Examples of full and complete binary trees. (a) This tree is full (but
not complete). (b) This tree is complete (but not full).

not full. The heap data structure (Section 5.5) is an example of a complete binary
tree. The Huffman coding tree (Section 5.6) is an example of a full binary tree.

5.1.1 The Full Binary Tree Theorem

Some binary tree implementations store data only at the leaf nodes, using the inter-
nal nodes to provide structure to the tree. More generally, binary tree implementa-
tions might require some amount of space for internal nodes, and a different amount
for leaf nodes. Thus, to analyze the space required by such implementations, it is
useful to know the minimum and maximum fraction of the nodes that are leaves in
a tree containing n internal nodes.

Unfortunately, this fraction is not fixed. A binary tree of n internal nodes might
have only one leaf. This occurs when the internal nodes are arranged in a chain
ending in a single leaf as shown in Figure 5.4. In this case, the number of leaves
is low because each internal node has only one non-empty child. To find an upper
bound on the number of leaves for a tree of n internal nodes, first note that the upper
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internal nodes
Any  number of

Figure 5.4 A tree containing many internal nodes and a single leaf.

bound will occur when each internal node has two non-empty children, that is,
when the tree is full. However, this observation does not tell what shape of tree will
yield the highest percentage of non-empty leaves. It turns out not to matter, because
all full binary trees with n internal nodes have the same number of leaves. This fact
allows us to compute the space requirements for a full binary tree implementation
whose leaves require a different amount of space from its internal nodes.

Theorem 5.1 Full Binary Tree Theorem: The number of leaves in a non-empty
full binary tree is one more than the number of internal nodes.

Proof: The proof is by mathematical induction on n, the number of internal nodes.
This is an example of an induction proof where we reduce from an arbitrary in-
stance of size n to an instance of size n− 1 that meets the induction hypothesis.

• Base Cases: The non-empty tree with zero internal nodes has one leaf node.
A full binary tree with one internal node has two leaf nodes. Thus, the base
cases for n = 0 and n = 1 conform to the theorem.

• Induction Hypothesis: Assume that any full binary tree T containing n− 1
internal nodes has n leaves.

• Induction Step: Given tree T with n internal nodes, select an internal node I
whose children are both leaf nodes. Remove both of I’s children, making
I a leaf node. Call the new tree T′. T′ has n − 1 internal nodes. From
the induction hypothesis, T′ has n leaves. Now, restore I’s two children. We
once again have tree T with n internal nodes. How many leaves does T have?
Because T′ has n leaves, adding the two children yields n+2. However, node
I counted as one of the leaves in T′ and has now become an internal node.
Thus, tree T has n+ 1 leaf nodes and n internal nodes.

By mathematical induction the theorem holds for all values of n ≥ 0. 2

When analyzing the space requirements for a binary tree implementation, it is
useful to know how many empty subtrees a tree contains. A simple extension of
the Full Binary Tree Theorem tells us exactly how many empty subtrees there are
in any binary tree, whether full or not. Here are two approaches to proving the
following theorem, and each suggests a useful way of thinking about binary trees.
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Theorem 5.2 The number of empty subtrees in a non-empty binary tree is one
more than the number of nodes in the tree.

Proof 1: Take an arbitrary binary tree T and replace every empty subtree with a
leaf node. Call the new tree T′. All nodes originally in T will be internal nodes in
T′ (because even the leaf nodes of T have children in T′). T′ is a full binary tree,
because every internal node of T now must have two children in T′, and each leaf
node in T must have two children in T′ (the leaves just added). The Full Binary Tree
Theorem tells us that the number of leaves in a full binary tree is one more than the
number of internal nodes. Thus, the number of new leaves that were added to create
T′ is one more than the number of nodes in T. Each leaf node in T′ corresponds to
an empty subtree in T. Thus, the number of empty subtrees in T is one more than
the number of nodes in T. 2

Proof 2: By definition, every node in binary tree T has two children, for a total of
2n children in a tree of n nodes. Every node except the root node has one parent,
for a total of n− 1 nodes with parents. In other words, there are n− 1 non-empty
children. Because the total number of children is 2n, the remaining n+ 1 children
must be empty. 2

5.1.2 A Binary Tree Node ADT

Just as a linked list is comprised of a collection of link objects, a tree is comprised
of a collection of node objects. Figure 5.5 shows an ADT for binary tree nodes,
called BinNode. This class will be used by some of the binary tree structures
presented later. Class BinNode is a template with parameter E, which is the type
for the data record stored in the node. Member functions are provided that set or
return the element value, set or return a pointer to the left child, set or return a
pointer to the right child, or indicate whether the node is a leaf.

5.2 Binary Tree Traversals

Often we wish to process a binary tree by “visiting” each of its nodes, each time
performing a specific action such as printing the contents of the node. Any process
for visiting all of the nodes in some order is called a traversal. Any traversal that
lists every node in the tree exactly once is called an enumeration of the tree’s
nodes. Some applications do not require that the nodes be visited in any particular
order as long as each node is visited precisely once. For other applications, nodes
must be visited in an order that preserves some relationship. For example, we might
wish to make sure that we visit any given node before we visit its children. This is
called a preorder traversal.
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// Binary tree node abstract class
template <typename E> class BinNode {
public:

virtual ˜BinNode() {} // Base destructor

// Return the node’s value
virtual E& element() = 0;

// Set the node’s value
virtual void setElement(const E&) = 0;

// Return the node’s left child
virtual BinNode* left() const = 0;

// Set the node’s left child
virtual void setLeft(BinNode*) = 0;

// Return the node’s right child
virtual BinNode* right() const = 0;

// Set the node’s right child
virtual void setRight(BinNode*) = 0;

// Return true if the node is a leaf, false otherwise
virtual bool isLeaf() = 0;

};
Figure 5.5 A binary tree node ADT.

Example 5.1 The preorder enumeration for the tree of Figure 5.1 is

ABDCEGFHI.

The first node printed is the root. Then all nodes of the left subtree are
printed (in preorder) before any node of the right subtree.

Alternatively, we might wish to visit each node only after we visit its children
(and their subtrees). For example, this would be necessary if we wish to return
all nodes in the tree to free store. We would like to delete the children of a node
before deleting the node itself. But to do that requires that the children’s children
be deleted first, and so on. This is called a postorder traversal.

Example 5.2 The postorder enumeration for the tree of Figure 5.1 is

DBGEHIFCA.

An inorder traversal first visits the left child (including its entire subtree), then
visits the node, and finally visits the right child (including its entire subtree). The
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binary search tree of Section 5.4 makes use of this traversal to print all nodes in
ascending order of value.

Example 5.3 The inorder enumeration for the tree of Figure 5.1 is

BDAGECHFI.

A traversal routine is naturally written as a recursive function. Its input pa-
rameter is a pointer to a node which we will call root because each node can be
viewed as the root of a some subtree. The initial call to the traversal function passes
in a pointer to the root node of the tree. The traversal function visits root and
its children (if any) in the desired order. For example, a preorder traversal speci-
fies that root be visited before its children. This can easily be implemented as
follows.

template <typename E>
void preorder(BinNode<E>* root) {

if (root == NULL) return; // Empty subtree, do nothing
visit(root); // Perform desired action
preorder(root->left());
preorder(root->right());

}

Function preorder first checks that the tree is not empty (if it is, then the traversal
is done and preorder simply returns). Otherwise, preorder makes a call to
visit, which processes the root node (i.e., prints the value or performs whatever
computation as required by the application). Function preorder is then called
recursively on the left subtree, which will visit all nodes in that subtree. Finally,
preorder is called on the right subtree, visiting all nodes in the right subtree.
Postorder and inorder traversals are similar. They simply change the order in which
the node and its children are visited, as appropriate.

An important decision in the implementation of any recursive function on trees
is when to check for an empty subtree. Function preorder first checks to see if
the value for root is NULL. If not, it will recursively call itself on the left and right
children of root. In other words, preorder makes no attempt to avoid calling
itself on an empty child. Some programmers use an alternate design in which the
left and right pointers of the current node are checked so that the recursive call is
made only on non-empty children. Such a design typically looks as follows:

template <typename E>
void preorder2(BinNode<E>* root) {
visit(root); // Perform whatever action is desired
if (root->left() != NULL) preorder2(root->left());
if (root->right() != NULL) preorder2(root->right());

}



158 Chap. 5 Binary Trees

At first it might appear that preorder2 is more efficient than preorder,
because it makes only half as many recursive calls. (Why?) On the other hand,
preorder2 must access the left and right child pointers twice as often. The net
result is little or no performance improvement.

In reality, the design of preorder2 is inferior to that of preorder for two
reasons. First, while it is not apparent in this simple example, for more complex
traversals it can become awkward to place the check for the NULL pointer in the
calling code. Even here we had to write two tests for NULL, rather than the one
needed by preorder. The more important concern with preorder2 is that it
tends to be error prone. While preorder2 insures that no recursive calls will
be made on empty subtrees, it will fail if the initial call passes in a NULL pointer.
This would occur if the original tree is empty. To avoid the bug, either preorder2
needs an additional test for a NULL pointer at the beginning (making the subsequent
tests redundant after all), or the caller of preorder2 has a hidden obligation to
pass in a non-empty tree, which is unreliable design. The net result is that many
programmers forget to test for the possibility that the empty tree is being traversed.
By using the first design, which explicitly supports processing of empty subtrees,
the problem is avoided.

Another issue to consider when designing a traversal is how to define the visitor
function that is to be executed on every node. One approach is simply to write a
new version of the traversal for each such visitor function as needed. The disad-
vantage to this is that whatever function does the traversal must have access to the
BinNode class. It is probably better design to permit only the tree class to have
access to the BinNode class.

Another approach is for the tree class to supply a generic traversal function
which takes the visitor either as a template parameter or as a function parameter.
This is known as the visitor design pattern. A major constraint on this approach is
that the signature for all visitor functions, that is, their return type and parameters,
must be fixed in advance. Thus, the designer of the generic traversal function must
be able to adequately judge what parameters and return type will likely be needed
by potential visitor functions.

Handling information flow between parts of a program can be a significant
design challenge, especially when dealing with recursive functions such as tree
traversals. In general, we can run into trouble either with passing in the correct
information needed by the function to do its work, or with returning information
to the recursive function’s caller. We will see many examples throughout the book
that illustrate methods for passing information in and out of recursive functions as
they traverse a tree structure. Here are a few simple examples.

First we consider the simple case where a computation requires that we com-
municate information back up the tree to the end user.
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Figure 5.6 To be a binary search tree, the left child of the node with value 40
must have a value between 20 and 40.

Example 5.4 We wish to count the number of nodes in a binary tree. The
key insight is that the total count for any (non-empty) subtree is one for the
root plus the counts for the left and right subtrees. Where do left and right
subtree counts come from? Calls to function count on the subtrees will
compute this for us. Thus, we can implement count as follows.

template <typename E>
int count(BinNode<E>* root) {

if (root == NULL) return 0; // Nothing to count
return 1 + count(root->left())

+ count(root->right());
}

Another problem that occurs when recursively processing data collections is
controlling which members of the collection will be visited. For example, some
tree “traversals” might in fact visit only some tree nodes, while avoiding processing
of others. Exercise 5.20 must solve exactly this problem in the context of a binary
search tree. It must visit only those children of a given node that might possibly
fall within a given range of values. Fortunately, it requires only a simple local
calculation to determine which child(ren) to visit.

A more difficult situation is illustrated by the following problem. Given an
arbitrary binary tree we wish to determine if, for every node A, are all nodes in A’s
left subtree less than the value of A, and are all nodes in A’s right subtree greater
than the value of A? (This happens to be the definition for a binary search tree,
described in Section 5.4.) Unfortunately, to make this decision we need to know
some context that is not available just by looking at the node’s parent or children.
As shown by Figure 5.6, it is not enough to verify that A’s left child has a value
less than that of A, and that A’s right child has a greater value. Nor is it enough to
verify that A has a value consistent with that of its parent. In fact, we need to know
information about what range of values is legal for a given node. That information
might come from any of the node’s ancestors. Thus, relevant range information
must be passed down the tree. We can implement this function as follows.
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template <typename Key, typename E>
bool checkBST(BSTNode<Key,E>* root, Key low, Key high) {
if (root == NULL) return true; // Empty subtree
Key rootkey = root->key();
if ((rootkey < low) || (rootkey > high))

return false; // Out of range
if (!checkBST<Key,E>(root->left(), low, rootkey))

return false; // Left side failed
return checkBST<Key,E>(root->right(), rootkey, high);

}

5.3 Binary Tree Node Implementations

In this section we examine ways to implement binary tree nodes. We begin with
some options for pointer-based binary tree node implementations. Then comes a
discussion on techniques for determining the space requirements for a given imple-
mentation. The section concludes with an introduction to the array-based imple-
mentation for complete binary trees.

5.3.1 Pointer-Based Node Implementations

By definition, all binary tree nodes have two children, though one or both children
can be empty. Binary tree nodes typically contain a value field, with the type of
the field depending on the application. The most common node implementation
includes a value field and pointers to the two children.

Figure 5.7 shows a simple implementation for the BinNode abstract class,
which we will name BSTNode. Class BSTNode includes a data member of type
E, (which is the second template parameter) for the element type. To support search
structures such as the Binary Search Tree, an additional field is included, with cor-
responding access methods, to store a key value (whose purpose is explained in
Section 4.4). Its type is determined by the first template parameter, named Key.
Every BSTNode object also has two pointers, one to its left child and another to
its right child. Overloaded new and delete operators could be added to support
a freelist, as described in Section 4.1.2.Figure 5.8 illustrates the BSTNode imple-
mentation.

Some programmers find it convenient to add a pointer to the node’s parent,
allowing easy upward movement in the tree. Using a parent pointer is somewhat
analogous to adding a link to the previous node in a doubly linked list. In practice,
the parent pointer is almost always unnecessary and adds to the space overhead for
the tree implementation. It is not just a problem that parent pointers take space.
More importantly, many uses of the parent pointer are driven by improper under-
standing of recursion and so indicate poor programming. If you are inclined toward
using a parent pointer, consider if there is a more efficient implementation possible.
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// Simple binary tree node implementation
template <typename Key, typename E>
class BSTNode : public BinNode<E> {
private:

Key k; // The node’s key
E it; // The node’s value
BSTNode* lc; // Pointer to left child
BSTNode* rc; // Pointer to right child

public:
// Two constructors -- with and without initial values
BSTNode() { lc = rc = NULL; }
BSTNode(Key K, E e, BSTNode* l =NULL, BSTNode* r =NULL)

{ k = K; it = e; lc = l; rc = r; }
˜BSTNode() {} // Destructor

// Functions to set and return the value and key
E& element() { return it; }
void setElement(const E& e) { it = e; }
Key& key() { return k; }
void setKey(const Key& K) { k = K; }

// Functions to set and return the children
inline BSTNode* left() const { return lc; }
void setLeft(BinNode<E>* b) { lc = (BSTNode*)b; }
inline BSTNode* right() const { return rc; }
void setRight(BinNode<E>* b) { rc = (BSTNode*)b; }

// Return true if it is a leaf, false otherwise
bool isLeaf() { return (lc == NULL) && (rc == NULL); }

};

Figure 5.7 A binary tree node class implementation.
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Figure 5.8 Illustration of a typical pointer-based binary tree implementation,
where each node stores two child pointers and a value.
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Figure 5.9 An expression tree for 4x(2x+ a)− c.

An important decision in the design of a pointer-based node implementation
is whether the same class definition will be used for leaves and internal nodes.
Using the same class for both will simplify the implementation, but might be an
inefficient use of space. Some applications require data values only for the leaves.
Other applications require one type of value for the leaves and another for the in-
ternal nodes. Examples include the binary trie of Section 13.1, the PR quadtree of
Section 13.3, the Huffman coding tree of Section 5.6, and the expression tree illus-
trated by Figure 5.9. By definition, only internal nodes have non-empty children.
If we use the same node implementation for both internal and leaf nodes, then both
must store the child pointers. But it seems wasteful to store child pointers in the
leaf nodes. Thus, there are many reasons why it can save space to have separate
implementations for internal and leaf nodes.

As an example of a tree that stores different information at the leaf and inter-
nal nodes, consider the expression tree illustrated by Figure 5.9. The expression
tree represents an algebraic expression composed of binary operators such as ad-
dition, subtraction, multiplication, and division. Internal nodes store operators,
while the leaves store operands. The tree of Figure 5.9 represents the expression
4x(2x + a) − c. The storage requirements for a leaf in an expression tree are quite
different from those of an internal node. Internal nodes store one of a small set of
operators, so internal nodes could store a small code identifying the operator such
as a single byte for the operator’s character symbol. In contrast, leaves store vari-
able names or numbers, which is considerably larger in order to handle the wider
range of possible values. At the same time, leaf nodes need not store child pointers.

C++ allows us to differentiate leaf from internal nodes through the use of class
inheritance. A base class provides a general definition for an object, and a subclass
modifies a base class to add more detail. A base class can be declared for binary tree
nodes in general, with subclasses defined for the internal and leaf nodes. The base
class of Figure 5.10 is named VarBinNode. It includes a virtual member function
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named isLeaf, which indicates the node type. Subclasses for the internal and leaf
node types each implement isLeaf. Internal nodes store child pointers of the base
class type; they do not distinguish their children’s actual subclass. Whenever a node
is examined, its version of isLeaf indicates the node’s subclass.

Figure 5.10 includes two subclasses derived from class VarBinNode, named
LeafNode and IntlNode. Class IntlNode can access its children through
pointers of type VarBinNode. Function traverse illustrates the use of these
classes. When traverse calls method isLeaf, C++’s runtime environment
determines which subclass this particular instance of rt happens to be and calls that
subclass’s version of isLeaf. Method isLeaf then provides the actual node type
to its caller. The other member functions for the derived subclasses are accessed by
type-casting the base class pointer as appropriate, as shown in function traverse.

There is another approach that we can take to represent separate leaf and inter-
nal nodes, also using a virtual base class and separate node classes for the two types.
This is to implement nodes using the composite design pattern. This approach is
noticeably different from the one of Figure 5.10 in that the node classes themselves
implement the functionality of traverse. Figure 5.11 shows the implementa-
tion. Here, base class VarBinNode declares a member function traverse that
each subclass must implement. Each subclass then implements its own appropriate
behavior for its role in a traversal. The whole traversal process is called by invoking
traverse on the root node, which in turn invokes traverse on its children.

When comparing the implementations of Figures 5.10 and 5.11, each has ad-
vantages and disadvantages. The first does not require that the node classes know
about the traverse function. With this approach, it is easy to add new methods
to the tree class that do other traversals or other operations on nodes of the tree.
However, we see that traverse in Figure 5.10 does need to be familiar with each
node subclass. Adding a new node subclass would therefore require modifications
to the traverse function. In contrast, the approach of Figure 5.11 requires that
any new operation on the tree that requires a traversal also be implemented in the
node subclasses. On the other hand, the approach of Figure 5.11 avoids the need for
the traverse function to know anything about the distinct abilities of the node
subclasses. Those subclasses handle the responsibility of performing a traversal on
themselves. A secondary benefit is that there is no need for traverse to explic-
itly enumerate all of the different node subclasses, directing appropriate action for
each. With only two node classes this is a minor point. But if there were many such
subclasses, this could become a bigger problem. A disadvantage is that the traversal
operation must not be called on a NULL pointer, because there is no object to catch
the call. This problem could be avoided by using a flyweight (see Section 1.3.1) to
implement empty nodes.

Typically, the version of Figure 5.10 would be preferred in this example if
traverse is a member function of the tree class, and if the node subclasses are
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// Node implementation with simple inheritance
class VarBinNode { // Node abstract base class
public:

virtual ˜VarBinNode() {}
virtual bool isLeaf() = 0; // Subclasses must implement

};

class LeafNode : public VarBinNode { // Leaf node
private:

Operand var; // Operand value

public:
LeafNode(const Operand& val) { var = val; } // Constructor
bool isLeaf() { return true; } // Version for LeafNode
Operand value() { return var; } // Return node value

};

class IntlNode : public VarBinNode { // Internal node
private:

VarBinNode* left; // Left child
VarBinNode* right; // Right child
Operator opx; // Operator value

public:
IntlNode(const Operator& op, VarBinNode* l, VarBinNode* r)
{ opx = op; left = l; right = r; } // Constructor

bool isLeaf() { return false; } // Version for IntlNode
VarBinNode* leftchild() { return left; } // Left child
VarBinNode* rightchild() { return right; } // Right child
Operator value() { return opx; } // Value

};

void traverse(VarBinNode *root) { // Preorder traversal
if (root == NULL) return; // Nothing to visit
if (root->isLeaf()) // Do leaf node

cout << "Leaf: " << ((LeafNode *)root)->value() << endl;
else { // Do internal node

cout << "Internal: "
<< ((IntlNode *)root)->value() << endl;

traverse(((IntlNode *)root)->leftchild());
traverse(((IntlNode *)root)->rightchild());

}
}

Figure 5.10 An implementation for separate internal and leaf node representa-
tions using C++ class inheritance and virtual functions.
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// Node implementation with the composite design pattern
class VarBinNode { // Node abstract base class
public:

virtual ˜VarBinNode() {} // Generic destructor
virtual bool isLeaf() = 0;
virtual void traverse() = 0;

};

class LeafNode : public VarBinNode { // Leaf node
private:

Operand var; // Operand value

public:
LeafNode(const Operand& val) { var = val; } // Constructor
bool isLeaf() { return true; } // isLeaf for Leafnode
Operand value() { return var; } // Return node value
void traverse() { cout << "Leaf: " << value() << endl; }

};

class IntlNode : public VarBinNode { // Internal node
private:

VarBinNode* lc; // Left child
VarBinNode* rc; // Right child
Operator opx; // Operator value

public:
IntlNode(const Operator& op, VarBinNode* l, VarBinNode* r)

{ opx = op; lc = l; rc = r; } // Constructor

bool isLeaf() { return false; } // isLeaf for IntlNode
VarBinNode* left() { return lc; } // Left child
VarBinNode* right() { return rc; } // Right child
Operator value() { return opx; } // Value

void traverse() { // Traversal behavior for internal nodes
cout << "Internal: " << value() << endl;
if (left() != NULL) left()->traverse();
if (right() != NULL) right()->traverse();

}
};

// Do a preorder traversal
void traverse(VarBinNode *root) {
if (root != NULL) root->traverse();

}

Figure 5.11 A second implementation for separate internal and leaf node repre-
sentations using C++ class inheritance and virtual functions using the composite
design pattern. Here, the functionality of traverse is embedded into the node
subclasses.
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hidden from users of that tree class. On the other hand, if the nodes are objects
that have meaning to users of the tree separate from their existence as nodes in the
tree, then the version of Figure 5.11 might be preferred because hiding the internal
behavior of the nodes becomes more important.

Another advantage of the composite design is that implementing each node
type’s functionality might be easier. This is because you can focus solely on the
information passing and other behavior needed by this node type to do its job. This
breaks down the complexity that many programmers feel overwhelmed by when
dealing with complex information flows related to recursive processing.

5.3.2 Space Requirements

This section presents techniques for calculating the amount of overhead required by
a binary tree implementation. Recall that overhead is the amount of space necessary
to maintain the data structure. In other words, it is any space not used to store
data records. The amount of overhead depends on several factors including which
nodes store data values (all nodes, or just the leaves), whether the leaves store child
pointers, and whether the tree is a full binary tree.

In a simple pointer-based implementation for the binary tree such as that of
Figure 5.7, every node has two pointers to its children (even when the children are
NULL). This implementation requires total space amounting to n(2P + D) for a
tree of n nodes. Here, P stands for the amount of space required by a pointer, and
D stands for the amount of space required by a data value. The total overhead space
will be 2Pn for the entire tree. Thus, the overhead fraction will be 2P/(2P +D).
The actual value for this expression depends on the relative size of pointers versus
data fields. If we arbitrarily assume that P = D, then a full tree has about two
thirds of its total space taken up in overhead. Worse yet, Theorem 5.2 tells us that
about half of the pointers are “wasted” NULL values that serve only to indicate tree
structure, but which do not provide access to new data.

A common implementation is not to store any actual data in a node, but rather a
pointer to the data record. In this case, each node will typically store three pointers,
all of which are overhead, resulting in an overhead fraction of 3P/(3P +D).

If only leaves store data values, then the fraction of total space devoted to over-
head depends on whether the tree is full. If the tree is not full, then conceivably
there might only be one leaf node at the end of a series of internal nodes. Thus,
the overhead can be an arbitrarily high percentage for non-full binary trees. The
overhead fraction drops as the tree becomes closer to full, being lowest when the
tree is truly full. In this case, about one half of the nodes are internal.

Great savings can be had by eliminating the pointers from leaf nodes in full
binary trees. Again assume the tree stores a pointer to the data field. Because about
half of the nodes are leaves and half internal nodes, and because only internal nodes



Sec. 5.3 Binary Tree Node Implementations 167

now have child pointers, the overhead fraction in this case will be approximately

n
2 (2P )

n
2 (2P ) +Dn

=
P

P +D
.

If P = D, the overhead drops to about one half of the total space. However, if only
leaf nodes store useful information, the overhead fraction for this implementation is
actually three quarters of the total space, because half of the “data” space is unused.

If a full binary tree needs to store data only at the leaf nodes, a better imple-
mentation would have the internal nodes store two pointers and no data field while
the leaf nodes store only a pointer to the data field. This implementation requires
n
2 2P+n

2 (p+d) units of space. IfP = D, then the overhead is 3P/(3P+D) = 3/4.
It might seem counter-intuitive that the overhead ratio has gone up while the total
amount of space has gone down. The reason is because we have changed our defini-
tion of “data” to refer only to what is stored in the leaf nodes, so while the overhead
fraction is higher, it is from a total storage requirement that is lower.

There is one serious flaw with this analysis. When using separate implemen-
tations for internal and leaf nodes, there must be a way to distinguish between
the node types. When separate node types are implemented via C++ subclasses,
the runtime environment stores information with each object allowing it to deter-
mine, for example, the correct subclass to use when the isLeaf virtual function is
called. Thus, each node requires additional space. Only one bit is truly necessary
to distinguish the two possibilities. In rare applications where space is a critical
resource, implementors can often find a spare bit within the node’s value field in
which to store the node type indicator. An alternative is to use a spare bit within
a node pointer to indicate node type. For example, this is often possible when the
compiler requires that structures and objects start on word boundaries, leaving the
last bit of a pointer value always zero. Thus, this bit can be used to store the node-
type flag and is reset to zero before the pointer is dereferenced. Another alternative
when the leaf value field is smaller than a pointer is to replace the pointer to a leaf
with that leaf’s value. When space is limited, such techniques can make the differ-
ence between success and failure. In any other situation, such “bit packing” tricks
should be avoided because they are difficult to debug and understand at best, and
are often machine dependent at worst.2

2In the early to mid 1980s, I worked on a Geographic Information System that stored spatial data
in quadtrees (see Section 13.3). At the time space was a critical resource, so we used a bit-packing
approach where we stored the nodetype flag as the last bit in the parent node’s pointer. This worked
perfectly on various 32-bit workstations. Unfortunately, in those days IBM PC-compatibles used
16-bit pointers. We never did figure out how to port our code to the 16-bit machine.
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5.3.3 Array Implementation for Complete Binary Trees

The previous section points out that a large fraction of the space in a typical binary
tree node implementation is devoted to structural overhead, not to storing data.
This section presents a simple, compact implementation for complete binary trees.
Recall that complete binary trees have all levels except the bottom filled out com-
pletely, and the bottom level has all of its nodes filled in from left to right. Thus,
a complete binary tree of n nodes has only one possible shape. You might think
that a complete binary tree is such an unusual occurrence that there is no reason
to develop a special implementation for it. However, the complete binary tree has
practical uses, the most important being the heap data structure discussed in Sec-
tion 5.5. Heaps are often used to implement priority queues (Section 5.5) and for
external sorting algorithms (Section 8.5.2).

We begin by assigning numbers to the node positions in the complete binary
tree, level by level, from left to right as shown in Figure 5.12(a). An array can
store the tree’s data values efficiently, placing each data value in the array position
corresponding to that node’s position within the tree. Figure 5.12(b) lists the array
indices for the children, parent, and siblings of each node in Figure 5.12(a). From
Figure 5.12(b), you should see a pattern regarding the positions of a node’s relatives
within the array. Simple formulas can be derived for calculating the array index for
each relative of a node r from r’s index. No explicit pointers are necessary to
reach a node’s left or right child. This means there is no overhead to the array
implementation if the array is selected to be of size n for a tree of n nodes.

The formulae for calculating the array indices of the various relatives of a node
are as follows. The total number of nodes in the tree is n. The index of the node in
question is r, which must fall in the range 0 to n− 1.

• Parent(r) = b(r − 1)/2c if r 6= 0.
• Left child(r) = 2r + 1 if 2r + 1 < n.
• Right child(r) = 2r + 2 if 2r + 2 < n.
• Left sibling(r) = r − 1 if r is even.
• Right sibling(r) = r + 1 if r is odd and r + 1 < n.

5.4 Binary Search Trees

Section 4.4 presented the dictionary ADT, along with dictionary implementations
based on sorted and unsorted lists. When implementing the dictionary with an
unsorted list, inserting a new record into the dictionary can be performed quickly by
putting it at the end of the list. However, searching an unsorted list for a particular
record requires Θ(n) time in the average case. For a large database, this is probably
much too slow. Alternatively, the records can be stored in a sorted list. If the list
is implemented using a linked list, then no speedup to the search operation will
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Position 0 1 2 3 4 5 6 7 8 9 10 11
Parent – 0 0 1 1 2 2 3 3 4 4 5

Left Child 1 3 5 7 9 11 – – – – – –
Right Child 2 4 6 8 10 – – – – – – –
Left Sibling – – 1 – 3 – 5 – 7 – 9 –

Right Sibling – 2 – 4 – 6 – 8 – 10 – –

(b)

Figure 5.12 A complete binary tree and its array implementation. (a) The com-
plete binary tree with twelve nodes. Each node has been labeled with its position
in the tree. (b) The positions for the relatives of each node. A dash indicates that
the relative does not exist.

result from storing the records in sorted order. On the other hand, if we use a sorted
array-based list to implement the dictionary, then binary search can be used to find
a record in only Θ(log n) time. However, insertion will now require Θ(n) time on
average because, once the proper location for the new record in the sorted list has
been found, many records might be shifted to make room for the new record.

Is there some way to organize a collection of records so that inserting records
and searching for records can both be done quickly? This section presents the
binary search tree (BST), which allows an improved solution to this problem.

A BST is a binary tree that conforms to the following condition, known as
the Binary Search Tree Property: All nodes stored in the left subtree of a node
whose key value is K have key values less than K. All nodes stored in the right
subtree of a node whose key value is K have key values greater than or equal to K.
Figure 5.13 shows two BSTs for a collection of values. One consequence of the
Binary Search Tree Property is that if the BST nodes are printed using an inorder
traversal (see Section 5.2), the resulting enumeration will be in sorted order from
lowest to highest.

Figure 5.14 shows a class declaration for the BST that implements the dictio-
nary ADT. The public member functions include those required by the dictionary
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Figure 5.13 Two Binary Search Trees for a collection of values. Tree (a) results
if values are inserted in the order 37, 24, 42, 7, 2, 40, 42, 32, 120. Tree (b) results
if the same values are inserted in the order 120, 42, 42, 7, 2, 32, 37, 24, 40.

ADT, along with a constructor and destructor. Recall from the discussion in Sec-
tion 4.4 that there are various ways to deal with keys and comparing records (three
approaches being key/value pairs, a special comparison method, and passing in a
comparator function). Our BST implementation will handle comparison by explic-
itly storing a key separate from the data value at each node of the tree.

To find a record with key value K in a BST, begin at the root. If the root stores
a record with key value K, then the search is over. If not, then we must search
deeper in the tree. What makes the BST efficient during search is that we need
search only one of the node’s two subtrees. If K is less than the root node’s key
value, we search only the left subtree. If K is greater than the root node’s key
value, we search only the right subtree. This process continues until a record with
key value K is found, or we reach a leaf node. If we reach a leaf node without
encountering K, then no record exists in the BST whose key value is K.

Example 5.5 Consider searching for the node with key value 32 in the
tree of Figure 5.13(a). Because 32 is less than the root value of 37, the
search proceeds to the left subtree. Because 32 is greater than 24, we search
in 24’s right subtree. At this point the node containing 32 is found. If
the search value were 35, the same path would be followed to the node
containing 32. Because this node has no children, we know that 35 is not
in the BST.

Notice that in Figure 5.14, public member function find calls private member
function findhelp. Method find takes the search key as an explicit parameter
and its BST as an implicit parameter, and returns the record that matches the key.
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// Binary Search Tree implementation for the Dictionary ADT
template <typename Key, typename E>
class BST : public Dictionary<Key,E> {
private:

BSTNode<Key,E>* root; // Root of the BST
int nodecount; // Number of nodes in the BST

// Private "helper" functions
void clearhelp(BSTNode<Key, E>*);
BSTNode<Key,E>* inserthelp(BSTNode<Key, E>*,

const Key&, const E&);
BSTNode<Key,E>* deletemin(BSTNode<Key, E>*);
BSTNode<Key,E>* getmin(BSTNode<Key, E>*);
BSTNode<Key,E>* removehelp(BSTNode<Key, E>*, const Key&);
E findhelp(BSTNode<Key, E>*, const Key&) const;
void printhelp(BSTNode<Key, E>*, int) const;

public:
BST() { root = NULL; nodecount = 0; } // Constructor
˜BST() { clearhelp(root); } // Destructor

void clear() // Reinitialize tree
{ clearhelp(root); root = NULL; nodecount = 0; }

// Insert a record into the tree.
// k Key value of the record.
// e The record to insert.
void insert(const Key& k, const E& e) {

root = inserthelp(root, k, e);
nodecount++;

}

// Remove a record from the tree.
// k Key value of record to remove.
// Return: The record removed, or NULL if there is none.
E remove(const Key& k) {

E temp = findhelp(root, k); // First find it
if (temp != NULL) {

root = removehelp(root, k);
nodecount--;

}
return temp;

}

Figure 5.14 The binary search tree implementation.
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// Remove and return the root node from the dictionary.
// Return: The record removed, null if tree is empty.
E removeAny() { // Delete min value

if (root != NULL) {
E temp = root->element();
root = removehelp(root, root->key());
nodecount--;
return temp;

}
else return NULL;

}

// Return Record with key value k, NULL if none exist.
// k: The key value to find. */
// Return some record matching "k".
// Return true if such exists, false otherwise. If
// multiple records match "k", return an arbitrary one.
E find(const Key& k) const { return findhelp(root, k); }

// Return the number of records in the dictionary.
int size() { return nodecount; }

void print() const { // Print the contents of the BST
if (root == NULL) cout << "The BST is empty.\n";
else printhelp(root, 0);

}
};

Figure 5.14 (continued)

However, the find operation is most easily implemented as a recursive function
whose parameters are the root of a subtree and the search key. Member findhelp
has the desired form for this recursive subroutine and is implemented as follows.

template <typename Key, typename E>
E BST<Key, E>::findhelp(BSTNode<Key, E>* root,

const Key& k) const {
if (root == NULL) return NULL; // Empty tree
if (k < root->key())

return findhelp(root->left(), k); // Check left
else if (k > root->key())

return findhelp(root->right(), k); // Check right
else return root->element(); // Found it

}

Once the desired record is found, it is passed through return values up the chain of
recursive calls. If a suitable record is not found, null is returned.

Inserting a record with key value k requires that we first find where that record
would have been if it were in the tree. This takes us to either a leaf node, or to an
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Figure 5.15 An example of BST insertion. A record with value 35 is inserted
into the BST of Figure 5.13(a). The node with value 32 becomes the parent of the
new node containing 35.

internal node with no child in the appropriate direction.3 Call this node R ′. We then
add a new node containing the new record as a child of R ′. Figure 5.15 illustrates
this operation. The value 35 is added as the right child of the node with value 32.
Here is the implementation for inserthelp:

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::inserthelp(

BSTNode<Key, E>* root, const Key& k, const E& it) {
if (root == NULL) // Empty tree: create node

return new BSTNode<Key, E>(k, it, NULL, NULL);
if (k < root->key())

root->setLeft(inserthelp(root->left(), k, it));
else root->setRight(inserthelp(root->right(), k, it));
return root; // Return tree with node inserted

}

You should pay careful attention to the implementation for inserthelp.
Note that inserthelp returns a pointer to a BSTNode. What is being returned
is a subtree identical to the old subtree, except that it has been modified to contain
the new record being inserted. Each node along a path from the root to the parent
of the new node added to the tree will have its appropriate child pointer assigned
to it. Except for the last node in the path, none of these nodes will actually change
their child’s pointer value. In that sense, many of the assignments seem redundant.
However, the cost of these additional assignments is worth paying to keep the inser-
tion process simple. The alternative is to check if a given assignment is necessary,
which is probably more expensive than the assignment!

The shape of a BST depends on the order in which elements are inserted. A new
element is added to the BST as a new leaf node, potentially increasing the depth of
the tree. Figure 5.13 illustrates two BSTs for a collection of values. It is possible

3This assumes that no node has a key value equal to the one being inserted. If we find a node that
duplicates the key value to be inserted, we have two options. If the application does not allow nodes
with equal keys, then this insertion should be treated as an error (or ignored). If duplicate keys are
allowed, our convention will be to insert the duplicate in the right subtree.
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for the BST containing n nodes to be a chain of nodes with height n. This would
happen if, for example, all elements were inserted in sorted order. In general, it is
preferable for a BST to be as shallow as possible. This keeps the average cost of a
BST operation low.

Removing a node from a BST is a bit trickier than inserting a node, but it is not
complicated if all of the possible cases are considered individually. Before tackling
the general node removal process, let us first discuss how to remove from a given
subtree the node with the smallest key value. This routine will be used later by the
general node removal function. To remove the node with the minimum key value
from a subtree, first find that node by continuously moving down the left link until
there is no further left link to follow. Call this node S. To remove S, simply have
the parent of S change its pointer to point to the right child of S. We know that S
has no left child (because if S did have a left child, S would not be the node with
minimum key value). Thus, changing the pointer as described will maintain a BST,
with S removed. The code for this method, named deletemin, is as follows:

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
deletemin(BSTNode<Key, E>* rt) {
if (rt->left() == NULL) // Found min

return rt->right();
else { // Continue left

rt->setLeft(deletemin(rt->left()));
return rt;

}
}

Example 5.6 Figure 5.16 illustrates the deletemin process. Beginning
at the root node with value 10, deletemin follows the left link until there
is no further left link, in this case reaching the node with value 5. The node
with value 10 is changed to point to the right child of the node containing
the minimum value. This is indicated in Figure 5.16 by a dashed line.

A pointer to the node containing the minimum-valued element is stored in pa-
rameter S. The return value of the deletemin method is the subtree of the cur-
rent node with the minimum-valued node in the subtree removed. As with method
inserthelp, each node on the path back to the root has its left child pointer
reassigned to the subtree resulting from its call to the deletemin method.

A useful companion method is getmin which returns a pointer to the node
containing the minimum value in the subtree.
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Figure 5.16 An example of deleting the node with minimum value. In this tree,
the node with minimum value, 5, is the left child of the root. Thus, the root’s
left pointer is changed to point to 5’s right child.

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
getmin(BSTNode<Key, E>* rt) {

if (rt->left() == NULL)
return rt;

else return getmin(rt->left());
}

Removing a node with given key value R from the BST requires that we first
find R and then remove it from the tree. So, the first part of the remove operation
is a search to find R. Once R is found, there are several possibilities. If R has no
children, then R’s parent has its pointer set to NULL. If R has one child, then R’s
parent has its pointer set to R’s child (similar to deletemin). The problem comes
if R has two children. One simple approach, though expensive, is to set R’s parent
to point to one of R’s subtrees, and then reinsert the remaining subtree’s nodes one
at a time. A better alternative is to find a value in one of the subtrees that can
replace the value in R.

Thus, the question becomes: Which value can substitute for the one being re-
moved? It cannot be any arbitrary value, because we must preserve the BST prop-
erty without making major changes to the structure of the tree. Which value is
most like the one being removed? The answer is the least key value greater than
(or equal to) the one being removed, or else the greatest key value less than the one
being removed. If either of these values replace the one being removed, then the
BST property is maintained.

Example 5.7 Assume that we wish to remove the value 37 from the BST
of Figure 5.13(a). Instead of removing the root node, we remove the node
with the least value in the right subtree (using the deletemin operation).
This value can then replace the value in the root. In this example we first
remove the node with value 40, because it contains the least value in the
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Figure 5.17 An example of removing the value 37 from the BST. The node
containing this value has two children. We replace value 37 with the least value
from the node’s right subtree, in this case 40.

right subtree. We then substitute 40 as the new value for the root node.
Figure 5.17 illustrates this process.

When duplicate node values do not appear in the tree, it makes no difference
whether the replacement is the greatest value from the left subtree or the least value
from the right subtree. If duplicates are stored, then we must select the replacement
from the right subtree. To see why, call the greatest value in the left subtree G.
If multiple nodes in the left subtree have value G, selecting G as the replacement
value for the root of the subtree will result in a tree with equal values to the left of
the node now containing G. Precisely this situation occurs if we replace value 120
with the greatest value in the left subtree of Figure 5.13(b). Selecting the least value
from the right subtree does not have a similar problem, because it does not violate
the Binary Search Tree Property if equal values appear in the right subtree.

From the above, we see that if we want to remove the record stored in a node
with two children, then we simply call deletemin on the node’s right subtree
and substitute the record returned for the record being removed. Figure 5.18 shows
an implementation for removehelp.

The cost for findhelp and inserthelp is the depth of the node found or
inserted. The cost for removehelp is the depth of the node being removed, or
in the case when this node has two children, the depth of the node with smallest
value in its right subtree. Thus, in the worst case, the cost for any one of these
operations is the depth of the deepest node in the tree. This is why it is desirable to
keep BSTs balanced, that is, with least possible height. If a binary tree is balanced,
then the height for a tree of n nodes is approximately log n. However, if the tree
is completely unbalanced, for example in the shape of a linked list, then the height
for a tree with n nodes can be as great as n. Thus, a balanced BST will in the
average case have operations costing Θ(log n), while a badly unbalanced BST can
have operations in the worst case costing Θ(n). Consider the situation where we
construct a BST of n nodes by inserting records one at a time. If we are fortunate
to have them arrive in an order that results in a balanced tree (a “random” order is
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// Remove a node with key value k
// Return: The tree with the node removed
template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
removehelp(BSTNode<Key, E>* rt, const Key& k) {

if (rt == NULL) return NULL; // k is not in tree
else if (k < rt->key())

rt->setLeft(removehelp(rt->left(), k));
else if (k > rt->key())

rt->setRight(removehelp(rt->right(), k));
else { // Found: remove it

BSTNode<Key, E>* temp = rt;
if (rt->left() == NULL) { // Only a right child

rt = rt->right(); // so point to right
delete temp;

}
else if (rt->right() == NULL) { // Only a left child

rt = rt->left(); // so point to left
delete temp;

}
else { // Both children are non-empty

BSTNode<Key, E>* temp = getmin(rt->right());
rt->setElement(temp->element());
rt->setKey(temp->key());
rt->setRight(deletemin(rt->right()));
delete temp;

}
}
return rt;

}

Figure 5.18 Implementation for the BST removehelp method.

likely to be good enough for this purpose), then each insertion will cost on average
Θ(log n), for a total cost of Θ(n log n). However, if the records are inserted in
order of increasing value, then the resulting tree will be a chain of height n. The
cost of insertion in this case will be

∑n
i=1 i = Θ(n2).

Traversing a BST costs Θ(n) regardless of the shape of the tree. Each node is
visited exactly once, and each child pointer is followed exactly once.

Below are two example traversals. The first is member clearhelp, which
returns the nodes of the BST to the freelist. Because the children of a node must be
freed before the node itself, this is a postorder traversal.

template <typename Key, typename E>
void BST<Key, E>::
clearhelp(BSTNode<Key, E>* root) {
if (root == NULL) return;
clearhelp(root->left());
clearhelp(root->right());
delete root;

}
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The next example is printhelp, which performs an inorder traversal on the
BST to print the node values in ascending order. Note that printhelp indents
each line to indicate the depth of the corresponding node in the tree. Thus we pass
in the current level of the tree in level, and increment this value each time that
we make a recursive call.

template <typename Key, typename E>
void BST<Key, E>::
printhelp(BSTNode<Key, E>* root, int level) const {

if (root == NULL) return; // Empty tree
printhelp(root->left(), level+1); // Do left subtree
for (int i=0; i<level; i++) // Indent to level

cout << " ";
cout << root->key() << "\n"; // Print node value
printhelp(root->right(), level+1); // Do right subtree

}

While the BST is simple to implement and efficient when the tree is balanced,
the possibility of its being unbalanced is a serious liability. There are techniques
for organizing a BST to guarantee good performance. Two examples are the AVL
tree and the splay tree of Section 13.2. Other search trees are guaranteed to remain
balanced, such as the 2-3 tree of Section 10.4.

5.5 Heaps and Priority Queues

There are many situations, both in real life and in computing applications, where
we wish to choose the next “most important” from a collection of people, tasks,
or objects. For example, doctors in a hospital emergency room often choose to
see next the “most critical” patient rather than the one who arrived first. When
scheduling programs for execution in a multitasking operating system, at any given
moment there might be several programs (usually called jobs) ready to run. The
next job selected is the one with the highest priority. Priority is indicated by a
particular value associated with the job (and might change while the job remains in
the wait list).

When a collection of objects is organized by importance or priority, we call
this a priority queue. A normal queue data structure will not implement a prior-
ity queue efficiently because search for the element with highest priority will take
Θ(n) time. A list, whether sorted or not, will also require Θ(n) time for either in-
sertion or removal. A BST that organizes records by priority could be used, with the
total of n inserts and n remove operations requiring Θ(n log n) time in the average
case. However, there is always the possibility that the BST will become unbal-
anced, leading to bad performance. Instead, we would like to find a data structure
that is guaranteed to have good performance for this special application.
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This section presents the heap4 data structure. A heap is defined by two prop-
erties. First, it is a complete binary tree, so heaps are nearly always implemented
using the array representation for complete binary trees presented in Section 5.3.3.
Second, the values stored in a heap are partially ordered. This means that there is
a relationship between the value stored at any node and the values of its children.
There are two variants of the heap, depending on the definition of this relationship.

A max-heap has the property that every node stores a value that is greater than
or equal to the value of either of its children. Because the root has a value greater
than or equal to its children, which in turn have values greater than or equal to their
children, the root stores the maximum of all values in the tree.

A min-heap has the property that every node stores a value that is less than
or equal to that of its children. Because the root has a value less than or equal to
its children, which in turn have values less than or equal to their children, the root
stores the minimum of all values in the tree.

Note that there is no necessary relationship between the value of a node and that
of its sibling in either the min-heap or the max-heap. For example, it is possible that
the values for all nodes in the left subtree of the root are greater than the values for
every node of the right subtree. We can contrast BSTs and heaps by the strength of
their ordering relationships. A BST defines a total order on its nodes in that, given
the positions for any two nodes in the tree, the one to the “left” (equivalently, the
one appearing earlier in an inorder traversal) has a smaller key value than the one
to the “right.” In contrast, a heap implements a partial order. Given their positions,
we can determine the relative order for the key values of two nodes in the heap only
if one is a descendant of the other.

Min-heaps and max-heaps both have their uses. For example, the Heapsort
of Section 7.6 uses the max-heap, while the Replacement Selection algorithm of
Section 8.5.2 uses a min-heap. The examples in the rest of this section will use a
max-heap.

Be careful not to confuse the logical representation of a heap with its physical
implementation by means of the array-based complete binary tree. The two are not
synonymous because the logical view of the heap is actually a tree structure, while
the typical physical implementation uses an array.

Figure 5.19 shows an implementation for heaps.The class is a template with two
parameters. E defines the type for the data elements stored in the heap, while Comp
is the comparison class for comparing two elements. This class can implement ei-
ther a min-heap or a max-heap by changing the definition for Comp. Comp defines
method prior, a binary Boolean function that returns true if the first parameter
should come before the second in the heap.

This class definition makes two concessions to the fact that an array-based im-
plementation is used. First, heap nodes are indicated by their logical position within

4The term “heap” is also sometimes used to refer to a memory pool. See Section 12.3.
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// Heap class
template <typename E, typename Comp> class heap {
private:

E* Heap; // Pointer to the heap array
int maxsize; // Maximum size of the heap
int n; // Number of elements now in the heap

// Helper function to put element in its correct place
void siftdown(int pos) {

while (!isLeaf(pos)) { // Stop if pos is a leaf
int j = leftchild(pos); int rc = rightchild(pos);
if ((rc < n) && Comp::prior(Heap[rc], Heap[j]))

j = rc; // Set j to greater child’s value
if (Comp::prior(Heap[pos], Heap[j])) return; // Done
swap(Heap, pos, j);
pos = j; // Move down

}
}

public:
heap(E* h, int num, int max) // Constructor

{ Heap = h; n = num; maxsize = max; buildHeap(); }
int size() const // Return current heap size

{ return n; }
bool isLeaf(int pos) const // True if pos is a leaf

{ return (pos >= n/2) && (pos < n); }
int leftchild(int pos) const

{ return 2*pos + 1; } // Return leftchild position
int rightchild(int pos) const

{ return 2*pos + 2; } // Return rightchild position
int parent(int pos) const // Return parent position

{ return (pos-1)/2; }
void buildHeap() // Heapify contents of Heap

{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

// Insert "it" into the heap
void insert(const E& it) {

Assert(n < maxsize, "Heap is full");
int curr = n++;
Heap[curr] = it; // Start at end of heap
// Now sift up until curr’s parent > curr
while ((curr!=0) &&

(Comp::prior(Heap[curr], Heap[parent(curr)]))) {
swap(Heap, curr, parent(curr));
curr = parent(curr);

}
}

Figure 5.19 An implementation for the heap.
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// Remove first value
E removefirst() {

Assert (n > 0, "Heap is empty");
swap(Heap, 0, --n); // Swap first with last value
if (n != 0) siftdown(0); // Siftdown new root val
return Heap[n]; // Return deleted value

}

// Remove and return element at specified position
E remove(int pos) {

Assert((pos >= 0) && (pos < n), "Bad position");
if (pos == (n-1)) n--; // Last element, no work to do
else
{

swap(Heap, pos, --n); // Swap with last value
while ((pos != 0) &&

(Comp::prior(Heap[pos], Heap[parent(pos)]))) {
swap(Heap, pos, parent(pos)); // Push up large key
pos = parent(pos);

}
if (n != 0) siftdown(pos); // Push down small key

}
return Heap[n];

}
};

Figure 5.19 (continued)

the heap rather than by a pointer to the node. In practice, the logical heap position
corresponds to the identically numbered physical position in the array. Second, the
constructor takes as input a pointer to the array to be used. This approach provides
the greatest flexibility for using the heap because all data values can be loaded into
the array directly by the client. The advantage of this comes during the heap con-
struction phase, as explained below. The constructor also takes an integer parame-
ter indicating the initial size of the heap (based on the number of elements initially
loaded into the array) and a second integer parameter indicating the maximum size
allowed for the heap (the size of the array).

Method heapsize returns the current size of the heap. H.isLeaf(pos)
returns true if position pos is a leaf in heap H, and false otherwise. Members
leftchild, rightchild, and parent return the position (actually, the array
index) for the left child, right child, and parent of the position passed, respectively.

One way to build a heap is to insert the elements one at a time. Method insert
will insert a new element V into the heap. You might expect the heap insertion pro-
cess to be similar to the insert function for a BST, starting at the root and working
down through the heap. However, this approach is not likely to work because the
heap must maintain the shape of a complete binary tree. Equivalently, if the heap
takes up the first n positions of its array prior to the call to insert, it must take
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up the first n+ 1 positions after. To accomplish this, insert first places V at po-
sition n of the array. Of course, V is unlikely to be in the correct position. To move
V to the right place, it is compared to its parent’s value. If the value of V is less
than or equal to the value of its parent, then it is in the correct place and the insert
routine is finished. If the value of V is greater than that of its parent, then the two
elements swap positions. From here, the process of comparing V to its (current)
parent continues until V reaches its correct position.

Since the heap is a complete binary tree, its height is guaranteed to be the
minimum possible. In particular, a heap containing n nodes will have a height of
Θ(log n). Intuitively, we can see that this must be true because each level that we
add will slightly more than double the number of nodes in the tree (the ith level has
2i nodes, and the sum of the first i levels is 2i+1 − 1). Starting at 1, we can double
only log n times to reach a value of n. To be precise, the height of a heap with n
nodes is dlog(n+ 1)e.

Each call to insert takes Θ(log n) time in the worst case, because the value
being inserted can move at most the distance from the bottom of the tree to the top
of the tree. Thus, to insert n values into the heap, if we insert them one at a time,
will take Θ(n log n) time in the worst case.

If all n values are available at the beginning of the building process, we can
build the heap faster than just inserting the values into the heap one by one. Con-
sider Figure 5.20(a), which shows one series of exchanges that could be used to
build the heap. All exchanges are between a node and one of its children. The heap
is formed as a result of this exchange process. The array for the right-hand tree of
Figure 5.20(a) would appear as follows:

7 4 6 1 2 3 5

Figure 5.20(b) shows an alternate series of exchanges that also forms a heap,
but much more efficiently. The equivalent array representation would be

7 5 6 4 2 1 3

From this example, it is clear that the heap for any given set of numbers is not
unique, and we see that some rearrangements of the input values require fewer ex-
changes than others to build the heap. So, how do we pick the best rearrangement?

One good algorithm stems from induction. Suppose that the left and right sub-
trees of the root are already heaps, and R is the name of the element at the root.
This situation is illustrated by Figure 5.21. In this case there are two possibilities.
(1) R has a value greater than or equal to its two children. In this case, construction
is complete. (2) R has a value less than one or both of its children. In this case,
R should be exchanged with the child that has greater value. The result will be a
heap, except that R might still be less than one or both of its (new) children. In
this case, we simply continue the process of “pushing down” R until it reaches a
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Figure 5.20 Two series of exchanges to build a max-heap. (a) This heap is built
by a series of nine exchanges in the order (4-2), (4-1), (2-1), (5-2), (5-4), (6-3),
(6-5), (7-5), (7-6). (b) This heap is built by a series of four exchanges in the order
(5-2), (7-3), (7-1), (6-1).

R

H1 H2

Figure 5.21 Final stage in the heap-building algorithm. Both subtrees of node R
are heaps. All that remains is to push R down to its proper level in the heap.

level where it is greater than its children, or is a leaf node. This process is imple-
mented by the private method siftdown. The siftdown operation is illustrated by
Figure 5.22.

This approach assumes that the subtrees are already heaps, suggesting that a
complete algorithm can be obtained by visiting the nodes in some order such that
the children of a node are visited before the node itself. One simple way to do this
is simply to work from the high index of the array to the low index. Actually, the
build process need not visit the leaf nodes (they can never move down because they
are already at the bottom), so the building algorithm can start in the middle of the
array, with the first internal node. The exchanges shown in Figure 5.20(b) result
from this process. Method buildHeap implements the building algorithm.
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Figure 5.22 The siftdown operation. The subtrees of the root are assumed to
be heaps. (a) The partially completed heap. (b) Values 1 and 7 are swapped.
(c) Values 1 and 6 are swapped to form the final heap.

What is the cost of buildHeap? Clearly it is the sum of the costs for the calls
to siftdown. Each siftdown operation can cost at most the number of levels it
takes for the node being sifted to reach the bottom of the tree. In any complete tree,
approximately half of the nodes are leaves and so cannot be moved downward at
all. One quarter of the nodes are one level above the leaves, and so their elements
can move down at most one level. At each step up the tree we get half the number of
nodes as were at the previous level, and an additional height of one. The maximum
sum of total distances that elements can go is therefore

logn∑
i=1

(i− 1)
n

2i
=
n

2

logn∑
i=1

i− 1

2i−1
.

From Equation 2.9 we know that this summation has a closed-form solution of
approximately 2, so this algorithm takes Θ(n) time in the worst case. This is far
better than building the heap one element at a time, which would cost Θ(n log n)
in the worst case. It is also faster than the Θ(n log n) average-case time and Θ(n2)
worst-case time required to build the BST.

Removing the maximum (root) value from a heap containing n elements re-
quires that we maintain the complete binary tree shape, and that the remaining
n− 1 node values conform to the heap property. We can maintain the proper shape
by moving the element in the last position in the heap (the current last element in
the array) to the root position. We now consider the heap to be one element smaller.
Unfortunately, the new root value is probably not the maximum value in the new
heap. This problem is easily solved by using siftdown to reorder the heap. Be-
cause the heap is log n levels deep, the cost of deleting the maximum element is
Θ(log n) in the average and worst cases.

The heap is a natural implementation for the priority queue discussed at the
beginning of this section. Jobs can be added to the heap (using their priority value
as the ordering key) when needed. Method removemax can be called whenever a
new job is to be executed.
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Some applications of priority queues require the ability to change the priority of
an object already stored in the queue. This might require that the object’s position
in the heap representation be updated. Unfortunately, a max-heap is not efficient
when searching for an arbitrary value; it is only good for finding the maximum
value. However, if we already know the index for an object within the heap, it is
a simple matter to update its priority (including changing its position to maintain
the heap property) or remove it. The remove method takes as input the position
of the node to be removed from the heap. A typical implementation for priority
queues requiring updating of priorities will need to use an auxiliary data structure
that supports efficient search for objects (such as a BST). Records in the auxiliary
data structure will store the object’s heap index, so that the object can be deleted
from the heap and reinserted with its new priority (see Project 5.5). Sections 11.4.1
and 11.5.1 present applications for a priority queue with priority updating.

5.6 Huffman Coding Trees

The space/time tradeoff principle from Section 3.9 states that one can often gain
an improvement in space requirements in exchange for a penalty in running time.
There are many situations where this is a desirable tradeoff. A typical example is
storing files on disk. If the files are not actively used, the owner might wish to
compress them to save space. Later, they can be uncompressed for use, which costs
some time, but only once.

We often represent a set of items in a computer program by assigning a unique
code to each item. For example, the standard ASCII coding scheme assigns a
unique eight-bit value to each character. It takes a certain minimum number of
bits to provide unique codes for each character. For example, it takes dlog 128e or
seven bits to provide the 128 unique codes needed to represent the 128 symbols of
the ASCII character set.5

The requirement for dlog ne bits to represent n unique code values assumes that
all codes will be the same length, as are ASCII codes. This is called a fixed-length
coding scheme. If all characters were used equally often, then a fixed-length coding
scheme is the most space efficient method. However, you are probably aware that
not all characters are used equally often in many applications. For example, the
various letters in an English language document have greatly different frequencies
of use.

Figure 5.23 shows the relative frequencies of the letters of the alphabet. From
this table we can see that the letter ‘E’ appears about 60 times more often than the
letter ‘Z.’ In normal ASCII, the words “DEED” and “MUCK” require the same

5The ASCII standard is eight bits, not seven, even though there are only 128 characters repre-
sented. The eighth bit is used either to check for transmission errors, or to support “extended” ASCII
codes with an additional 128 characters.
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Letter Frequency Letter Frequency
A 77 N 67
B 17 O 67
C 32 P 20
D 42 Q 5
E 120 R 59
F 24 S 67
G 17 T 85
H 50 U 37
I 76 V 12
J 4 W 22
K 7 X 4
L 42 Y 22
M 24 Z 2

Figure 5.23 Relative frequencies for the 26 letters of the alphabet as they ap-
pear in a selected set of English documents. “Frequency” represents the expected
frequency of occurrence per 1000 letters, ignoring case.

amount of space (four bytes). It would seem that words such as “DEED,” which
are composed of relatively common letters, should be storable in less space than
words such as “MUCK,” which are composed of relatively uncommon letters.

If some characters are used more frequently than others, is it possible to take
advantage of this fact and somehow assign them shorter codes? The price could
be that other characters require longer codes, but this might be worthwhile if such
characters appear rarely enough. This concept is at the heart of file compression
techniques in common use today. The next section presents one such approach to
assigning variable-length codes, called Huffman coding. While it is not commonly
used in its simplest form for file compression (there are better methods), Huffman
coding gives the flavor of such coding schemes. One motivation for studying Huff-
man coding is because it provides our first opportunity to see a type of tree structure
referred to as a search trie.

5.6.1 Building Huffman Coding Trees

Huffman coding assigns codes to characters such that the length of the code de-
pends on the relative frequency or weight of the corresponding character. Thus, it
is a variable-length code. If the estimated frequencies for letters match the actual
frequency found in an encoded message, then the length of that message will typi-
cally be less than if a fixed-length code had been used. The Huffman code for each
letter is derived from a full binary tree called the Huffman coding tree, or simply
the Huffman tree. Each leaf of the Huffman tree corresponds to a letter, and we
define the weight of the leaf node to be the weight (frequency) of its associated
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Letter C D E K L M U Z
Frequency 32 42 120 7 42 24 37 2

Figure 5.24 The relative frequencies for eight selected letters.

letter. The goal is to build a tree with the minimum external path weight. Define
the weighted path length of a leaf to be its weight times its depth. The binary tree
with minimum external path weight is the one with the minimum sum of weighted
path lengths for the given set of leaves. A letter with high weight should have low
depth, so that it will count the least against the total path length. As a result, another
letter might be pushed deeper in the tree if it has less weight.

The process of building the Huffman tree for n letters is quite simple. First, cre-
ate a collection of n initial Huffman trees, each of which is a single leaf node con-
taining one of the letters. Put the n partial trees onto a priority queue organized by
weight (frequency). Next, remove the first two trees (the ones with lowest weight)
from the priority queue. Join these two trees together to create a new tree whose
root has the two trees as children, and whose weight is the sum of the weights of the
two trees. Put this new tree back into the priority queue. This process is repeated
until all of the partial Huffman trees have been combined into one.

Example 5.8 Figure 5.25 illustrates part of the Huffman tree construction
process for the eight letters of Figure 5.24. Ranking D and L arbitrarily by
alphabetical order, the letters are ordered by frequency as

Letter Z K M C U D L E
Frequency 2 7 24 32 37 42 42 120

Because the first two letters on the list are Z and K, they are selected to
be the first trees joined together.6 They become the children of a root node
with weight 9. Thus, a tree whose root has weight 9 is placed back on the
list, where it takes up the first position. The next step is to take values 9
and 24 off the list (corresponding to the partial tree with two leaf nodes
built in the last step, and the partial tree storing the letter M, respectively)
and join them together. The resulting root node has weight 33, and so this
tree is placed back into the list. Its priority will be between the trees with
values 32 (for letter C) and 37 (for letter U). This process continues until a
tree whose root has weight 306 is built. This tree is shown in Figure 5.26.

6For clarity, the examples for building Huffman trees show a sorted list to keep the letters ordered
by frequency. But a real implementation would use a heap to implement the priority queue for
efficiency.



188 Chap. 5 Binary Trees

Step 1:

Step 2:

9

Step 3:

Step 4:

65

Step 5:

42

32
C

65

33

9

E

79

L

24

L
120

37 42

C

42

32

24

U D E

2 7
KZ

M
9

9 24

37
U

42
D

42

M

32 120
C L E

M C U D

2
Z

7

24 32 37 42 42
L

K

120
E

2 7
K M C

32 37 42 4224
LZ D

120
EU

120

2
Z

7
K

37 42
DU

2
Z

7

33

33

M

K

Figure 5.25 The first five steps of the building process for a sample Huffman
tree.
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Figure 5.26 A Huffman tree for the letters of Figure 5.24.

Figure 5.27 shows an implementation for Huffman tree nodes. This implemen-
tation is similar to the VarBinNode implementation of Figure 5.10. There is an
abstract base class, named HuffNode, and two subclasses, named LeafNode
and IntlNode. This implementation reflects the fact that leaf and internal nodes
contain distinctly different information.

Figure 5.28 shows the implementation for the Huffman tree. Figure 5.29 shows
the C++ code for the tree-building process.

Huffman tree building is an example of a greedy algorithm. At each step, the
algorithm makes a “greedy” decision to merge the two subtrees with least weight.
This makes the algorithm simple, but does it give the desired result? This sec-
tion concludes with a proof that the Huffman tree indeed gives the most efficient
arrangement for the set of letters. The proof requires the following lemma.

Lemma 5.1 For any Huffman tree built by function buildHuff containing at
least two letters, the two letters with least frequency are stored in siblings nodes
whose depth is at least as deep as any other leaf nodes in the tree.

Proof: Call the two letters with least frequency l1 and l2. They must be siblings
because buildHuff selects them in the first step of the construction process.
Assume that l1 and l2 are not the deepest nodes in the tree. In this case, the Huffman
tree must either look as shown in Figure 5.30, or in some sense be symmetrical
to this. For this situation to occur, the parent of l1 and l2, labeled V , must have
greater weight than the node labeled X. Otherwise, function buildHuff would
have selected node V in place of node X as the child of node U. However, this is
impossible because l1 and l2 are the letters with least frequency. 2
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// Huffman tree node abstract base class
template <typename E> class HuffNode {
public:

virtual ˜HuffNode() {} // Base destructor
virtual int weight() = 0; // Return frequency
virtual bool isLeaf() = 0; // Determine type

};

template <typename E> // Leaf node subclass
class LeafNode : public HuffNode<E> {
private:

E it; // Value
int wgt; // Weight

public:
LeafNode(const E& val, int freq) // Constructor

{ it = val; wgt = freq; }
int weight() { return wgt; }
E val() { return it; }
bool isLeaf() { return true; }

};

template <typename E> // Internal node subclass
class IntlNode : public HuffNode<E> {
private:

HuffNode<E>* lc; // Left child
HuffNode<E>* rc; // Right child
int wgt; // Subtree weight

public:
IntlNode(HuffNode<E>* l, HuffNode<E>* r)

{ wgt = l->weight() + r->weight(); lc = l; rc = r; }
int weight() { return wgt; }
bool isLeaf() { return false; }
HuffNode<E>* left() const { return lc; }
void setLeft(HuffNode<E>* b)

{ lc = (HuffNode<E>*)b; }
HuffNode<E>* right() const { return rc; }
void setRight(HuffNode<E>* b)

{ rc = (HuffNode<E>*)b; }
};

Figure 5.27 Implementation for Huffman tree nodes. Internal nodes and leaf
nodes are represented by separate classes, each derived from an abstract base class.
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// HuffTree is a template of two parameters: the element
// type being coded and a comparator for two such elements.
template <typename E>
class HuffTree {
private:

HuffNode<E>* Root; // Tree root
public:

HuffTree(E& val, int freq) // Leaf constructor
{ Root = new LeafNode<E>(val, freq); }

// Internal node constructor
HuffTree(HuffTree<E>* l, HuffTree<E>* r)

{ Root = new IntlNode<E>(l->root(), r->root()); }
˜HuffTree() {} // Destructor
HuffNode<E>* root() { return Root; } // Get root
int weight() { return Root->weight(); } // Root weight

};

Figure 5.28 Class declarations for the Huffman tree.

// Build a Huffman tree from a collection of frequencies
template <typename E> HuffTree<E>*
buildHuff(HuffTree<E>** TreeArray, int count) {

heap<HuffTree<E>*,minTreeComp>* forest =
new heap<HuffTree<E>*, minTreeComp>(TreeArray,

count, count);
HuffTree<char> *temp1, *temp2, *temp3 = NULL;
while (forest->size() > 1) {

temp1 = forest->removefirst(); // Pull first two trees
temp2 = forest->removefirst(); // off the list
temp3 = new HuffTree<E>(temp1, temp2);
forest->insert(temp3); // Put the new tree back on list
delete temp1; // Must delete the remnants
delete temp2; // of the trees we created

}
return temp3;

}

Figure 5.29 Implementation for the Huffman tree construction function.
buildHuff takes as input fl, the min-heap of partial Huffman trees, which
initially are single leaf nodes as shown in Step 1 of Figure 5.25. The body of
function buildTree consists mainly of a for loop. On each iteration of the
for loop, the first two partial trees are taken off the heap and placed in variables
temp1 and temp2. A tree is created (temp3) such that the left and right subtrees
are temp1 and temp2, respectively. Finally, temp3 is returned to fl.
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l1 X

V

l2

U

Figure 5.30 An impossible Huffman tree, showing the situation where the two
nodes with least weight, l1 and l2, are not the deepest nodes in the tree. Triangles
represent subtrees.

Theorem 5.3 Function buildHuff builds the Huffman tree with the minimum
external path weight for the given set of letters.

Proof: The proof is by induction on n, the number of letters.

• Base Case: For n = 2, the Huffman tree must have the minimum external
path weight because there are only two possible trees, each with identical
weighted path lengths for the two leaves.

• Induction Hypothesis: Assume that any tree created by buildHuff that
contains n− 1 leaves has minimum external path length.

• Induction Step: Given a Huffman tree T built by buildHuff with n
leaves, n ≥ 2, suppose that w1 ≤ w2 ≤ · · · ≤ wn where w1 to wn are
the weights of the letters. Call V the parent of the letters with frequencies w1

and w2. From the lemma, we know that the leaf nodes containing the letters
with frequencies w1 and w2 are as deep as any nodes in T. If any other leaf
nodes in the tree were deeper, we could reduce their weighted path length by
swapping them with w1 or w2. But the lemma tells us that no such deeper
nodes exist. Call T′ the Huffman tree that is identical to T except that node
V is replaced with a leaf node V ′ whose weight is w1 +w2. By the induction
hypothesis, T′ has minimum external path length. Returning the children to
V ′ restores tree T, which must also have minimum external path length.

Thus by mathematical induction, function buildHuff creates the Huffman
tree with minimum external path length. 2

5.6.2 Assigning and Using Huffman Codes

Once the Huffman tree has been constructed, it is an easy matter to assign codes
to individual letters. Beginning at the root, we assign either a ‘0’ or a ‘1’ to each
edge in the tree. ‘0’ is assigned to edges connecting a node with its left child, and
‘1’ to edges connecting a node with its right child. This process is illustrated by
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Letter Freq Code Bits
C 32 1110 4
D 42 101 3
E 120 0 1
K 7 111101 6
L 42 110 3
M 24 11111 5
U 37 100 3
Z 2 111100 6

Figure 5.31 The Huffman codes for the letters of Figure 5.24.

Figure 5.26. The Huffman code for a letter is simply a binary number determined
by the path from the root to the leaf corresponding to that letter. Thus, the code
for E is ‘0’ because the path from the root to the leaf node for E takes a single left
branch. The code for K is ‘111101’ because the path to the node for K takes four
right branches, then a left, and finally one last right. Figure 5.31 lists the codes for
all eight letters.

Given codes for the letters, it is a simple matter to use these codes to encode a
text message. We simply replace each letter in the string with its binary code. A
lookup table can be used for this purpose.

Example 5.9 Using the code generated by our example Huffman tree,
the word “DEED” is represented by the bit string “10100101” and the word
“MUCK” is represented by the bit string “111111001110111101.”

Decoding the message is done by looking at the bits in the coded string from
left to right until a letter is decoded. This can be done by using the Huffman tree in
a reverse process from that used to generate the codes. Decoding a bit string begins
at the root of the tree. We take branches depending on the bit value — left for ‘0’
and right for ‘1’ — until reaching a leaf node. This leaf contains the first character
in the message. We then process the next bit in the code restarting at the root to
begin the next character.

Example 5.10 To decode the bit string “1011001110111101” we begin
at the root of the tree and take a right branch for the first bit which is ‘1.’
Because the next bit is a ‘0’ we take a left branch. We then take another
right branch (for the third bit ‘1’), arriving at the leaf node corresponding
to the letter D. Thus, the first letter of the coded word is D. We then begin
again at the root of the tree to process the fourth bit, which is a ‘1.’ Taking
a right branch, then two left branches (for the next two bits which are ‘0’),
we reach the leaf node corresponding to the letter U. Thus, the second letter
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is U. In similar manner we complete the decoding process to find that the
last two letters are C and K, spelling the word “DUCK.”

A set of codes is said to meet the prefix property if no code in the set is the
prefix of another. The prefix property guarantees that there will be no ambiguity in
how a bit string is decoded. In other words, once we reach the last bit of a code
during the decoding process, we know which letter it is the code for. Huffman codes
certainly have the prefix property because any prefix for a code would correspond to
an internal node, while all codes correspond to leaf nodes. For example, the code
for M is ‘11111.’ Taking five right branches in the Huffman tree of Figure 5.26
brings us to the leaf node containing M. We can be sure that no letter can have code
‘111’ because this corresponds to an internal node of the tree, and the tree-building
process places letters only at the leaf nodes.

How efficient is Huffman coding? In theory, it is an optimal coding method
whenever the true frequencies are known, and the frequency of a letter is indepen-
dent of the context of that letter in the message. In practice, the frequencies of
letters in an English text document do change depending on context. For example,
while E is the most commonly used letter of the alphabet in English documents,
T is more common as the first letter of a word. This is why most commercial com-
pression utilities do not use Huffman coding as their primary coding method, but
instead use techniques that take advantage of the context for the letters.

Another factor that affects the compression efficiency of Huffman coding is the
relative frequencies of the letters. Some frequency patterns will save no space as
compared to fixed-length codes; others can result in great compression. In general,
Huffman coding does better when there is large variation in the frequencies of
letters. In the particular case of the frequencies shown in Figure 5.31, we can
determine the expected savings from Huffman coding if the actual frequencies of a
coded message match the expected frequencies.

Example 5.11 Because the sum of the frequencies in Figure 5.31 is 306
and E has frequency 120, we expect it to appear 120 times in a message
containing 306 letters. An actual message might or might not meet this
expectation. Letters D, L, and U have code lengths of three, and together
are expected to appear 121 times in 306 letters. Letter C has a code length of
four, and is expected to appear 32 times in 306 letters. Letter M has a code
length of five, and is expected to appear 24 times in 306 letters. Finally,
letters K and Z have code lengths of six, and together are expected to appear
only 9 times in 306 letters. The average expected cost per character is
simply the sum of the cost for each character (ci) times the probability of
its occurring (pi), or

c1p1 + c2p2 + · · ·+ cnpn.
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This can be reorganized as

c1f1 + c2f2 + · · ·+ cnfn
fT

where fi is the (relative) frequency of letter i and fT is the total for all letter
frequencies. For this set of frequencies, the expected cost per letter is

[(1×120)+(3×121)+(4×32)+(5×24)+(6×9)]/306 = 785/306 ≈ 2.57

A fixed-length code for these eight characters would require log 8 = 3 bits
per letter as opposed to about 2.57 bits per letter for Huffman coding. Thus,
Huffman coding is expected to save about 14% for this set of letters.

Huffman coding for all ASCII symbols should do better than this. The letters of
Figure 5.31 are atypical in that there are too many common letters compared to the
number of rare letters. Huffman coding for all 26 letters would yield an expected
cost of 4.29 bits per letter. The equivalent fixed-length code would require about
five bits. This is somewhat unfair to fixed-length coding because there is actually
room for 32 codes in five bits, but only 26 letters. More generally, Huffman coding
of a typical text file will save around 40% over ASCII coding if we charge ASCII
coding at eight bits per character. Huffman coding for a binary file (such as a
compiled executable) would have a very different set of distribution frequencies and
so would have a different space savings. Most commercial compression programs
use two or three coding schemes to adjust to different types of files.

In the preceding example, “DEED” was coded in 8 bits, a saving of 33% over
the twelve bits required from a fixed-length coding. However, “MUCK” requires
18 bits, more space than required by the corresponding fixed-length coding. The
problem is that “MUCK” is composed of letters that are not expected to occur
often. If the message does not match the expected frequencies of the letters, than
the length of the encoding will not be as expected either.

5.6.3 Search in Huffman Trees

When we decode a character using the Huffman coding tree, we follow a path
through the tree dictated by the bits in the code string. Each ‘0’ bit indicates a left
branch while each ‘1’ bit indicates a right branch. Now look at Figure 5.26 and
consider this structure in terms of searching for a given letter (whose key value is
its Huffman code). We see that all letters with codes beginning with ’0’ are stored
in the left branch, while all letters with codes beginning with ‘1’ are stored in the
right branch. Contrast this with storing records in a BST. There, all records with
key value less than the root value are stored in the left branch, while all records
with key values greater than the root are stored in the right branch.
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If we view all records stored in either of these structures as appearing at some
point on a number line representing the key space, we can see that the splitting
behavior of these two structures is very different. The BST splits the space based
on the key values as they are encountered when going down the tree. But the splits
in the key space are predetermined for the Huffman tree. Search tree structures
whose splitting points in the key space are predetermined are given the special
name trie to distinguish them from the type of search tree (like the BST) whose
splitting points are determined by the data. Tries are discussed in more detail in
Chapter 13.

5.7 Further Reading

See Shaffer and Brown [SB93] for an example of a tree implementation where an
internal node pointer field stores the value of its child instead of a pointer to its
child when the child is a leaf node.

Many techniques exist for maintaining reasonably balanced BSTs in the face of
an unfriendly series of insert and delete operations. One example is the AVL tree of
Adelson-Velskii and Landis, which is discussed by Knuth [Knu98]. The AVL tree
(see Section 13.2) is actually a BST whose insert and delete routines reorganize the
tree structure so as to guarantee that the subtrees rooted by the children of any node
will differ in height by at most one. Another example is the splay tree [ST85], also
discussed in Section 13.2.

See Bentley’s Programming Pearl “Thanks, Heaps” [Ben85, Ben88] for a good
discussion on the heap data structure and its uses.

The proof of Section 5.6.1 that the Huffman coding tree has minimum external
path weight is from Knuth [Knu97]. For more information on data compression
techniques, see Managing Gigabytes by Witten, Moffat, and Bell [WMB99], and
Codes and Cryptography by Dominic Welsh [Wel88]. Tables 5.23 and 5.24 are
derived from Welsh [Wel88].

5.8 Exercises

5.1 Section 5.1.1 claims that a full binary tree has the highest number of leaf
nodes among all trees with n internal nodes. Prove that this is true.

5.2 Define the degree of a node as the number of its non-empty children. Prove
by induction that the number of degree 2 nodes in any binary tree is one less
than the number of leaves.

5.3 Define the internal path length for a tree as the sum of the depths of all
internal nodes, while the external path length is the sum of the depths of all
leaf nodes in the tree. Prove by induction that if tree T is a full binary tree
with n internal nodes, I is T’s internal path length, andE is T’s external path
length, then E = I + 2n for n ≥ 0.
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5.4 Explain why function preorder2 from Section 5.2 makes half as many
recursive calls as function preorder. Explain why it makes twice as many
accesses to left and right children.

5.5 (a) Modify the preorder traversal of Section 5.2 to perform an inorder
traversal of a binary tree.

(b) Modify the preorder traversal of Section 5.2 to perform a postorder
traversal of a binary tree.

5.6 Write a recursive function named search that takes as input the pointer to
the root of a binary tree (not a BST!) and a value K, and returns true if
value K appears in the tree and false otherwise.

5.7 Write an algorithm that takes as input the pointer to the root of a binary
tree and prints the node values of the tree in level order. Level order first
prints the root, then all nodes of level 1, then all nodes of level 2, and so
on. Hint: Preorder traversals make use of a stack through recursive calls.
Consider making use of another data structure to help implement the level-
order traversal.

5.8 Write a recursive function that returns the height of a binary tree.
5.9 Write a recursive function that returns a count of the number of leaf nodes in

a binary tree.
5.10 Assume that a given binary tree stores integer values in its nodes. Write a

recursive function that sums the values of all nodes in the tree.
5.11 Assume that a given binary tree stores integer values in its nodes. Write a

recursive function that traverses a binary tree, and prints the value of every
node who’s grandparent has a value that is a multiple of five.

5.12 Write a recursive function that traverses a binary tree, and prints the value of
every node which has at least four great-grandchildren.

5.13 Compute the overhead fraction for each of the following full binary tree im-
plementations.

(a) All nodes store data, two child pointers, and a parent pointer. The data
field requires four bytes and each pointer requires four bytes.

(b) All nodes store data and two child pointers. The data field requires
sixteen bytes and each pointer requires four bytes.

(c) All nodes store data and a parent pointer, and internal nodes store two
child pointers. The data field requires eight bytes and each pointer re-
quires four bytes.

(d) Only leaf nodes store data; internal nodes store two child pointers. The
data field requires eight bytes and each pointer requires four bytes.

5.14 Why is the BST Property defined so that nodes with values equal to the value
of the root appear only in the right subtree, rather than allow equal-valued
nodes to appear in either subtree?
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5.15 (a) Show the BST that results from inserting the values 15, 20, 25, 18, 16,
5, and 7 (in that order).

(b) Show the enumerations for the tree of (a) that result from doing a pre-
order traversal, an inorder traversal, and a postorder traversal.

5.16 Draw the BST that results from adding the value 5 to the BST shown in
Figure 5.13(a).

5.17 Draw the BST that results from deleting the value 7 from the BST of Fig-
ure 5.13(b).

5.18 Write a function that prints out the node values for a BST in sorted order
from highest to lowest.

5.19 Write a recursive function named smallcount that, given the pointer to
the root of a BST and a key K, returns the number of nodes having key
values less than or equal to K. Function smallcount should visit as few
nodes in the BST as possible.

5.20 Write a recursive function named printRange that, given the pointer to
the root of a BST, a low key value, and a high key value, prints in sorted
order all records whose key values fall between the two given keys. Function
printRange should visit as few nodes in the BST as possible.

5.21 Write a recursive function named checkBST that, given the pointer to the
root of a binary tree, will return true if the tree is a BST, and false if it is
not.

5.22 Describe a simple modification to the BST that will allow it to easily support
finding the Kth smallest value in Θ(log n) average case time. Then write
a pseudo-code function for finding the Kth smallest value in your modified
BST.

5.23 What are the minimum and maximum number of elements in a heap of
height h?

5.24 Where in a max-heap might the smallest element reside?
5.25 Show the max-heap that results from running buildHeap on the following

values stored in an array:

10 5 12 3 2 1 8 7 9 4

5.26 (a) Show the heap that results from deleting the maximum value from the
max-heap of Figure 5.20b.

(b) Show the heap that results from deleting the element with value 5 from
the max-heap of Figure 5.20b.

5.27 Revise the heap definition of Figure 5.19 to implement a min-heap. The
member function removemax should be replaced by a new function called
removemin.

5.28 Build the Huffman coding tree and determine the codes for the following set
of letters and weights:
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Letter A B C D E F G H I J K L
Frequency 2 3 5 7 11 13 17 19 23 31 37 41

What is the expected length in bits of a message containing n characters for
this frequency distribution?

5.29 What will the Huffman coding tree look like for a set of sixteen characters all
with equal weight? What is the average code length for a letter in this case?
How does this differ from the smallest possible fixed length code for sixteen
characters?

5.30 A set of characters with varying weights is assigned Huffman codes. If one
of the characters is assigned code 001, then,

(a) Describe all codes that cannot have been assigned.
(b) Describe all codes that must have been assigned.

5.31 Assume that a sample alphabet has the following weights:

Letter Q Z F M T S O E
Frequency 2 3 10 10 10 15 20 30

(a) For this alphabet, what is the worst-case number of bits required by the
Huffman code for a string of n letters? What string(s) have the worst-
case performance?

(b) For this alphabet, what is the best-case number of bits required by the
Huffman code for a string of n letters? What string(s) have the best-
case performance?

(c) What is the average number of bits required by a character using the
Huffman code for this alphabet?

5.32 You must keep track of some data. Your options are:
(1) A linked-list maintained in sorted order.
(2) A linked-list of unsorted records.
(3) A binary search tree.
(4) An array-based list maintained in sorted order.
(5) An array-based list of unsorted records.

For each of the following scenarios, which of these choices would be best?
Explain your answer.

(a) The records are guaranteed to arrive already sorted from lowest to high-
est (i.e., whenever a record is inserted, its key value will always be
greater than that of the last record inserted). A total of 1000 inserts will
be interspersed with 1000 searches.

(b) The records arrive with values having a uniform random distribution
(so the BST is likely to be well balanced). 1,000,000 insertions are
performed, followed by 10 searches.
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(c) The records arrive with values having a uniform random distribution (so
the BST is likely to be well balanced). 1000 insertions are interspersed
with 1000 searches.

(d) The records arrive with values having a uniform random distribution (so
the BST is likely to be well balanced). 1000 insertions are performed,
followed by 1,000,000 searches.

5.9 Projects

5.1 Re-implement the composite design for the binary tree node class of Fig-
ure 5.11 using a flyweight in place of NULL pointers to empty nodes.

5.2 One way to deal with the “problem” of NULL pointers in binary trees is to
use that space for some other purpose. One example is the threaded binary
tree. Extending the node implementation of Figure 5.7, the threaded binary
tree stores with each node two additional bit fields that indicate if the child
pointers lc and rc are regular pointers to child nodes or threads. If lc
is not a pointer to a non-empty child (i.e., if it would be NULL in a regular
binary tree), then it instead stores a pointer to the inorder predecessor of that
node. The inorder predecessor is the node that would be printed immediately
before the current node in an inorder traversal. If rc is not a pointer to a
child, then it instead stores a pointer to the node’s inorder successor. The
inorder successor is the node that would be printed immediately after the
current node in an inorder traversal. The main advantage of threaded binary
trees is that operations such as inorder traversal can be implemented without
using recursion or a stack.
Re-implement the BST as a threaded binary tree, and include a non-recursive
version of the preorder traversal

5.3 Implement a city database using a BST to store the database records. Each
database record contains the name of the city (a string of arbitrary length)
and the coordinates of the city expressed as integer x- and y-coordinates.
The BST should be organized by city name. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. Another operation that should be supported is to print all
records within a given distance of a specified point. Collect running-time
statistics for each operation. Which operations can be implemented reason-
ably efficiently (i.e., in Θ(log n) time in the average case) using a BST? Can
the database system be made more efficient by using one or more additional
BSTs to organize the records by location?

5.4 Create a binary tree ADT that includes generic traversal methods that take a
visitor, as described in Section 5.2. Write functions count and BSTcheck
of Section 5.2 as visitors to be used with the generic traversal method.
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5.5 Implement a priority queue class based on the max-heap class implementa-
tion of Figure 5.19. The following methods should be supported for manip-
ulating the priority queue:

void enqueue(int ObjectID, int priority);
int dequeue();
void changeweight(int ObjectID, int newPriority);

Method enqueue inserts a new object into the priority queue with ID num-
ber ObjectID and priority priority. Method dequeue removes the
object with highest priority from the priority queue and returns its object ID.
Method changeweight changes the priority of the object with ID number
ObjectID to be newPriority. The type for E should be a class that
stores the object ID and the priority for that object. You will need a mech-
anism for finding the position of the desired object within the heap. Use an
array, storing the object with ObjectID i in position i. (Be sure in your
testing to keep the ObjectIDs within the array bounds.) You must also
modify the heap implementation to store the object’s position in the auxil-
iary array so that updates to objects in the heap can be updated as well in the
array.

5.6 The Huffman coding tree function buildHuff of Figure 5.29 manipulates
a sorted list. This could result in a Θ(n2) algorithm, because placing an inter-
mediate Huffman tree on the list could take Θ(n) time. Revise this algorithm
to use a priority queue based on a min-heap instead of a list.

5.7 Complete the implementation of the Huffman coding tree, building on the
code presented in Section 5.6. Include a function to compute and store in a
table the codes for each letter, and functions to encode and decode messages.
This project can be further extended to support file compression. To do so
requires adding two steps: (1) Read through the input file to generate actual
frequencies for all letters in the file; and (2) store a representation for the
Huffman tree at the beginning of the encoded output file to be used by the
decoding function. If you have trouble with devising such a representation,
see Section 6.5.
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Non-Binary Trees

Many organizations are hierarchical in nature, such as the military and most busi-
nesses. Consider a company with a president and some number of vice presidents
who report to the president. Each vice president has some number of direct sub-
ordinates, and so on. If we wanted to model this company with a data structure, it
would be natural to think of the president in the root node of a tree, the vice presi-
dents at level 1, and their subordinates at lower levels in the tree as we go down the
organizational hierarchy.

Because the number of vice presidents is likely to be more than two, this com-
pany’s organization cannot easily be represented by a binary tree. We need instead
to use a tree whose nodes have an arbitrary number of children. Unfortunately,
when we permit trees to have nodes with an arbitrary number of children, they be-
come much harder to implement than binary trees. We consider such trees in this
chapter. To distinguish them from binary trees, we use the term general tree.

Section 6.1 presents general tree terminology. Section 6.2 presents a simple
representation for solving the important problem of processing equivalence classes.
Several pointer-based implementations for general trees are covered in Section 6.3.
Aside from general trees and binary trees, there are also uses for trees whose in-
ternal nodes have a fixed number K of children where K is something other than
two. Such trees are known as K-ary trees. Section 6.4 generalizes the properties
of binary trees to K-ary trees. Sequential representations, useful for applications
such as storing trees on disk, are covered in Section 6.5.

6.1 General Tree Definitions and Terminology

A tree T is a finite set of one or more nodes such that there is one designated node
R, called the root of T. If the set (T−{R}) is not empty, these nodes are partitioned
into n > 0 disjoint subsets T0, T1, ..., Tn−1, each of which is a tree, and whose
roots R1, R2, ..., Rn, respectively, are children of R. The subsets Ti (0 ≤ i < n) are
said to be subtrees of T. These subtrees are ordered in that Ti is said to come before

203
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S1 S2

Children of V

Subtree rooted at V

Siblings of V

Ancestors of V
RRoot

Parent of V
P

V

C3C1 C2

Figure 6.1 Notation for general trees. Node P is the parent of nodes V , S1,
and S2. Thus, V , S1, and S2 are children of P. Nodes R and P are ancestors of V .
Nodes V , S1, and S2 are called siblings. The oval surrounds the subtree having V
as its root.

Tj if i < j. By convention, the subtrees are arranged from left to right with subtree
T0 called the leftmost child of R. A node’s out degree is the number of children for
that node. A forest is a collection of one or more trees. Figure 6.1 presents further
tree notation generalized from the notation for binary trees presented in Chapter 5.

Each node in a tree has precisely one parent, except for the root, which has no
parent. From this observation, it immediately follows that a tree with n nodes must
have n− 1 edges because each node, aside from the root, has one edge connecting
that node to its parent.

6.1.1 An ADT for General Tree Nodes

Before discussing general tree implementations, we should first make precise what
operations such implementations must support. Any implementation must be able
to initialize a tree. Given a tree, we need access to the root of that tree. There
must be some way to access the children of a node. In the case of the ADT for
binary tree nodes, this was done by providing member functions that give explicit
access to the left and right child pointers. Unfortunately, because we do not know
in advance how many children a given node will have in the general tree, we cannot
give explicit functions to access each child. An alternative must be found that works
for an unknown number of children.



Sec. 6.1 General Tree Definitions and Terminology 205

// General tree node ADT
template <typename E> class GTNode {
public:

E value(); // Return node’s value
bool isLeaf(); // True if node is a leaf
GTNode* parent(); // Return parent
GTNode* leftmostChild(); // Return first child
GTNode* rightSibling(); // Return right sibling
void setValue(E&); // Set node’s value
void insertFirst(GTNode<E>*); // Insert first child
void insertNext(GTNode<E>*); // Insert next sibling
void removeFirst(); // Remove first child
void removeNext(); // Remove right sibling

};

// General tree ADT
template <typename E> class GenTree {
public:

void clear(); // Send all nodes to free store
GTNode<E>* root(); // Return the root of the tree
// Combine two subtrees
void newroot(E&, GTNode<E>*, GTNode<E>*);
void print(); // Print a tree

};

Figure 6.2 Definitions for the general tree and general tree node

One choice would be to provide a function that takes as its parameter the index
for the desired child. That combined with a function that returns the number of
children for a given node would support the ability to access any node or process
all children of a node. Unfortunately, this view of access tends to bias the choice for
node implementations in favor of an array-based approach, because these functions
favor random access to a list of children. In practice, an implementation based on
a linked list is often preferred.

An alternative is to provide access to the first (or leftmost) child of a node, and
to provide access to the next (or right) sibling of a node. Figure 6.2 shows class
declarations for general trees and their nodes. Based on these two access functions,
the children of a node can be traversed like a list. Trying to find the next sibling of
the rightmost sibling would return NULL.

6.1.2 General Tree Traversals

In Section 5.2, three tree traversals were presented for binary trees: preorder, pos-
torder, and inorder. For general trees, preorder and postorder traversals are defined
with meanings similar to their binary tree counterparts. Preorder traversal of a gen-
eral tree first visits the root of the tree, then performs a preorder traversal of each
subtree from left to right. A postorder traversal of a general tree performs a pos-
torder traversal of the root’s subtrees from left to right, then visits the root. Inorder
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Figure 6.3 An example of a general tree.

traversal does not have a natural definition for the general tree, because there is no
particular number of children for an internal node. An arbitrary definition — such
as visit the leftmost subtree in inorder, then the root, then visit the remaining sub-
trees in inorder — can be invented. However, inorder traversals are generally not
useful with general trees.

Example 6.1 A preorder traversal of the tree in Figure 6.3 visits the nodes
in order RACDEBF .

A postorder traversal of this tree visits the nodes in orderCDEAFBR.

To perform a preorder traversal, it is necessary to visit each of the children for
a given node (say R) from left to right. This is accomplished by starting at R’s
leftmost child (call it T). From T , we can move to T’s right sibling, and then to that
node’s right sibling, and so on.

Using the ADT of Figure 6.2, here is a C++ implementation to print the nodes
of a general tree in preorder. Note the for loop at the end, which processes the
list of children by beginning with the leftmost child, then repeatedly moving to the
next child until calling next returns NULL.

// Print using a preorder traversal
void printhelp(GTNode<E>* root) {

if (root->isLeaf()) cout << "Leaf: ";
else cout << "Internal: ";
cout << root->value() << "\n";
// Now process the children of "root"
for (GTNode<E>* temp = root->leftmostChild();

temp != NULL; temp = temp->rightSibling())
printhelp(temp);

}
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6.2 The Parent Pointer Implementation

Perhaps the simplest general tree implementation is to store for each node only a
pointer to that node’s parent. We will call this the parent pointer implementation.
Clearly this implementation is not general purpose, because it is inadequate for
such important operations as finding the leftmost child or the right sibling for a
node. Thus, it may seem to be a poor idea to implement a general tree in this
way. However, the parent pointer implementation stores precisely the information
required to answer the following, useful question: “Given two nodes, are they in
the same tree?” To answer the question, we need only follow the series of parent
pointers from each node to its respective root. If both nodes reach the same root,
then they must be in the same tree. If the roots are different, then the two nodes are
not in the same tree. The process of finding the ultimate root for a given node we
will call FIND.

The parent pointer representation is most often used to maintain a collection of
disjoint sets. Two disjoint sets share no members in common (their intersection is
empty). A collection of disjoint sets partitions some objects such that every object
is in exactly one of the disjoint sets. There are two basic operations that we wish to
support:

(1) determine if two objects are in the same set, and
(2) merge two sets together.

Because two merged sets are united, the merging operation is called UNION and
the whole process of determining if two objects are in the same set and then merging
the sets goes by the name “UNION/FIND.”

To implement UNION/FIND, we represent each disjoint set with a separate
general tree. Two objects are in the same disjoint set if they are in the same tree.
Every node of the tree (except for the root) has precisely one parent. Thus, each
node requires the same space to represent it. The collection of objects is typically
stored in an array, where each element of the array corresponds to one object, and
each element stores the object’s value. The objects also correspond to nodes in
the various disjoint trees (one tree for each disjoint set), so we also store the parent
value with each object in the array. Those nodes that are the roots of their respective
trees store an appropriate indicator. Note that this representation means that a single
array is being used to implement a collection of trees. This makes it easy to merge
trees together with UNION operations.

Figure 6.4 shows the parent pointer implementation for the general tree, called
ParPtrTree. This class is greatly simplified from the declarations of Figure 6.2
because we need only a subset of the general tree operations. Instead of implement-
ing a separate node class, ParPtrTree simply stores an array where each array
element corresponds to a node of the tree. Each position i of the array stores the
value for node i and the array position for the parent of node i. Class ParPtrTree
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// General tree representation for UNION/FIND
class ParPtrTree {
private:

int* array; // Node array
int size; // Size of node array
int FIND(int) const; // Find root

public:
ParPtrTree(int); // Constructor
˜ParPtrTree() { delete [] array; } // Destructor
void UNION(int, int); // Merge equivalences
bool differ(int, int); // True if not in same tree

};

int ParPtrTree::FIND(int curr) const { // Find root
while (array[curr] != ROOT) curr = array[curr];
return curr; // At root

}
Figure 6.4 General tree implementation using parent pointers for the UNION/
FIND algorithm.

is given two new methods, differ and UNION. Method differ checks if two
objects are in different sets, and method UNIONmerges two sets together. A private
method FIND is used to find the ultimate root for an object.

An application using the UNION/FIND operations should store a set of n ob-
jects, where each object is assigned a unique index in the range 0 to n − 1. The
indices refer to the corresponding parent pointers in the array. Class ParPtrTree
creates and initializes the UNION/FIND array, and methods differ and UNION
take array indices as inputs.

Figure 6.5 illustrates the parent pointer implementation. Note that the nodes
can appear in any order within the array, and the array can store up to n separate
trees. For example, Figure 6.5 shows two trees stored in the same array. Thus,
a single array can store a collection of items distributed among an arbitrary (and
changing) number of disjoint subsets.

Consider the problem of assigning the members of a set to disjoint subsets
called equivalence classes. Recall from Section 2.1 that an equivalence relation is
reflexive, symmetric, and transitive. Thus, if objects A and B are equivalent, and
objects B and C are equivalent, we must be able to recognize that objects A and C
are also equivalent.

There are many practical uses for disjoint sets and representing equivalences.
For example, consider Figure 6.6 which shows a graph of ten nodes labeled A
through J. Notice that for nodes A through I, there is some series of edges that
connects any pair of the nodes, but node J is disconnected from the rest of the
nodes. Such a graph might be used to represent connections such as wires be-
tween components on a circuit board, or roads between cities. We can consider
two nodes of the graph to be equivalent if there is a path between them. Thus,
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Figure 6.5 The parent pointer array implementation. Each node corresponds
to a position in the node array, which stores its value and a pointer to its parent.
The parent pointers are represented by the position in the array of the parent. The
root of any tree stores ROOT, represented graphically by a slash in the “Parent’s
Index” box. This figure shows two trees stored in the same parent pointer array,
one rooted at R, and the other rooted at W.
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Figure 6.6 A graph with two connected components.

nodes A, H, and E would be equivalent in Figure 6.6, but J is not equivalent to any
other. A subset of equivalent (connected) edges in a graph is called a connected
component. The goal is to quickly classify the objects into disjoint sets that corre-
spond to the connected components. Another application for UNION/FIND occurs
in Kruskal’s algorithm for computing the minimal cost spanning tree for a graph
(Section 11.5.2).

The input to the UNION/FIND algorithm is typically a series of equivalence
pairs. In the case of the connected components example, the equivalence pairs
would simply be the set of edges in the graph. An equivalence pair might say that
object C is equivalent to object A. If so, C and A are placed in the same subset. If
a later equivalence relates A and B, then by implication C is also equivalent to B.
Thus, an equivalence pair may cause two subsets to merge, each of which contains
several objects.
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Equivalence classes can be managed efficiently with the UNION/FIND alg-
orithm. Initially, each object is at the root of its own tree. An equivalence pair is
processed by checking to see if both objects of the pair are in the same tree us-
ing method differ. If they are in the same tree, then no change need be made
because the objects are already in the same equivalence class. Otherwise, the two
equivalence classes should be merged by the UNION method.

Example 6.2 As an example of solving the equivalence class problem,
consider the graph of Figure 6.6. Initially, we assume that each node of the
graph is in a distinct equivalence class. This is represented by storing each
as the root of its own tree. Figure 6.7(a) shows this initial configuration
using the parent pointer array representation. Now, consider what happens
when equivalence relationship (A, B) is processed. The root of the tree
containing A is A, and the root of the tree containing B is B. To make them
equivalent, one of these two roots is set to be the parent of the other. In
this case it is irrelevant which points to which, so we arbitrarily select the
first in alphabetical order to be the root. This is represented in the parent
pointer array by setting the parent field of B (the node in array position 1
of the array) to store a pointer to A. Equivalence pairs (C, H), (G, F), and
(D, E) are processed in similar fashion. When processing the equivalence
pair (I, F), because I and F are both their own roots, I is set to point to F.
Note that this also makes G equivalent to I. The result of processing these
five equivalences is shown in Figure 6.7(b).

The parent pointer representation places no limit on the number of nodes that
can share a parent. To make equivalence processing as efficient as possible, the
distance from each node to the root of its respective tree should be as small as
possible. Thus, we would like to keep the height of the trees small when merging
two equivalence classes together. Ideally, each tree would have all nodes pointing
directly to the root. Achieving this goal all the time would require too much ad-
ditional processing to be worth the effort, so we must settle for getting as close as
possible.

A low-cost approach to reducing the height is to be smart about how two trees
are joined together. One simple technique, called the weighted union rule, joins
the tree with fewer nodes to the tree with more nodes by making the smaller tree’s
root point to the root of the bigger tree. This will limit the total depth of the tree to
O(log n), because the depth of nodes only in the smaller tree will now increase by
one, and the depth of the deepest node in the combined tree can only be at most one
deeper than the deepest node before the trees were combined. The total number
of nodes in the combined tree is therefore at least twice the number in the smaller
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Figure 6.7 An example of equivalence processing. (a) Initial configuration for
the ten nodes of the graph in Figure 6.6. The nodes are placed into ten independent
equivalence classes. (b) The result of processing five edges: (A, B), (C, H), (G, F),
(D, E), and (I, F). (c) The result of processing two more edges: (H, A) and (E, G).
(d) The result of processing edge (H, E).
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subtree. Thus, the depth of any node can be increased at most log n times when n
equivalences are processed.

Example 6.3 When processing equivalence pair (I, F) in Figure 6.7(b),
F is the root of a tree with two nodes while I is the root of a tree with only
one node. Thus, I is set to point to F rather than the other way around.
Figure 6.7(c) shows the result of processing two more equivalence pairs:
(H, A) and (E, G). For the first pair, the root for H is C while the root
for A is itself. Both trees contain two nodes, so it is an arbitrary decision
as to which node is set to be the root for the combined tree. In the case
of equivalence pair (E, G), the root of E is D while the root of G is F.
Because F is the root of the larger tree, node D is set to point to F.

Not all equivalences will combine two trees. If equivalence (F, G) is processed
when the representation is in the state shown in Figure 6.7(c), no change will be
made because F is already the root for G.

The weighted union rule helps to minimize the depth of the tree, but we can do
better than this. Path compression is a method that tends to create extremely shal-
low trees. Path compression takes place while finding the root for a given node X.
Call this root R. Path compression resets the parent of every node on the path from
X to R to point directly to R. This can be implemented by first finding R. A second
pass is then made along the path from X to R, assigning the parent field of each
node encountered to R. Alternatively, a recursive algorithm can be implemented as
follows. This version of FIND not only returns the root of the current node, but
also makes all ancestors of the current node point to the root.

// FIND with path compression
int ParPtrTree::FIND(int curr) const {

if (array[curr] == ROOT) return curr; // At root
array[curr] = FIND(array[curr]);
return array[curr];

}

Example 6.4 Figure 6.7(d) shows the result of processing equivalence
pair (H, E) on the the representation shown in Figure 6.7(c) using the stan-
dard weighted union rule without path compression. Figure 6.8 illustrates
the path compression process for the same equivalence pair. After locating
the root for node H, we can perform path compression to make H point
directly to root object A. Likewise, E is set to point directly to its root, F.
Finally, object A is set to point to root object F.

Note that path compression takes place during the FIND operation, not
during the UNION operation. In Figure 6.8, this means that nodes B, C, and
H have node A remain as their parent, rather than changing their parent to
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Figure 6.8 An example of path compression, showing the result of processing
equivalence pair (H, E) on the representation of Figure 6.7(c).

be F. While we might prefer to have these nodes point to F, to accomplish
this would require that additional information from the FIND operation be
passed back to the UNION operation. This would not be practical.

Path compression keeps the cost of each FIND operation very close to constant.
To be more precise about what is meant by “very close to constant,” the cost of path
compression for n FIND operations on n nodes (when combined with the weighted
union rule for joining sets) is approximately1 Θ(n log∗ n). The notation “log∗ n”
means the number of times that the log of n must be taken before n ≤ 1. For
example, log∗ 65536 is 4 because log 65536 = 16, log 16 = 4, log 4 = 2, and
finally log 2 = 1. Thus, log∗ n grows very slowly, so the cost for a series of n FIND
operations is very close to n.

Note that this does not mean that the tree resulting from processing n equiva-
lence pairs necessarily has depth Θ(log∗ n). One can devise a series of equivalence
operations that yields Θ(log n) depth for the resulting tree. However, many of the
equivalences in such a series will look only at the roots of the trees being merged,
requiring little processing time. The total amount of processing time required for
n operations will be Θ(n log∗ n), yielding nearly constant time for each equiva-
lence operation. This is an example of amortized analysis, discussed further in
Section 14.3.

6.3 General Tree Implementations

We now tackle the problem of devising an implementation for general trees that
allows efficient processing for all member functions of the ADTs shown in Fig-
ure 6.2. This section presents several approaches to implementing general trees.
Each implementation yields advantages and disadvantages in the amount of space
required to store a node and the relative ease with which key operations can be
performed. General tree implementations should place no restriction on how many

1To be more precise, this cost has been found to grow in time proportional to the inverse of
Ackermann’s function. See Section 6.6.
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Figure 6.9 The “list of children” implementation for general trees. The col-
umn of numbers to the left of the node array labels the array indices. The column
labeled “Val” stores node values. The column labeled “Par” stores indices (or
pointers) to the parents. The last column stores pointers to the linked list of chil-
dren for each internal node. Each element of the linked list stores a pointer to one
of the node’s children (shown as the array index of the target node).

children a node may have. In some applications, once a node is created the number
of children never changes. In such cases, a fixed amount of space can be allocated
for the node when it is created, based on the number of children for the node. Mat-
ters become more complicated if children can be added to or deleted from a node,
requiring that the node’s space allocation be adjusted accordingly.

6.3.1 List of Children

Our first attempt to create a general tree implementation is called the “list of chil-
dren” implementation for general trees. It simply stores with each internal node a
linked list of its children. This is illustrated by Figure 6.9.

The “list of children” implementation stores the tree nodes in an array. Each
node contains a value, a pointer (or index) to its parent, and a pointer to a linked list
of the node’s children, stored in order from left to right. Each linked list element
contains a pointer to one child. Thus, the leftmost child of a node can be found
directly because it is the first element in the linked list. However, to find the right
sibling for a node is more difficult. Consider the case of a node M and its parent P.
To find M’s right sibling, we must move down the child list of P until the linked list
element storing the pointer to M has been found. Going one step further takes us to
the linked list element that stores a pointer to M’s right sibling. Thus, in the worst
case, to find M’s right sibling requires that all children of M’s parent be searched.
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Figure 6.10 The “left-child/right-sibling” implementation.

Combining trees using this representation is difficult if each tree is stored in a
separate node array. If the nodes of both trees are stored in a single node array, then
adding tree T as a subtree of node R is done by simply adding the root of T to R’s
list of children.

6.3.2 The Left-Child/Right-Sibling Implementation

With the “list of children” implementation, it is difficult to access a node’s right
sibling. Figure 6.10 presents an improvement. Here, each node stores its value
and pointers to its parent, leftmost child, and right sibling. Thus, each of the basic
ADT operations can be implemented by reading a value directly from the node.
If two trees are stored within the same node array, then adding one as the subtree
of the other simply requires setting three pointers. Combining trees in this way
is illustrated by Figure 6.11. This implementation is more space efficient than the
“list of children” implementation, and each node requires a fixed amount of space
in the node array.

6.3.3 Dynamic Node Implementations

The two general tree implementations just described use an array to store the col-
lection of nodes. In contrast, our standard implementation for binary trees stores
each node as a separate dynamic object containing its value and pointers to its two
children. Unfortunately, nodes of a general tree can have any number of children,
and this number may change during the life of the node. A general tree node imple-
mentation must support these properties. One solution is simply to limit the number
of children permitted for any node and allocate pointers for exactly that number of
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Figure 6.11 Combining two trees that use the “left-child/right-sibling” imple-
mentation. The subtree rooted at R in Figure 6.10 now becomes the first child
of R′. Three pointers are adjusted in the node array: The left-child field of R′ now
points to node R, while the right-sibling field for R points to node X. The parent
field of node R points to node R′.

children. There are two major objections to this. First, it places an undesirable
limit on the number of children, which makes certain trees unrepresentable by this
implementation. Second, this might be extremely wasteful of space because most
nodes will have far fewer children and thus leave some pointer positions empty.

The alternative is to allocate variable space for each node. There are two basic
approaches. One is to allocate an array of child pointers as part of the node. In
essence, each node stores an array-based list of child pointers. Figure 6.12 illus-
trates the concept. This approach assumes that the number of children is known
when the node is created, which is true for some applications but not for others.
It also works best if the number of children does not change. If the number of
children does change (especially if it increases), then some special recovery mech-
anism must be provided to support a change in the size of the child pointer array.
One possibility is to allocate a new node of the correct size from free store and re-
turn the old copy of the node to free store for later reuse. This works especially well
in a language with built-in garbage collection such as Java. For example, assume
that a node M initially has two children, and that space for two child pointers is al-
located when M is created. If a third child is added to M, space for a new node with
three child pointers can be allocated, the contents of M is copied over to the new
space, and the old space is then returned to free store. As an alternative to relying
on the system’s garbage collector, a memory manager for variable size storage units
can be implemented, as described in Section 12.3. Another possibility is to use a
collection of free lists, one for each array size, as described in Section 4.1.2. Note
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Figure 6.12 A dynamic general tree representation with fixed-size arrays for the
child pointers. (a) The general tree. (b) The tree representation. For each node,
the first field stores the node value while the second field stores the size of the
child pointer array.
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Figure 6.13 A dynamic general tree representation with linked lists of child
pointers. (a) The general tree. (b) The tree representation.

in Figure 6.12 that the current number of children for each node is stored explicitly
in a size field. The child pointers are stored in an array with size elements.

Another approach that is more flexible, but which requires more space, is to
store a linked list of child pointers with each node as illustrated by Figure 6.13.
This implementation is essentially the same as the “list of children” implementation
of Section 6.3.1, but with dynamically allocated nodes rather than storing the nodes
in an array.
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(a)

root

(b)

Figure 6.14 Converting from a forest of general trees to a single binary tree.
Each node stores pointers to its left child and right sibling. The tree roots are
assumed to be siblings for the purpose of converting.

6.3.4 Dynamic “Left-Child/Right-Sibling” Implementation

The “left-child/right-sibling” implementation of Section 6.3.2 stores a fixed number
of pointers with each node. This can be readily adapted to a dynamic implemen-
tation. In essence, we substitute a binary tree for a general tree. Each node of the
“left-child/right-sibling” implementation points to two “children” in a new binary
tree structure. The left child of this new structure is the node’s first child in the
general tree. The right child is the node’s right sibling. We can easily extend this
conversion to a forest of general trees, because the roots of the trees can be con-
sidered siblings. Converting from a forest of general trees to a single binary tree
is illustrated by Figure 6.14. Here we simply include links from each node to its
right sibling and remove links to all children except the leftmost child. Figure 6.15
shows how this might look in an implementation with two pointers at each node.
Compared with the implementation illustrated by Figure 6.13 which requires over-
head of three pointers/node, the implementation of Figure 6.15 only requires two
pointers per node. The representation of Figure 6.15 is likely to be easier to imple-
ment, space efficient, and more flexible than the other implementations presented
in this section.

6.4 K-ary Trees

K-ary trees are trees whose internal nodes all have exactly K children. Thus,
a full binary tree is a 2-ary tree. The PR quadtree discussed in Section 13.3 is an
example of a 4-ary tree. BecauseK-ary tree nodes have a fixed number of children,
unlike general trees, they are relatively easy to implement. In general, K-ary trees
bear many similarities to binary trees, and similar implementations can be used for
K-ary tree nodes. Note that as K becomes large, the potential number of NULL
pointers grows, and the difference between the required sizes for internal nodes
and leaf nodes increases. Thus, as K becomes larger, the need to choose separate
implementations for the internal and leaf nodes becomes more pressing.
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Figure 6.15 A general tree converted to the dynamic “left-child/right-sibling”
representation. Compared to the representation of Figure 6.13, this representation
requires less space.

(a) (b)

Figure 6.16 Full and complete 3-ary trees. (a) This tree is full (but not complete).
(b) This tree is complete (but not full).

Full and complete K-ary trees are analogous to full and complete binary trees,
respectively. Figure 6.16 shows full and complete K-ary trees for K = 3. In
practice, most applications of K-ary trees limit them to be either full or complete.

Many of the properties of binary trees extend to K-ary trees. Equivalent theo-
rems to those in Section 5.1.1 regarding the number of NULL pointers in a K-ary
tree and the relationship between the number of leaves and the number of internal
nodes in a K-ary tree can be derived. We can also store a complete K-ary tree in
an array, using simple formulas to compute a node’s relations in a manner similar
to that used in Section 5.3.3.

6.5 Sequential Tree Implementations

Next we consider a fundamentally different approach to implementing trees. The
goal is to store a series of node values with the minimum information needed to
reconstruct the tree structure. This approach, known as a sequential tree imple-
mentation, has the advantage of saving space because no pointers are stored. It has
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the disadvantage that accessing any node in the tree requires sequentially process-
ing all nodes that appear before it in the node list. In other words, node access must
start at the beginning of the node list, processing nodes sequentially in whatever
order they are stored until the desired node is reached. Thus, one primary virtue
of the other implementations discussed in this section is lost: efficient access (typi-
cally Θ(log n) time) to arbitrary nodes in the tree. Sequential tree implementations
are ideal for archiving trees on disk for later use because they save space, and the
tree structure can be reconstructed as needed for later processing.

Sequential tree implementations can be used to serialize a tree structure. Seri-
alization is the process of storing an object as a series of bytes, typically so that the
data structure can be transmitted between computers. This capability is important
when using data structures in a distributed processing environment.

A sequential tree implementation typically stores the node values as they would
be enumerated by a preorder traversal, along with sufficient information to describe
the tree’s shape. If the tree has restricted form, for example if it is a full binary tree,
then less information about structure typically needs to be stored. A general tree,
because it has the most flexible shape, tends to require the most additional shape
information. There are many possible sequential tree implementation schemes. We
will begin by describing methods appropriate to binary trees, then generalize to an
implementation appropriate to a general tree structure.

Because every node of a binary tree is either a leaf or has two (possibly empty)
children, we can take advantage of this fact to implicitly represent the tree’s struc-
ture. The most straightforward sequential tree implementation lists every node
value as it would be enumerated by a preorder traversal. Unfortunately, the node
values alone do not provide enough information to recover the shape of the tree. In
particular, as we read the series of node values, we do not know when a leaf node
has been reached. However, we can treat all non-empty nodes as internal nodes
with two (possibly empty) children. Only NULL values will be interpreted as leaf
nodes, and these can be listed explicitly. Such an augmented node list provides
enough information to recover the tree structure.

Example 6.5 For the binary tree of Figure 6.17, the corresponding se-
quential representation would be as follows (assuming that ‘/’ stands for
NULL):

AB/D//CEG///FH//I// (6.1)

To reconstruct the tree structure from this node list, we begin by setting
node A to be the root. A’s left child will be node B. Node B’s left child is
a NULL pointer, so node D must be B’s right child. Node D has two NULL
children, so node C must be the right child of node A.
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Figure 6.17 Sample binary tree for sequential tree implementation examples.

To illustrate the difficulty involved in using the sequential tree representation
for processing, consider searching for the right child of the root node. We must first
move sequentially through the node list of the left subtree. Only at this point do
we reach the value of the root’s right child. Clearly the sequential representation
is space efficient, but not time efficient for descending through the tree along some
arbitrary path.

Assume that each node value takes a constant amount of space. An example
would be if the node value is a positive integer and NULL is indicated by the value
zero. From the Full Binary Tree Theorem of Section 5.1.1, we know that the size
of the node list will be about twice the number of nodes (i.e., the overhead fraction
is 1/2). The extra space is required by the NULL pointers. We should be able to
store the node list more compactly. However, any sequential implementation must
recognize when a leaf node has been reached, that is, a leaf node indicates the end
of a subtree. One way to do this is to explicitly list with each node whether it is
an internal node or a leaf. If a node X is an internal node, then we know that its
two children (which may be subtrees) immediately follow X in the node list. If X
is a leaf node, then the next node in the list is the right child of some ancestor
of X, not the right child of X. In particular, the next node will be the child of X’s
most recent ancestor that has not yet seen its right child. However, this assumes
that each internal node does in fact have two children, in other words, that the
tree is full. Empty children must be indicated in the node list explicitly. Assume
that internal nodes are marked with a prime (′) and that leaf nodes show no mark.
Empty children of internal nodes are indicated by ‘/’, but the (empty) children of
leaf nodes are not represented at all. Note that a full binary tree stores no NULL
values with this implementation, and so requires less overhead.

Example 6.6 We can represent the tree of Figure 6.17 as follows:

A′B′/DC′E′G/F′HI (6.2)
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Note that slashes are needed for the empty children because this is not a full
binary tree.

Storing n extra bits can be a considerable savings over storing n NULL values.
In Example 6.6, each node is shown with a mark if it is internal, or no mark if it
is a leaf. This requires that each node value has space to store the mark bit. This
might be true if, for example, the node value were stored as a 4-byte integer but
the range of the values sored was small enough so that not all bits are used. An
example would be if all node values must be positive. Then the high-order (sign)
bit of the integer value could be used as the mark bit.

Another approach is to store a separate bit vector to represent the status of each
node. In this case, each node of the tree corresponds to one bit in the bit vector. A
value of ‘1’ could indicate an internal node, and ‘0’ could indicate a leaf node.

Example 6.7 The bit vector for the tree if Figure 6.17 (including positions
for the null children of nodes B and E) would be

11001100100 (6.3)

Storing general trees by means of a sequential implementation requires that
more explicit structural information be included with the node list. Not only must
the general tree implementation indicate whether a node is leaf or internal, it must
also indicate how many children the node has. Alternatively, the implementation
can indicate when a node’s child list has come to an end. The next example dis-
penses with marks for internal or leaf nodes. Instead it includes a special mark (we
will use the “)” symbol) to indicate the end of a child list. All leaf nodes are fol-
lowed by a “)” symbol because they have no children. A leaf node that is also the
last child for its parent would indicate this by two or more successive “)” symbols.

Example 6.8 For the general tree of Figure 6.3, we get the sequential
representation

RAC)D)E))BF))) (6.4)

Note that F is followed by three “)” marks, because it is a leaf, the last node
of B’s rightmost subtree, and the last node of R’s rightmost subtree.

Note that this representation for serializing general trees cannot be used for bi-
nary trees. This is because a binary tree is not merely a restricted form of general
tree with at most two children. Every binary tree node has a left and a right child,
though either or both might be empty. For example, the representation of Exam-
ple 6.8 cannot let us distinguish whether node D in Figure 6.17 is the left or right
child of node B.
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6.6 Further Reading

The expression log∗ n cited in Section 6.2 is closely related to the inverse of Ack-
ermann’s function. For more information about Ackermann’s function and the cost
of path compression for UNION/FIND, see Robert E. Tarjan’s paper “On the effi-
ciency of a good but not linear set merging algorithm” [Tar75]. The article “Data
Structures and Algorithms for Disjoint Set Union Problems” by Galil and Italiano
[GI91] covers many aspects of the equivalence class problem.

Foundations of Multidimensional and Metric Data Structures by Hanan Samet
[Sam06] treats various implementations of tree structures in detail within the con-
text of K-ary trees. Samet covers sequential implementations as well as the linked
and array implementations such as those described in this chapter and Chapter 5.
While these books are ostensibly concerned with spatial data structures, many of
the concepts treated are relevant to anyone who must implement tree structures.

6.7 Exercises

6.1 Write an algorithm to determine if two general trees are identical. Make the
algorithm as efficient as you can. Analyze your algorithm’s running time.

6.2 Write an algorithm to determine if two binary trees are identical when the
ordering of the subtrees for a node is ignored. For example, if a tree has root
node with value R, left child with value A and right child with value B, this
would be considered identical to another tree with root node value R, left
child value B, and right child value A. Make the algorithm as efficient as you
can. Analyze your algorithm’s running time. How much harder would it be
to make this algorithm work on a general tree?

6.3 Write a postorder traversal function for general trees, similar to the preorder
traversal function named preorder given in Section 6.1.2.

6.4 Write a function that takes as input a general tree and returns the number of
nodes in that tree. Write your function to use the GenTree and GTNode
ADTs of Figure 6.2.

6.5 Describe how to implement the weighted union rule efficiently. In particular,
describe what information must be stored with each node and how this infor-
mation is updated when two trees are merged. Modify the implementation of
Figure 6.4 to support the weighted union rule.

6.6 A potential alternative to the weighted union rule for combining two trees is
the height union rule. The height union rule requires that the root of the tree
with greater height become the root of the union. Explain why the height
union rule can lead to worse average time behavior than the weighted union
rule.

6.7 Using the weighted union rule and path compression, show the array for
the parent pointer implementation that results from the following series of
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equivalences on a set of objects indexed by the values 0 through 15. Initially,
each element in the set should be in a separate equivalence class. When two
trees to be merged are the same size, make the root with greater index value
be the child of the root with lesser index value.

(0, 2) (1, 2) (3, 4) (3, 1) (3, 5) (9, 11) (12, 14) (3, 9) (4, 14) (6, 7) (8, 10) (8, 7)
(7, 0) (10, 15) (10, 13)

6.8 Using the weighted union rule and path compression, show the array for
the parent pointer implementation that results from the following series of
equivalences on a set of objects indexed by the values 0 through 15. Initially,
each element in the set should be in a separate equivalence class. When two
trees to be merged are the same size, make the root with greater index value
be the child of the root with lesser index value.

(2, 3) (4, 5) (6, 5) (3, 5) (1, 0) (7, 8) (1, 8) (3, 8) (9, 10) (11, 14) (11, 10)
(12, 13) (11, 13) (14, 1)

6.9 Devise a series of equivalence statements for a collection of sixteen items
that yields a tree of height 5 when both the weighted union rule and path
compression are used. What is the total number of parent pointers followed
to perform this series?

6.10 One alternative to path compression that gives similar performance gains
is called path halving. In path halving, when the path is traversed from
the node to the root, we make the grandparent of every other node i on the
path the new parent of i. Write a version of FIND that implements path
halving. Your FIND operation should work as you move up the tree, rather
than require the two passes needed by path compression.

6.11 Analyze the fraction of overhead required by the “list of children” imple-
mentation, the “left-child/right-sibling” implementation, and the two linked
implementations of Section 6.3.3. How do these implementations compare
in space efficiency?

6.12 Using the general tree ADT of Figure 6.2, write a function that takes as input
the root of a general tree and returns a binary tree generated by the conversion
process illustrated by Figure 6.14.

6.13 Use mathematical induction to prove that the number of leaves in a non-
empty full K-ary tree is (K − 1)n + 1, where n is the number of internal
nodes.

6.14 Derive the formulas for computing the relatives of a non-empty complete
K-ary tree node stored in the complete tree representation of Section 5.3.3.

6.15 Find the overhead fraction for a full K-ary tree implementation with space
requirements as follows:

(a) All nodes store data, K child pointers, and a parent pointer. The data
field requires four bytes and each pointer requires four bytes.
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Figure 6.18 A sample tree for Exercise 6.16.

(b) All nodes store data and K child pointers. The data field requires six-
teen bytes and each pointer requires four bytes.

(c) All nodes store data and a parent pointer, and internal nodes store K
child pointers. The data field requires eight bytes and each pointer re-
quires four bytes.

(d) Only leaf nodes store data; only internal nodes store K child pointers.
The data field requires four bytes and each pointer requires two bytes.

6.16 (a) Write out the sequential representation for Figure 6.18 using the coding
illustrated by Example 6.5.

(b) Write out the sequential representation for Figure 6.18 using the coding
illustrated by Example 6.6.

6.17 Draw the binary tree representing the following sequential representation for
binary trees illustrated by Example 6.5:

ABD//E//C/F//

6.18 Draw the binary tree representing the following sequential representation for
binary trees illustrated by Example 6.6:

A′/B′/C′D′G/E

Show the bit vector for leaf and internal nodes (as illustrated by Example 6.7)
for this tree.

6.19 Draw the general tree represented by the following sequential representation
for general trees illustrated by Example 6.8:

XPC)Q)RV)M))))

6.20 (a) Write a function to decode the sequential representation for binary trees
illustrated by Example 6.5. The input should be the sequential repre-
sentation and the output should be a pointer to the root of the resulting
binary tree.
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(b) Write a function to decode the sequential representation for full binary
trees illustrated by Example 6.6. The input should be the sequential
representation and the output should be a pointer to the root of the re-
sulting binary tree.

(c) Write a function to decode the sequential representation for general
trees illustrated by Example 6.8. The input should be the sequential
representation and the output should be a pointer to the root of the re-
sulting general tree.

6.21 Devise a sequential representation for Huffman coding trees suitable for use
as part of a file compression utility (see Project 5.7).

6.8 Projects

6.1 Write classes that implement the general tree class declarations of Figure 6.2
using the dynamic “left-child/right-sibling” representation described in Sec-
tion 6.3.4.

6.2 Write classes that implement the general tree class declarations of Figure 6.2
using the linked general tree implementation with child pointer arrays of Fig-
ure 6.12. Your implementation should support only fixed-size nodes that
do not change their number of children once they are created. Then, re-
implement these classes with the linked list of children representation of
Figure 6.13. How do the two implementations compare in space and time
efficiency and ease of implementation?

6.3 Write classes that implement the general tree class declarations of Figure 6.2
using the linked general tree implementation with child pointer arrays of Fig-
ure 6.12. Your implementation must be able to support changes in the num-
ber of children for a node. When created, a node should be allocated with
only enough space to store its initial set of children. Whenever a new child is
added to a node such that the array overflows, allocate a new array from free
store that can store twice as many children.

6.4 Implement a BST file archiver. Your program should take a BST created in
main memory using the implementation of Figure 5.14 and write it out to
disk using one of the sequential representations of Section 6.5. It should also
be able to read in disk files using your sequential representation and create
the equivalent main memory representation.

6.5 Use the UNION/FIND algorithm to implement a solution to the following
problem. Given a set of points represented by their xy-coordinates, assign
the points to clusters. Any two points are defined to be in the same cluster if
they are within a specified distance d of each other. For the purpose of this
problem, clustering is an equivalence relationship. In other words, points A,
B, and C are defined to be in the same cluster if the distance between A and B
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is less than d and the distance between A and C is also less than d, even if the
distance between B and C is greater than d. To solve the problem, compute
the distance between each pair of points, using the equivalence processing
algorithm to merge clusters whenever two points are within the specified
distance. What is the asymptotic complexity of this algorithm? Where is the
bottleneck in processing?

6.6 In this project, you will run some empirical tests to determine if some vari-
ations on path compression in the UNION/FIND algorithm will lead to im-
proved performance. You should compare the following five implementa-
tions:

(a) Standard UNION/FIND with path compression and weighted union.
(b) Path compression and weighted union, except that path compression is

done after the UNION, instead of during the FIND operation. That is,
make all nodes along the paths traversed in both trees point directly to
the root of the larger tree.

(c) Weighted union and path halving as described in Exercise 6.10.
(d) Weighted union and a simplified form of path compression. At the end

of every FIND operation, make the node point to its tree’s root (but
don’t change the pointers for other nodes along the path).

(e) Weighted union and a simplified form of path compression. Both nodes
in the equivalence will be set to point directly to the root of the larger
tree after the UNION operation. For example, consider processing the
equivalence (A, B) where A′ is the root of A and B′ is the root of B.
Assume the tree with root A′ is bigger than the tree with root B′. At the
end of the UNION/FIND operation, nodes A, B, and B′ will all point
directly to A′.
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Internal Sorting

We sort many things in our everyday lives: A handful of cards when playing Bridge;
bills and other piles of paper; jars of spices; and so on. And we have many intuitive
strategies that we can use to do the sorting, depending on how many objects we
have to sort and how hard they are to move around. Sorting is also one of the most
frequently performed computing tasks. We might sort the records in a database
so that we can search the collection efficiently. We might sort the records by zip
code so that we can print and mail them more cheaply. We might use sorting as an
intrinsic part of an algorithm to solve some other problem, such as when computing
the minimum-cost spanning tree (see Section 11.5).

Because sorting is so important, naturally it has been studied intensively and
many algorithms have been devised. Some of these algorithms are straightforward
adaptations of schemes we use in everyday life. Others are totally alien to how hu-
mans do things, having been invented to sort thousands or even millions of records
stored on the computer. After years of study, there are still unsolved problems
related to sorting. New algorithms are still being developed and refined for special-
purpose applications.

While introducing this central problem in computer science, this chapter has
a secondary purpose of illustrating issues in algorithm design and analysis. For
example, this collection of sorting algorithms shows multiple approaches to us-
ing divide-and-conquer. In particular, there are multiple ways to do the dividing:
Mergesort divides a list in half; Quicksort divides a list into big values and small
values; and Radix Sort divides the problem by working on one digit of the key at
a time. Sorting algorithms can also illustrate a wide variety of analysis techniques.
We’ll find that it is possible for an algorithm to have an average case whose growth
rate is significantly smaller than its worse case (Quicksort). We’ll see how it is
possible to speed up sorting algorithms (both Shellsort and Quicksort) by taking
advantage of the best case behavior of another algorithm (Insertion sort). We’ll see
several examples of how we can tune an algorithm for better performance. We’ll
see that special case behavior by some algorithms makes them a good solution for
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special niche applications (Heapsort). Sorting provides an example of a significant
technique for analyzing the lower bound for a problem. Sorting will also be used
to motivate the introduction to file processing presented in Chapter 8.

The present chapter covers several standard algorithms appropriate for sorting
a collection of records that fit in the computer’s main memory. It begins with a dis-
cussion of three simple, but relatively slow, algorithms requiring Θ(n2) time in the
average and worst cases. Several algorithms with considerably better performance
are then presented, some with Θ(n log n) worst-case running time. The final sort-
ing method presented requires only Θ(n) worst-case time under special conditions.
The chapter concludes with a proof that sorting in general requires Ω(n log n) time
in the worst case.

7.1 Sorting Terminology and Notation

Except where noted otherwise, input to the sorting algorithms presented in this
chapter is a collection of records stored in an array. Records are compared to one
another by means of a comparator class, as introduced in Section 4.4. To simplify
the discussion we will assume that each record has a key field whose value is ex-
tracted from the record by the comparator. The key method of the comparator class
is prior, which returns true when its first argument should appear prior to its sec-
ond argument in the sorted list. We also assume that for every record type there is
a swap function that can interchange the contents of two records in the array(see
the Appendix).

Given a set of records r1, r2, ..., rn with key values k1, k2, ..., kn, the Sorting
Problem is to arrange the records into any order s such that records rs1 , rs2 , ..., rsn
have keys obeying the property ks1 ≤ ks2 ≤ ... ≤ ksn . In other words, the sorting
problem is to arrange a set of records so that the values of their key fields are in
non-decreasing order.

As defined, the Sorting Problem allows input with two or more records that have
the same key value. Certain applications require that input not contain duplicate
key values. The sorting algorithms presented in this chapter and in Chapter 8 can
handle duplicate key values unless noted otherwise.

When duplicate key values are allowed, there might be an implicit ordering
to the duplicates, typically based on their order of occurrence within the input. It
might be desirable to maintain this initial ordering among duplicates. A sorting
algorithm is said to be stable if it does not change the relative ordering of records
with identical key values. Many, but not all, of the sorting algorithms presented in
this chapter are stable, or can be made stable with minor changes.

When comparing two sorting algorithms, the most straightforward approach
would seem to be simply program both and measure their running times. An ex-
ample of such timings is presented in Figure 7.20. However, such a comparison
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can be misleading because the running time for many sorting algorithms depends
on specifics of the input values. In particular, the number of records, the size of
the keys and the records, the allowable range of the key values, and the amount by
which the input records are “out of order” can all greatly affect the relative running
times for sorting algorithms.

When analyzing sorting algorithms, it is traditional to measure the number of
comparisons made between keys. This measure is usually closely related to the
running time for the algorithm and has the advantage of being machine and data-
type independent. However, in some cases records might be so large that their
physical movement might take a significant fraction of the total running time. If so,
it might be appropriate to measure the number of swap operations performed by the
algorithm. In most applications we can assume that all records and keys are of fixed
length, and that a single comparison or a single swap operation requires a constant
amount of time regardless of which keys are involved. Some special situations
“change the rules” for comparing sorting algorithms. For example, an application
with records or keys having widely varying length (such as sorting a sequence of
variable length strings) will benefit from a special-purpose sorting technique. Some
applications require that a small number of records be sorted, but that the sort be
performed frequently. An example would be an application that repeatedly sorts
groups of five numbers. In such cases, the constants in the runtime equations that
are usually ignored in an asymptotic analysis now become crucial. Finally, some
situations require that a sorting algorithm use as little memory as possible. We will
note which sorting algorithms require significant extra memory beyond the input
array.

7.2 Three Θ(n2) Sorting Algorithms

This section presents three simple sorting algorithms. While easy to understand
and implement, we will soon see that they are unacceptably slow when there are
many records to sort. Nonetheless, there are situations where one of these simple
algorithms is the best tool for the job.

7.2.1 Insertion Sort

Imagine that you have a stack of phone bills from the past two years and that you
wish to organize them by date. A fairly natural way to do this might be to look at
the first two bills and put them in order. Then take the third bill and put it into the
right order with respect to the first two, and so on. As you take each bill, you would
add it to the sorted pile that you have already made. This naturally intuitive process
is the inspiration for our first sorting algorithm, called Insertion Sort. Insertion
Sort iterates through a list of records. Each record is inserted in turn at the correct
position within a sorted list composed of those records already processed. The
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Figure 7.1 An illustration of Insertion Sort. Each column shows the array after
the iteration with the indicated value of i in the outer for loop. Values above
the line in each column have been sorted. Arrows indicate the upward motions of
records through the array.

following is a C++ implementation. The input is an array of n records stored in
array A.

template <typename E, typename Comp>
void inssort(E A[], int n) { // Insertion Sort

for (int i=1; i<n; i++) // Insert i’th record
for (int j=i; (j>0) && (Comp::prior(A[j], A[j-1])); j--)

swap(A, j, j-1);
}

Consider the case where inssort is processing the ith record, which has key
value X. The record is moved upward in the array as long as X is less than the
key value immediately above it. As soon as a key value less than or equal to X is
encountered, inssort is done with that record because all records above it in the
array must have smaller keys. Figure 7.1 illustrates how Insertion Sort works.

The body of inssort is made up of two nested for loops. The outer for
loop is executed n − 1 times. The inner for loop is harder to analyze because
the number of times it executes depends on how many keys in positions 1 to i − 1
have a value less than that of the key in position i. In the worst case, each record
must make its way to the top of the array. This would occur if the keys are initially
arranged from highest to lowest, in the reverse of sorted order. In this case, the
number of comparisons will be one the first time through the for loop, two the
second time, and so on. Thus, the total number of comparisons will be

n∑
i=2

i ≈ n2/2 = Θ(n2).

In contrast, consider the best-case cost. This occurs when the keys begin in
sorted order from lowest to highest. In this case, every pass through the inner
for loop will fail immediately, and no values will be moved. The total number



Sec. 7.2 Three Θ(n2) Sorting Algorithms 235

of comparisons will be n − 1, which is the number of times the outer for loop
executes. Thus, the cost for Insertion Sort in the best case is Θ(n).

While the best case is significantly faster than the worst case, the worst case
is usually a more reliable indication of the “typical” running time. However, there
are situations where we can expect the input to be in sorted or nearly sorted order.
One example is when an already sorted list is slightly disordered by a small number
of additions to the list; restoring sorted order using Insertion Sort might be a good
idea if we know that the disordering is slight. Examples of algorithms that take ad-
vantage of Insertion Sort’s near-best-case running time are the Shellsort algorithm
of Section 7.3 and the Quicksort algorithm of Section 7.5.

What is the average-case cost of Insertion Sort? When record i is processed,
the number of times through the inner for loop depends on how far “out of order”
the record is. In particular, the inner for loop is executed once for each key greater
than the key of record i that appears in array positions 0 through i−1. For example,
in the leftmost column of Figure 7.1 the value 15 is preceded by five values greater
than 15. Each such occurrence is called an inversion. The number of inversions
(i.e., the number of values greater than a given value that occur prior to it in the
array) will determine the number of comparisons and swaps that must take place.
We need to determine what the average number of inversions will be for the record
in position i. We expect on average that half of the keys in the first i − 1 array
positions will have a value greater than that of the key at position i. Thus, the
average case should be about half the cost of the worst case, or around n2/4, which
is still Θ(n2). So, the average case is no better than the worst case in asymptotic
complexity.

Counting comparisons or swaps yields similar results. Each time through the
inner for loop yields both a comparison and a swap, except the last (i.e., the
comparison that fails the inner for loop’s test), which has no swap. Thus, the
number of swaps for the entire sort operation is n − 1 less than the number of
comparisons. This is 0 in the best case, and Θ(n2) in the average and worst cases.

7.2.2 Bubble Sort

Our next sorting algorithm is called Bubble Sort. Bubble Sort is often taught to
novice programmers in introductory computer science courses. This is unfortunate,
because Bubble Sort has no redeeming features whatsoever. It is a relatively slow
sort, it is no easier to understand than Insertion Sort, it does not correspond to any
intuitive counterpart in “everyday” use, and it has a poor best-case running time.
However, Bubble Sort can serve as the inspiration for a better sorting algorithm that
will be presented in Section 7.2.3.

Bubble Sort consists of a simple double for loop. The first iteration of the
inner for loop moves through the record array from bottom to top, comparing
adjacent keys. If the lower-indexed key’s value is greater than its higher-indexed
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Figure 7.2 An illustration of Bubble Sort. Each column shows the array after
the iteration with the indicated value of i in the outer for loop. Values above the
line in each column have been sorted. Arrows indicate the swaps that take place
during a given iteration.

neighbor, then the two values are swapped. Once the smallest value is encountered,
this process will cause it to “bubble” up to the top of the array. The second pass
through the array repeats this process. However, because we know that the smallest
value reached the top of the array on the first pass, there is no need to compare
the top two elements on the second pass. Likewise, each succeeding pass through
the array compares adjacent elements, looking at one less value than the preceding
pass. Figure 7.2 illustrates Bubble Sort. A C++ implementation is as follows:

template <typename E, typename Comp>
void bubsort(E A[], int n) { // Bubble Sort

for (int i=0; i<n-1; i++) // Bubble up i’th record
for (int j=n-1; j>i; j--)

if (Comp::prior(A[j], A[j-1]))
swap(A, j, j-1);

}

Determining Bubble Sort’s number of comparisons is easy. Regardless of the
arrangement of the values in the array, the number of comparisons made by the
inner for loop is always i, leading to a total cost of

n∑
i=1

i ≈ n2/2 = Θ(n2).

Bubble Sort’s running time is roughly the same in the best, average, and worst
cases.

The number of swaps required depends on how often a value is less than the
one immediately preceding it in the array. We can expect this to occur for about
half the comparisons in the average case, leading to Θ(n2) for the expected number
of swaps. The actual number of swaps performed by Bubble Sort will be identical
to that performed by Insertion Sort.
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Figure 7.3 An example of Selection Sort. Each column shows the array after the
iteration with the indicated value of i in the outer for loop. Numbers above the
line in each column have been sorted and are in their final positions.

7.2.3 Selection Sort

Consider again the problem of sorting a pile of phone bills for the past year. An-
other intuitive approach might be to look through the pile until you find the bill for
January, and pull that out. Then look through the remaining pile until you find the
bill for February, and add that behind January. Proceed through the ever-shrinking
pile of bills to select the next one in order until you are done. This is the inspiration
for our last Θ(n2) sort, called Selection Sort. The ith pass of Selection Sort “se-
lects” the ith smallest key in the array, placing that record into position i. In other
words, Selection Sort first finds the smallest key in an unsorted list, then the second
smallest, and so on. Its unique feature is that there are few record swaps. To find
the next smallest key value requires searching through the entire unsorted portion
of the array, but only one swap is required to put the record in place. Thus, the total
number of swaps required will be n− 1 (we get the last record in place “for free”).

Figure 7.3 illustrates Selection Sort. Below is a C++ implementation.

template <typename E, typename Comp>
void selsort(E A[], int n) { // Selection Sort

for (int i=0; i<n-1; i++) { // Select i’th record
int lowindex = i; // Remember its index
for (int j=n-1; j>i; j--) // Find the least value

if (Comp::prior(A[j], A[lowindex]))
lowindex = j; // Put it in place

swap(A, i, lowindex);
}

}

Selection Sort (as written here) is essentially a Bubble Sort, except that rather
than repeatedly swapping adjacent values to get the next smallest record into place,
we instead remember the position of the element to be selected and do one swap
at the end. Thus, the number of comparisons is still Θ(n2), but the number of
swaps is much less than that required by bubble sort. Selection Sort is particularly
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Figure 7.4 An example of swapping pointers to records. (a) A series of four
records. The record with key value 42 comes before the record with key value 5.
(b) The four records after the top two pointers have been swapped. Now the record
with key value 5 comes before the record with key value 42.

advantageous when the cost to do a swap is high, for example, when the elements
are long strings or other large records. Selection Sort is more efficient than Bubble
Sort (by a constant factor) in most other situations as well.

There is another approach to keeping the cost of swapping records low that
can be used by any sorting algorithm even when the records are large. This is
to have each element of the array store a pointer to a record rather than store the
record itself. In this implementation, a swap operation need only exchange the
pointer values; the records themselves do not move. This technique is illustrated
by Figure 7.4. Additional space is needed to store the pointers, but the return is a
faster swap operation.

7.2.4 The Cost of Exchange Sorting

Figure 7.5 summarizes the cost of Insertion, Bubble, and Selection Sort in terms of
their required number of comparisons and swaps1 in the best, average, and worst
cases. The running time for each of these sorts is Θ(n2) in the average and worst
cases.

The remaining sorting algorithms presented in this chapter are significantly bet-
ter than these three under typical conditions. But before continuing on, it is instruc-
tive to investigate what makes these three sorts so slow. The crucial bottleneck
is that only adjacent records are compared. Thus, comparisons and moves (in all
but Selection Sort) are by single steps. Swapping adjacent records is called an ex-
change. Thus, these sorts are sometimes referred to as exchange sorts. The cost
of any exchange sort can be at best the total number of steps that the records in the

1There is a slight anomaly with Selection Sort. The supposed advantage for Selection Sort is its
low number of swaps required, yet Selection Sort’s best-case number of swaps is worse than that for
Insertion Sort or Bubble Sort. This is because the implementation given for Selection Sort does not
avoid a swap in the case where record i is already in position i. One could put in a test to avoid
swapping in this situation. But it usually takes more time to do the tests than would be saved by
avoiding such swaps.
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Insertion Bubble Selection
Comparisons:

Best Case Θ(n) Θ(n2) Θ(n2)
Average Case Θ(n2) Θ(n2) Θ(n2)

Worst Case Θ(n2) Θ(n2) Θ(n2)

Swaps:
Best Case 0 0 Θ(n)

Average Case Θ(n2) Θ(n2) Θ(n)
Worst Case Θ(n2) Θ(n2) Θ(n)

Figure 7.5 A comparison of the asymptotic complexities for three simple sorting
algorithms.

array must move to reach their “correct” location (i.e., the number of inversions for
each record).

What is the average number of inversions? Consider a list L containing n val-
ues. Define LR to be L in reverse. L has n(n−1)/2 distinct pairs of values, each of
which could potentially be an inversion. Each such pair must either be an inversion
in L or in LR. Thus, the total number of inversions in L and LR together is exactly
n(n−1)/2 for an average of n(n−1)/4 per list. We therefore know with certainty
that any sorting algorithm which limits comparisons to adjacent items will cost at
least n(n− 1)/4 = Ω(n2) in the average case.

7.3 Shellsort

The next sorting algorithm that we consider is called Shellsort, named after its
inventor, D.L. Shell. It is also sometimes called the diminishing increment sort.
Unlike Insertion and Selection Sort, there is no real life intuitive equivalent to Shell-
sort. Unlike the exchange sorts, Shellsort makes comparisons and swaps between
non-adjacent elements. Shellsort also exploits the best-case performance of Inser-
tion Sort. Shellsort’s strategy is to make the list “mostly sorted” so that a final
Insertion Sort can finish the job. When properly implemented, Shellsort will give
substantially better performance than Θ(n2) in the worst case.

Shellsort uses a process that forms the basis for many of the sorts presented
in the following sections: Break the list into sublists, sort them, then recombine
the sublists. Shellsort breaks the array of elements into “virtual” sublists. Each
sublist is sorted using an Insertion Sort. Another group of sublists is then chosen
and sorted, and so on.

During each iteration, Shellsort breaks the list into disjoint sublists so that each
element in a sublist is a fixed number of positions apart. For example, let us as-
sume for convenience that n, the number of values to be sorted, is a power of two.
One possible implementation of Shellsort will begin by breaking the list into n/2
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Figure 7.6 An example of Shellsort. Sixteen items are sorted in four passes.
The first pass sorts 8 sublists of size 2 and increment 8. The second pass sorts
4 sublists of size 4 and increment 4. The third pass sorts 2 sublists of size 8 and
increment 2. The fourth pass sorts 1 list of size 16 and increment 1 (a regular
Insertion Sort).

sublists of 2 elements each, where the array index of the 2 elements in each sublist
differs by n/2. If there are 16 elements in the array indexed from 0 to 15, there
would initially be 8 sublists of 2 elements each. The first sublist would be the ele-
ments in positions 0 and 8, the second in positions 1 and 9, and so on. Each list of
two elements is sorted using Insertion Sort.

The second pass of Shellsort looks at fewer, bigger lists. For our example the
second pass would have n/4 lists of size 4, with the elements in the list being n/4
positions apart. Thus, the second pass would have as its first sublist the 4 elements
in positions 0, 4, 8, and 12; the second sublist would have elements in positions 1,
5, 9, and 13; and so on. Each sublist of four elements would also be sorted using
an Insertion Sort.

The third pass would be made on two lists, one consisting of the odd positions
and the other consisting of the even positions.

The culminating pass in this example would be a “normal” Insertion Sort of all
elements. Figure 7.6 illustrates the process for an array of 16 values where the sizes
of the increments (the distances between elements on the successive passes) are 8,
4, 2, and 1. Figure 7.7 presents a C++ implementation for Shellsort.

Shellsort will work correctly regardless of the size of the increments, provided
that the final pass has increment 1 (i.e., provided the final pass is a regular Insertion
Sort). If Shellsort will always conclude with a regular Insertion Sort, then how
can it be any improvement on Insertion Sort? The expectation is that each of the
(relatively cheap) sublist sorts will make the list “more sorted” than it was before.
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// Modified version of Insertion Sort for varying increments
template <typename E, typename Comp>
void inssort2(E A[], int n, int incr) {

for (int i=incr; i<n; i+=incr)
for (int j=i; (j>=incr) &&

(Comp::prior(A[j], A[j-incr])); j-=incr)
swap(A, j, j-incr);

}

template <typename E, typename Comp>
void shellsort(E A[], int n) { // Shellsort

for (int i=n/2; i>2; i/=2) // For each increment
for (int j=0; j<i; j++) // Sort each sublist

inssort2<E,Comp>(&A[j], n-j, i);
inssort2<E,Comp>(A, n, 1);

}

Figure 7.7 An implementation for Shell Sort.

It is not necessarily the case that this will be true, but it is almost always true in
practice. When the final Insertion Sort is conducted, the list should be “almost
sorted,” yielding a relatively cheap final Insertion Sort pass.

Some choices for increments will make Shellsort run more efficiently than oth-
ers. In particular, the choice of increments described above (2k, 2k−1, ..., 2, 1)
turns out to be relatively inefficient. A better choice is the following series based
on division by three: (..., 121, 40, 13, 4, 1).

The analysis of Shellsort is difficult, so we must accept without proof that
the average-case performance of Shellsort (for “divisions by three” increments)
is O(n1.5). Other choices for the increment series can reduce this upper bound
somewhat. Thus, Shellsort is substantially better than Insertion Sort, or any of the
Θ(n2) sorts presented in Section 7.2. In fact, Shellsort is not terrible when com-
pared with the asymptotically better sorts to be presented whenever n is of medium
size (thought is tends to be a little slower than these other algorithms when they
are well implemented). Shellsort illustrates how we can sometimes exploit the spe-
cial properties of an algorithm (in this case Insertion Sort) even if in general that
algorithm is unacceptably slow.

7.4 Mergesort

A natural approach to problem solving is divide and conquer. In terms of sorting,
we might consider breaking the list to be sorted into pieces, process the pieces, and
then put them back together somehow. A simple way to do this would be to split
the list in half, sort the halves, and then merge the sorted halves together. This is
the idea behind Mergesort.
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Figure 7.8 An illustration of Mergesort. The first row shows eight numbers that
are to be sorted. Mergesort will recursively subdivide the list into sublists of one
element each, then recombine the sublists. The second row shows the four sublists
of size 2 created by the first merging pass. The third row shows the two sublists
of size 4 created by the next merging pass on the sublists of row 2. The last row
shows the final sorted list created by merging the two sublists of row 3.

Mergesort is one of the simplest sorting algorithms conceptually, and has good
performance both in the asymptotic sense and in empirical running time. Surpris-
ingly, even though it is based on a simple concept, it is relatively difficult to im-
plement in practice. Figure 7.8 illustrates Mergesort. A pseudocode sketch of
Mergesort is as follows:

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List L1 = half of the items from inlist;
List L2 = other half of the items from inlist;
return merge(mergesort(L1), mergesort(L2));

}

Before discussing how to implement Mergesort, we will first examine the merge
function. Merging two sorted sublists is quite simple. Function merge examines
the first element of each sublist and picks the smaller value as the smallest element
overall. This smaller value is removed from its sublist and placed into the output
list. Merging continues in this way, comparing the front elements of the sublists and
continually appending the smaller to the output list until no more input elements
remain.

Implementing Mergesort presents a number of technical difficulties. The first
decision is how to represent the lists. Mergesort lends itself well to sorting a singly
linked list because merging does not require random access to the list elements.
Thus, Mergesort is the method of choice when the input is in the form of a linked
list. Implementing merge for linked lists is straightforward, because we need only
remove items from the front of the input lists and append items to the output list.
Breaking the input list into two equal halves presents some difficulty. Ideally we
would just break the lists into front and back halves. However, even if we know the
length of the list in advance, it would still be necessary to traverse halfway down
the linked list to reach the beginning of the second half. A simpler method, which
does not rely on knowing the length of the list in advance, assigns elements of the
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template <typename E, typename Comp>
void mergesort(E A[], E temp[], int left, int right) {

if (left == right) return; // List of one element
int mid = (left+right)/2;
mergesort<E,Comp>(A, temp, left, mid);
mergesort<E,Comp>(A, temp, mid+1, right);
for (int i=left; i<=right; i++) // Copy subarray to temp

temp[i] = A[i];
// Do the merge operation back to A
int i1 = left; int i2 = mid + 1;
for (int curr=left; curr<=right; curr++) {

if (i1 == mid+1) // Left sublist exhausted
A[curr] = temp[i2++];

else if (i2 > right) // Right sublist exhausted
A[curr] = temp[i1++];

else if (Comp::prior(temp[i1], temp[i2]))
A[curr] = temp[i1++];

else A[curr] = temp[i2++];
}

}
Figure 7.9 Standard implementation for Mergesort.

input list alternating between the two sublists. The first element is assigned to the
first sublist, the second element to the second sublist, the third to first sublist, the
fourth to the second sublist, and so on. This requires one complete pass through
the input list to build the sublists.

When the input to Mergesort is an array, splitting input into two subarrays is
easy if we know the array bounds. Merging is also easy if we merge the subarrays
into a second array. Note that this approach requires twice the amount of space
as any of the sorting methods presented so far, which is a serious disadvantage for
Mergesort. It is possible to merge the subarrays without using a second array, but
this is extremely difficult to do efficiently and is not really practical. Merging the
two subarrays into a second array, while simple to implement, presents another dif-
ficulty. The merge process ends with the sorted list in the auxiliary array. Consider
how the recursive nature of Mergesort breaks the original array into subarrays, as
shown in Figure 7.8. Mergesort is recursively called until subarrays of size 1 have
been created, requiring log n levels of recursion. These subarrays are merged into
subarrays of size 2, which are in turn merged into subarrays of size 4, and so on.
We need to avoid having each merge operation require a new array. With some
difficulty, an algorithm can be devised that alternates between two arrays. A much
simpler approach is to copy the sorted sublists to the auxiliary array first, and then
merge them back to the original array. Figure 7.9 shows a complete implementation
for mergesort following this approach.

An optimized Mergesort implementation is shown in Figure 7.10. It reverses
the order of the second subarray during the initial copy. Now the current positions
of the two subarrays work inwards from the ends, allowing the end of each subarray
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template <typename E, typename Comp>
void mergesort(E A[], E temp[], int left, int right) {

if ((right-left) <= THRESHOLD) { // Small list
inssort<E,Comp>(&A[left], right-left+1);
return;

}
int i, j, k, mid = (left+right)/2;
mergesort<E,Comp>(A, temp, left, mid);
mergesort<E,Comp>(A, temp, mid+1, right);
// Do the merge operation. First, copy 2 halves to temp.
for (i=mid; i>=left; i--) temp[i] = A[i];
for (j=1; j<=right-mid; j++) temp[right-j+1] = A[j+mid];
// Merge sublists back to A
for (i=left,j=right,k=left; k<=right; k++)

if (Comp::prior(temp[i], temp[j])) A[k] = temp[i++];
else A[k] = temp[j--];

}

Figure 7.10 Optimized implementation for Mergesort.

to act as a sentinel for the other. Unlike the previous implementation, no test is
needed to check for when one of the two subarrays becomes empty. This version
also uses Insertion Sort to sort small subarrays.

Analysis of Mergesort is straightforward, despite the fact that it is a recursive
algorithm. The merging part takes time Θ(i) where i is the total length of the two
subarrays being merged. The array to be sorted is repeatedly split in half until
subarrays of size 1 are reached, at which time they are merged to be of size 2, these
merged to subarrays of size 4, and so on as shown in Figure 7.8. Thus, the depth
of the recursion is log n for n elements (assume for simplicity that n is a power
of two). The first level of recursion can be thought of as working on one array of
size n, the next level working on two arrays of size n/2, the next on four arrays
of size n/4, and so on. The bottom of the recursion has n arrays of size 1. Thus,
n arrays of size 1 are merged (requiring Θ(n) total steps), n/2 arrays of size 2
(again requiring Θ(n) total steps), n/4 arrays of size 4, and so on. At each of the
log n levels of recursion, Θ(n) work is done, for a total cost of Θ(n log n). This
cost is unaffected by the relative order of the values being sorted, thus this analysis
holds for the best, average, and worst cases.

7.5 Quicksort

While Mergesort uses the most obvious form of divide and conquer (split the list in
half then sort the halves), it is not the only way that we can break down the sorting
problem. And we saw that doing the merge step for Mergesort when using an array
implementation is not so easy. So perhaps a different divide and conquer strategy
might turn out to be more efficient?
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Quicksort is aptly named because, when properly implemented, it is the fastest
known general-purpose in-memory sorting algorithm in the average case. It does
not require the extra array needed by Mergesort, so it is space efficient as well.
Quicksort is widely used, and is typically the algorithm implemented in a library
sort routine such as the UNIX qsort function. Interestingly, Quicksort is ham-
pered by exceedingly poor worst-case performance, thus making it inappropriate
for certain applications.

Before we get to Quicksort, consider for a moment the practicality of using a
Binary Search Tree for sorting. You could insert all of the values to be sorted into
the BST one by one, then traverse the completed tree using an inorder traversal.
The output would form a sorted list. This approach has a number of drawbacks,
including the extra space required by BST pointers and the amount of time required
to insert nodes into the tree. However, this method introduces some interesting
ideas. First, the root of the BST (i.e., the first node inserted) splits the list into two
sublists: The left subtree contains those values in the list less than the root value
while the right subtree contains those values in the list greater than or equal to the
root value. Thus, the BST implicitly implements a “divide and conquer” approach
to sorting the left and right subtrees. Quicksort implements this concept in a much
more efficient way.

Quicksort first selects a value called the pivot. (This is conceptually like the
root node’s value in the BST.) Assume that the input array contains k values less
than the pivot. The records are then rearranged in such a way that the k values
less than the pivot are placed in the first, or leftmost, k positions in the array, and
the values greater than or equal to the pivot are placed in the last, or rightmost,
n−k positions. This is called a partition of the array. The values placed in a given
partition need not (and typically will not) be sorted with respect to each other. All
that is required is that all values end up in the correct partition. The pivot value itself
is placed in position k. Quicksort then proceeds to sort the resulting subarrays now
on either side of the pivot, one of size k and the other of size n − k − 1. How are
these values sorted? Because Quicksort is such a good algorithm, using Quicksort
on the subarrays would be appropriate.

Unlike some of the sorts that we have seen earlier in this chapter, Quicksort
might not seem very “natural” in that it is not an approach that a person is likely to
use to sort real objects. But it should not be too surprising that a really efficient sort
for huge numbers of abstract objects on a computer would be rather different from
our experiences with sorting a relatively few physical objects.

The C++ code for Quicksort is shown in Figure 7.11. Parameters i and j
define the left and right indices, respectively, for the subarray being sorted. The
initial call to Quicksort would be qsort(array, 0, n-1).

Function partition will move records to the appropriate partition and then
return k, the first position in the right partition. Note that the pivot value is initially
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template <typename E, typename Comp>
void qsort(E A[], int i, int j) { // Quicksort

if (j <= i) return; // Don’t sort 0 or 1 element
int pivotindex = findpivot(A, i, j);
swap(A, pivotindex, j); // Put pivot at end
// k will be the first position in the right subarray
int k = partition<E,Comp>(A, i-1, j, A[j]);
swap(A, k, j); // Put pivot in place
qsort<E,Comp>(A, i, k-1);
qsort<E,Comp>(A, k+1, j);

}

Figure 7.11 Implementation for Quicksort.

placed at the end of the array (position j). Thus, partition must not affect the
value of array position j. After partitioning, the pivot value is placed in position k,
which is its correct position in the final, sorted array. By doing so, we guarantee
that at least one value (the pivot) will not be processed in the recursive calls to
qsort. Even if a bad pivot is selected, yielding a completely empty partition to
one side of the pivot, the larger partition will contain at most n− 1 elements.

Selecting a pivot can be done in many ways. The simplest is to use the first
key. However, if the input is sorted or reverse sorted, this will produce a poor
partitioning with all values to one side of the pivot. It is better to pick a value
at random, thereby reducing the chance of a bad input order affecting the sort.
Unfortunately, using a random number generator is relatively expensive, and we
can do nearly as well by selecting the middle position in the array. Here is a simple
findpivot function:

template <typename E>
inline int findpivot(E A[], int i, int j)

{ return (i+j)/2; }

We now turn to function partition. If we knew in advance how many keys
are less than the pivot, partition could simply copy elements with key values
less than the pivot to the low end of the array, and elements with larger keys to
the high end. Because we do not know in advance how many keys are less than
the pivot, we use a clever algorithm that moves indices inwards from the ends of
the subarray, swapping values as necessary until the two indices meet. Figure 7.12
shows a C++ implementation for the partition step.

Figure 7.13 illustrates partition. Initially, variables l and r are immedi-
ately outside the actual bounds of the subarray being partitioned. Each pass through
the outer do loop moves the counters l and r inwards, until eventually they meet.
Note that at each iteration of the inner while loops, the bounds are moved prior
to checking against the pivot value. This ensures that progress is made by each
while loop, even when the two values swapped on the last iteration of the do
loop were equal to the pivot. Also note the check that r > l in the second while
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template <typename E, typename Comp>
inline int partition(E A[], int l, int r, E& pivot) {

do { // Move the bounds inward until they meet
while (Comp::prior(A[++l], pivot)); // Move l right and
while ((l < r) && Comp::prior(pivot, A[--r])); // r left
swap(A, l, r); // Swap out-of-place values

} while (l < r); // Stop when they cross
return l; // Return first position in right partition

}

Figure 7.12 The Quicksort partition implementation.
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Figure 7.13 The Quicksort partition step. The first row shows the initial po-
sitions for a collection of ten key values. The pivot value is 60, which has been
swapped to the end of the array. The do loop makes three iterations, each time
moving counters l and r inwards until they meet in the third pass. In the end,
the left partition contains four values and the right partition contains six values.
Function qsort will place the pivot value into position 4.

loop. This ensures that r does not run off the low end of the partition in the case
where the pivot is the least value in that partition. Function partition returns
the first index of the right partition so that the subarray bound for the recursive
calls to qsort can be determined. Figure 7.14 illustrates the complete Quicksort
algorithm.

To analyze Quicksort, we first analyze the findpivot and partition
functions operating on a subarray of length k. Clearly, findpivot takes con-
stant time. Function partition contains a do loop with two nested while
loops. The total cost of the partition operation is constrained by how far l and r
can move inwards. In particular, these two bounds variables together can move a
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Figure 7.14 An illustration of Quicksort.

total of s steps for a subarray of length s. However, this does not directly tell us
how much work is done by the nested while loops. The do loop as a whole is
guaranteed to move both l and r inward at least one position on each first pass.
Each while loop moves its variable at least once (except in the special case where
r is at the left edge of the array, but this can happen only once). Thus, we see that
the do loop can be executed at most s times, the total amount of work done moving
l and r is s, and each while loop can fail its test at most s times. The total work
for the entire partition function is therefore Θ(s).

Knowing the cost of findpivot and partition, we can determine the
cost of Quicksort. We begin with a worst-case analysis. The worst case will occur
when the pivot does a poor job of breaking the array, that is, when there are no
elements in one partition, and n − 1 elements in the other. In this case, the divide
and conquer strategy has done a poor job of dividing, so the conquer phase will
work on a subproblem only one less than the size of the original problem. If this
happens at each partition step, then the total cost of the algorithm will be

n∑
k=1

k = Θ(n2).

In the worst case, Quicksort is Θ(n2). This is terrible, no better than Bubble
Sort.2 When will this worst case occur? Only when each pivot yields a bad parti-
tioning of the array. If the pivot values are selected at random, then this is extremely
unlikely to happen. When selecting the middle position of the current subarray, it

2The worst insult that I can think of for a sorting algorithm.
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is still unlikely to happen. It does not take many good partitionings for Quicksort
to work fairly well.

Quicksort’s best case occurs when findpivot always breaks the array into
two equal halves. Quicksort repeatedly splits the array into smaller partitions, as
shown in Figure 7.14. In the best case, the result will be log n levels of partitions,
with the top level having one array of size n, the second level two arrays of size n/2,
the next with four arrays of size n/4, and so on. Thus, at each level, all partition
steps for that level do a total of n work, for an overall cost of n log n work when
Quicksort finds perfect pivots.

Quicksort’s average-case behavior falls somewhere between the extremes of
worst and best case. Average-case analysis considers the cost for all possible ar-
rangements of input, summing the costs and dividing by the number of cases. We
make one reasonable simplifying assumption: At each partition step, the pivot is
equally likely to end in any position in the (sorted) array. In other words, the pivot
is equally likely to break an array into partitions of sizes 0 and n−1, or 1 and n−2,
and so on.

Given this assumption, the average-case cost is computed from the following
equation:

T(n) = cn+
1

n

n−1∑
k=0

[T(k) + T(n− 1− k)], T(0) = T(1) = c.

This equation is in the form of a recurrence relation. Recurrence relations are
discussed in Chapters 2 and 14, and this one is solved in Section 14.2.4. This
equation says that there is one chance in n that the pivot breaks the array into
subarrays of size 0 and n − 1, one chance in n that the pivot breaks the array into
subarrays of size 1 and n− 2, and so on. The expression “T(k) + T(n− 1−k)” is
the cost for the two recursive calls to Quicksort on two arrays of size k and n−1−k.
The initial cn term is the cost of doing the findpivot and partition steps, for
some constant c. The closed-form solution to this recurrence relation is Θ(n log n).
Thus, Quicksort has average-case cost Θ(n log n).

This is an unusual situation that the average case cost and the worst case cost
have asymptotically different growth rates. Consider what “average case” actually
means. We compute an average cost for inputs of size n by summing up for every
possible input of size n the product of the running time cost of that input times the
probability that that input will occur. To simplify things, we assumed that every
permutation is equally likely to occur. Thus, finding the average means summing
up the cost for every permutation and dividing by the number of inputs (n!). We
know that some of these n! inputs cost O(n2). But the sum of all the permutation
costs has to be (n!)(O(n log n)). Given the extremely high cost of the worst inputs,
there must be very few of them. In fact, there cannot be a constant fraction of the
inputs with cost O(n2). Even, say, 1% of the inputs with cost O(n2) would lead to
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an average cost of O(n2). Thus, as n grows, the fraction of inputs with high cost
must be going toward a limit of zero. We can conclude that Quicksort will have
good behavior if we can avoid those very few bad input permutations.

The running time for Quicksort can be improved (by a constant factor), and
much study has gone into optimizing this algorithm. The most obvious place for
improvement is the findpivot function. Quicksort’s worst case arises when the
pivot does a poor job of splitting the array into equal size subarrays. If we are
willing to do more work searching for a better pivot, the effects of a bad pivot can
be decreased or even eliminated. One good choice is to use the “median of three”
algorithm, which uses as a pivot the middle of three randomly selected values.
Using a random number generator to choose the positions is relatively expensive,
so a common compromise is to look at the first, middle, and last positions of the
current subarray. However, our simple findpivot function that takes the middle
value as its pivot has the virtue of making it highly unlikely to get a bad input by
chance, and it is quite cheap to implement. This is in sharp contrast to selecting
the first or last element as the pivot, which would yield bad performance for many
permutations that are nearly sorted or nearly reverse sorted.

A significant improvement can be gained by recognizing that Quicksort is rel-
atively slow when n is small. This might not seem to be relevant if most of the
time we sort large arrays, nor should it matter how long Quicksort takes in the
rare instance when a small array is sorted because it will be fast anyway. But you
should notice that Quicksort itself sorts many, many small arrays! This happens as
a natural by-product of the divide and conquer approach.

A simple improvement might then be to replace Quicksort with a faster sort
for small numbers, say Insertion Sort or Selection Sort. However, there is an even
better — and still simpler — optimization. When Quicksort partitions are below
a certain size, do nothing! The values within that partition will be out of order.
However, we do know that all values in the array to the left of the partition are
smaller than all values in the partition. All values in the array to the right of the
partition are greater than all values in the partition. Thus, even if Quicksort only
gets the values to “nearly” the right locations, the array will be close to sorted. This
is an ideal situation in which to take advantage of the best-case performance of
Insertion Sort. The final step is a single call to Insertion Sort to process the entire
array, putting the elements into final sorted order. Empirical testing shows that
the subarrays should be left unordered whenever they get down to nine or fewer
elements.

The last speedup to be considered reduces the cost of making recursive calls.
Quicksort is inherently recursive, because each Quicksort operation must sort two
sublists. Thus, there is no simple way to turn Quicksort into an iterative algorithm.
However, Quicksort can be implemented using a stack to imitate recursion, as the
amount of information that must be stored is small. We need not store copies of a
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subarray, only the subarray bounds. Furthermore, the stack depth can be kept small
if care is taken on the order in which Quicksort’s recursive calls are executed. We
can also place the code for findpivot and partition inline to eliminate the
remaining function calls. Note however that by not processing sublists of size nine
or less as suggested above, about three quarters of the function calls will already
have been eliminated. Thus, eliminating the remaining function calls will yield
only a modest speedup.

7.6 Heapsort

Our discussion of Quicksort began by considering the practicality of using a binary
search tree for sorting. The BST requires more space than the other sorting meth-
ods and will be slower than Quicksort or Mergesort due to the relative expense of
inserting values into the tree. There is also the possibility that the BST might be un-
balanced, leading to a Θ(n2) worst-case running time. Subtree balance in the BST
is closely related to Quicksort’s partition step. Quicksort’s pivot serves roughly the
same purpose as the BST root value in that the left partition (subtree) stores val-
ues less than the pivot (root) value, while the right partition (subtree) stores values
greater than or equal to the pivot (root).

A good sorting algorithm can be devised based on a tree structure more suited
to the purpose. In particular, we would like the tree to be balanced, space efficient,
and fast. The algorithm should take advantage of the fact that sorting is a special-
purpose application in that all of the values to be stored are available at the start.
This means that we do not necessarily need to insert one value at a time into the
tree structure.

Heapsort is based on the heap data structure presented in Section 5.5. Heapsort
has all of the advantages just listed. The complete binary tree is balanced, its array
representation is space efficient, and we can load all values into the tree at once,
taking advantage of the efficient buildheap function. The asymptotic perfor-
mance of Heapsort is Θ(n log n) in the best, average, and worst cases. It is not as
fast as Quicksort in the average case (by a constant factor), but Heapsort has special
properties that will make it particularly useful when sorting data sets too large to fit
in main memory, as discussed in Chapter 8.

A sorting algorithm based on max-heaps is quite straightforward. First we use
the heap building algorithm of Section 5.5 to convert the array into max-heap order.
Then we repeatedly remove the maximum value from the heap, restoring the heap
property each time that we do so, until the heap is empty. Note that each time
we remove the maximum element from the heap, it is placed at the end of the
array. Assume the n elements are stored in array positions 0 through n − 1. After
removing the maximum value from the heap and readjusting, the maximum value
will now be placed in position n− 1 of the array. The heap is now considered to be
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of size n − 1. Removing the new maximum (root) value places the second largest
value in position n−2 of the array. After removing each of the remaining values in
turn, the array will be properly sorted from least to greatest. This is why Heapsort
uses a max-heap rather than a min-heap as might have been expected. Figure 7.15
illustrates Heapsort. The complete C++ implementation is as follows:

template <typename E, typename Comp>
void heapsort(E A[], int n) { // Heapsort

E maxval;
heap<E,Comp> H(A, n, n); // Build the heap
for (int i=0; i<n; i++) // Now sort

maxval = H.removefirst(); // Place maxval at end
}

Because building the heap takes Θ(n) time (see Section 5.5), and because
n deletions of the maximum element each take Θ(log n) time, we see that the en-
tire Heapsort operation takes Θ(n log n) time in the worst, average, and best cases.
While typically slower than Quicksort by a constant factor, Heapsort has one spe-
cial advantage over the other sorts studied so far. Building the heap is relatively
cheap, requiring Θ(n) time. Removing the maximum element from the heap re-
quires Θ(log n) time. Thus, if we wish to find the k largest elements in an array,
we can do so in time Θ(n + k log n). If k is small, this is a substantial improve-
ment over the time required to find the k largest elements using one of the other
sorting methods described earlier (many of which would require sorting all of the
array first). One situation where we are able to take advantage of this concept is
in the implementation of Kruskal’s minimum-cost spanning tree (MST) algorithm
of Section 11.5.2. That algorithm requires that edges be visited in ascending order
(so, use a min-heap), but this process stops as soon as the MST is complete. Thus,
only a relatively small fraction of the edges need be sorted.

7.7 Binsort and Radix Sort

Imagine that for the past year, as you paid your various bills, you then simply piled
all the paperwork onto the top of a table somewhere. Now the year has ended and
its time to sort all of these papers by what the bill was for (phone, electricity, rent,
etc.) and date. A pretty natural approach is to make some space on the floor, and as
you go through the pile of papers, put the phone bills into one pile, the electric bills
into another pile, and so on. Once this initial assignment of bills to piles is done (in
one pass), you can sort each pile by date relatively quickly because they are each
fairly small. This is the basic idea behind a Binsort.

Section 3.9 presented the following code fragment to sort a permutation of the
numbers 0 through n− 1:

for (i=0; i<n; i++)
B[A[i]] = A[i];
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Figure 7.15 An illustration of Heapsort. The top row shows the values in their
original order. The second row shows the values after building the heap. The
third row shows the result of the first removefirst operation on key value 88.
Note that 88 is now at the end of the array. The fourth row shows the result of the
second removefirst operation on key value 85. The fifth row shows the result
of the third removefirst operation on key value 83. At this point, the last
three positions of the array hold the three greatest values in sorted order. Heapsort
continues in this manner until the entire array is sorted.



254 Chap. 7 Internal Sorting

template <typename E, class getKey>
void binsort(E A[], int n) {

List<E> B[MaxKeyValue];
E item;
for (int i=0; i<n; i++) B[A[i]].append(getKey::key(A[i]));
for (int i=0; i<MaxKeyValue; i++)

for (B[i].setStart(); B[i].getValue(item); B[i].next())
output(item);

}

Figure 7.16 The extended Binsort algorithm.

Here the key value is used to determine the position for a record in the final sorted
array. This is the most basic example of a Binsort, where key values are used
to assign records to bins. This algorithm is extremely efficient, taking Θ(n) time
regardless of the initial ordering of the keys. This is far better than the performance
of any sorting algorithm that we have seen so far. The only problem is that this
algorithm has limited use because it works only for a permutation of the numbers
from 0 to n− 1.

We can extend this simple Binsort algorithm to be more useful. Because Binsort
must perform direct computation on the key value (as opposed to just asking which
of two records comes first as our previous sorting algorithms did), we will assume
that the records use an integer key type. We further assume that it can be extracted
from a record using the key method supplied by a template parameter class named
getKey.

The simplest extension is to allow for duplicate values among the keys. This
can be done by turning array slots into arbitrary-length bins by turning B into an
array of linked lists. In this way, all records with key value i can be placed in bin
B[i]. A second extension allows for a key range greater than n. For example,
a set of n records might have keys in the range 1 to 2n. The only requirement is
that each possible key value have a corresponding bin in B. The extended Binsort
algorithm is shown in Figure 7.16.

This version of Binsort can sort any collection of records whose key values fall
in the range from 0 to MaxKeyValue−1. The total work required is simply that
needed to place each record into the appropriate bin and then take all of the records
out of the bins. Thus, we need to process each record twice, for Θ(n) work.

Unfortunately, there is a crucial oversight in this analysis. Binsort must also
look at each of the bins to see if it contains a record. The algorithm must process
MaxKeyValue bins, regardless of how many actually hold records. If MaxKey-
Value is small compared to n, then this is not a great expense. Suppose that
MaxKeyValue = n2. In this case, the total amount of work done will be Θ(n +
n2) = Θ(n2). This results in a poor sorting algorithm, and the algorithm becomes
even worse as the disparity between n and MaxKeyValue increases. In addition,
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Figure 7.17 An example of Radix Sort for twelve two-digit numbers in base ten.
Two passes are required to sort the list.

a large key range requires an unacceptably large array B. Thus, even the extended
Binsort is useful only for a limited key range.

A further generalization to Binsort yields a bucket sort. Each bin is associated
with not just one key, but rather a range of key values. A bucket sort assigns records
to bins and then relies on some other sorting technique to sort the records within
each bin. The hope is that the relatively inexpensive bucketing process will put
only a small number of records in each bin, and that a “cleanup sort” within the
bins will then be relatively cheap.

There is a way to keep the number of bins and the related processing small
while allowing the cleanup sort to be based on Binsort. Consider a sequence of
records with keys in the range 0 to 99. If we have ten bins available, we can first
assign records to bins by taking their key value modulo 10. Thus, every key will
be assigned to the bin matching its rightmost decimal digit. We can then take these
records from the bins in order and reassign them to the bins on the basis of their
leftmost (10’s place) digit (define values in the range 0 to 9 to have a leftmost digit
of 0). In other words, assign the ith record from array A to a bin using the formula
A[i]/10. If we now gather the values from the bins in order, the result is a sorted
list. Figure 7.17 illustrates this process.
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template <typename E, typename getKey>
void radix(E A[], E B[],

int n, int k, int r, int cnt[]) {
// cnt[i] stores number of records in bin[i]
int j;

for (int i=0, rtoi=1; i<k; i++, rtoi*=r) { // For k digits
for (j=0; j<r; j++) cnt[j] = 0; // Initialize cnt

// Count the number of records for each bin on this pass
for (j=0; j<n; j++) cnt[(getKey::key(A[j])/rtoi)%r]++;

// Index B: cnt[j] will be index for last slot of bin j.
for (j=1; j<r; j++) cnt[j] = cnt[j-1] + cnt[j];

// Put records into bins, work from bottom of each bin.
// Since bins fill from bottom, j counts downwards
for (j=n-1; j>=0; j--)

B[--cnt[(getKey::key(A[j])/rtoi)%r]] = A[j];

for (j=0; j<n; j++) A[j] = B[j]; // Copy B back to A
}

}

Figure 7.18 The Radix Sort algorithm.

In this example, we have r = 10 bins and n = 12 keys in the range 0 to r2− 1.
The total computation is Θ(n), because we look at each record and each bin a
constant number of times. This is a great improvement over the simple Binsort
where the number of bins must be as large as the key range. Note that the example
uses r = 10 so as to make the bin computations easy to visualize: Records were
placed into bins based on the value of first the rightmost and then the leftmost
decimal digits. Any number of bins would have worked. This is an example of a
Radix Sort, so called because the bin computations are based on the radix or the
base of the key values. This sorting algorithm can be extended to any number of
keys in any key range. We simply assign records to bins based on the keys’ digit
values working from the rightmost digit to the leftmost. If there are k digits, then
this requires that we assign keys to bins k times.

As with Mergesort, an efficient implementation of Radix Sort is somewhat dif-
ficult to achieve. In particular, we would prefer to sort an array of values and avoid
processing linked lists. If we know how many values will be in each bin, then an
auxiliary array of size r can be used to hold the bins. For example, if during the
first pass the 0 bin will receive three records and the 1 bin will receive five records,
then we could simply reserve the first three array positions for the 0 bin and the
next five array positions for the 1 bin. Exactly this approach is taken by the C++

implementation of Figure 7.18. At the end of each pass, the records are copied back
to the original array.



Sec. 7.7 Binsort and Radix Sort 257

The first inner for loop initializes array cnt. The second loop counts the
number of records to be assigned to each bin. The third loop sets the values in cnt
to their proper indices within array B. Note that the index stored in cnt[j] is the
last index for bin j; bins are filled from high index to low index. The fourth loop
assigns the records to the bins (within array B). The final loop simply copies the
records back to array A to be ready for the next pass. Variable rtoi stores ri for
use in bin computation on the i’th iteration. Figure 7.19 shows how this algorithm
processes the input shown in Figure 7.17.

This algorithm requires k passes over the list of n numbers in base r, with
Θ(n + r) work done at each pass. Thus the total work is Θ(nk + rk). What is
this in terms of n? Because r is the size of the base, it might be rather small.
One could use base 2 or 10. Base 26 would be appropriate for sorting character
strings. For now, we will treat r as a constant value and ignore it for the purpose of
determining asymptotic complexity. Variable k is related to the key range: It is the
maximum number of digits that a key may have in base r. In some applications we
can determine k to be of limited size and so might wish to consider it a constant.
In this case, Radix Sort is Θ(n) in the best, average, and worst cases, making it the
sort with best asymptotic complexity that we have studied.

Is it a reasonable assumption to treat k as a constant? Or is there some rela-
tionship between k and n? If the key range is limited and duplicate key values are
common, there might be no relationship between k and n. To make this distinction
clear, use N to denote the number of distinct key values used by the n records.
Thus, N ≤ n. Because it takes a minimum of logrN base r digits to represent N
distinct key values, we know that k ≥ logrN .

Now, consider the situation in which no keys are duplicated. If there are n
unique keys (n = N ), then it requires n distinct code values to represent them.
Thus, k ≥ logr n. Because it requires at least Ω(log n) digits (within a constant
factor) to distinguish between the n distinct keys, k is in Ω(log n). This yields
an asymptotic complexity of Ω(n log n) for Radix Sort to process n distinct key
values.

It is possible that the key range is much larger; logr n bits is merely the best
case possible for n distinct values. Thus, the logr n estimate for k could be overly
optimistic. The moral of this analysis is that, for the general case of n distinct key
values, Radix Sort is at best a Ω(n log n) sorting algorithm.

Radix Sort can be much improved by making base r be as large as possible.
Consider the case of an integer key value. Set r = 2i for some i. In other words,
the value of r is related to the number of bits of the key processed on each pass.
Each time the number of bits is doubled, the number of passes is cut in half. When
processing an integer key value, setting r = 256 allows the key to be processed one
byte at a time. Processing a 32-bit key requires only four passes. It is not unrea-
sonable on most computers to use r = 216 = 64K, resulting in only two passes for
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0 5 6 9871 2 3 4 10 11

0 5 6 9871 2 3 4 10 11

First pass values for Count.

Count array:
Index positions for Array B.

rtoi = 1.

Second pass values for Count.
rtoi = 10.

Count array:
Index positions for Array B.

End of Pass 2: Array A.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Initial Input: Array A

91 23 84 25 27 97 17 67 2872

91 1 97 17 23 84 28 72 5 67 2527

11 12 122 3 4 5 7 70

1 5

1 2 3 4 5 6 7 8 90

1210

0 1 2 3 4 5 6 7 8 9

17 23 25 27 28 67 72 84 91 9751

2 1 1 1 2 0 4 1 00

2111041 002

987 7773

End of Pass 1: Array A.

2

Figure 7.19 An example showing function radix applied to the input of Fig-
ure 7.17. Row 1 shows the initial values within the input array. Row 2 shows the
values for array cnt after counting the number of records for each bin. Row 3
shows the index values stored in array cnt. For example, cnt[0] is 0, indicat-
ing no input values are in bin 0. Cnt[1] is 2, indicating that array B positions 0
and 1 will hold the values for bin 1. Cnt[2] is 3, indicating that array B position
2 will hold the (single) value for bin 2. Cnt[7] is 11, indicating that array B
positions 7 through 10 will hold the four values for bin 7. Row 4 shows the results
of the first pass of the Radix Sort. Rows 5 through 7 show the equivalent steps for
the second pass.



Sec. 7.8 An Empirical Comparison of Sorting Algorithms 259

a 32-bit key. Of course, this requires a cnt array of size 64K. Performance will
be good only if the number of records is close to 64K or greater. In other words,
the number of records must be large compared to the key size for Radix Sort to be
efficient. In many sorting applications, Radix Sort can be tuned in this way to give
good performance.

Radix Sort depends on the ability to make a fixed number of multiway choices
based on a digit value, as well as random access to the bins. Thus, Radix Sort
might be difficult to implement for certain key types. For example, if the keys
are real numbers or arbitrary length strings, then some care will be necessary in
implementation. In particular, Radix Sort will need to be careful about deciding
when the “last digit” has been found to distinguish among real numbers, or the last
character in variable length strings. Implementing the concept of Radix Sort with
the trie data structure (Section 13.1) is most appropriate for these situations.

At this point, the perceptive reader might begin to question our earlier assump-
tion that key comparison takes constant time. If the keys are “normal integer”
values stored in, say, an integer variable, what is the size of this variable compared
to n? In fact, it is almost certain that 32 (the number of bits in a standard int vari-
able) is greater than log n for any practical computation. In this sense, comparison
of two long integers requires Ω(log n) work.

Computers normally do arithmetic in units of a particular size, such as a 32-bit
word. Regardless of the size of the variables, comparisons use this native word
size and require a constant amount of time since the comparison is implemented in
hardware. In practice, comparisons of two 32-bit values take constant time, even
though 32 is much greater than log n. To some extent the truth of the proposition
that there are constant time operations (such as integer comparison) is in the eye
of the beholder. At the gate level of computer architecture, individual bits are
compared. However, constant time comparison for integers is true in practice on
most computers (they require a fixed number of machine instructions), and we rely
on such assumptions as the basis for our analyses. In contrast, Radix Sort must do
several arithmetic calculations on key values (each requiring constant time), where
the number of such calculations is proportional to the key length. Thus, Radix Sort
truly does Ω(n log n) work to process n distinct key values.

7.8 An Empirical Comparison of Sorting Algorithms

Which sorting algorithm is fastest? Asymptotic complexity analysis lets us distin-
guish between Θ(n2) and Θ(n log n) algorithms, but it does not help distinguish
between algorithms with the same asymptotic complexity. Nor does asymptotic
analysis say anything about which algorithm is best for sorting small lists. For
answers to these questions, we can turn to empirical testing.
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Sort 10 100 1K 10K 100K 1M Up Down
Insertion .00023 .007 0.66 64.98 7381.0 674420 0.04 129.05
Bubble .00035 .020 2.25 277.94 27691.0 2820680 70.64 108.69
Selection .00039 .012 0.69 72.47 7356.0 780000 69.76 69.58
Shell .00034 .008 0.14 1.99 30.2 554 0.44 0.79
Shell/O .00034 .008 0.12 1.91 29.0 530 0.36 0.64
Merge .00050 .010 0.12 1.61 19.3 219 0.83 0.79
Merge/O .00024 .007 0.10 1.31 17.2 197 0.47 0.66
Quick .00048 .008 0.11 1.37 15.7 162 0.37 0.40
Quick/O .00031 .006 0.09 1.14 13.6 143 0.32 0.36
Heap .00050 .011 0.16 2.08 26.7 391 1.57 1.56
Heap/O .00033 .007 0.11 1.61 20.8 334 1.01 1.04
Radix/4 .00838 .081 0.79 7.99 79.9 808 7.97 7.97
Radix/8 .00799 .044 0.40 3.99 40.0 404 4.00 3.99

Figure 7.20 Empirical comparison of sorting algorithms run on a 3.4-GHz Intel
Pentium 4 CPU running Linux. Shellsort, Quicksort, Mergesort, and Heapsort
each are shown with regular and optimized versions. Radix Sort is shown for 4-
and 8-bit-per-pass versions. All times shown are milliseconds.

Figure 7.20 shows timing results for actual implementations of the sorting algo-
rithms presented in this chapter. The algorithms compared include Insertion Sort,
Bubble Sort, Selection Sort, Shellsort, Quicksort, Mergesort, Heapsort and Radix
Sort. Shellsort shows both the basic version from Section 7.3 and another with
increments based on division by three. Mergesort shows both the basic implemen-
tation from Section 7.4 and the optimized version (including calls to Insertion Sort
for lists of length below nine). For Quicksort, two versions are compared: the basic
implementation from Section 7.5 and an optimized version that does not partition
sublists below length nine (with Insertion Sort performed at the end). The first
Heapsort version uses the class definitions from Section 5.5. The second version
removes all the class definitions and operates directly on the array using inlined
code for all access functions.

Except for the rightmost columns, the input to each algorithm is a random array
of integers. This affects the timing for some of the sorting algorithms. For exam-
ple, Selection Sort is not being used to best advantage because the record size is
small, so it does not get the best possible showing. The Radix Sort implementation
certainly takes advantage of this key range in that it does not look at more digits
than necessary. On the other hand, it was not optimized to use bit shifting instead
of division, even though the bases used would permit this.

The various sorting algorithms are shown for lists of sizes 10, 100, 1000,
10,000, 100,000, and 1,000,000. The final two columns of each table show the
performance for the algorithms on inputs of size 10,000 where the numbers are
in ascending (sorted) and descending (reverse sorted) order, respectively. These
columns demonstrate best-case performance for some algorithms and worst-case
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performance for others. They also show that for some algorithms, the order of
input has little effect.

These figures show a number of interesting results. As expected, the O(n2)
sorts are quite poor performers for large arrays. Insertion Sort is by far the best of
this group, unless the array is already reverse sorted. Shellsort is clearly superior
to any of these O(n2) sorts for lists of even 100 elements. Optimized Quicksort is
clearly the best overall algorithm for all but lists of 10 elements. Even for small
arrays, optimized Quicksort performs well because it does one partition step be-
fore calling Insertion Sort. Compared to the other O(n log n) sorts, unoptimized
Heapsort is quite slow due to the overhead of the class structure. When all of this
is stripped away and the algorithm is implemented to manipulate an array directly,
it is still somewhat slower than mergesort. In general, optimizing the various algo-
rithms makes a noticeable improvement for larger array sizes.

Overall, Radix Sort is a surprisingly poor performer. If the code had been tuned
to use bit shifting of the key value, it would likely improve substantially; but this
would seriously limit the range of element types that the sort could support.

7.9 Lower Bounds for Sorting

This book contains many analyses for algorithms. These analyses generally define
the upper and lower bounds for algorithms in their worst and average cases. For
many of the algorithms presented so far, analysis has been easy. This section con-
siders a more difficult task — an analysis for the cost of a problem as opposed to an
algorithm. The upper bound for a problem can be defined as the asymptotic cost of
the fastest known algorithm. The lower bound defines the best possible efficiency
for any algorithm that solves the problem, including algorithms not yet invented.
Once the upper and lower bounds for the problem meet, we know that no future
algorithm can possibly be (asymptotically) more efficient.

A simple estimate for a problem’s lower bound can be obtained by measuring
the size of the input that must be read and the output that must be written. Certainly
no algorithm can be more efficient than the problem’s I/O time. From this we see
that the sorting problem cannot be solved by any algorithm in less than Ω(n) time
because it takes at least n steps to read and write the n values to be sorted. Alter-
natively, any sorting algorithm must at least look at every input vale to recognize
whether the input values are in sort order. So, based on our current knowledge of
sorting algorithms and the size of the input, we know that the problem of sorting is
bounded by Ω(n) and O(n log n).

Computer scientists have spent much time devising efficient general-purpose
sorting algorithms, but no one has ever found one that is faster than O(n log n) in
the worst or average cases. Should we keep searching for a faster sorting algorithm?
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Or can we prove that there is no faster sorting algorithm by finding a tighter lower
bound?

This section presents one of the most important and most useful proofs in com-
puter science: No sorting algorithm based on key comparisons can possibly be
faster than Ω(n log n) in the worst case. This proof is important for three reasons.
First, knowing that widely used sorting algorithms are asymptotically optimal is re-
assuring. In particular, it means that you need not bang your head against the wall
searching for an O(n) sorting algorithm (or at least not one in any way based on key
comparisons). Second, this proof is one of the few non-trivial lower-bounds proofs
that we have for any problem; that is, this proof provides one of the relatively few
instances where our lower bound is tighter than simply measuring the size of the
input and output. As such, it provides a useful model for proving lower bounds on
other problems. Finally, knowing a lower bound for sorting gives us a lower bound
in turn for other problems whose solution could be used as the basis for a sorting
algorithm. The process of deriving asymptotic bounds for one problem from the
asymptotic bounds of another is called a reduction, a concept further explored in
Chapter 17.

Except for the Radix Sort and Binsort, all of the sorting algorithms presented
in this chapter make decisions based on the direct comparison of two key values.
For example, Insertion Sort sequentially compares the value to be inserted into the
sorted list until a comparison against the next value in the list fails. In contrast,
Radix Sort has no direct comparison of key values. All decisions are based on the
value of specific digits in the key value, so it is possible to take approaches to sorting
that do not involve key comparisons. Of course, Radix Sort in the end does not
provide a more efficient sorting algorithm than comparison-based sorting. Thus,
empirical evidence suggests that comparison-based sorting is a good approach.3

The proof that any comparison sort requires Ω(n log n) comparisons in the
worst case is structured as follows. First, comparison-based decisions can be mod-
eled as the branches in a tree. This means that any sorting algorithm based on com-
parisons between records can be viewed as a binary tree whose nodes correspond to
the comparisons, and whose branches correspond to the possible outcomes. Next,
the minimum number of leaves in the resulting tree is shown to be the factorial of
n. Finally, the minimum depth of a tree with n! leaves is shown to be in Ω(n log n).

Before presenting the proof of an Ω(n log n) lower bound for sorting, we first
must define the concept of a decision tree. A decision tree is a binary tree that can
model the processing for any algorithm that makes binary decisions. Each (binary)
decision is represented by a branch in the tree. For the purpose of modeling sorting
algorithms, we count all comparisons of key values as decisions. If two keys are

3The truth is stronger than this statement implies. In reality, Radix Sort relies on comparisons as
well and so can be modeled by the technique used in this section. The result is an Ω(n logn) bound
in the general case even for algorithms that look like Radix Sort.
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Figure 7.21 Decision tree for Insertion Sort when processing three values la-
beled X, Y, and Z, initially stored at positions 0, 1, and 2, respectively, in input
array A.

compared and the first is less than the second, then this is modeled as a left branch
in the decision tree. In the case where the first value is greater than the second, the
algorithm takes the right branch.

Figure 7.21 shows the decision tree that models Insertion Sort on three input
values. The first input value is labeled X, the second Y, and the third Z. They are
initially stored in positions 0, 1, and 2, respectively, of input array A. Consider the
possible outputs. Initially, we know nothing about the final positions of the three
values in the sorted output array. The correct output could be any permutation of
the input values. For three values, there are n! = 6 permutations. Thus, the root
node of the decision tree lists all six permutations that might be the eventual result
of the algorithm.

When n = 3, the first comparison made by Insertion Sort is between the sec-
ond item in the input array (Y) and the first item in the array (X). There are two
possibilities: Either the value of Y is less than that of X, or the value of Y is not
less than that of X. This decision is modeled by the first branch in the tree. If Y is
less than X, then the left branch should be taken and Y must appear before X in the
final output. Only three of the original six permutations have this property, so the
left child of the root lists the three permutations where Y appears before X: YXZ,
YZX, and ZYX. Likewise, if Y were not less than X, then the right branch would
be taken, and only the three permutations in which Y appears after X are possible
outcomes: XYZ, XZY, and ZXY. These are listed in the right child of the root.

Let us assume for the moment that Y is less than X and so the left branch is
taken. In this case, Insertion Sort swaps the two values. At this point the array
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stores YXZ. Thus, in Figure 7.21 the left child of the root shows YXZ above the
line. Next, the third value in the array is compared against the second (i.e., Z is
compared with X). Again, there are two possibilities. If Z is less than X, then these
items should be swapped (the left branch). If Z is not less than X, then Insertion
Sort is complete (the right branch).

Note that the right branch reaches a leaf node, and that this leaf node contains
only one permutation: YXZ. This means that only permutation YXZ can be the
outcome based on the results of the decisions taken to reach this node. In other
words, Insertion Sort has “found” the single permutation of the original input that
yields a sorted list. Likewise, if the second decision resulted in taking the left
branch, a third comparison, regardless of the outcome, yields nodes in the decision
tree with only single permutations. Again, Insertion Sort has “found” the correct
permutation that yields a sorted list.

Any sorting algorithm based on comparisons can be modeled by a decision tree
in this way, regardless of the size of the input. Thus, all sorting algorithms can
be viewed as algorithms to “find” the correct permutation of the input that yields
a sorted list. Each algorithm based on comparisons can be viewed as proceeding
by making branches in the tree based on the results of key comparisons, and each
algorithm can terminate once a node with a single permutation has been reached.

How is the worst-case cost of an algorithm expressed by the decision tree? The
decision tree shows the decisions made by an algorithm for all possible inputs of a
given size. Each path through the tree from the root to a leaf is one possible series
of decisions taken by the algorithm. The depth of the deepest node represents the
longest series of decisions required by the algorithm to reach an answer.

There are many comparison-based sorting algorithms, and each will be mod-
eled by a different decision tree. Some decision trees might be well-balanced, oth-
ers might be unbalanced. Some trees will have more nodes than others (those with
more nodes might be making “unnecessary” comparisons). In fact, a poor sorting
algorithm might have an arbitrarily large number of nodes in its decision tree, with
leaves of arbitrary depth. There is no limit to how slow the “worst” possible sort-
ing algorithm could be. However, we are interested here in knowing what the best
sorting algorithm could have as its minimum cost in the worst case. In other words,
we would like to know what is the smallest depth possible for the deepest node in
the tree for any sorting algorithm.

The smallest depth of the deepest node will depend on the number of nodes
in the tree. Clearly we would like to “push up” the nodes in the tree, but there is
limited room at the top. A tree of height 1 can only store one node (the root); the
tree of height 2 can store three nodes; the tree of height 3 can store seven nodes,
and so on.

Here are some important facts worth remembering:

• A binary tree of height n can store at most 2n − 1 nodes.
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• Equivalently, a tree with n nodes requires at least dlog(n+ 1)e levels.

What is the minimum number of nodes that must be in the decision tree for any
comparison-based sorting algorithm for n values? Because sorting algorithms are
in the business of determining which unique permutation of the input corresponds
to the sorted list, the decision tree for any sorting algorithm must contain at least
one leaf node for each possible permutation. There are n! permutations for a set of
n numbers (see Section 2.2).

Because there are at least n! nodes in the tree, we know that the tree must
have Ω(log n!) levels. From Stirling’s approximation (Section 2.2), we know log n!
is in Ω(n log n). The decision tree for any comparison-based sorting algorithm
must have nodes Ω(n log n) levels deep. Thus, in the worst case, any such sorting
algorithm must require Ω(n log n) comparisons.

Any sorting algorithm requiring Ω(n log n) comparisons in the worst case re-
quires Ω(n log n) running time in the worst case. Because any sorting algorithm
requires Ω(n log n) running time, the problem of sorting also requires Ω(n log n)
time. We already know of sorting algorithms with O(n log n) running time, so we
can conclude that the problem of sorting requires Θ(n log n) time. As a corol-
lary, we know that no comparison-based sorting algorithm can improve on existing
Θ(n log n) time sorting algorithms by more than a constant factor.

7.10 Further Reading

The definitive reference on sorting is Donald E. Knuth’s Sorting and Searching
[Knu98]. A wealth of details is covered there, including optimal sorts for small
size n and special purpose sorting networks. It is a thorough (although somewhat
dated) treatment on sorting. For an analysis of Quicksort and a thorough survey
on its optimizations, see Robert Sedgewick’s Quicksort [Sed80]. Sedgewick’s Al-
gorithms [Sed11] discusses most of the sorting algorithms described here and pays
special attention to efficient implementation. The optimized Mergesort version of
Section 7.4 comes from Sedgewick.

While Ω(n log n) is the theoretical lower bound in the worst case for sorting,
many times the input is sufficiently well ordered that certain algorithms can take
advantage of this fact to speed the sorting process. A simple example is Insertion
Sort’s best-case running time. Sorting algorithms whose running time is based on
the amount of disorder in the input are called adaptive. For more information on
adaptive sorting algorithms, see “A Survey of Adaptive Sorting Algorithms” by
Estivill-Castro and Wood [ECW92].

7.11 Exercises

7.1 Using induction, prove that Insertion Sort will always produce a sorted array.
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7.2 Write an Insertion Sort algorithm for integer key values. However, here’s
the catch: The input is a stack (not an array), and the only variables that
your algorithm may use are a fixed number of integers and a fixed number of
stacks. The algorithm should return a stack containing the records in sorted
order (with the least value being at the top of the stack). Your algorithm
should be Θ(n2) in the worst case.

7.3 The Bubble Sort implementation has the following inner for loop:

for (int j=n-1; j>i; j--)

Consider the effect of replacing this with the following statement:

for (int j=n-1; j>0; j--)

Would the new implementation work correctly? Would the change affect the
asymptotic complexity of the algorithm? How would the change affect the
running time of the algorithm?

7.4 When implementing Insertion Sort, a binary search could be used to locate
the position within the first i − 1 elements of the array into which element
i should be inserted. How would this affect the number of comparisons re-
quired? How would using such a binary search affect the asymptotic running
time for Insertion Sort?

7.5 Figure 7.5 shows the best-case number of swaps for Selection Sort as Θ(n).
This is because the algorithm does not check to see if the ith record is already
in the ith position; that is, it might perform unnecessary swaps.

(a) Modify the algorithm so that it does not make unnecessary swaps.
(b) What is your prediction regarding whether this modification actually

improves the running time?
(c) Write two programs to compare the actual running times of the origi-

nal Selection Sort and the modified algorithm. Which one is actually
faster?

7.6 Recall that a sorting algorithm is said to be stable if the original ordering for
duplicate keys is preserved. Of the sorting algorithms Insertion Sort, Bub-
ble Sort, Selection Sort, Shellsort, Mergesort, Quicksort, Heapsort, Binsort,
and Radix Sort, which of these are stable, and which are not? For each one,
describe either why it is or is not stable. If a minor change to the implemen-
tation would make it stable, describe the change.

7.7 Recall that a sorting algorithm is said to be stable if the original ordering for
duplicate keys is preserved. We can make any algorithm stable if we alter
the input keys so that (potentially) duplicate key values are made unique in
a way that the first occurrence of the original duplicate value is less than the
second occurrence, which in turn is less than the third, and so on. In the worst
case, it is possible that all n input records have the same key value. Give an
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algorithm to modify the key values such that every modified key value is
unique, the resulting key values give the same sort order as the original keys,
the result is stable (in that the duplicate original key values remain in their
original order), and the process of altering the keys is done in linear time
using only a constant amount of additional space.

7.8 The discussion of Quicksort in Section 7.5 described using a stack instead of
recursion to reduce the number of function calls made.

(a) How deep can the stack get in the worst case?
(b) Quicksort makes two recursive calls. The algorithm could be changed

to make these two calls in a specific order. In what order should the
two calls be made, and how does this affect how deep the stack can
become?

7.9 Give a permutation for the values 0 through 7 that will cause Quicksort (as
implemented in Section 7.5) to have its worst case behavior.

7.10 Assume L is an array, length(L) returns the number of records in the
array, and qsort(L, i, j) sorts the records of L from i to j (leaving
the records sorted in L) using the Quicksort algorithm. What is the average-
case time complexity for each of the following code fragments?

(a) for (i=0; i<length(L); i++)
qsort(L, 0, i);

(b) for (i=0; i<length(L); i++)
qsort(L, 0, length(L)-1);

7.11 Modify Quicksort to find the smallest k values in an array of records. Your
output should be the array modified so that the k smallest values are sorted
in the first k positions of the array. Your algorithm should do the minimum
amount of work necessary, that is, no more of the array than necessary should
be sorted.

7.12 Modify Quicksort to sort a sequence of variable-length strings stored one
after the other in a character array, with a second array (storing pointers to
strings) used to index the strings. Your function should modify the index
array so that the first pointer points to the beginning of the lowest valued
string, and so on.

7.13 Graph f1(n) = n log n, f2(n) = n1.5, and f3(n) = n2 in the range 1 ≤ n ≤
1000 to visually compare their growth rates. Typically, the constant factor
in the running-time expression for an implementation of Insertion Sort will
be less than the constant factors for Shellsort or Quicksort. How many times
greater can the constant factor be for Shellsort to be faster than Insertion Sort
when n = 1000? How many times greater can the constant factor be for
Quicksort to be faster than Insertion Sort when n = 1000?
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7.14 Imagine that there exists an algorithm SPLITk that can split a list L of n
elements into k sublists, each containing one or more elements, such that
sublist i contains only elements whose values are less than all elements in
sublist j for i < j <= k. If n < k, then k−n sublists are empty, and the rest
are of length 1. Assume that SPLITk has time complexity O(length of L).
Furthermore, assume that the k lists can be concatenated again in constant
time. Consider the following algorithm:

List SORTk(List L) {
List sub[k]; // To hold the sublists
if (L.length() > 1) {

SPLITk(L, sub); // SPLITk places sublists into sub
for (i=0; i<k; i++)

sub[i] = SORTk(sub[i]); // Sort each sublist
L = concatenation of k sublists in sub;
return L;

}
}

(a) What is the worst-case asymptotic running time for SORTk? Why?
(b) What is the average-case asymptotic running time of SORTk? Why?

7.15 Here is a variation on sorting. The problem is to sort a collection of n nuts
and n bolts by size. It is assumed that for each bolt in the collection, there
is a corresponding nut of the same size, but initially we do not know which
nut goes with which bolt. The differences in size between two nuts or two
bolts can be too small to see by eye, so you cannot rely on comparing the
sizes of two nuts or two bolts directly. Instead, you can only compare the
sizes of a nut and a bolt by attempting to screw one into the other (assume
this comparison to be a constant time operation). This operation tells you
that either the nut is bigger than the bolt, the bolt is bigger than the nut, or
they are the same size. What is the minimum number of comparisons needed
to sort the nuts and bolts in the worst case?

7.16 (a) Devise an algorithm to sort three numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

(b) Devise an algorithm to sort five numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

(c) Devise an algorithm to sort eight numbers. It should make as few com-
parisons as possible. How many comparisons and swaps are required
in the best, worst, and average cases?

7.17 Devise an efficient algorithm to sort a set of numbers with values in the range
0 to 30,000. There are no duplicates. Keep memory requirements to a mini-
mum.
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7.18 Which of the following operations are best implemented by first sorting the
list of numbers? For each operation, briefly describe an algorithm to imple-
ment it, and state the algorithm’s asymptotic complexity.

(a) Find the minimum value.
(b) Find the maximum value.
(c) Compute the arithmetic mean.
(d) Find the median (i.e., the middle value).
(e) Find the mode (i.e., the value that appears the most times).

7.19 Consider a recursive Mergesort implementation that calls Insertion Sort on
sublists smaller than some threshold. If there are n calls to Mergesort, how
many calls will there be to Insertion Sort? Why?

7.20 Implement Mergesort for the case where the input is a linked list.
7.21 Counting sort (assuming the input key values are integers in the range 0 to

m− 1) works by counting the number of records with each key value in the
first pass, and then uses this information to place the records in order in a
second pass. Write an implementation of counting sort (see the implementa-
tion of radix sort for some ideas). What can we say about the relative values
of m and n for this to be effective? If m < n, what is the running time of
this algorithm?

7.22 Use an argument similar to that given in Section 7.9 to prove that log n is a
worst-case lower bound for the problem of searching for a given value in a
sorted array containing n elements.

7.23 A simpler way to do the Quicksort partition step is to set index split
to the position of the first value greater than the pivot. Then from posi-
tion split+1 have another index curr move to the right until it finds a
value less than a pivot. Swap the values at split and next, and incre-
ment split. Continue in this way, swapping the smaller values to the left
side. When curr reaches the end of the subarray, split will be at the split
point between the two partitions. Unfortunately, this approach requires more
swaps than does the version presented in Section 7.5, resulting in a slower
implementation. Give an example and explain why.

7.12 Projects

7.1 One possible improvement for Bubble Sort would be to add a flag variable
and a test that determines if an exchange was made during the current iter-
ation. If no exchange was made, then the list is sorted and so the algorithm
can stop early. This makes the best case performance become O(n) (because
if the list is already sorted, then no iterations will take place on the first pass,
and the sort will stop right there).
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Modify the Bubble Sort implementation to add this flag and test. Compare
the modified implementation on a range of inputs to determine if it does or
does not improve performance in practice.

7.2 Double Insertion Sort is a variation on Insertion Sort that works from the
middle of the array out. At each iteration, some middle portion of the array
is sorted. On the next iteration, take the two adjacent elements to the sorted
portion of the array. If they are out of order with respect to each other, than
swap them. Now, push the left element toward the right in the array so long
as it is greater than the element to its right. And push the right element
toward the left in the array so long as it is less than the element to its left.
The algorithm begins by processing the middle two elements of the array if
the array is even. If the array is odd, then skip processing the middle item
and begin with processing the elements to its immediate left and right.
First, explain what the cost of Double Insertion Sort will be in comparison to
standard Insertion sort, and why. (Note that the two elements being processed
in the current iteration, once initially swapped to be sorted with with respect
to each other, cannot cross as they are pushed into sorted position.) Then, im-
plement Double Insertion Sort, being careful to properly handle both when
the array is odd and when it is even. Compare its running time in practice
against standard Insertion Sort. Finally, explain how this speedup might af-
fect the threshold level and running time for a Quicksort implementation.

7.3 Perform a study of Shellsort, using different increments. Compare the ver-
sion shown in Section 7.3, where each increment is half the previous one,
with others. In particular, try implementing “division by 3” where the incre-
ments on a list of length nwill be n/3, n/9, etc. Do other increment schemes
work as well?

7.4 The implementation for Mergesort given in Section 7.4 takes an array as in-
put and sorts that array. At the beginning of Section 7.4 there is a simple
pseudocode implementation for sorting a linked list using Mergesort. Im-
plement both a linked list-based version of Mergesort and the array-based
version of Mergesort, and compare their running times.

7.5 Starting with the C++ code for Quicksort given in this chapter, write a series
of Quicksort implementations to test the following optimizations on a wide
range of input data sizes. Try these optimizations in various combinations to
try and develop the fastest possible Quicksort implementation that you can.

(a) Look at more values when selecting a pivot.
(b) Do not make a recursive call to qsort when the list size falls below a

given threshold, and use Insertion Sort to complete the sorting process.
Test various values for the threshold size.

(c) Eliminate recursion by using a stack and inline functions.
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7.6 It has been proposed that Heapsort can be optimized by altering the heap’s
siftdown function. Call the value being sifted down X . Siftdown does two
comparisons per level: First the children ofX are compared, then the winner
is compared toX . IfX is too small, it is swapped with its larger child and the
process repeated. The proposed optimization dispenses with the test against
X . Instead, the larger child automatically replaces X , until X reaches the
bottom level of the heap. At this point, X might be too large to remain in
that position. This is corrected by repeatedly comparing X with its parent
and swapping as necessary to “bubble” it up to its proper level. The claim
is that this process will save a number of comparisons because most nodes
when sifted down end up near the bottom of the tree anyway. Implement both
versions of siftdown, and do an empirical study to compare their running
times.

7.7 Radix Sort is typically implemented to support only a radix that is a power
of two. This allows for a direct conversion from the radix to some number
of bits in an integer key value. For example, if the radix is 16, then a 32-bit
key will be processed in 8 steps of 4 bits each. This can lead to a more effi-
cient implementation because bit shifting can replace the division operations
shown in the implementation of Section 7.7. Re-implement the Radix Sort
code given in Section 7.7 to use bit shifting in place of division. Compare
the running time of the old and new Radix Sort implementations.

7.8 Write your own collection of sorting programs to implement the algorithms
described in this chapter, and compare their running times. Be sure to im-
plement optimized versions, trying to make each program as fast as possible.
Do you get the same relative timings as shown in Figure 7.20? If not, why do
you think this happened? How do your results compare with those of your
classmates? What does this say about the difficulty of doing empirical timing
studies?





8

File Processing and External
Sorting

Earlier chapters presented basic data structures and algorithms that operate on data
stored in main memory. Some applications require that large amounts of informa-
tion be stored and processed — so much information that it cannot all fit into main
memory. In that case, the information must reside on disk and be brought into main
memory selectively for processing.

You probably already realize that main memory access is much faster than ac-
cess to data stored on disk or other storage devices. The relative difference in access
times is so great that efficient disk-based programs require a different approach to
algorithm design than most programmers are used to. As a result, many program-
mers do a poor job when it comes to file processing applications.

This chapter presents the fundamental issues relating to the design of algo-
rithms and data structures for disk-based applications.1 We begin with a descrip-
tion of the significant differences between primary memory and secondary storage.
Section 8.2 discusses the physical aspects of disk drives. Section 8.3 presents ba-
sic methods for managing buffer pools. Section 8.4 discusses the C++ model for
random access to data stored on disk. Section 8.5 discusses the basic principles for
sorting collections of records too large to fit in main memory.

8.1 Primary versus Secondary Storage

Computer storage devices are typically classified into primary or main memory
and secondary or peripheral storage. Primary memory usually refers to Random

1Computer technology changes rapidly. I provide examples of disk drive specifications and other
hardware performance numbers that are reasonably up to date as of the time when the book was
written. When you read it, the numbers might seem out of date. However, the basic principles do not
change. The approximate ratios for time, space, and cost between memory and disk have remained
surprisingly steady for over 20 years.
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Medium 1996 1997 2000 2004 2006 2008 2011
RAM $45.00 7.00 1.500 0.3500 0.1500 0.0339 0.0138
Disk 0.25 0.10 0.010 0.0010 0.0005 0.0001 0.0001
USB drive – – – 0.1000 0.0900 0.0029 0.0018
Floppy 0.50 0.36 0.250 0.2500 – – –
Tape 0.03 0.01 0.001 0.0003 – – –
Solid State – – – – – – 0.0021

Figure 8.1 Price comparison table for some writable electronic data storage
media in common use. Prices are in US Dollars/MB.

Access Memory (RAM), while secondary storage refers to devices such as hard
disk drives, solid state drives, removable “USB” drives, CDs, and DVDs. Primary
memory also includes registers, cache, and video memories, but we will ignore
them for this discussion because their existence does not affect the principal differ-
ences between primary and secondary memory.

Along with a faster CPU, every new model of computer seems to come with
more main memory. As memory size continues to increase, is it possible that rel-
atively slow disk storage will be unnecessary? Probably not, because the desire to
store and process larger files grows at least as fast as main memory size. Prices
for both main memory and peripheral storage devices have dropped dramatically
in recent years, as demonstrated by Figure 8.1. However, the cost per unit of disk
drive storage is about two orders of magnitude less than RAM and has been for
many years.

There is now a wide range of removable media available for transferring data
or storing data offline in relative safety. These include floppy disks (now largely
obsolete), writable CDs and DVDs, “flash” drives, and magnetic tape. Optical stor-
age such as CDs and DVDs costs roughly half the price of hard disk drive space
per megabyte, and have become practical for use as backup storage within the past
few years. Tape used to be much cheaper than other media, and was the preferred
means of backup, but are not so popular now as other media have decreased in
price. “Flash” drives cost the most per megabyte, but due to their storage capac-
ity and flexibility, quickly replaced floppy disks as the primary storage device for
transferring data between computer when direct network transfer is not available.

Secondary storage devices have at least two other advantages over RAM mem-
ory. Perhaps most importantly, disk, “flash,” and optical media are persistent,
meaning that they are not erased from the media when the power is turned off. In
contrast, RAM used for main memory is usually volatile — all information is lost
with the power. A second advantage is that CDs and “USB” drives can easily be
transferred between computers. This provides a convenient way to take information
from one computer to another.
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In exchange for reduced storage costs, persistence, and portability, secondary
storage devices pay a penalty in terms of increased access time. While not all ac-
cesses to disk take the same amount of time (more on this later), the typical time
required to access a byte of storage from a disk drive in 2011 is around 9 ms (i.e.,
9 thousandths of a second). This might not seem slow, but compared to the time
required to access a byte from main memory, this is fantastically slow. Typical
access time from standard personal computer RAM in 2011 is about 5-10 nanosec-
onds (i.e., 5-10 billionths of a second). Thus, the time to access a byte of data from
a disk drive is about six orders of magnitude greater than that required to access a
byte from main memory. While disk drive and RAM access times are both decreas-
ing, they have done so at roughly the same rate. The relative speeds have remained
the same for over several decades, in that the difference in access time between
RAM and a disk drive has remained in the range between a factor of 100,000 and
1,000,000.

To gain some intuition for the significance of this speed difference, consider the
time that it might take for you to look up the entry for disk drives in the index of
this book, and then turn to the appropriate page. Call this your “primary memory”
access time. If it takes you about 20 seconds to perform this access, then an access
taking 500,000 times longer would require months.

It is interesting to note that while processing speeds have increased dramat-
ically, and hardware prices have dropped dramatically, disk and memory access
times have improved by less than an order of magnitude over the past 15 years.
However, the situation is really much better than that modest speedup would sug-
gest. During the same time period, the size of both disk and main memory has
increased by over three orders of magnitude. Thus, the access times have actually
decreased in the face of a massive increase in the density of these storage devices.

Due to the relatively slow access time for data on disk as compared to main
memory, great care is required to create efficient applications that process disk-
based information. The million-to-one ratio of disk access time versus main mem-
ory access time makes the following rule of paramount importance when designing
disk-based applications:

Minimize the number of disk accesses!

There are generally two approaches to minimizing disk accesses. The first is
to arrange information so that if you do access data from secondary memory, you
will get what you need in as few accesses as possible, and preferably on the first
access. File structure is the term used for a data structure that organizes data
stored in secondary memory. File structures should be organized so as to minimize
the required number of disk accesses. The other way to minimize disk accesses is to
save information previously retrieved (or retrieve additional data with each access
at little additional cost) that can be used to minimize the need for future accesses.
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This requires the ability to guess accurately what information will be needed later
and store it in primary memory now. This is referred to as caching.

8.2 Disk Drives

A C++ programmer views a random access file stored on disk as a contiguous
series of bytes, with those bytes possibly combining to form data records. This
is called the logical file. The physical file actually stored on disk is usually not
a contiguous series of bytes. It could well be in pieces spread all over the disk.
The file manager, a part of the operating system, is responsible for taking requests
for data from a logical file and mapping those requests to the physical location
of the data on disk. Likewise, when writing to a particular logical byte position
with respect to the beginning of the file, this position must be converted by the
file manager into the corresponding physical location on the disk. To gain some
appreciation for the the approximate time costs for these operations, you need to
understand the physical structure and basic workings of a disk drive.

Disk drives are often referred to as direct access storage devices. This means
that it takes roughly equal time to access any record in the file. This is in contrast
to sequential access storage devices such as tape drives, which require the tape
reader to process data from the beginning of the tape until the desired position has
been reached. As you will see, the disk drive is only approximately direct access:
At any given time, some records are more quickly accessible than others.

8.2.1 Disk Drive Architecture

A hard disk drive is composed of one or more round platters, stacked one on top of
another and attached to a central spindle. Platters spin continuously at a constant
rate. Each usable surface of each platter is assigned a read/write head or I/O
head through which data are read or written, somewhat like the arrangement of
a phonograph player’s arm “reading” sound from a phonograph record. Unlike a
phonograph needle, the disk read/write head does not actually touch the surface of
a hard disk. Instead, it remains slightly above the surface, and any contact during
normal operation would damage the disk. This distance is very small, much smaller
than the height of a dust particle. It can be likened to a 5000-kilometer airplane trip
across the United States, with the plane flying at a height of one meter!

A hard disk drive typically has several platters and several read/write heads, as
shown in Figure 8.2(a). Each head is attached to an arm, which connects to the
boom.2 The boom moves all of the heads in or out together. When the heads are
in some position over the platters, there are data on each platter directly accessible

2This arrangement, while typical, is not necessarily true for all disk drives. Nearly everything
said here about the physical arrangement of disk drives represents a typical engineering compromise,
not a fundamental design principle. There are many ways to design disk drives, and the engineering
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Figure 8.2 (a) A typical disk drive arranged as a stack of platters. (b) One track
on a disk drive platter.

to each head. The data on a single platter that are accessible to any one position of
the head for that platter are collectively called a track, that is, all data on a platter
that are a fixed distance from the spindle, as shown in Figure 8.2(b). The collection
of all tracks that are a fixed distance from the spindle is called a cylinder. Thus, a
cylinder is all of the data that can be read when the arms are in a particular position.

Each track is subdivided into sectors. Between each sector there are inter-
sector gaps in which no data are stored. These gaps allow the read head to recog-
nize the end of a sector. Note that each sector contains the same amount of data.
Because the outer tracks have greater length, they contain fewer bits per inch than
do the inner tracks. Thus, about half of the potential storage space is wasted, be-
cause only the innermost tracks are stored at the highest possible data density. This
arrangement is illustrated by Figure 8.3a. Disk drives today actually group tracks
into “zones” such that the tracks in the innermost zone adjust their data density
going out to maintain the same radial data density, then the tracks of the next zone
reset the data density to make better use of their storage ability, and so on. This
arrangement is shown in Figure 8.3b.

In contrast to the physical layout of a hard disk, a CD-ROM consists of a single
spiral track. Bits of information along the track are equally spaced, so the informa-
tion density is the same at both the outer and inner portions of the track. To keep
the information flow at a constant rate along the spiral, the drive must speed up the
rate of disk spin as the I/O head moves toward the center of the disk. This makes
for a more complicated and slower mechanism.

Three separate steps take place when reading a particular byte or series of bytes
of data from a hard disk. First, the I/O head moves so that it is positioned over the
track containing the data. This movement is called a seek. Second, the sector
containing the data rotates to come under the head. When in use the disk is always

compromises change over time. In addition, most of the description given here for disk drives is a
simplified version of the reality. But this is a useful working model to understand what is going on.
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Figure 8.3 The organization of a disk platter. Dots indicate density of informa-
tion. (a) Nominal arrangement of tracks showing decreasing data density when
moving outward from the center of the disk. (b) A “zoned” arrangement with the
sector size and density periodically reset in tracks further away from the center.

spinning. At the time of this writing, typical disk spin rates are 7200 rotations per
minute (rpm). The time spent waiting for the desired sector to come under the
I/O head is called rotational delay or rotational latency. The third step is the
actual transfer (i.e., reading or writing) of data. It takes relatively little time to
read information once the first byte is positioned under the I/O head, simply the
amount of time required for it all to move under the head. In fact, disk drives are
designed not to read one byte of data, but rather to read an entire sector of data at
each request. Thus, a sector is the minimum amount of data that can be read or
written at one time.

In general, it is desirable to keep all sectors for a file together on as few tracks
as possible. This desire stems from two assumptions:

1. Seek time is slow (it is typically the most expensive part of an I/O operation),
and

2. If one sector of the file is read, the next sector will probably soon be read.

Assumption (2) is called locality of reference, a concept that comes up frequently
in computer applications.

Contiguous sectors are often grouped to form a cluster. A cluster is the smallest
unit of allocation for a file, so all files are a multiple of the cluster size. The cluster
size is determined by the operating system. The file manager keeps track of which
clusters make up each file.

In Microsoft Windows systems, there is a designated portion of the disk called
the File Allocation Table, which stores information about which sectors belong
to which file. In contrast, UNIX does not use clusters. The smallest unit of file



Sec. 8.2 Disk Drives 279

allocation and the smallest unit that can be read/written is a sector, which in UNIX
terminology is called a block. UNIX maintains information about file organization
in certain disk blocks called i-nodes.

A group of physically contiguous clusters from the same file is called an extent.
Ideally, all clusters making up a file will be contiguous on the disk (i.e., the file will
consist of one extent), so as to minimize seek time required to access different
portions of the file. If the disk is nearly full when a file is created, there might not
be an extent available that is large enough to hold the new file. Furthermore, if a file
grows, there might not be free space physically adjacent. Thus, a file might consist
of several extents widely spaced on the disk. The fuller the disk, and the more that
files on the disk change, the worse this file fragmentation (and the resulting seek
time) becomes. File fragmentation leads to a noticeable degradation in performance
as additional seeks are required to access data.

Another type of problem arises when the file’s logical record size does not
match the sector size. If the sector size is not a multiple of the record size (or
vice versa), records will not fit evenly within a sector. For example, a sector might
be 2048 bytes long, and a logical record 100 bytes. This leaves room to store
20 records with 48 bytes left over. Either the extra space is wasted, or else records
are allowed to cross sector boundaries. If a record crosses a sector boundary, two
disk accesses might be required to read it. If the space is left empty instead, such
wasted space is called internal fragmentation.

A second example of internal fragmentation occurs at cluster boundaries. Files
whose size is not an even multiple of the cluster size must waste some space at
the end of the last cluster. The worst case will occur when file size modulo cluster
size is one (for example, a file of 4097 bytes and a cluster of 4096 bytes). Thus,
cluster size is a tradeoff between large files processed sequentially (where a large
cluster size is desirable to minimize seeks) and small files (where small clusters are
desirable to minimize wasted storage).

Every disk drive organization requires that some disk space be used to organize
the sectors, clusters, and so forth. The layout of sectors within a track is illustrated
by Figure 8.4. Typical information that must be stored on the disk itself includes
the File Allocation Table, sector headers that contain address marks and informa-
tion about the condition (whether usable or not) for each sector, and gaps between
sectors. The sector header also contains error detection codes to help verify that the
data have not been corrupted. This is why most disk drives have a “nominal” size
that is greater than the actual amount of user data that can be stored on the drive.
The difference is the amount of space required to organize the information on the
disk. Even more space will be lost due to fragmentation.
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Figure 8.4 An illustration of sector gaps within a track. Each sector begins with
a sector header containing the sector address and an error detection code for the
contents of that sector. The sector header is followed by a small intra-sector gap,
followed in turn by the sector data. Each sector is separated from the next sector
by a larger inter-sector gap.

8.2.2 Disk Access Costs

When a seek is required, it is usually the primary cost when accessing information
on disk. This assumes of course that a seek is necessary. When reading a file in
sequential order (if the sectors comprising the file are contiguous on disk), little
seeking is necessary. However, when accessing a random disk sector, seek time
becomes the dominant cost for the data access. While the actual seek time is highly
variable, depending on the distance between the track where the I/O head currently
is and the track where the head is moving to, we will consider only two numbers.
One is the track-to-track cost, or the minimum time necessary to move from a
track to an adjacent track. This is appropriate when you want to analyze access
times for files that are well placed on the disk. The second number is the average
seek time for a random access. These two numbers are often provided by disk
manufacturers. A typical example is the Western Digital Caviar serial ATA drive.
The manufacturer’s specifications indicate that the track-to-track time is 2.0 ms and
the average seek time is 9.0 ms. In 2008 a typical drive in this line might be 120GB
in size. In 2011, that same line of drives had sizes of up to 2 or 3TB. In both years,
the advertised track-to-track and average seek times were identical.

For many years, typical rotation speed for disk drives was 3600 rpm, or one
rotation every 16.7 ms. Most disk drives in 2011 had a rotation speed of 7200 rpm,
or 8.3 ms per rotation. When reading a sector at random, you can expect that the
disk will need to rotate halfway around to bring the desired sector under the I/O
head, or 4.2 ms for a 7200-rpm disk drive.

Once under the I/O head, a sector of data can be transferred as fast as that
sector rotates under the head. If an entire track is to be read, then it will require one
rotation (8.3 ms at 7200 rpm) to move the full track under the head. If only part of
the track is to be read, then proportionately less time will be required. For example,
if there are 16,000 sectors on the track and one sector is to be read, this will require
a trivial amount of time (1/16,000 of a rotation).

Example 8.1 Assume that an older disk drive has a total (nominal) ca-
pacity of 16.8GB spread among 10 platters, yielding 1.68GB/platter. Each
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platter contains 13,085 tracks and each track contains (after formatting)
256 sectors of 512 bytes/sector. Track-to-track seek time is 2.2 ms and av-
erage seek time for random access is 9.5 ms. Assume the operating system
maintains a cluster size of 8 sectors per cluster (4KB), yielding 32 clusters
per track. The disk rotation rate is 5400 rpm (11.1 ms per rotation). Based
on this information we can estimate the cost for various file processing op-
erations.

How much time is required to read the track? On average, it will require
half a rotation to bring the first sector of the track under the I/O head, and
then one complete rotation to read the track.

How long will it take to read a file of 1MB divided into 2048 sector-
sized (512 byte) records? This file will be stored in 256 clusters, because
each cluster holds 8 sectors. The answer to the question depends largely
on how the file is stored on the disk, that is, whether it is all together or
broken into multiple extents. We will calculate both cases to see how much
difference this makes.

If the file is stored so as to fill all of the sectors of eight adjacent tracks,
then the cost to read the first sector will be the time to seek to the first track
(assuming this requires a random seek), then a wait for the initial rotational
delay, and then the time to read (which is the same as the time to rotate the
disk again). This requires

9.5 + 11.1× 1.5 = 26.2 ms.

At this point, because we assume that the next seven tracks require only a
track-to-track seek because they are adjacent. Each requires

2.2 + 11.1× 1.5 = 18.9 ms.

The total time required is therefore

26.2ms + 7× 18.9ms = 158.5ms.

If the file’s clusters are spread randomly across the disk, then we must
perform a seek for each cluster, followed by the time for rotational delay.
Once the first sector of the cluster comes under the I/O head, very little time
is needed to read the cluster because only 8/256 of the track needs to rotate
under the head, for a total time of about 5.9 ms for latency and read time.
Thus, the total time required is about

256(9.5 + 5.9) ≈ 3942ms

or close to 4 seconds. This is much longer than the time required when the
file is all together on disk!
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This example illustrates why it is important to keep disk files from be-
coming fragmented, and why so-called “disk defragmenters” can speed up
file processing time. File fragmentation happens most commonly when the
disk is nearly full and the file manager must search for free space whenever
a file is created or changed.

8.3 Buffers and Buffer Pools

Given the specifications of the disk drive from Example 8.1, we find that it takes
about 9.5+11.1×1.5 = 26.2 ms to read one track of data on average. It takes about
9.5+11.1/2+(1/256)×11.1 = 15.1 ms on average to read a single sector of data.
This is a good savings (slightly over half the time), but less than 1% of the data on
the track are read. If we want to read only a single byte, it would save us effectively
no time over that required to read an entire sector. For this reason, nearly all disk
drives automatically read or write an entire sector’s worth of information whenever
the disk is accessed, even when only one byte of information is requested.

Once a sector is read, its information is stored in main memory. This is known
as buffering or caching the information. If the next disk request is to that same
sector, then it is not necessary to read from disk again because the information
is already stored in main memory. Buffering is an example of one method for
minimizing disk accesses mentioned at the beginning of the chapter: Bring off
additional information from disk to satisfy future requests. If information from files
were accessed at random, then the chance that two consecutive disk requests are to
the same sector would be low. However, in practice most disk requests are close
to the location (in the logical file at least) of the previous request. This means that
the probability of the next request “hitting the cache” is much higher than chance
would indicate.

This principle explains one reason why average access times for new disk drives
are lower than in the past. Not only is the hardware faster, but information is also
now stored using better algorithms and larger caches that minimize the number of
times information needs to be fetched from disk. This same concept is also used
to store parts of programs in faster memory within the CPU, using the CPU cache
that is prevalent in modern microprocessors.

Sector-level buffering is normally provided by the operating system and is of-
ten built directly into the disk drive controller hardware. Most operating systems
maintain at least two buffers, one for input and one for output. Consider what
would happen if there were only one buffer during a byte-by-byte copy operation.
The sector containing the first byte would be read into the I/O buffer. The output
operation would need to destroy the contents of the single I/O buffer to write this
byte. Then the buffer would need to be filled again from disk for the second byte,
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only to be destroyed during output. The simple solution to this problem is to keep
one buffer for input, and a second for output.

Most disk drive controllers operate independently from the CPU once an I/O
request is received. This is useful because the CPU can typically execute millions
of instructions during the time required for a single I/O operation. A technique that
takes maximum advantage of this micro-parallelism is double buffering. Imagine
that a file is being processed sequentially. While the first sector is being read, the
CPU cannot process that information and so must wait or find something else to do
in the meantime. Once the first sector is read, the CPU can start processing while
the disk drive (in parallel) begins reading the second sector. If the time required for
the CPU to process a sector is approximately the same as the time required by the
disk controller to read a sector, it might be possible to keep the CPU continuously
fed with data from the file. The same concept can also be applied to output, writing
one sector to disk while the CPU is writing to a second output buffer in memory.
Thus, in computers that support double buffering, it pays to have at least two input
buffers and two output buffers available.

Caching information in memory is such a good idea that it is usually extended
to multiple buffers. The operating system or an application program might store
many buffers of information taken from some backing storage such as a disk file.
This process of using buffers as an intermediary between a user and a disk file is
called buffering the file. The information stored in a buffer is often called a page,
and the collection of buffers is called a buffer pool. The goal of the buffer pool
is to increase the amount of information stored in memory in hopes of increasing
the likelihood that new information requests can be satisfied from the buffer pool
rather than requiring new information to be read from disk.

As long as there is an unused buffer available in the buffer pool, new informa-
tion can be read in from disk on demand. When an application continues to read
new information from disk, eventually all of the buffers in the buffer pool will be-
come full. Once this happens, some decision must be made about what information
in the buffer pool will be sacrificed to make room for newly requested information.

When replacing information contained in the buffer pool, the goal is to select a
buffer that has “unnecessary” information, that is, the information least likely to be
requested again. Because the buffer pool cannot know for certain what the pattern
of future requests will look like, a decision based on some heuristic, or best guess,
must be used. There are several approaches to making this decision.

One heuristic is “first-in, first-out” (FIFO). This scheme simply orders the
buffers in a queue. The buffer at the front of the queue is used next to store new
information and then placed at the end of the queue. In this way, the buffer to be
replaced is the one that has held its information the longest, in hopes that this in-
formation is no longer needed. This is a reasonable assumption when processing
moves along the file at some steady pace in roughly sequential order. However,
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many programs work with certain key pieces of information over and over again,
and the importance of information has little to do with how long ago the informa-
tion was first accessed. Typically it is more important to know how many times the
information has been accessed, or how recently the information was last accessed.

Another approach is called “least frequently used” (LFU). LFU tracks the num-
ber of accesses to each buffer in the buffer pool. When a buffer must be reused, the
buffer that has been accessed the fewest number of times is considered to contain
the “least important” information, and so it is used next. LFU, while it seems in-
tuitively reasonable, has many drawbacks. First, it is necessary to store and update
access counts for each buffer. Second, what was referenced many times in the past
might now be irrelevant. Thus, some time mechanism where counts “expire” is
often desirable. This also avoids the problem of buffers that slowly build up big
counts because they get used just often enough to avoid being replaced. An alter-
native is to maintain counts for all sectors ever read, not just the sectors currently
in the buffer pool. This avoids immediately replacing the buffer just read, which
has not yet had time to build a high access count.

The third approach is called “least recently used” (LRU). LRU simply keeps the
buffers in a list. Whenever information in a buffer is accessed, this buffer is brought
to the front of the list. When new information must be read, the buffer at the back
of the list (the one least recently used) is taken and its “old” information is either
discarded or written to disk, as appropriate. This is an easily implemented approx-
imation to LFU and is often the method of choice for managing buffer pools unless
special knowledge about information access patterns for an application suggests a
special-purpose buffer management scheme.

The main purpose of a buffer pool is to minimize disk I/O. When the contents of
a block are modified, we could write the updated information to disk immediately.
But what if the block is changed again? If we write the block’s contents after every
change, that might be a lot of disk write operations that can be avoided. It is more
efficient to wait until either the file is to be closed, or the contents of the buffer
containing that block is to be flushed from the buffer pool.

When a buffer’s contents are to be replaced in the buffer pool, we only want
to write the contents to disk if it is necessary. That would be necessary only if the
contents have changed since the block was read in originally from the file. The way
to insure that the block is written when necessary, but only when necessary, is to
maintain a Boolean variable with the buffer (often referred to as the dirty bit) that
is turned on when the buffer’s contents are modified by the client. At the time when
the block is flushed from the buffer pool, it is written to disk if and only if the dirty
bit has been turned on.

Modern operating systems support virtual memory. Virtual memory is a tech-
nique that allows the programmer to write programs as though there is more of the
faster main memory (such as RAM) than actually exists. Virtual memory makes use
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of a buffer pool to store data read from blocks on slower, secondary memory (such
as on the disk drive). The disk stores the complete contents of the virtual memory.
Blocks are read into main memory as demanded by memory accesses. Naturally,
programs using virtual memory techniques are slower than programs whose data
are stored completely in main memory. The advantage is reduced programmer ef-
fort because a good virtual memory system provides the appearance of larger main
memory without modifying the program.

Example 8.2 Consider a virtual memory whose size is ten sectors, and
which has a buffer pool of five buffers (each one sector in size) associated
with it. We will use a LRU replacement scheme. The following series of
memory requests occurs.

9017668135171

After the first five requests, the buffer pool will store the sectors in the order
6, 7, 1, 0, 9. Because Sector 6 is already at the front, the next request can be
answered without reading new data from disk or reordering the buffers. The
request to Sector 8 requires emptying the contents of the least recently used
buffer, which contains Sector 9. The request to Sector 1 brings the buffer
holding Sector 1’s contents back to the front. Processing the remaining
requests results in the buffer pool as shown in Figure 8.5.

Example 8.3 Figure 8.5 illustrates a buffer pool of five blocks mediating
a virtual memory of ten blocks. At any given moment, up to five sectors of
information can be in main memory. Assume that Sectors 1, 7, 5, 3, and 8
are currently in the buffer pool, stored in this order, and that we use the
LRU buffer replacement strategy. If a request for Sector 9 is then received,
then one sector currently in the buffer pool must be replaced. Because the
buffer containing Sector 8 is the least recently used buffer, its contents will
be copied back to disk at Sector 8. The contents of Sector 9 are then copied
into this buffer, and it is moved to the front of the buffer pool (leaving the
buffer containing Sector 3 as the new least-recently used buffer). If the next
memory request were to Sector 5, no data would need to be read from disk.
Instead, the buffer already containing Sector 5 would be moved to the front
of the buffer pool.

When implementing buffer pools, there are two basic approaches that can be
taken regarding the transfer of information between the user of the buffer pool and
the buffer pool class itself. The first approach is to pass “messages” between the
two. This approach is illustrated by the following abstract class:
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Figure 8.5 An illustration of virtual memory. The complete collection of infor-
mation resides in the slower, secondary storage (on disk). Those sectors recently
accessed are held in the fast main memory (in RAM). In this example, copies of
Sectors 1, 7, 5, 3, and 8 from secondary storage are currently stored in the main
memory. If a memory access to Sector 9 is received, one of the sectors currently
in main memory must be replaced.

// ADT for buffer pools using the message-passing style
class BufferPool {
public:

// Copy "sz" bytes from "space" to position "pos" in the
// buffered storage.
virtual void insert(void* space, int sz, int pos) = 0;

// Copy "sz" bytes from position "pos" of the buffered
// storage to "space".
virtual void getbytes(void* space, int sz, int pos) = 0;

};

This simple class provides an interface with two member functions, insert
and getbytes. The information is passed between the buffer pool user and the
buffer pool through the space parameter. This is storage space, provided by the
bufferpool client and at least sz bytes long, which the buffer pool can take in-
formation from (the insert function) or put information into (the getbytes
function). Parameter pos indicates where the information will be placed in the
buffer pool’s logical storage space. Physically, it will actually be copied to the ap-
propriate byte position in some buffer in the buffer pool. This ADT is similar to
the read and write methods of the RandomAccessFile class discussed in
Section 8.4.
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Example 8.4 Assume each sector of the disk file (and thus each block in
the buffer pool) stores 1024 bytes. Assume that the buffer pool is in the
state shown in Figure 8.5. If the next request is to copy 40 bytes begin-
ning at position 6000 of the file, these bytes should be placed into Sector 5
(whose bytes go from position 5120 to position 6143). Because Sector 5
is currently in the buffer pool, we simply copy the 40 bytes contained in
space to byte positions 880-919. The buffer containing Sector 5 is then
moved to the buffer pool ahead of the buffer containing Sector 1.

An alternative interface is to have the buffer pool provide to the user a direct
pointer to a buffer that contains the requested information. Such an interface might
look as follows:

// ADT for buffer pools using the buffer-passing style
class BufferPool {
public:

// Return pointer to the requested block
virtual void* getblock(int block) = 0;

// Set the dirty bit for the buffer holding "block"
virtual void dirtyblock(int block) = 0;

// Tell the size of a buffer
virtual int blocksize() = 0;

};

In this approach, the buffer pool user is made aware that the storage space is
divided into blocks of a given size, where each block is the size of a buffer. The user
requests specific blocks from the buffer pool, with a pointer to the buffer holding
the requested block being returned to the user. The user might then read from or
write to this space. If the user writes to the space, the buffer pool must be informed
of this fact. The reason is that, when a given block is to be removed from the buffer
pool, the contents of that block must be written to the backing storage if it has been
modified. If the block has not been modified, then it is unnecessary to write it out.

Example 8.5 We wish to write 40 bytes beginning at logical position
6000 in the file. Assume that the buffer pool is in the state shown in Fig-
ure 8.5. Using the second ADT, the client would need to know that blocks
(buffers) are of size 1024, and therefore would request access to Sector 5.
A pointer to the buffer containing Sector 5 would be returned by the call to
getblock. The client would then copy 40 bytes to positions 880-919 of
the buffer, and call dirtyblock to warn the buffer pool that the contents
of this block have been modified.
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A variation on this approach is to have the getblock function take another
parameter to indicate the “mode” of use for the information. If the mode is READ
then the buffer pool assumes that no changes will be made to the buffer’s contents
(and so no write operation need be done when the buffer is reused to store another
block). If the mode is WRITE then the buffer pool assumes that the client will not
look at the contents of the buffer and so no read from the file is necessary. If the
mode is READ AND WRITE then the buffer pool would read the existing contents
of the block in from disk, and write the contents of the buffer to disk when the
buffer is to be reused. Using the “mode” approach, the dirtyblock method is
avoided.

One problem with the buffer-passing ADT is the risk of stale pointers. When
the buffer pool user is given a pointer to some buffer space at time T1, that pointer
does indeed refer to the desired data at that time. As further requests are made to
the buffer pool, it is possible that the data in any given buffer will be removed and
replaced with new data. If the buffer pool user at a later time T2 then refers to the
data referred to by the pointer given at time T1, it is possible that the data are no
longer valid because the buffer contents have been replaced in the meantime. Thus
the pointer into the buffer pool’s memory has become “stale.” To guarantee that a
pointer is not stale, it should not be used if intervening requests to the buffer pool
have taken place.

We can solve this problem by introducing the concept of a user (or possibly
multiple users) gaining access to a buffer, and then releasing the buffer when done.
We will add method acquireBuffer and releaseBuffer for this purpose.
Method acquireBuffer takes a block ID as input and returns a pointer to the
buffer that will be used to store this block. The buffer pool will keep a count of the
number of requests currently active for this block. Method releaseBuffer will
reduce the count of active users for the associated block. Buffers associated with
active blocks will not be eligible for flushing from the buffer pool. This will lead
to a problem if the client neglects to release active blocks when they are no longer
needed. There would also be a problem if there were more total active blocks than
buffers in the buffer pool. However, the buffer pool should always be initialized to
include more buffers than should ever be active at one time.

An additional problem with both ADTs presented so far comes when the user
intends to completely overwrite the contents of a block, and does not need to read
in the old contents already on disk. However, the buffer pool cannot in general
know whether the user wishes to use the old contents or not. This is especially true
with the message-passing approach where a given message might overwrite only
part of the block. In this case, the block will be read into memory even when not
needed, and then its contents will be overwritten.

This inefficiency can be avoided (at least in the buffer-passing version) by sep-
arating the assignment of blocks to buffers from actually reading in data for the
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block. In particular, the following revised buffer-passing ADT does not actually
read data in the acquireBuffer method. Users who wish to see the old con-
tents must then issue a readBlock request to read the data from disk into the
buffer, and then a getDataPointer request to gain direct access to the buffer’s
data contents.

// A single buffer in the buffer pool
class Buffer {
public:

// Read the associated block from disk (if necessary) and
// return a pointer to the data
void *readBlock() = 0;

// Return a pointer to the buffer’s data array
// (without reading from disk)
void *getDataPointer() = 0;

// Flag the buffer’s contents as having changed, so that
// flushing the block will write it back to disk
void markDirty() = 0;

// Release the block’s access to this buffer. Further
// accesses to this buffer are illegal.
void releaseBuffer() = 0;

}

// The bufferpool
class BufferPool {
public:

// Constructor: The bufferpool has "numbuff" buffers that
// each contain "buffsize" bytes of data.
BufferPool(int numbuff, int buffsize) = 0;

// Relate a block to a buffer, returning a pointer to a
// buffer object
Buffer *acquireBuffer(int block) = 0;

}

Again, a mode parameter could be added to the acquireBuffer method,
eliminating the need for the readBlock and markDirty methods.

Clearly, the buffer-passing approach places more obligations on the user of the
buffer pool. These obligations include knowing the size of a block, not corrupting
the buffer pool’s storage space, and informing the buffer pool both when a block
has been modified and when it is no longer needed. So many obligations make this
approach prone to error. An advantage is that there is no need to do an extra copy
step when getting information from the user to the buffer. If the size of the records
stored is small, this is not an important consideration. If the size of the records is
large (especially if the record size and the buffer size are the same, as typically is the
case when implementing B-trees, see Section 10.5), then this efficiency issue might
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become important. Note however that the in-memory copy time will always be far
less than the time required to write the contents of a buffer to disk. For applications
where disk I/O is the bottleneck for the program, even the time to copy lots of
information between the buffer pool user and the buffer might be inconsequential.
Another advantage to buffer passing is the reduction in unnecessary read operations
for data that will be overwritten anyway.

You should note that these implementations for the buffer pool ADT do not use
templates. Instead, the space parameter and the buffer pointer are declared to be
void*. When a class uses a template, that means that the record type is arbitrary,
but that the class knows what the record type is. In contrast, using a void* pointer
for the space means that not only is the record type arbitrary, but also the buffer
pool does not even know what the user’s record type is. In fact, a given buffer pool
might have many users who store many types of records.

In a buffer pool, the user decides where a given record will be stored but has
no control over the precise mechanism by which data are transferred to the backing
storage. This is in contrast to the memory manager described in Section 12.3 in
which the user passes a record to the manager and has no control at all over where
the record is stored.

8.4 The Programmer’s View of Files

The C++ programmer’s logical view of a random access file is a single stream
of bytes. Interaction with a file can be viewed as a communications channel for
issuing one of three instructions: read bytes from the current position in the file,
write bytes to the current position in the file, and move the current position within
the file. You do not normally see how the bytes are stored in sectors, clusters, and
so forth. The mapping from logical to physical addresses is done by the file system,
and sector-level buffering is done automatically by the disk controller.

When processing records in a disk file, the order of access can have a great
effect on I/O time. A random access procedure processes records in an order
independent of their logical order within the file. Sequential access processes
records in order of their logical appearance within the file. Sequential processing
requires less seek time if the physical layout of the disk file matches its logical
layout, as would be expected if the file were created on a disk with a high percentage
of free space.

C++ provides several mechanisms for manipulating disk files. One of the most
commonly used is the fstream class. The following methods can be used to
manipulate information in the file.

• open(char *name, openmode flags): Open file name name for
processing. Flags control various details such as whether the file permits
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reading, writing, or both; and whether its pre-existing contents should be
deleted.

• read(char *buff, int count): Read count bytes from the cur-
rent position in the file. The current file position moves forward as the bytes
are read. The bytes are read into array buff, which must be at least count
bytes long.

• write(char *buff, int count): Write count bytes at the cur-
rent position in the file (overwriting the bytes already at that position). The
current file position moves forward as these bytes are written. The bytes to
be written come from array buff.

• seekg(int pos) and seekp(int pos): Move the current position
in the file to pos. This allows bytes at arbitrary places within the file to be
read or written. There are actually two “current” positions: one for reading
and one for writing. Function seekg changes the “get” or read position,
while function seekp changes the “put” or write position.

• close(): Close a file at the end of processing.

Note that the spirit if this ADT is similar to the “message passing” version of
the ADT for buffer pools described in Section 8.3.

8.5 External Sorting

We now consider the problem of sorting collections of records too large to fit in
main memory. Because the records must reside in peripheral or external memory,
such sorting methods are called external sorts. This is in contrast to the internal
sorts discussed in Chapter 7 which assume that the records to be sorted are stored in
main memory. Sorting large collections of records is central to many applications,
such as processing payrolls and other large business databases. As a consequence,
many external sorting algorithms have been devised. Years ago, sorting algorithm
designers sought to optimize the use of specific hardware configurations, such as
multiple tape or disk drives. Most computing today is done on personal computers
and low-end workstations with relatively powerful CPUs, but only one or at most
two disk drives. The techniques presented here are geared toward optimized pro-
cessing on a single disk drive. This approach allows us to cover the most important
issues in external sorting while skipping many less important machine-dependent
details. Readers who have a need to implement efficient external sorting algorithms
that take advantage of more sophisticated hardware configurations should consult
the references in Section 8.6.

When a collection of records is too large to fit in main memory, the only prac-
tical way to sort it is to read some records from disk, do some rearranging, then
write them back to disk. This process is repeated until the file is sorted, with each
record read perhaps many times. Given the high cost of disk I/O, it should come as
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no surprise that the primary goal of an external sorting algorithm is to minimize the
number of times information must be read from or written to disk. A certain amount
of additional CPU processing can profitably be traded for reduced disk access.

Before discussing external sorting techniques, consider again the basic model
for accessing information from disk. The file to be sorted is viewed by the program-
mer as a sequential series of fixed-size blocks. Assume (for simplicity) that each
block contains the same number of fixed-size data records. Depending on the ap-
plication, a record might be only a few bytes — composed of little or nothing more
than the key — or might be hundreds of bytes with a relatively small key field.
Records are assumed not to cross block boundaries. These assumptions can be
relaxed for special-purpose sorting applications, but ignoring such complications
makes the principles clearer.

As explained in Section 8.2, a sector is the basic unit of I/O. In other words,
all disk reads and writes are for one or more complete sectors. Sector sizes are
typically a power of two, in the range 512 to 16K bytes, depending on the operating
system and the size and speed of the disk drive. The block size used for external
sorting algorithms should be equal to or a multiple of the sector size.

Under this model, a sorting algorithm reads a block of data into a buffer in main
memory, performs some processing on it, and at some future time writes it back to
disk. From Section 8.1 we see that reading or writing a block from disk takes on
the order of one million times longer than a memory access. Based on this fact, we
can reasonably expect that the records contained in a single block can be sorted by
an internal sorting algorithm such as Quicksort in less time than is required to read
or write the block.

Under good conditions, reading from a file in sequential order is more efficient
than reading blocks in random order. Given the significant impact of seek time on
disk access, it might seem obvious that sequential processing is faster. However,
it is important to understand precisely under what circumstances sequential file
processing is actually faster than random access, because it affects our approach to
designing an external sorting algorithm.

Efficient sequential access relies on seek time being kept to a minimum. The
first requirement is that the blocks making up a file are in fact stored on disk in
sequential order and close together, preferably filling a small number of contiguous
tracks. At the very least, the number of extents making up the file should be small.
Users typically do not have much control over the layout of their file on disk, but
writing a file all at once in sequential order to a disk drive with a high percentage
of free space increases the likelihood of such an arrangement.

The second requirement is that the disk drive’s I/O head remain positioned
over the file throughout sequential processing. This will not happen if there is
competition of any kind for the I/O head. For example, on a multi-user time-shared
computer the sorting process might compete for the I/O head with the processes
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of other users. Even when the sorting process has sole control of the I/O head, it
is still likely that sequential processing will not be efficient. Imagine the situation
where all processing is done on a single disk drive, with the typical arrangement
of a single bank of read/write heads that move together over a stack of platters. If
the sorting process involves reading from an input file, alternated with writing to an
output file, then the I/O head will continuously seek between the input file and the
output file. Similarly, if two input files are being processed simultaneously (such
as during a merge process), then the I/O head will continuously seek between these
two files.

The moral is that, with a single disk drive, there often is no such thing as effi-
cient sequential processing of a data file. Thus, a sorting algorithm might be more
efficient if it performs a smaller number of non-sequential disk operations rather
than a larger number of logically sequential disk operations that require a large
number of seeks in practice.

As mentioned previously, the record size might be quite large compared to the
size of the key. For example, payroll entries for a large business might each store
hundreds of bytes of information including the name, ID, address, and job title for
each employee. The sort key might be the ID number, requiring only a few bytes.
The simplest sorting algorithm might be to process such records as a whole, reading
the entire record whenever it is processed. However, this will greatly increase the
amount of I/O required, because only a relatively few records will fit into a single
disk block. Another alternative is to do a key sort. Under this method, the keys are
all read and stored together in an index file, where each key is stored along with a
pointer indicating the position of the corresponding record in the original data file.
The key and pointer combination should be substantially smaller than the size of
the original record; thus, the index file will be much smaller than the complete data
file. The index file will then be sorted, requiring much less I/O because the index
records are smaller than the complete records.

Once the index file is sorted, it is possible to reorder the records in the original
database file. This is typically not done for two reasons. First, reading the records
in sorted order from the record file requires a random access for each record. This
can take a substantial amount of time and is only of value if the complete collection
of records needs to be viewed or processed in sorted order (as opposed to a search
for selected records). Second, database systems typically allow searches to be done
on multiple keys. For example, today’s processing might be done in order of ID
numbers. Tomorrow, the boss might want information sorted by salary. Thus, there
might be no single “sorted” order for the full record. Instead, multiple index files
are often maintained, one for each sort key. These ideas are explored further in
Chapter 10.
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8.5.1 Simple Approaches to External Sorting

If your operating system supports virtual memory, the simplest “external” sort is
to read the entire file into virtual memory and run an internal sorting method such
as Quicksort. This approach allows the virtual memory manager to use its normal
buffer pool mechanism to control disk accesses. Unfortunately, this might not al-
ways be a viable option. One potential drawback is that the size of virtual memory
is usually limited to something much smaller than the disk space available. Thus,
your input file might not fit into virtual memory. Limited virtual memory can be
overcome by adapting an internal sorting method to make use of your own buffer
pool.

A more general problem with adapting an internal sorting algorithm to exter-
nal sorting is that it is not likely to be as efficient as designing a new algorithm
with the specific goal of minimizing disk I/O. Consider the simple adaptation of
Quicksort to use a buffer pool. Quicksort begins by processing the entire array of
records, with the first partition step moving indices inward from the two ends. This
can be implemented efficiently using a buffer pool. However, the next step is to
process each of the subarrays, followed by processing of sub-subarrays, and so on.
As the subarrays get smaller, processing quickly approaches random access to the
disk drive. Even with maximum use of the buffer pool, Quicksort still must read
and write each record log n times on average. We can do much better. Finally,
even if the virtual memory manager can give good performance using a standard
Quicksort, this will come at the cost of using a lot of the system’s working mem-
ory, which will mean that the system cannot use this space for other work. Better
methods can save time while also using less memory.

Our approach to external sorting is derived from the Mergesort algorithm. The
simplest form of external Mergesort performs a series of sequential passes over
the records, merging larger and larger sublists on each pass. The first pass merges
sublists of size 1 into sublists of size 2; the second pass merges the sublists of size
2 into sublists of size 4; and so on. A sorted sublist is called a run. Thus, each pass
is merging pairs of runs to form longer runs. Each pass copies the contents of the
file to another file. Here is a sketch of the algorithm, as illustrated by Figure 8.6.

1. Split the original file into two equal-sized run files.
2. Read one block from each run file into input buffers.
3. Take the first record from each input buffer, and write a run of length two to

an output buffer in sorted order.
4. Take the next record from each input buffer, and write a run of length two to

a second output buffer in sorted order.
5. Repeat until finished, alternating output between the two output run buffers.

Whenever the end of an input block is reached, read the next block from the
appropriate input file. When an output buffer is full, write it to the appropriate
output file.
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Figure 8.6 A simple external Mergesort algorithm. Input records are divided
equally between two input files. The first runs from each input file are merged and
placed into the first output file. The second runs from each input file are merged
and placed in the second output file. Merging alternates between the two output
files until the input files are empty. The roles of input and output files are then
reversed, allowing the runlength to be doubled with each pass.

6. Repeat steps 2 through 5, using the original output files as input files. On the
second pass, the first two records of each input run file are already in sorted
order. Thus, these two runs may be merged and output as a single run of four
elements.

7. Each pass through the run files provides larger and larger runs until only one
run remains.

Example 8.6 Using the input of Figure 8.6, we first create runs of length
one split between two input files. We then process these two input files
sequentially, making runs of length two. The first run has the values 20 and
36, which are output to the first output file. The next run has 13 and 17,
which is output to the second file. The run 14, 28 is sent to the first file,
then run 15, 23 is sent to the second file, and so on. Once this pass has
completed, the roles of the input files and output files are reversed. The
next pass will merge runs of length two into runs of length four. Runs 20,
36 and 13, 17 are merged to send 13, 17, 20, 36 to the first output file. Then
runs 14, 28 and 15, 23 are merged to send run 14, 15, 23, 28 to the second
output file. In the final pass, these runs are merged to form the final run 13,
14, 15, 17, 20, 23, 28, 36.

This algorithm can easily take advantage of the double buffering techniques
described in Section 8.3. Note that the various passes read the input run files se-
quentially and write the output run files sequentially. For sequential processing and
double buffering to be effective, however, it is necessary that there be a separate
I/O head available for each file. This typically means that each of the input and
output files must be on separate disk drives, requiring a total of four disk drives for
maximum efficiency.
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The external Mergesort algorithm just described requires that log n passes be
made to sort a file of n records. Thus, each record must be read from disk and
written to disk log n times. The number of passes can be significantly reduced by
observing that it is not necessary to use Mergesort on small runs. A simple modi-
fication is to read in a block of data, sort it in memory (perhaps using Quicksort),
and then output it as a single sorted run.

Example 8.7 Assume that we have blocks of size 4KB, and records are
eight bytes with four bytes of data and a 4-byte key. Thus, each block con-
tains 512 records. Standard Mergesort would require nine passes to gener-
ate runs of 512 records, whereas processing each block as a unit can be done
in one pass with an internal sort. These runs can then be merged by Merge-
sort. Standard Mergesort requires eighteen passes to process 256K records.
Using an internal sort to create initial runs of 512 records reduces this to
one initial pass to create the runs and nine merge passes to put them all
together, approximately half as many passes.

We can extend this concept to improve performance even further. Available
main memory is usually much more than one block in size. If we process larger
initial runs, then the number of passes required by Mergesort is further reduced. For
example, most modern computers can provide tens or even hundreds of megabytes
of RAM to the sorting program. If all of this memory (excepting a small amount for
buffers and local variables) is devoted to building initial runs as large as possible,
then quite large files can be processed in few passes. The next section presents a
technique for producing large runs, typically twice as large as could fit directly into
main memory.

Another way to reduce the number of passes required is to increase the number
of runs that are merged together during each pass. While the standard Mergesort
algorithm merges two runs at a time, there is no reason why merging needs to be
limited in this way. Section 8.5.3 discusses the technique of multiway merging.

Over the years, many variants on external sorting have been presented, but all
are based on the following two steps:

1. Break the file into large initial runs.
2. Merge the runs together to form a single sorted file.

8.5.2 Replacement Selection

This section treats the problem of creating initial runs as large as possible from a
disk file, assuming a fixed amount of RAM is available for processing. As men-
tioned previously, a simple approach is to allocate as much RAM as possible to a
large array, fill this array from disk, and sort the array using Quicksort. Thus, if
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Figure 8.7 Overview of replacement selection. Input records are processed se-
quentially. Initially RAM is filled with M records. As records are processed, they
are written to an output buffer. When this buffer becomes full, it is written to disk.
Meanwhile, as replacement selection needs records, it reads them from the input
buffer. Whenever this buffer becomes empty, the next block of records is read
from disk.

the size of memory available for the array is M records, then the input file can be
broken into initial runs of lengthM . A better approach is to use an algorithm called
replacement selection that, on average, creates runs of 2M records in length. Re-
placement selection is actually a slight variation on the Heapsort algorithm. The
fact that Heapsort is slower than Quicksort is irrelevant in this context because I/O
time will dominate the total running time of any reasonable external sorting alg-
orithm. Building longer initial runs will reduce the total I/O time required.

Replacement selection views RAM as consisting of an array of size M in ad-
dition to an input buffer and an output buffer. (Additional I/O buffers might be
desirable if the operating system supports double buffering, because replacement
selection does sequential processing on both its input and its output.) Imagine that
the input and output files are streams of records. Replacement selection takes the
next record in sequential order from the input stream when needed, and outputs
runs one record at a time to the output stream. Buffering is used so that disk I/O is
performed one block at a time. A block of records is initially read and held in the
input buffer. Replacement selection removes records from the input buffer one at
a time until the buffer is empty. At this point the next block of records is read in.
Output to a buffer is similar: Once the buffer fills up it is written to disk as a unit.
This process is illustrated by Figure 8.7.

Replacement selection works as follows. Assume that the main processing is
done in an array of size M records.

1. Fill the array from disk. Set LAST = M − 1.

2. Build a min-heap. (Recall that a min-heap is defined such that the record at
each node has a key value less than the key values of its children.)

3. Repeat until the array is empty:

(a) Send the record with the minimum key value (the root) to the output
buffer.
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(b) Let R be the next record in the input buffer. If R’s key value is greater
than the key value just output ...

i. Then place R at the root.
ii. Else replace the root with the record in array position LAST, and

place R at position LAST. Set LAST = LAST− 1.

(c) Sift down the root to reorder the heap.

When the test at step 3(b) is successful, a new record is added to the heap,
eventually to be output as part of the run. As long as records coming from the input
file have key values greater than the last key value output to the run, they can be
safely added to the heap. Records with smaller key values cannot be output as part
of the current run because they would not be in sorted order. Such values must be
stored somewhere for future processing as part of another run. However, because
the heap will shrink by one element in this case, there is now a free space where the
last element of the heap used to be! Thus, replacement selection will slowly shrink
the heap and at the same time use the discarded heap space to store records for the
next run. Once the first run is complete (i.e., the heap becomes empty), the array
will be filled with records ready to be processed for the second run. Figure 8.8
illustrates part of a run being created by replacement selection.

It should be clear that the minimum length of a run will beM records if the size
of the heap isM , because at least those records originally in the heap will be part of
the run. Under good conditions (e.g., if the input is sorted), then an arbitrarily long
run is possible. In fact, the entire file could be processed as one run. If conditions
are bad (e.g., if the input is reverse sorted), then runs of only size M result.

What is the expected length of a run generated by replacement selection? It
can be deduced from an analogy called the snowplow argument. Imagine that a
snowplow is going around a circular track during a heavy, but steady, snowstorm.
After the plow has been around at least once, snow on the track must be as follows.
Immediately behind the plow, the track is empty because it was just plowed. The
greatest level of snow on the track is immediately in front of the plow, because
this is the place least recently plowed. At any instant, there is a certain amount of
snow S on the track. Snow is constantly falling throughout the track at a steady
rate, with some snow falling “in front” of the plow and some “behind” the plow.
(On a circular track, everything is actually “in front” of the plow, but Figure 8.9
illustrates the idea.) During the next revolution of the plow, all snow S on the track
is removed, plus half of what falls. Because everything is assumed to be in steady
state, after one revolution S snow is still on the track, so 2S snow must fall during
a revolution, and 2S snow is removed during a revolution (leaving S snow behind).

At the beginning of replacement selection, nearly all values coming from the
input file are greater (i.e., “in front of the plow”) than the latest key value output for
this run, because the run’s initial key values should be small. As the run progresses,
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Figure 8.8 Replacement selection example. After building the heap, root
value 12 is output and incoming value 16 replaces it. Value 16 is output next,
replaced with incoming value 29. The heap is reordered, with 19 rising to the
root. Value 19 is output next. Incoming value 14 is too small for this run and
is placed at end of the array, moving value 40 to the root. Reordering the heap
results in 21 rising to the root, which is output next.
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Existing snow

Future snow

Falling Snow

Snowplow Movement

Start time T

Figure 8.9 The snowplow analogy showing the action during one revolution of
the snowplow. A circular track is laid out straight for purposes of illustration, and
is shown in cross section. At any time T , the most snow is directly in front of
the snowplow. As the plow moves around the track, the same amount of snow is
always in front of the plow. As the plow moves forward, less of this is snow that
was in the track at time T ; more is snow that has fallen since.

the latest key value output becomes greater and so new key values coming from the
input file are more likely to be too small (i.e., “after the plow”); such records go to
the bottom of the array. The total length of the run is expected to be twice the size of
the array. Of course, this assumes that incoming key values are evenly distributed
within the key range (in terms of the snowplow analogy, we assume that snow falls
evenly throughout the track). Sorted and reverse sorted inputs do not meet this
expectation and so change the length of the run.

8.5.3 Multiway Merging

The second stage of a typical external sorting algorithm merges the runs created by
the first stage. Assume that we have R runs to merge. If a simple two-way merge
is used, then R runs (regardless of their sizes) will require logR passes through
the file. While R should be much less than the total number of records (because
the initial runs should each contain many records), we would like to reduce still
further the number of passes required to merge the runs together. Note that two-
way merging does not make good use of available memory. Because merging is a
sequential process on the two runs, only one block of records per run need be in
memory at a time. Keeping more than one block of a run in memory at any time
will not reduce the disk I/O required by the merge process (though if several blocks
are read from a file at once time, at least they take advantage of sequential access).
Thus, most of the space just used by the heap for replacement selection (typically
many blocks in length) is not being used by the merge process.

We can make better use of this space and at the same time greatly reduce the
number of passes needed to merge the runs if we merge several runs at a time.
Multiway merging is similar to two-way merging. If we have B runs to merge,
with a block from each run available in memory, then the B-way merge algorithm
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Figure 8.10 Illustration of multiway merge. The first value in each input run
is examined and the smallest sent to the output. This value is removed from the
input and the process repeated. In this example, values 5, 6, and 12 are compared
first. Value 5 is removed from the first run and sent to the output. Values 10, 6,
and 12 will be compared next. After the first five values have been output, the
“current” value of each block is the one underlined.

simply looks at B values (the front-most value for each input run) and selects the
smallest one to output. This value is removed from its run, and the process is
repeated. When the current block for any run is exhausted, the next block from that
run is read from disk. Figure 8.10 illustrates a multiway merge.

Conceptually, multiway merge assumes that each run is stored in a separate
file. However, this is not necessary in practice. We only need to know the position
of each run within a single file, and useseekg to move to the appropriate block
whenever we need new data from a particular run. Naturally, this approach de-
stroys the ability to do sequential processing on the input file. However, if all runs
were stored on a single disk drive, then processing would not be truly sequential
anyway because the I/O head would be alternating between the runs. Thus, multi-
way merging replaces several (potentially) sequential passes with a single random
access pass. If the processing would not be sequential anyway (such as when all
processing is on a single disk drive), no time is lost by doing so.

Multiway merging can greatly reduce the number of passes required. If there
is room in memory to store one block for each run, then all runs can be merged
in a single pass. Thus, replacement selection can build initial runs in one pass,
and multiway merging can merge all runs in one pass, yielding a total cost of two
passes. However, for truly large files, there might be too many runs for each to get
a block in memory. If there is room to allocate B blocks for a B-way merge, and
the number of runs R is greater than B, then it will be necessary to do multiple
merge passes. In other words, the first B runs are merged, then the next B, and
so on. These super-runs are then merged by subsequent passes, B super-runs at a
time.



302 Chap. 8 File Processing and External Sorting

How big a file can be merged in one pass? AssumingB blocks were allocated to
the heap for replacement selection (resulting in runs of average length 2B blocks),
followed by a B-way merge, we can process on average a file of size 2B2 blocks
in a single multiway merge. 2Bk+1 blocks on average can be processed in k B-
way merges. To gain some appreciation for how quickly this grows, assume that
we have available 0.5MB of working memory, and that a block is 4KB, yielding
128 blocks in working memory. The average run size is 1MB (twice the working
memory size). In one pass, 128 runs can be merged. Thus, a file of size 128MB
can, on average, be processed in two passes (one to build the runs, one to do the
merge) with only 0.5MB of working memory. As another example, assume blocks
are 1KB long and working memory is 1MB = 1024 blocks. Then 1024 runs of
average length 2MB (which is about 2GB) can be combined in a single merge
pass. A larger block size would reduce the size of the file that can be processed
in one merge pass for a fixed-size working memory; a smaller block size or larger
working memory would increase the file size that can be processed in one merge
pass. Two merge passes allow much bigger files to be processed. With 0.5MB of
working memory and 4KB blocks, a file of size 16 gigabytes could be processed in
two merge passes, which is big enough for most applications. Thus, this is a very
effective algorithm for single disk drive external sorting.

Figure 8.11 shows a comparison of the running time to sort various-sized files
for the following implementations: (1) standard Mergesort with two input runs and
two output runs, (2) two-way Mergesort with large initial runs (limited by the size
of available memory), and (3) R-way Mergesort performed after generating large
initial runs. In each case, the file was composed of a series of four-byte records
(a two-byte key and a two-byte data value), or 256K records per megabyte of file
size. We can see from this table that using even a modest memory size (two blocks)
to create initial runs results in a tremendous savings in time. Doing 4-way merges
of the runs provides another considerable speedup, however large-scale multi-way
merges for R beyond about 4 or 8 runs does not help much because a lot of time is
spent determining which is the next smallest element among the R runs.

We see from this experiment that building large initial runs reduces the running
time to slightly more than one third that of standard Mergesort, depending on file
and memory sizes. Using a multiway merge further cuts the time nearly in half.

In summary, a good external sorting algorithm will seek to do the following:

• Make the initial runs as long as possible.

• At all stages, overlap input, processing, and output as much as possible.

• Use as much working memory as possible. Applying more memory usually
speeds processing. In fact, more memory will have a greater effect than a
faster disk. A faster CPU is unlikely to yield much improvement in running
time for external sorting, because disk I/O speed is the limiting factor.
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File Sort 1 Sort 2 Sort 3
Size Memory size (in blocks) Memory size (in blocks)
(Mb) 2 4 16 256 2 4 16

1 0.61 0.27 0.24 0.19 0.10 0.21 0.15 0.13
4,864 2,048 1,792 1,280 256 2,048 1,024 512

4 2.56 1.30 1.19 0.96 0.61 1.15 0.68 0.66*
21,504 10,240 9,216 7,168 3,072 10,240 5,120 2,048

16 11.28 6.12 5.63 4.78 3.36 5.42 3.19 3.10
94,208 49,152 45,056 36,864 20,480 49,152 24,516 12,288

256 220.39 132.47 123.68 110.01 86.66 115.73 69.31 68.71
1,769K 1,048K 983K 852K 589K 1,049K 524K 262K

Figure 8.11 A comparison of three external sorts on a collection of small records
for files of various sizes. Each entry in the table shows time in seconds and total
number of blocks read and written by the program. File sizes are in Megabytes.
For the third sorting algorithm, on a file size of 4MB, the time and blocks shown
in the last column are for a 32-way merge (marked with an asterisk). 32 is used
instead of 16 because 32 is a root of the number of blocks in the file (while 16 is
not), thus allowing the same number of runs to be merged at every pass.

• If possible, use additional disk drives for more overlapping of processing
with I/O, and to allow for sequential file processing.

8.6 Further Reading

A good general text on file processing is Folk and Zoellick’s File Structures: A
Conceptual Toolkit [FZ98]. A somewhat more advanced discussion on key issues in
file processing is Betty Salzberg’s File Structures: An Analytical Approach [Sal88].
A great discussion on external sorting methods can be found in Salzberg’s book.
The presentation in this chapter is similar in spirit to Salzberg’s.

For details on disk drive modeling and measurement, see the article by Ruemm-
ler and Wilkes, “An Introduction to Disk Drive Modeling” [RW94]. See Andrew
S. Tanenbaum’s Structured Computer Organization [Tan06] for an introduction to
computer hardware and organization. An excellent, detailed description of mem-
ory and hard disk drives can be found online at “The PC Guide,” by Charles M.
Kozierok [Koz05] (www.pcguide.com). The PC Guide also gives detailed de-
scriptions of the Microsoft Windows and UNIX (Linux) file systems.

See “Outperforming LRU with an Adaptive Replacement Cache Algorithm”
by Megiddo and Modha [MM04] for an example of a more sophisticated algorithm
than LRU for managing buffer pools.

The snowplow argument comes from Donald E. Knuth’s Sorting and Searching
[Knu98], which also contains a wide variety of external sorting algorithms.
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8.7 Exercises

8.1 Computer memory and storage prices change rapidly. Find out what the
current prices are for the media listed in Figure 8.1. Does your information
change any of the basic conclusions regarding disk processing?

8.2 Assume a disk drive from the late 1990s is configured as follows. The to-
tal storage is approximately 675MB divided among 15 surfaces. Each sur-
face has 612 tracks; there are 144 sectors/track, 512 bytes/sector, and 8 sec-
tors/cluster. The disk turns at 3600 rpm. The track-to-track seek time is
20 ms, and the average seek time is 80 ms. Now assume that there is a
360KB file on the disk. On average, how long does it take to read all of the
data in the file? Assume that the first track of the file is randomly placed on
the disk, that the entire file lies on adjacent tracks, and that the file completely
fills each track on which it is found. A seek must be performed each time the
I/O head moves to a new track. Show your calculations.

8.3 Using the specifications for the disk drive given in Exercise 8.2, calculate the
expected time to read one entire track, one sector, and one byte. Show your
calculations.

8.4 Using the disk drive specifications given in Exercise 8.2, calculate the time
required to read a 10MB file assuming

(a) The file is stored on a series of contiguous tracks, as few tracks as pos-
sible.

(b) The file is spread randomly across the disk in 4KB clusters.
Show your calculations.

8.5 Assume that a disk drive is configured as follows. The total storage is ap-
proximately 1033MB divided among 15 surfaces. Each surface has 2100
tracks, there are 64 sectors/track, 512 bytes/sector, and 8 sectors/cluster. The
disk turns at 7200 rpm. The track-to-track seek time is 3 ms, and the average
seek time is 20 ms. Now assume that there is a 512KB file on the disk. On
average, how long does it take to read all of the data on the file? Assume that
the first track of the file is randomly placed on the disk, that the entire file lies
on contiguous tracks, and that the file completely fills each track on which it
is found. Show your calculations.

8.6 Using the specifications for the disk drive given in Exercise 8.5, calculate the
expected time to read one entire track, one sector, and one byte. Show your
calculations.

8.7 Using the disk drive specifications given in Exercise 8.5, calculate the time
required to read a 10MB file assuming

(a) The file is stored on a series of contiguous tracks, as few tracks as pos-
sible.

(b) The file is spread randomly across the disk in 4KB clusters.



Sec. 8.7 Exercises 305

Show your calculations.
8.8 A typical disk drive from 2004 has the following specifications.3 The total

storage is approximately 120GB on 6 platter surfaces or 20GB/platter. Each
platter has 16K tracks with 2560 sectors/track (a sector holds 512 bytes) and
16 sectors/cluster. The disk turns at 7200 rpm. The track-to-track seek time
is 2.0 ms, and the average seek time is 10.0 ms. Now assume that there is a
6MB file on the disk. On average, how long does it take to read all of the data
on the file? Assume that the first track of the file is randomly placed on the
disk, that the entire file lies on contiguous tracks, and that the file completely
fills each track on which it is found. Show your calculations.

8.9 Using the specifications for the disk drive given in Exercise 8.8, calculate the
expected time to read one entire track, one sector, and one byte. Show your
calculations.

8.10 Using the disk drive specifications given in Exercise 8.8, calculate the time
required to read a 10MB file assuming

(a) The file is stored on a series of contiguous tracks, as few tracks as pos-
sible.

(b) The file is spread randomly across the disk in 8KB clusters.
Show your calculations.

8.11 At the end of 2004, the fastest disk drive I could find specifications for was
the Maxtor Atlas. This drive had a nominal capacity of 73.4GB using 4 plat-
ters (8 surfaces) or 9.175GB/surface. Assume there are 16,384 tracks with an
average of 1170 sectors/track and 512 bytes/sector.4 The disk turns at 15,000
rpm. The track-to-track seek time is 0.4 ms and the average seek time is 3.6
ms. How long will it take on average to read a 6MB file, assuming that the
first track of the file is randomly placed on the disk, that the entire file lies on
contiguous tracks, and that the file completely fills each track on which it is
found. Show your calculations.

8.12 Using the specifications for the disk drive given in Exercise 8.11, calculate
the expected time to read one entire track, one sector, and one byte. Show
your calculations.

8.13 Using the disk drive specifications given in Exercise 8.11, calculate the time
required to read a 10MB file assuming

(a) The file is stored on a series of contiguous tracks, as few tracks as pos-
sible.

3To make the exercise doable, this specification is completely fictitious with respect to the track
and sector layout. While sectors do have 512 bytes, and while the number of platters and amount of
data per track is plausible, the reality is that all modern drives use a zoned organization to keep the
data density from inside to outside of the disk reasonably high. The rest of the numbers are typical
for a drive from 2004.

4Again, this track layout does does not account for the zoned arrangement on modern disk drives.
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(b) The file is spread randomly across the disk in 8KB clusters.
Show your calculations.

8.14 Prove that two tracks selected at random from a disk are separated on average
by one third the number of tracks on the disk.

8.15 Assume that a file contains one million records sorted by key value. A query
to the file returns a single record containing the requested key value. Files
are stored on disk in sectors each containing 100 records. Assume that the
average time to read a sector selected at random is 10.0 ms. In contrast, it
takes only 2.0 ms to read the sector adjacent to the current position of the I/O
head. The “batch” algorithm for processing queries is to first sort the queries
by order of appearance in the file, and then read the entire file sequentially,
processing all queries in sequential order as the file is read. This algorithm
implies that the queries must all be available before processing begins. The
“interactive” algorithm is to process each query in order of its arrival, search-
ing for the requested sector each time (unless by chance two queries in a row
are to the same sector). Carefully define under what conditions the batch
method is more efficient than the interactive method.

8.16 Assume that a virtual memory is managed using a buffer pool. The buffer
pool contains five buffers and each buffer stores one block of data. Memory
accesses are by block ID. Assume the following series of memory accesses
takes place:

5 2 5 12 3 6 5 9 3 2 4 1 5 9 8 15 3 7 2 5 9 10 4 6 8 5

For each of the following buffer pool replacement strategies, show the con-
tents of the buffer pool at the end of the series, and indicate how many times
a block was found in the buffer pool (instead of being read into memory).
Assume that the buffer pool is initially empty.

(a) First-in, first out.
(b) Least frequently used (with counts kept only for blocks currently in

memory, counts for a page are lost when that page is removed, and the
oldest item with the smallest count is removed when there is a tie).

(c) Least frequently used (with counts kept for all blocks, and the oldest
item with the smallest count is removed when there is a tie).

(d) Least recently used.
(e) Most recently used (replace the block that was most recently accessed).

8.17 Suppose that a record is 32 bytes, a block is 1024 bytes (thus, there are
32 records per block), and that working memory is 1MB (there is also addi-
tional space available for I/O buffers, program variables, etc.). What is the
expected size for the largest file that can be merged using replacement selec-
tion followed by a single pass of multiway merge? Explain how you got your
answer.
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8.18 Assume that working memory size is 256KB broken into blocks of 8192
bytes (there is also additional space available for I/O buffers, program vari-
ables, etc.). What is the expected size for the largest file that can be merged
using replacement selection followed by two passes of multiway merge? Ex-
plain how you got your answer.

8.19 Prove or disprove the following proposition: Given space in memory for a
heap of M records, replacement selection will completely sort a file if no
record in the file is preceded by M or more keys of greater value.

8.20 Imagine a database containing ten million records, with each record being
100 bytes long. Provide an estimate of the time it would take (in seconds) to
sort the database on a typical desktop or laptop computer.

8.21 Assume that a company has a computer configuration satisfactory for pro-
cessing their monthly payroll. Further assume that the bottleneck in payroll
processing is a sorting operation on all of the employee records, and that
an external sorting algorithm is used. The company’s payroll program is so
good that it plans to hire out its services to do payroll processing for other
companies. The president has an offer from a second company with 100
times as many employees. She realizes that her computer is not up to the
job of sorting 100 times as many records in an acceptable amount of time.
Describe what impact each of the following modifications to the computing
system is likely to have in terms of reducing the time required to process the
larger payroll database.

(a) A factor of two speedup to the CPU.
(b) A factor of two speedup to disk I/O time.
(c) A factor of two speedup to main memory access time.
(d) A factor of two increase to main memory size.

8.22 How can the external sorting algorithm described in this chapter be extended
to handle variable-length records?

8.8 Projects

8.1 For a database application, assume it takes 10 ms to read a block from disk,
1 ms to search for a record in a block stored in memory, and that there is
room in memory for a buffer pool of 5 blocks. Requests come in for records,
with the request specifying which block contains the record. If a block is
accessed, there is a 10% probability for each of the next ten requests that the
request will be to the same block. What will be the expected performance
improvement for each of the following modifications to the system?

(a) Get a CPU that is twice as fast.
(b) Get a disk drive that is twice as fast.
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(c) Get enough memory to double the buffer pool size.

Write a simulation to analyze this problem.
8.2 Pictures are typically stored as an array, row by row, on disk. Consider the

case where the picture has 16 colors. Thus, each pixel can be represented us-
ing 4 bits. If you allow 8 bits per pixel, no processing is required to unpack
the pixels (because a pixel corresponds to a byte, the lowest level of address-
ing on most machines). If you pack two pixels per byte, space is saved but
the pixels must be unpacked. Which takes more time to read from disk and
access every pixel of the image: 8 bits per pixel, or 4 bits per pixel with
2 pixels per byte? Program both and compare the times.

8.3 Implement a disk-based buffer pool class based on the LRU buffer pool re-
placement strategy. Disk blocks are numbered consecutively from the begin-
ning of the file with the first block numbered as 0. Assume that blocks are
4096 bytes in size, with the first 4 bytes used to store the block ID corre-
sponding to that buffer. Use the first BufferPool abstract class given in
Section 8.3 as the basis for your implementation.

8.4 Implement an external sort based on replacement selection and multiway
merging as described in this chapter. Test your program both on files with
small records and on files with large records. For what size record do you
find that key sorting would be worthwhile?

8.5 Implement a Quicksort for large files on disk by replacing all array access in
the normal Quicksort application with access to a virtual array implemented
using a buffer pool. That is, whenever a record in the array would be read or
written by Quicksort, use a call to a buffer pool function instead. Compare
the running time of this implementation with implementations for external
sorting based on mergesort as described in this chapter.

8.6 Section 8.5.1 suggests that an easy modification to the basic 2-way mergesort
is to read in a large chunk of data into main memory, sort it with Quicksort,
and write it out for initial runs. Then, a standard 2-way merge is used in
a series of passes to merge the runs together. However, this makes use of
only two blocks of working memory at a time. Each block read is essentially
random access, because the various files are read in an unknown order, even
though each of the input and output files is processed sequentially on each
pass. A possible improvement would be, on the merge passes, to divide
working memory into four equal sections. One section is allocated to each
of the two input files and two output files. All reads during merge passes
would be in full sections, rather than single blocks. While the total number
of blocks read and written would be the same as a regular 2-way Mergesort, it
is possible that this would speed processing because a series of blocks that are
logically adjacent in the various input and output files would be read/written
each time. Implement this variation, and compare its running time against
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a standard series of 2-way merge passes that read/write only a single block
at a time. Before beginning implementation, write down your hypothesis on
how the running time will be affected by this change. After implementing,
did you find that this change has any meaningful effect on performance?





9

Searching

Organizing and retrieving information is at the heart of most computer applica-
tions, and searching is surely the most frequently performed of all computing tasks.
Search can be viewed abstractly as a process to determine if an element with a par-
ticular value is a member of a particular set. The more common view of searching
is an attempt to find the record within a collection of records that has a particular
key value, or those records in a collection whose key values meet some criterion
such as falling within a range of values.

We can define searching formally as follows. Suppose that we have a collection
L of n records of the form

(k1, I1), (k2, I2), ..., (kn, In)

where Ij is information associated with key kj from record j for 1 ≤ j ≤ n. Given
a particular key value K, the search problem is to locate a record (kj , Ij) in L
such that kj = K (if one exists). Searching is a systematic method for locating the
record (or records) with key value kj = K.

A successful search is one in which a record with key kj = K is found. An
unsuccessful search is one in which no record with kj = K is found (and no such
record exists).

An exact-match query is a search for the record whose key value matches a
specified key value. A range query is a search for all records whose key value falls
within a specified range of key values.

We can categorize search algorithms into three general approaches:

1. Sequential and list methods.
2. Direct access by key value (hashing).
3. Tree indexing methods.

This and the following chapter treat these three approaches in turn. Any of
these approaches are potentially suitable for implementing the Dictionary ADT
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introduced in Section 4.4. However, each has different performance characteristics
that make it the method of choice in particular circumstances.

The current chapter considers methods for searching data stored in lists. List in
this context means any list implementation including a linked list or an array. Most
of these methods are appropriate for sequences (i.e., duplicate key values are al-
lowed), although special techniques applicable to sets are discussed in Section 9.3.
The techniques from the first three sections of this chapter are most appropriate for
searching a collection of records stored in RAM. Section 9.4 discusses hashing,
a technique for organizing data in an array such that the location of each record
within the array is a function of its key value. Hashing is appropriate when records
are stored either in RAM or on disk.

Chapter 10 discusses tree-based methods for organizing information on disk,
including a commonly used file structure called the B-tree. Nearly all programs that
must organize large collections of records stored on disk use some variant of either
hashing or the B-tree. Hashing is practical for only certain access functions (exact-
match queries) and is generally appropriate only when duplicate key values are
not allowed. B-trees are the method of choice for dynamic disk-based applications
anytime hashing is not appropriate.

9.1 Searching Unsorted and Sorted Arrays

The simplest form of search has already been presented in Example 3.1: the se-
quential search algorithm. Sequential search on an unsorted list requires Θ(n) time
in the worst case.

How many comparisons does linear search do on average? A major consid-
eration is whether K is in list L at all. We can simplify our analysis by ignoring
everything about the input except the position of K if it is found in L. Thus, we have
n + 1 distinct possible events: That K is in one of positions 0 to n − 1 in L (each
position having its own probability), or that it is not in L at all. We can express the
probability that K is not in L as

P(K /∈ L) = 1−
n∑
i=1

P(K = L[i])

where P(x) is the probability of event x.
Let pi be the probability that K is in position i of L (indexed from 0 to n − 1.

For any position i in the list, we must look at i + 1 records to reach it. So we say
that the cost when K is in position i is i+ 1. When K is not in L, sequential search
will require n comparisons. Let pn be the probability that K is not in L. Then the
average cost T(n) will be
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T(n) = npn +

n−1∑
i=0

(i+ 1)pi.

What happens to the equation if we assume all the pi’s are equal (except p0)?

T(n) = pnn+

n−1∑
i=0

(i+ 1)p

= pnn+ p
n∑
i=1

i

= pnn+ p
n(n+ 1)

2

= pnn+
1− pn
n

n(n+ 1)

2

=
n+ 1 + pn(n− 1)

2

Depending on the value of pn, n+1
2 ≤ T(n) ≤ n.

For large collections of records that are searched repeatedly, sequential search
is unacceptably slow. One way to reduce search time is to preprocess the records
by sorting them. Given a sorted array, an obvious improvement over simple linear
search is to test if the current element in L is greater than K. If it is, then we know
that K cannot appear later in the array, and we can quit the search early. But this
still does not improve the worst-case cost of the algorithm.

We can also observe that if we look first at position 1 in sorted array L and find
that K is bigger, then we rule out position 0 as well as position 1. Because more
is often better, what if we look at position 2 in L and find that K is bigger yet?
This rules out positions 0, 1, and 2 with one comparison. What if we carry this to
the extreme and look first at the last position in L and find that K is bigger? Then
we know in one comparison that K is not in L. This is very useful to know, but
what is wrong with the conclusion that we should always start by looking at the last
position? The problem is that, while we learn a lot sometimes (in one comparison
we might learn that K is not in the list), usually we learn only a little bit (that the
last element is not K).

The question then becomes: What is the right amount to jump? This leads us
to an algorithm known as Jump Search. For some value j, we check every j’th
element in L, that is, we check elements L[j], L[2j], and so on. So long as K is
greater than the values we are checking, we continue on. But when we reach a
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value in L greater than K, we do a linear search on the piece of length j − 1 that
we know brackets K if it is in the list.

If we define m such that mj ≤ n < (m + 1)j, then the total cost of this
algorithm is at most m + j − 1 3-way comparisons. (They are 3-way because at
each comparison of K with some L[i] we need to know if K is less than, equal to,
or greater than L[i].) Therefore, the cost to run the algorithm on n items with a
jump of size j is

T(n, j) = m+ j − 1 =

⌊
n

j

⌋
+ j − 1.

What is the best value that we can pick for j? We want to minimize the cost:

min
1≤j≤n

{⌊
n

j

⌋
+ j − 1

}
Take the derivative and solve for f ′(j) = 0 to find the minimum, which is

j =
√
n. In this case, the worst case cost will be roughly 2

√
n.

This example invokes a basic principle of algorithm design. We want to bal-
ance the work done while selecting a sublist with the work done while searching a
sublist. In general, it is a good strategy to make subproblems of equal effort. This
is an example of a divide and conquer algorithm.

What if we extend this idea to three levels? We would first make jumps of
some size j to find a sublist of size j − 1 whose end values bracket value K. We
would then work through this sublist by making jumps of some smaller size, say
j1. Finally, once we find a bracketed sublist of size j1 − 1, we would do sequential
search to complete the process.

This probably sounds convoluted to do two levels of jumping to be followed by
a sequential search. While it might make sense to do a two-level algorithm (that is,
jump search jumps to find a sublist and then does sequential search on the sublist),
it almost never seems to make sense to do a three-level algorithm. Instead, when
we go beyond two levels, we nearly always generalize by using recursion. This
leads us to the most commonly used search algorithm for sorted arrays, the binary
search described in Section 3.5.

If we know nothing about the distribution of key values, then binary search
is the best algorithm available for searching a sorted array (see Exercise 9.22).
However, sometimes we do know something about the expected key distribution.
Consider the typical behavior of a person looking up a word in a large dictionary.
Most people certainly do not use sequential search! Typically, people use a mod-
ified form of binary search, at least until they get close to the word that they are
looking for. The search generally does not start at the middle of the dictionary. A
person looking for a word starting with ‘S’ generally assumes that entries beginning
with ‘S’ start about three quarters of the way through the dictionary. Thus, he or
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she will first open the dictionary about three quarters of the way through and then
make a decision based on what is found as to where to look next. In other words,
people typically use some knowledge about the expected distribution of key values
to “compute” where to look next. This form of “computed” binary search is called
a dictionary search or interpolation search. In a dictionary search, we search L
at a position p that is appropriate to the value of K as follows.

p =
K− L[1]

L[n]− L[1]

This equation is computing the position of K as a fraction of the distance be-
tween the smallest and largest key values. This will next be translated into that
position which is the same fraction of the way through the array, and this position
is checked first. As with binary search, the value of the key found eliminates all
records either above or below that position. The actual value of the key found can
then be used to compute a new position within the remaining range of the array.
The next check is made based on the new computation. This proceeds until either
the desired record is found, or the array is narrowed until no records are left.

A variation on dictionary search is known as Quadratic Binary Search (QBS),
and we will analyze this in detail because its analysis is easier than that of the
general dictionary search. QBS will first compute p and then examine L[dpne]. If
K < L[dpne] then QBS will sequentially probe to the left by steps of size

√
n, that

is, we step through
L[dpn− i

√
ne], i = 1, 2, 3, ...

until we reach a value less than or equal to K. Similarly for K > L[dpne] we will
step to the right by

√
n until we reach a value in L that is greater than K. We are

now within
√
n positions of K. Assume (for now) that it takes a constant number of

comparisons to bracket K within a sublist of size
√
n. We then take this sublist and

repeat the process recursively. That is, at the next level we compute an interpolation
to start somewhere in the subarray. We then step to the left or right (as appropriate)
by steps of size

√√
n.

What is the cost for QBS? Note that
√
cn = cn/2, and we will be repeatedly

taking square roots of the current sublist size until we find the item that we are
looking for. Because n = 2logn and we can cut log n in half only log log n times,
the cost is Θ(log log n) if the number of probes on jump search is constant.

Say that the number of comparisons needed is i, in which case the cost is i
(since we have to do i comparisons). If Pi is the probability of needing exactly i
probes, then √

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√
nP√n
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We now show that this is the same as
√
n∑

i=1

P(need at least i probes)

= 1 + (1−P1) + (1−P1 −P2) + · · ·+ P√n

= (P1 + ...+ P√n) + (P2 + ...+ P√n) +

(P3 + ...+ P√n) + · · ·

= 1P1 + 2P2 + 3P3 + · · ·+
√
nP√n

We require at least two probes to set the bounds, so the cost is

2 +

√
n∑

i=3

P(need at least i probes).

We now make take advantage of a useful fact known as Čebyšev’s Inequality.
Čebyšev’s inequality states that P(need exactly i probes), or Pi, is

Pi ≤
p(1− p)n
(i− 2)2n

≤ 1

4(i− 2)2

because p(1− p) ≤ 1/4 for any probability p. This assumes uniformly distributed
data. Thus, the expected number of probes is

2 +

√
n∑

i=3

1

4(i− 2)2
< 2 +

1

4

∞∑
i=1

1

i2
= 2 +

1

4

π

6
≈ 2.4112

Is QBS better than binary search? Theoretically yes, because O(log log n)
grows slower than O(log n). However, we have a situation here which illustrates
the limits to the model of asymptotic complexity in some practical situations. Yes,
c1 log n does grow faster than c2 log log n. In fact, it is exponentially faster! But
even so, for practical input sizes, the absolute cost difference is fairly small. Thus,
the constant factors might play a role. First we compare lg lgn to lg n.

Factor
n lg n lg lg n Difference
16 4 2 2
256 8 3 2.7
216 16 4 4
232 32 5 6.4
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It is not always practical to reduce an algorithm’s growth rate. There is a “prac-
ticality window” for every problem, in that we have a practical limit to how big an
input we wish to solve for. If our problem size never grows too big, it might not
matter if we can reduce the cost by an extra log factor, because the constant factors
in the two algorithms might differ by more than the log of the log of the input size.

For our two algorithms, let us look further and check the actual number of
comparisons used. For binary search, we need about log n − 1 total comparisons.
Quadratic binary search requires about 2.4 lg lg n comparisons. If we incorporate
this observation into our table, we get a different picture about the relative differ-
ences.

Factor
n lg n− 1 2.4 lg lg n Difference
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

But we still are not done. This is only a count of raw comparisons. Bi-
nary search is inherently much simpler than QBS, because binary search only
needs to calculate the midpoint position of the array before each comparison, while
quadratic binary search must calculate an interpolation point which is more expen-
sive. So the constant factors for QBS are even higher.

Not only are the constant factors worse on average, but QBS is far more depen-
dent than binary search on good data distribution to perform well. For example,
imagine that you are searching a telephone directory for the name “Young.” Nor-
mally you would look near the back of the book. If you found a name beginning
with ‘Z,’ you might look just a little ways toward the front. If the next name you
find also begins with ’Z,‘ you would look a little further toward the front. If this
particular telephone directory were unusual in that half of the entries begin with ‘Z,’
then you would need to move toward the front many times, each time eliminating
relatively few records from the search. In the extreme, the performance of interpo-
lation search might not be much better than sequential search if the distribution of
key values is badly calculated.

While it turns out that QBS is not a practical algorithm, this is not a typical
situation. Fortunately, algorithm growth rates are usually well behaved, so that as-
ymptotic algorithm analysis nearly always gives us a practical indication for which
of two algorithms is better.

9.2 Self-Organizing Lists

While ordering of lists is most commonly done by key value, this is not the only
viable option. Another approach to organizing lists to speed search is to order the
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records by expected frequency of access. While the benefits might not be as great
as when organized by key value, the cost to organize (at least approximately) by
frequency of access can be much cheaper, and thus can speed up sequential search
in some situations.

Assume that we know, for each key ki, the probability pi that the record with
key ki will be requested. Assume also that the list is ordered so that the most
frequently requested record is first, then the next most frequently requested record,
and so on. Search in the list will be done sequentially, beginning with the first
position. Over the course of many searches, the expected number of comparisons
required for one search is

Cn = 1p0 + 2p1 + ...+ npn−1.

In other words, the cost to access the record in L[0] is 1 (because one key value is
looked at), and the probability of this occurring is p0. The cost to access the record
in L[1] is 2 (because we must look at the first and the second records’ key values),
with probability p1, and so on. For n records, assuming that all searches are for
records that actually exist, the probabilities p0 through pn−1 must sum to one.

Certain probability distributions give easily computed results.

Example 9.1 Calculate the expected cost to search a list when each record
has equal chance of being accessed (the classic sequential search through
an unsorted list). Setting pi = 1/n yields

Cn =
n∑
i=1

i/n = (n+ 1)/2.

This result matches our expectation that half the records will be accessed on
average by normal sequential search. If the records truly have equal access
probabilities, then ordering records by frequency yields no benefit. We saw
in Section 9.1 the more general case where we must consider the probability
(labeled pn) that the search key does not match that for any record in the
array. In that case, in accordance with our general formula, we get

(1−pn)
n+ 1

2
+pnn =

n+ 1− npnn− pn + 2pn
2

=
n+ 1 + p0(n− 1)

2
.

Thus, n+1
2 ≤ Cn ≤ n, depending on the value of p0.

A geometric probability distribution can yield quite different results.
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Example 9.2 Calculate the expected cost for searching a list ordered by
frequency when the probabilities are defined as

pi =

{
1/2i if 0 ≤ i ≤ n− 2
1/2n if i = n− 1.

Then,

Cn ≈
n−1∑
i=0

(i+ 1)/2i+1 =
n∑
i=1

(i/2i) ≈ 2.

For this example, the expected number of accesses is a constant. This is
because the probability for accessing the first record is high (one half), the
second is much lower (one quarter) but still much higher than for the third
record, and so on. This shows that for some probability distributions, or-
dering the list by frequency can yield an efficient search technique.

In many search applications, real access patterns follow a rule of thumb called
the 80/20 rule. The 80/20 rule says that 80% of the record accesses are to 20%
of the records. The values of 80 and 20 are only estimates; every data access pat-
tern has its own values. However, behavior of this nature occurs surprisingly often
in practice (which explains the success of caching techniques widely used by web
browsers for speeding access to web pages, and by disk drive and CPU manufac-
turers for speeding access to data stored in slower memory; see the discussion on
buffer pools in Section 8.3). When the 80/20 rule applies, we can expect consid-
erable improvements to search performance from a list ordered by frequency of
access over standard sequential search in an unordered list.

Example 9.3 The 80/20 rule is an example of a Zipf distribution. Nat-
urally occurring distributions often follow a Zipf distribution. Examples
include the observed frequency for the use of words in a natural language
such as English, and the size of the population for cities (i.e., view the
relative proportions for the populations as equivalent to the “frequency of
use”). Zipf distributions are related to the Harmonic Series defined in Equa-
tion 2.10. Define the Zipf frequency for item i in the distribution for n
records as 1/(iHn) (see Exercise 9.4). The expected cost for the series
whose members follow this Zipf distribution will be

Cn =

n∑
i=1

i/iHn = n/Hn ≈ n/ loge n.

When a frequency distribution follows the 80/20 rule, the average search
looks at about 10-15% of the records in a list ordered by frequency.
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This is potentially a useful observation that typical “real-life” distributions of
record accesses, if the records were ordered by frequency, would require that we
visit on average only 10-15% of the list when doing sequential search. This means
that if we had an application that used sequential search, and we wanted to make it
go a bit faster (by a constant amount), we could do so without a major rewrite to
the system to implement something like a search tree. But that is only true if there
is an easy way to (at least approximately) order the records by frequency.

In most applications, we have no means of knowing in advance the frequencies
of access for the data records. To complicate matters further, certain records might
be accessed frequently for a brief period of time, and then rarely thereafter. Thus,
the probability of access for records might change over time (in most database
systems, this is to be expected). Self-organizing lists seek to solve both of these
problems.

Self-organizing lists modify the order of records within the list based on the
actual pattern of record access. Self-organizing lists use a heuristic for deciding
how to to reorder the list. These heuristics are similar to the rules for managing
buffer pools (see Section 8.3). In fact, a buffer pool is a form of self-organizing
list. Ordering the buffer pool by expected frequency of access is a good strategy,
because typically we must search the contents of the buffers to determine if the
desired information is already in main memory. When ordered by frequency of
access, the buffer at the end of the list will be the one most appropriate for reuse
when a new page of information must be read. Below are three traditional heuristics
for managing self-organizing lists:

1. The most obvious way to keep a list ordered by frequency would be to store
a count of accesses to each record and always maintain records in this or-
der. This method will be referred to as count. Count is similar to the least
frequently used buffer replacement strategy. Whenever a record is accessed,
it might move toward the front of the list if its number of accesses becomes
greater than a record preceding it. Thus, count will store the records in the
order of frequency that has actually occurred so far. Besides requiring space
for the access counts, count does not react well to changing frequency of
access over time. Once a record has been accessed a large number of times
under the frequency count system, it will remain near the front of the list
regardless of further access history.

2. Bring a record to the front of the list when it is found, pushing all the other
records back one position. This is analogous to the least recently used buffer
replacement strategy and is called move-to-front. This heuristic is easy to
implement if the records are stored using a linked list. When records are
stored in an array, bringing a record forward from near the end of the array
will result in a large number of records (slightly) changing position. Move-
to-front’s cost is bounded in the sense that it requires at most twice the num-
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ber of accesses required by the optimal static ordering for n records when
at least n searches are performed. In other words, if we had known the se-
ries of (at least n) searches in advance and had stored the records in order of
frequency so as to minimize the total cost for these accesses, this cost would
be at least half the cost required by the move-to-front heuristic. (This will
be proved using amortized analysis in Section 14.3.) Finally, move-to-front
responds well to local changes in frequency of access, in that if a record is
frequently accessed for a brief period of time it will be near the front of the
list during that period of access. Move-to-front does poorly when the records
are processed in sequential order, especially if that sequential order is then
repeated multiple times.

3. Swap any record found with the record immediately preceding it in the list.
This heuristic is called transpose. Transpose is good for list implementations
based on either linked lists or arrays. Frequently used records will, over time,
move to the front of the list. Records that were once frequently accessed but
are no longer used will slowly drift toward the back. Thus, it appears to have
good properties with respect to changing frequency of access. Unfortunately,
there are some pathological sequences of access that can make transpose
perform poorly. Consider the case where the last record of the list (call it X) is
accessed. This record is then swapped with the next-to-last record (call it Y),
making Y the last record. If Y is now accessed, it swaps with X. A repeated
series of accesses alternating between X and Y will continually search to the
end of the list, because neither record will ever make progress toward the
front. However, such pathological cases are unusual in practice. A variation
on transpose would be to move the accessed record forward in the list by
some fixed number of steps.

Example 9.4 Assume that we have eight records, with key valuesA toH ,
and that they are initially placed in alphabetical order. Now, consider the
result of applying the following access pattern:

F D F G E G F A D F G E.

Assume that when a record’s frequency count goes up, it moves forward in
the list to become the last record with that value for its frequency count.
After the first two accesses, F will be the first record and D will be the
second. The final list resulting from these accesses will be

F G D E A B C H,

and the total cost for the twelve accesses will be 45 comparisons.
If the list is organized by the move-to-front heuristic, then the final list

will be

E G F D A B C H,
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and the total number of comparisons required is 54.
Finally, if the list is organized by the transpose heuristic, then the final

list will be

A B F D G E C H,

and the total number of comparisons required is 62.

While self-organizing lists do not generally perform as well as search trees or a
sorted list, both of which require O(log n) search time, there are many situations in
which self-organizing lists prove a valuable tool. Obviously they have an advantage
over sorted lists in that they need not be sorted. This means that the cost to insert
a new record is low, which could more than make up for the higher search cost
when insertions are frequent. Self-organizing lists are simpler to implement than
search trees and are likely to be more efficient for small lists. Nor do they require
additional space. Finally, in the case of an application where sequential search is
“almost” fast enough, changing an unsorted list to a self-organizing list might speed
the application enough at a minor cost in additional code.

As an example of applying self-organizing lists, consider an algorithm for com-
pressing and transmitting messages. The list is self-organized by the move-to-front
rule. Transmission is in the form of words and numbers, by the following rules:

1. If the word has been seen before, transmit the current position of the word in
the list. Move the word to the front of the list.

2. If the word is seen for the first time, transmit the word. Place the word at the
front of the list.

Both the sender and the receiver keep track of the position of words in the list
in the same way (using the move-to-front rule), so they agree on the meaning of
the numbers that encode repeated occurrences of words. Consider the following
example message to be transmitted (for simplicity, ignore case in letters).

The car on the left hit the car I left.

The first three words have not been seen before, so they must be sent as full
words. The fourth word is the second appearance of “the,” which at this point is
the third word in the list. Thus, we only need to transmit the position value “3.”
The next two words have not yet been seen, so must be sent as full words. The
seventh word is the third appearance of “the,” which coincidentally is again in the
third position. The eighth word is the second appearance of “car,” which is now in
the fifth position of the list. “I” is a new word, and the last word “left” is now in
the fifth position. Thus the entire transmission would be

The car on 3 left hit 3 5 I 5.
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0 1 2 3 4 5 6 7 8 9 10 11 12 15

000001010 0 11 101
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0

Figure 9.1 The bit array for the set of primes in the range 0 to 15. The bit at
position i is set to 1 if and only if i is prime.

This approach to compression is similar in spirit to Ziv-Lempel coding, which
is a class of coding algorithms commonly used in file compression utilities. Ziv-
Lempel coding replaces repeated occurrences of strings with a pointer to the lo-
cation in the file of the first occurrence of the string. The codes are stored in a
self-organizing list in order to speed up the time required to search for a string that
has previously been seen.

9.3 Bit Vectors for Representing Sets

Determining whether a value is a member of a particular set is a special case of
searching for keys in a sequence of records. Thus, any of the search methods
discussed in this book can be used to check for set membership. However, we
can also take advantage of the restricted circumstances imposed by this problem to
develop another representation.

In the case where the set values fall within a limited range, we can represent the
set using a bit array with a bit position allocated for each potential member. Those
members actually in the set store a value of 1 in their corresponding bit; those
members not in the set store a value of 0 in their corresponding bit. For example,
consider the set of primes between 0 and 15. Figure 9.1 shows the corresponding
bit array. To determine if a particular value is prime, we simply check the corre-
sponding bit. This representation scheme is called a bit vector or a bitmap. The
mark array used in several of the graph algorithms of Chapter 11 is an example of
such a set representation.

If the set fits within a single computer word, then set union, intersection, and
difference can be performed by logical bit-wise operations. The union of sets A
and B is the bit-wise OR function (whose symbol is | in C++). The intersection
of sets A and B is the bit-wise AND function (whose symbol is & in C++). For
example, if we would like to compute the set of numbers between 0 and 15 that are
both prime and odd numbers, we need only compute the expression

0011010100010100 & 0101010101010101.

The set difference A− B can be implemented in C++ using the expression A&˜B
(˜ is the symbol for bit-wise negation). For larger sets that do not fit into a single
computer word, the equivalent operations can be performed in turn on the series of
words making up the entire bit vector.
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This method of computing sets from bit vectors is sometimes applied to doc-
ument retrieval. Consider the problem of picking from a collection of documents
those few which contain selected keywords. For each keyword, the document re-
trieval system stores a bit vector with one bit for each document. If the user wants to
know which documents contain a certain three keywords, the corresponding three
bit vectors are AND’ed together. Those bit positions resulting in a value of 1 cor-
respond to the desired documents. Alternatively, a bit vector can be stored for each
document to indicate those keywords appearing in the document. Such an organiza-
tion is called a signature file. The signatures can be manipulated to find documents
with desired combinations of keywords.

9.4 Hashing

This section presents a completely different approach to searching arrays: by direct
access based on key value. The process of finding a record using some computa-
tion to map its key value to a position in the array is called hashing. Most hash-
ing schemes place records in the array in whatever order satisfies the needs of the
address calculation, thus the records are not ordered by value or frequency. The
function that maps key values to positions is called a hash function and will be
denoted by h. The array that holds the records is called the hash table and will be
denoted by HT. A position in the hash table is also known as a slot. The number
of slots in hash table HT will be denoted by the variable M , with slots numbered
from 0 to M − 1. The goal for a hashing system is to arrange things such that, for
any key value K and some hash function h, i = h(K) is a slot in the table such
that 0 ≤ h(K) < M , and we have the key of the record stored at HT[i] equal to
K.

Hashing is not good for applications where multiple records with the same key
value are permitted. Hashing is not a good method for answering range searches. In
other words, we cannot easily find all records (if any) whose key values fall within
a certain range. Nor can we easily find the record with the minimum or maximum
key value, or visit the records in key order. Hashing is most appropriate for answer-
ing the question, “What record, if any, has key value K?” For applications where
access involves only exact-match queries, hashing is usually the search method of
choice because it is extremely efficient when implemented correctly. As you will
see in this section, however, there are many approaches to hashing and it is easy
to devise an inefficient implementation. Hashing is suitable for both in-memory
and disk-based searching and is one of the two most widely used methods for or-
ganizing large databases stored on disk (the other is the B-tree, which is covered in
Chapter 10).

As a simple (though unrealistic) example of hashing, consider storing n records
each with a unique key value in the range 0 to n − 1. In this simple case, a record
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with key k can be stored in HT[k], and the hash function is simply h(k) = k. To
find the record with key value k, simply look in HT[k].

Typically, there are many more values in the key range than there are slots in
the hash table. For a more realistic example, suppose that the key can take any
value in the range 0 to 65,535 (i.e., the key is a two-byte unsigned integer), and that
we expect to store approximately 1000 records at any given time. It is impractical
in this situation to use a hash table with 65,536 slots, because most of the slots will
be left empty. Instead, we must devise a hash function that allows us to store the
records in a much smaller table. Because the possible key range is larger than the
size of the table, at least some of the slots must be mapped to from multiple key
values. Given a hash function h and two keys k1 and k2, if h(k1) = β = h(k2)
where β is a slot in the table, then we say that k1 and k2 have a collision at slot β
under hash function h.

Finding a record with key value K in a database organized by hashing follows
a two-step procedure:

1. Compute the table location h(K).
2. Starting with slot h(K), locate the record containing key K using (if neces-

sary) a collision resolution policy.

9.4.1 Hash Functions

Hashing generally takes records whose key values come from a large range and
stores those records in a table with a relatively small number of slots. Collisions
occur when two records hash to the same slot in the table. If we are careful—or
lucky—when selecting a hash function, then the actual number of collisions will
be few. Unfortunately, even under the best of circumstances, collisions are nearly
unavoidable.1 For example, consider a classroom full of students. What is the
probability that some pair of students shares the same birthday (i.e., the same day
of the year, not necessarily the same year)? If there are 23 students, then the odds
are about even that two will share a birthday. This is despite the fact that there are
365 days in which students can have birthdays (ignoring leap years), on most of
which no student in the class has a birthday. With more students, the probability
of a shared birthday increases. The mapping of students to days based on their

1The exception to this is perfect hashing. Perfect hashing is a system in which records are
hashed such that there are no collisions. A hash function is selected for the specific set of records
being hashed, which requires that the entire collection of records be available before selecting the
hash function. Perfect hashing is efficient because it always finds the record that we are looking
for exactly where the hash function computes it to be, so only one access is required. Selecting a
perfect hash function can be expensive, but might be worthwhile when extremely efficient search
performance is required. An example is searching for data on a read-only CD. Here the database will
never change, the time for each access is expensive, and the database designer can build the hash
table before issuing the CD.
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birthday is similar to assigning records to slots in a table (of size 365) using the
birthday as a hash function. Note that this observation tells us nothing about which
students share a birthday, or on which days of the year shared birthdays fall.

To be practical, a database organized by hashing must store records in a hash
table that is not so large that it wastes space. Typically, this means that the hash
table will be around half full. Because collisions are extremely likely to occur
under these conditions (by chance, any record inserted into a table that is half full
will have a collision half of the time), does this mean that we need not worry about
the ability of a hash function to avoid collisions? Absolutely not. The difference
between a good hash function and a bad hash function makes a big difference in
practice. Technically, any function that maps all possible key values to a slot in
the hash table is a hash function. In the extreme case, even a function that maps
all records to the same slot is a hash function, but it does nothing to help us find
records during a search operation.

We would like to pick a hash function that stores the actual records in the col-
lection such that each slot in the hash table has equal probability of being filled. Un-
fortunately, we normally have no control over the key values of the actual records,
so how well any particular hash function does this depends on the distribution of
the keys within the allowable key range. In some cases, incoming data are well
distributed across their key range. For example, if the input is a set of random
numbers selected uniformly from the key range, any hash function that assigns the
key range so that each slot in the hash table receives an equal share of the range
will likely also distribute the input records uniformly within the table. However,
in many applications the incoming records are highly clustered or otherwise poorly
distributed. When input records are not well distributed throughout the key range
it can be difficult to devise a hash function that does a good job of distributing the
records throughout the table, especially if the input distribution is not known in
advance.

There are many reasons why data values might be poorly distributed.

1. Natural frequency distributions tend to follow a common pattern where a few
of the entities occur frequently while most entities occur relatively rarely.
For example, consider the populations of the 100 largest cities in the United
States. If you plot these populations on a number line, most of them will be
clustered toward the low side, with a few outliers on the high side. This is an
example of a Zipf distribution (see Section 9.2). Viewed the other way, the
home town for a given person is far more likely to be a particular large city
than a particular small town.

2. Collected data are likely to be skewed in some way. Field samples might be
rounded to, say, the nearest 5 (i.e., all numbers end in 5 or 0).

3. If the input is a collection of common English words, the beginning letter
will be poorly distributed.
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Note that in examples 2 and 3, either high- or low-order bits of the key are poorly
distributed.

When designing hash functions, we are generally faced with one of two situa-
tions.

1. We know nothing about the distribution of the incoming keys. In this case,
we wish to select a hash function that evenly distributes the key range across
the hash table, while avoiding obvious opportunities for clustering such as
hash functions that are sensitive to the high- or low-order bits of the key
value.

2. We know something about the distribution of the incoming keys. In this case,
we should use a distribution-dependent hash function that avoids assigning
clusters of related key values to the same hash table slot. For example, if
hashing English words, we should not hash on the value of the first character
because this is likely to be unevenly distributed.

Below are several examples of hash functions that illustrate these points.

Example 9.5 Consider the following hash function used to hash integers
to a table of sixteen slots:

int h(int x) {
return x % 16;

}

The value returned by this hash function depends solely on the least
significant four bits of the key. Because these bits are likely to be poorly
distributed (as an example, a high percentage of the keys might be even
numbers, which means that the low order bit is zero), the result will also
be poorly distributed. This example shows that the size of the table M can
have a big effect on the performance of a hash system because this value is
typically used as the modulus to ensure that the hash function produces a
number in the range 0 to M − 1.

Example 9.6 A good hash function for numerical values comes from the
mid-square method. The mid-square method squares the key value, and
then takes the middle r bits of the result, giving a value in the range 0 to
2r − 1. This works well because most or all bits of the key value contribute
to the result. For example, consider records whose keys are 4-digit numbers
in base 10. The goal is to hash these key values to a table of size 100
(i.e., a range of 0 to 99). This range is equivalent to two digits in base 10.
That is, r = 2. If the input is the number 4567, squaring yields an 8-digit
number, 20857489. The middle two digits of this result are 57. All digits
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4567
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31969
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22835

18268
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Figure 9.2 An illustration of the mid-square method, showing the details of
long multiplication in the process of squaring the value 4567. The bottom of the
figure indicates which digits of the answer are most influenced by each digit of
the operands.

(equivalently, all bits when the number is viewed in binary) contribute to the
middle two digits of the squared value. Figure 9.2 illustrates the concept.
Thus, the result is not dominated by the distribution of the bottom digit or
the top digit of the original key value.

Example 9.7 Here is a hash function for strings of characters:

int h(char* x) {
int i, sum;
for (sum=0, i=0; x[i] != ’\0’; i++)

sum += (int) x[i];
return sum % M;

}

This function sums the ASCII values of the letters in a string. If the hash
table sizeM is small, this hash function should do a good job of distributing
strings evenly among the hash table slots, because it gives equal weight to
all characters. This is an example of the folding approach to designing a
hash function. Note that the order of the characters in the string has no
effect on the result. A similar method for integers would add the digits of
the key value, assuming that there are enough digits to (1) keep any one
or two digits with bad distribution from skewing the results of the process
and (2) generate a sum much larger than M . As with many other hash
functions, the final step is to apply the modulus operator to the result, using
table size M to generate a value within the table range. If the sum is not
sufficiently large, then the modulus operator will yield a poor distribution.
For example, because the ASCII value for “A” is 65 and “Z” is 90, sum will
always be in the range 650 to 900 for a string of ten upper case letters. For
a hash table of size 100 or less, a reasonable distribution results. For a hash
table of size 1000, the distribution is terrible because only slots 650 to 900
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can possibly be the home slot for some key value, and the values are not
evenly distributed even within those slots.

Example 9.8 Here is a much better hash function for strings.

// Use folding on a string, summed 4 bytes at a time
int sfold(char* key) {

unsigned int *lkey = (unsigned int *)key;
int intlength = strlen(key)/4;
unsigned int sum = 0;
for(int i=0; i<intlength; i++)

sum += lkey[i];

// Now deal with the extra chars at the end
int extra = strlen(key) - intlength*4;
char temp[4];
lkey = (unsigned int *)temp;
lkey[0] = 0;
for(int i=0; i<extra; i++)

temp[i] = key[intlength*4+i];
sum += lkey[0];

return sum % M;
}

This function takes a string as input. It processes the string four bytes
at a time, and interprets each of the four-byte chunks as a single (unsigned)
long integer value. The integer values for the four-byte chunks are added
together. In the end, the resulting sum is converted to the range 0 to M − 1
using the modulus operator.2

For example, if the string “aaaabbbb” is passed to sfold, then the first
four bytes (“aaaa”) will be interpreted as the integer value 1,633,771,873
and the next four bytes (“bbbb”) will be interpreted as the integer value
1,650,614,882. Their sum is 3,284,386,755 (when viewed as an unsigned
integer). If the table size is 101 then the modulus function will cause this
key to hash to slot 75 in the table. Note that for any sufficiently long string,
the sum for the integer quantities will typically cause a 32-bit integer to
overflow (thus losing some of the high-order bits) because the resulting
values are so large. But this causes no problems when the goal is to compute
a hash function.

2Recall from Section 2.2 that the implementation for n mod m on many C++ and Java compilers
will yield a negative number if n is negative. Implementors for hash functions need to be careful that
their hash function does not generate a negative number. This can be avoided either by insuring
that n is positive when computing n mod m, or adding m to the result if n mod m is negative.
All computation in sfold is done using unsigned long values in part to protect against taking the
modulus of an negative number.
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Figure 9.3 An illustration of open hashing for seven numbers stored in a ten-slot
hash table using the hash function h(K) = K mod 10. The numbers are inserted
in the order 9877, 2007, 1000, 9530, 3013, 9879, and 1057. Two of the values
hash to slot 0, one value hashes to slot 2, three of the values hash to slot 7, and
one value hashes to slot 9.

9.4.2 Open Hashing

While the goal of a hash function is to minimize collisions, some collisions are
unavoidable in practice. Thus, hashing implementations must include some form of
collision resolution policy. Collision resolution techniques can be broken into two
classes: open hashing (also called separate chaining) and closed hashing (also
called open addressing).3 The difference between the two has to do with whether
collisions are stored outside the table (open hashing), or whether collisions result
in storing one of the records at another slot in the table (closed hashing). Open
hashing is treated in this section, and closed hashing in Section 9.4.3.

The simplest form of open hashing defines each slot in the hash table to be
the head of a linked list. All records that hash to a particular slot are placed on
that slot’s linked list. Figure 9.3 illustrates a hash table where each slot stores one
record and a link pointer to the rest of the list.

Records within a slot’s list can be ordered in several ways: by insertion order,
by key value order, or by frequency-of-access order. Ordering the list by key value
provides an advantage in the case of an unsuccessful search, because we know to
stop searching the list once we encounter a key that is greater than the one being

3Yes, it is confusing when “open hashing” means the opposite of “open addressing,” but unfortu-
nately, that is the way it is.
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searched for. If records on the list are unordered or ordered by frequency, then an
unsuccessful search will need to visit every record on the list.

Given a table of size M storing N records, the hash function will (ideally)
spread the records evenly among the M positions in the table, yielding on average
N/M records for each list. Assuming that the table has more slots than there are
records to be stored, we can hope that few slots will contain more than one record.
In the case where a list is empty or has only one record, a search requires only one
access to the list. Thus, the average cost for hashing should be Θ(1). However, if
clustering causes many records to hash to only a few of the slots, then the cost to
access a record will be much higher because many elements on the linked list must
be searched.

Open hashing is most appropriate when the hash table is kept in main memory,
with the lists implemented by a standard in-memory linked list. Storing an open
hash table on disk in an efficient way is difficult, because members of a given
linked list might be stored on different disk blocks. This would result in multiple
disk accesses when searching for a particular key value, which defeats the purpose
of using hashing.

There are similarities between open hashing and Binsort. One way to view
open hashing is that each record is simply placed in a bin. While multiple records
may hash to the same bin, this initial binning should still greatly reduce the number
of records accessed by a search operation. In a similar fashion, a simple Binsort
reduces the number of records in each bin to a small number that can be sorted in
some other way.

9.4.3 Closed Hashing

Closed hashing stores all records directly in the hash table. Each record R with key
value kR has a home position that is h(kR), the slot computed by the hash function.
If R is to be inserted and another record already occupies R’s home position, then
R will be stored at some other slot in the table. It is the business of the collision
resolution policy to determine which slot that will be. Naturally, the same policy
must be followed during search as during insertion, so that any record not found in
its home position can be recovered by repeating the collision resolution process.

Bucket Hashing

One implementation for closed hashing groups hash table slots into buckets. The
M slots of the hash table are divided into B buckets, with each bucket consisting
of M/B slots. The hash function assigns each record to the first slot within one
of the buckets. If this slot is already occupied, then the bucket slots are searched
sequentially until an open slot is found. If a bucket is entirely full, then the record
is stored in an overflow bucket of infinite capacity at the end of the table. All
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Figure 9.4 An illustration of bucket hashing for seven numbers stored in a five-
bucket hash table using the hash function h(K) = K mod 5. Each bucket con-
tains two slots. The numbers are inserted in the order 9877, 2007, 1000, 9530,
3013, 9879, and 1057. Two of the values hash to bucket 0, three values hash to
bucket 2, one value hashes to bucket 3, and one value hashes to bucket 4. Because
bucket 2 cannot hold three values, the third one ends up in the overflow bucket.

buckets share the same overflow bucket. A good implementation will use a hash
function that distributes the records evenly among the buckets so that as few records
as possible go into the overflow bucket. Figure 9.4 illustrates bucket hashing.

When searching for a record, the first step is to hash the key to determine which
bucket should contain the record. The records in this bucket are then searched. If
the desired key value is not found and the bucket still has free slots, then the search
is complete. If the bucket is full, then it is possible that the desired record is stored
in the overflow bucket. In this case, the overflow bucket must be searched until the
record is found or all records in the overflow bucket have been checked. If many
records are in the overflow bucket, this will be an expensive process.

A simple variation on bucket hashing is to hash a key value to some slot in
the hash table as though bucketing were not being used. If the home position is
full, then the collision resolution process is to move down through the table toward
the end of the bucket while searching for a free slot in which to store the record.
If the bottom of the bucket is reached, then the collision resolution routine wraps
around to the top of the bucket to continue the search for an open slot. For example,
assume that buckets contain eight records, with the first bucket consisting of slots 0
through 7. If a record is hashed to slot 5, the collision resolution process will
attempt to insert the record into the table in the order 5, 6, 7, 0, 1, 2, 3, and finally 4.
If all slots in this bucket are full, then the record is assigned to the overflow bucket.
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Figure 9.5 An variant of bucket hashing for seven numbers stored in a 10-slot
hash table using the hash function h(K) = K mod 10. Each bucket contains two
slots. The numbers are inserted in the order 9877, 2007, 1000, 9530, 3013, 9879,
and 1057. Value 9877 first hashes to slot 7, so when value 2007 attempts to do
likewise, it is placed in the other slot associated with that bucket which is slot 6.
When value 1057 is inserted, there is no longer room in the bucket and it is placed
into overflow. The other collision occurs after value 1000 is inserted to slot 0,
causing 9530 to be moved to slot 1.

The advantage of this approach is that initial collisions are reduced, Because any
slot can be a home position rather than just the first slot in the bucket. Figure 9.5
shows another example for this form of bucket hashing.

Bucket methods are good for implementing hash tables stored on disk, because
the bucket size can be set to the size of a disk block. Whenever search or insertion
occurs, the entire bucket is read into memory. Because the entire bucket is then
in memory, processing an insert or search operation requires only one disk access,
unless the bucket is full. If the bucket is full, then the overflow bucket must be
retrieved from disk as well. Naturally, overflow should be kept small to minimize
unnecessary disk accesses.

Linear Probing

We now turn to the most commonly used form of hashing: closed hashing with no
bucketing, and a collision resolution policy that can potentially use any slot in the
hash table.

During insertion, the goal of collision resolution is to find a free slot in the hash
table when the home position for the record is already occupied. We can view any
collision resolution method as generating a sequence of hash table slots that can
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// Insert e into hash table HT
template <typename Key, typename E>
void hashdict<Key, E>::
hashInsert(const Key& k, const E& e) {

int home; // Home position for e
int pos = home = h(k); // Init probe sequence
for (int i=1; EMPTYKEY != (HT[pos]).key(); i++) {

pos = (home + p(k, i)) % M; // probe
Assert(k != (HT[pos]).key(), "Duplicates not allowed");

}
KVpair<Key,E> temp(k, e);
HT[pos] = temp;

}

Figure 9.6 Insertion method for a dictionary implemented by a hash table.

potentially hold the record. The first slot in the sequence will be the home position
for the key. If the home position is occupied, then the collision resolution policy
goes to the next slot in the sequence. If this is occupied as well, then another slot
must be found, and so on. This sequence of slots is known as the probe sequence,
and it is generated by some probe function that we will call p. The insert function
is shown in Figure 9.6.

Method hashInsert first checks to see if the home slot for the key is empty.
If the home slot is occupied, then we use the probe function, p(k, i) to locate a free
slot in the table. Function p has two parameters, the key k and a count i for where
in the probe sequence we wish to be. That is, to get the first position in the probe
sequence after the home slot for key K, we call p(K, 1). For the next slot in the
probe sequence, call p(K, 2). Note that the probe function returns an offset from
the original home position, rather than a slot in the hash table. Thus, the for loop
in hashInsert is computing positions in the table at each iteration by adding
the value returned from the probe function to the home position. The ith call to p
returns the ith offset to be used.

Searching in a hash table follows the same probe sequence that was followed
when inserting records. In this way, a record not in its home position can be recov-
ered. A C++ implementation for the search procedure is shown in Figure 9.7.

The insert and search routines assume that at least one slot on the probe se-
quence of every key will be empty. Otherwise, they will continue in an infinite
loop on unsuccessful searches. Thus, the dictionary should keep a count of the
number of records stored, and refuse to insert into a table that has only one free
slot.

The discussion on bucket hashing presented a simple method of collision reso-
lution. If the home position for the record is occupied, then move down the bucket
until a free slot is found. This is an example of a technique for collision resolution
known as linear probing. The probe function for simple linear probing is

p(K, i) = i.
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// Search for the record with Key K
template <typename Key, typename E>
E hashdict<Key, E>::
hashSearch(const Key& k) const {

int home; // Home position for k
int pos = home = h(k); // Initial position is home slot
for (int i = 1; (k != (HT[pos]).key()) &&

(EMPTYKEY != (HT[pos]).key()); i++)
pos = (home + p(k, i)) % M; // Next on probe sequence

if (k == (HT[pos]).key()) // Found it
return (HT[pos]).value();

else return NULL; // k not in hash table
}

Figure 9.7 Search method for a dictionary implemented by a hash table.

That is, the ith offset on the probe sequence is just i, meaning that the ith step is
simply to move down i slots in the table.

Once the bottom of the table is reached, the probe sequence wraps around to
the beginning of the table. Linear probing has the virtue that all slots in the table
will be candidates for inserting a new record before the probe sequence returns to
the home position.

While linear probing is probably the first idea that comes to mind when consid-
ering collision resolution policies, it is not the only one possible. Probe function p
allows us many options for how to do collision resolution. In fact, linear probing is
one of the worst collision resolution methods. The main problem is illustrated by
Figure 9.8. Here, we see a hash table of ten slots used to store four-digit numbers,
with hash function h(K) = K mod 10. In Figure 9.8(a), five numbers have been
placed in the table, leaving five slots remaining.

The ideal behavior for a collision resolution mechanism is that each empty slot
in the table will have equal probability of receiving the next record inserted (assum-
ing that every slot in the table has equal probability of being hashed to initially). In
this example, assume that the hash function gives each slot (roughly) equal proba-
bility of being the home position for the next key. However, consider what happens
to the next record if its key has its home position at slot 0. Linear probing will
send the record to slot 2. The same will happen to records whose home position
is at slot 1. A record with home position at slot 2 will remain in slot 2. Thus, the
probability is 3/10 that the next record inserted will end up in slot 2. In a similar
manner, records hashing to slots 7 or 8 will end up in slot 9. However, only records
hashing to slot 3 will be stored in slot 3, yielding one chance in ten of this happen-
ing. Likewise, there is only one chance in ten that the next record will be stored
in slot 4, one chance in ten for slot 5, and one chance in ten for slot 6. Thus, the
resulting probabilities are not equal.

To make matters worse, if the next record ends up in slot 9 (which already has
a higher than normal chance of happening), then the following record will end up
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Figure 9.8 Example of problems with linear probing. (a) Four values are inserted
in the order 1001, 9050, 9877, and 2037 using hash function h(K) = K mod 10.
(b) The value 1059 is added to the hash table.

in slot 2 with probability 6/10. This is illustrated by Figure 9.8(b). This tendency
of linear probing to cluster items together is known as primary clustering. Small
clusters tend to merge into big clusters, making the problem worse. The objection
to primary clustering is that it leads to long probe sequences.

Improved Collision Resolution Methods

How can we avoid primary clustering? One possible improvement might be to use
linear probing, but to skip slots by a constant c other than 1. This would make the
probe function

p(K, i) = ci,

and so the ith slot in the probe sequence will be (h(K) + ic) mod M . In this way,
records with adjacent home positions will not follow the same probe sequence. For
example, if we were to skip by twos, then our offsets from the home slot would
be 2, then 4, then 6, and so on.

One quality of a good probe sequence is that it will cycle through all slots in
the hash table before returning to the home position. Clearly linear probing (which
“skips” slots by one each time) does this. Unfortunately, not all values for c will
make this happen. For example, if c = 2 and the table contains an even number
of slots, then any key whose home position is in an even slot will have a probe
sequence that cycles through only the even slots. Likewise, the probe sequence
for a key whose home position is in an odd slot will cycle through the odd slots.
Thus, this combination of table size and linear probing constant effectively divides
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the records into two sets stored in two disjoint sections of the hash table. So long
as both sections of the table contain the same number of records, this is not really
important. However, just from chance it is likely that one section will become fuller
than the other, leading to more collisions and poorer performance for those records.
The other section would have fewer records, and thus better performance. But the
overall system performance will be degraded, as the additional cost to the side that
is more full outweighs the improved performance of the less-full side.

Constant c must be relatively prime to M to generate a linear probing sequence
that visits all slots in the table (that is, c and M must share no factors). For a hash
table of size M = 10, if c is any one of 1, 3, 7, or 9, then the probe sequence
will visit all slots for any key. When M = 11, any value for c between 1 and 10
generates a probe sequence that visits all slots for every key.

Consider the situation where c = 2 and we wish to insert a record with key k1
such that h(k1) = 3. The probe sequence for k1 is 3, 5, 7, 9, and so on. If another
key k2 has home position at slot 5, then its probe sequence will be 5, 7, 9, and so on.
The probe sequences of k1 and k2 are linked together in a manner that contributes
to clustering. In other words, linear probing with a value of c > 1 does not solve
the problem of primary clustering. We would like to find a probe function that does
not link keys together in this way. We would prefer that the probe sequence for k1
after the first step on the sequence should not be identical to the probe sequence of
k2. Instead, their probe sequences should diverge.

The ideal probe function would select the next position on the probe sequence
at random from among the unvisited slots; that is, the probe sequence should be a
random permutation of the hash table positions. Unfortunately, we cannot actually
select the next position in the probe sequence at random, because then we would not
be able to duplicate this same probe sequence when searching for the key. However,
we can do something similar called pseudo-random probing. In pseudo-random
probing, the ith slot in the probe sequence is (h(K) + ri) mod M where ri is the
ith value in a random permutation of the numbers from 1 to M − 1. All insertion
and search operations use the same random permutation. The probe function is

p(K, i) = Perm[i− 1],

where Perm is an array of length M − 1 containing a random permutation of the
values from 1 to M − 1.

Example 9.9 Consider a table of size M = 101, with Perm[1] = 5,
Perm[2] = 2, and Perm[3] = 32. Assume that we have two keys k1 and
k2 where h(k1) = 30 and h(k2) = 35. The probe sequence for k1 is 30,
then 35, then 32, then 62. The probe sequence for k2 is 35, then 40, then
37, then 67. Thus, while k2 will probe to k1’s home position as its second
choice, the two keys’ probe sequences diverge immediately thereafter.
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Another probe function that eliminates primary clustering is called quadratic
probing. Here the probe function is some quadratic function

p(K, i) = c1i
2 + c2i+ c3

for some choice of constants c1, c2, and c3. The simplest variation is p(K, i) = i2

(i.e., c1 = 1, c2 = 0, and c3 = 0. Then the ith value in the probe sequence would
be (h(K) + i2) mod M . Under quadratic probing, two keys with different home
positions will have diverging probe sequences.

Example 9.10 Given a hash table of size M = 101, assume for keys k1
and k2 that h(k1) = 30 and h(k2) = 29. The probe sequence for k1 is 30,
then 31, then 34, then 39. The probe sequence for k2 is 29, then 30, then
33, then 38. Thus, while k2 will probe to k1’s home position as its second
choice, the two keys’ probe sequences diverge immediately thereafter.

Unfortunately, quadratic probing has the disadvantage that typically not all hash
table slots will be on the probe sequence. Using p(K, i) = i2 gives particularly in-
consistent results. For many hash table sizes, this probe function will cycle through
a relatively small number of slots. If all slots on that cycle happen to be full, then
the record cannot be inserted at all! For example, if our hash table has three slots,
then records that hash to slot 0 can probe only to slots 0 and 1 (that is, the probe
sequence will never visit slot 2 in the table). Thus, if slots 0 and 1 are full, then
the record cannot be inserted even though the table is not full. A more realistic
example is a table with 105 slots. The probe sequence starting from any given slot
will only visit 23 other slots in the table. If all 24 of these slots should happen to
be full, even if other slots in the table are empty, then the record cannot be inserted
because the probe sequence will continually hit only those same 24 slots.

Fortunately, it is possible to get good results from quadratic probing at low
cost. The right combination of probe function and table size will visit many slots
in the table. In particular, if the hash table size is a prime number and the probe
function is p(K, i) = i2, then at least half the slots in the table will be visited.
Thus, if the table is less than half full, we can be certain that a free slot will be
found. Alternatively, if the hash table size is a power of two and the probe function
is p(K, i) = (i2 + i)/2, then every slot in the table will be visited by the probe
function.

Both pseudo-random probing and quadratic probing eliminate primary cluster-
ing, which is the problem of keys sharing substantial segments of a probe sequence.
If two keys hash to the same home position, however, then they will always follow
the same probe sequence for every collision resolution method that we have seen so
far. The probe sequences generated by pseudo-random and quadratic probing (for
example) are entirely a function of the home position, not the original key value.
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This is because function p ignores its input parameter K for these collision resolu-
tion methods. If the hash function generates a cluster at a particular home position,
then the cluster remains under pseudo-random and quadratic probing. This problem
is called secondary clustering.

To avoid secondary clustering, we need to have the probe sequence make use of
the original key value in its decision-making process. A simple technique for doing
this is to return to linear probing by a constant step size for the probe function, but
to have that constant be determined by a second hash function, h2. Thus, the probe
sequence would be of the form p(K, i) = i ∗h2(K). This method is called double
hashing.

Example 9.11 Assume a hash table has size M = 101, and that there
are three keys k1, k2, and k3 with h(k1) = 30, h(k2) = 28, h(k3) = 30,
h2(k1) = 2, h2(k2) = 5, and h2(k3) = 5. Then, the probe sequence
for k1 will be 30, 32, 34, 36, and so on. The probe sequence for k2 will
be 28, 33, 38, 43, and so on. The probe sequence for k3 will be 30, 35,
40, 45, and so on. Thus, none of the keys share substantial portions of the
same probe sequence. Of course, if a fourth key k4 has h(k4) = 28 and
h2(k4) = 2, then it will follow the same probe sequence as k1. Pseudo-
random or quadratic probing can be combined with double hashing to solve
this problem.

A good implementation of double hashing should ensure that all of the probe
sequence constants are relatively prime to the table size M . This can be achieved
easily. One way is to select M to be a prime number, and have h2 return a value in
the range 1 ≤ h2(K) ≤M − 1. Another way is to set M = 2m for some value m
and have h2 return an odd value between 1 and 2m.

Figure 9.9 shows an implementation of the dictionary ADT by means of a hash
table. The simplest hash function is used, with collision resolution by linear prob-
ing, as the basis for the structure of a hash table implementation. A suggested
project at the end of this chapter asks you to improve the implementation with
other hash functions and collision resolution policies.

9.4.4 Analysis of Closed Hashing

How efficient is hashing? We can measure hashing performance in terms of the
number of record accesses required when performing an operation. The primary
operations of concern are insertion, deletion, and search. It is useful to distinguish
between successful and unsuccessful searches. Before a record can be deleted, it
must be found. Thus, the number of accesses required to delete a record is equiv-
alent to the number required to successfully search for it. To insert a record, an
empty slot along the record’s probe sequence must be found. This is equivalent to
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// Dictionary implemented with a hash table
template <typename Key, typename E>
class hashdict : public Dictionary<Key,E> {
private:

KVpair<Key,E>* HT; // The hash table
int M; // Size of HT
int currcnt; // The current number of elements in HT
Key EMPTYKEY; // User-supplied key value for an empty slot

int p(Key K, int i) const // Probe using linear probing
{ return i; }

int h(int x) const { return x % M; } // Poor hash function
int h(char* x) const { // Hash function for character keys

int i, sum;
for (sum=0, i=0; x[i] != ’\0’; i++) sum += (int) x[i];
return sum % M;

}

void hashInsert(const Key&, const E&);
E hashSearch(const Key&) const;

public:
hashdict(int sz, Key k){ // "k" defines an empty slot

M = sz;
EMPTYKEY = k;
currcnt = 0;
HT = new KVpair<Key,E>[sz]; // Make HT of size sz
for (int i=0; i<M; i++)

(HT[i]).setKey(EMPTYKEY); // Initialize HT
}

˜hashdict() { delete HT; }

// Find some record with key value "K"
E find(const Key& k) const

{ return hashSearch(k); }
int size() { return currcnt; } // Number stored in table

// Insert element "it" with Key "k" into the dictionary.
void insert(const Key& k, const E& it) {

Assert(currcnt < M, "Hash table is full");
hashInsert(k, it);
currcnt++;

}

Figure 9.9 A partial implementation for the dictionary ADT using a hash ta-
ble. This uses a poor hash function and a poor collision resolution policy (linear
probing), which can easily be replaced. Member functions hashInsert and
hashSearch appear in Figures 9.6 and 9.7, respectively.
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an unsuccessful search for the record (recall that a successful search for the record
during insertion should generate an error because two records with the same key
are not allowed to be stored in the table).

When the hash table is empty, the first record inserted will always find its home
position free. Thus, it will require only one record access to find a free slot. If all
records are stored in their home positions, then successful searches will also require
only one record access. As the table begins to fill up, the probability that a record
can be inserted into its home position decreases. If a record hashes to an occupied
slot, then the collision resolution policy must locate another slot in which to store
it. Finding records not stored in their home position also requires additional record
accesses as the record is searched for along its probe sequence. As the table fills
up, more and more records are likely to be located ever further from their home
positions.

From this discussion, we see that the expected cost of hashing is a function of
how full the table is. Define the load factor for the table as α = N/M , where N
is the number of records currently in the table.

An estimate of the expected cost for an insertion (or an unsuccessful search)
can be derived analytically as a function of α in the case where we assume that
the probe sequence follows a random permutation of the slots in the hash table.
Assuming that every slot in the table has equal probability of being the home slot
for the next record, the probability of finding the home position occupied is α. The
probability of finding both the home position occupied and the next slot on the
probe sequence occupied is N(N−1)

M(M−1) . The probability of i collisions is

N(N − 1) · · · (N − i+ 1)

M(M − 1) · · · (M − i+ 1)
.

If N and M are large, then this is approximately (N/M)i. The expected number
of probes is one plus the sum over i ≥ 1 of the probability of i collisions, which is
approximately

1 +
∞∑
i=1

(N/M)i = 1/(1− α).

The cost for a successful search (or a deletion) has the same cost as originally
inserting that record. However, the expected value for the insertion cost depends
on the value of α not at the time of deletion, but rather at the time of the original
insertion. We can derive an estimate of this cost (essentially an average over all the
insertion costs) by integrating from 0 to the current value of α, yielding a result of

1

α

∫ α

0

1

1− x
dx =

1

α
loge

1

1− α
.
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Figure 9.10 Growth of expected record accesses with α. The horizontal axis is
the value for α, the vertical axis is the expected number of accesses to the hash
table. Solid lines show the cost for “random” probing (a theoretical lower bound
on the cost), while dashed lines show the cost for linear probing (a relatively poor
collision resolution strategy). The two leftmost lines show the cost for insertion
(equivalently, unsuccessful search); the two rightmost lines show the cost for dele-
tion (equivalently, successful search).

It is important to realize that these equations represent the expected cost for
operations using the unrealistic assumption that the probe sequence is based on a
random permutation of the slots in the hash table (thus avoiding all expense result-
ing from clustering). Thus, these costs are lower-bound estimates in the average
case. The true average cost under linear probing is 1

2(1+1/(1−α)2) for insertions
or unsuccessful searches and 1

2(1+1/(1−α)) for deletions or successful searches.
Proofs for these results can be found in the references cited in Section 9.5.

Figure 9.10 shows the graphs of these four equations to help you visualize the
expected performance of hashing based on the load factor. The two solid lines show
the costs in the case of a “random” probe sequence for (1) insertion or unsuccessful
search and (2) deletion or successful search. As expected, the cost for insertion or
unsuccessful search grows faster, because these operations typically search further
down the probe sequence. The two dashed lines show equivalent costs for linear
probing. As expected, the cost of linear probing grows faster than the cost for
“random” probing.

From Figure 9.10 we see that the cost for hashing when the table is not too full
is typically close to one record access. This is extraordinarily efficient, much better
than binary search which requires log n record accesses. As α increases, so does
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the expected cost. For small values of α, the expected cost is low. It remains below
two until the hash table is about half full. When the table is nearly empty, adding
a new record to the table does not increase the cost of future search operations
by much. However, the additional search cost caused by each additional insertion
increases rapidly once the table becomes half full. Based on this analysis, the rule
of thumb is to design a hashing system so that the hash table never gets above half
full. Beyond that point performance will degrade rapidly. This requires that the
implementor have some idea of how many records are likely to be in the table at
maximum loading, and select the table size accordingly.

You might notice that a recommendation to never let a hash table become more
than half full contradicts the disk-based space/time tradeoff principle, which strives
to minimize disk space to increase information density. Hashing represents an un-
usual situation in that there is no benefit to be expected from locality of reference.
In a sense, the hashing system implementor does everything possible to eliminate
the effects of locality of reference! Given the disk block containing the last record
accessed, the chance of the next record access coming to the same disk block is
no better than random chance in a well-designed hash system. This is because a
good hashing implementation breaks up relationships between search keys. Instead
of improving performance by taking advantage of locality of reference, hashing
trades increased hash table space for an improved chance that the record will be
in its home position. Thus, the more space available for the hash table, the more
efficient hashing should be.

Depending on the pattern of record accesses, it might be possible to reduce the
expected cost of access even in the face of collisions. Recall the 80/20 rule: 80%
of the accesses will come to 20% of the data. In other words, some records are
accessed more frequently. If two records hash to the same home position, which
would be better placed in the home position, and which in a slot further down the
probe sequence? The answer is that the record with higher frequency of access
should be placed in the home position, because this will reduce the total number of
record accesses. Ideally, records along a probe sequence will be ordered by their
frequency of access.

One approach to approximating this goal is to modify the order of records along
the probe sequence whenever a record is accessed. If a search is made to a record
that is not in its home position, a self-organizing list heuristic can be used. For
example, if the linear probing collision resolution policy is used, then whenever a
record is located that is not in its home position, it can be swapped with the record
preceding it in the probe sequence. That other record will now be further from
its home position, but hopefully it will be accessed less frequently. Note that this
approach will not work for the other collision resolution policies presented in this
section, because swapping a pair of records to improve access to one might remove
the other from its probe sequence.
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Another approach is to keep access counts for records and periodically rehash
the entire table. The records should be inserted into the hash table in frequency
order, ensuring that records that were frequently accessed during the last series of
requests have the best chance of being near their home positions.

9.4.5 Deletion

When deleting records from a hash table, there are two important considerations.

1. Deleting a record must not hinder later searches. In other words, the search
process must still pass through the newly emptied slot to reach records whose
probe sequence passed through this slot. Thus, the delete process cannot
simply mark the slot as empty, because this will isolate records further down
the probe sequence. For example, in Figure 9.8(a), keys 9877 and 2037 both
hash to slot 7. Key 2037 is placed in slot 8 by the collision resolution policy.
If 9877 is deleted from the table, a search for 2037 must still pass through
Slot 7 as it probes to slot 8.

2. We do not want to make positions in the hash table unusable because of
deletion. The freed slot should be available to a future insertion.

Both of these problems can be resolved by placing a special mark in place
of the deleted record, called a tombstone. The tombstone indicates that a record
once occupied the slot but does so no longer. If a tombstone is encountered when
searching along a probe sequence, the search procedure continues with the search.
When a tombstone is encountered during insertion, that slot can be used to store the
new record. However, to avoid inserting duplicate keys, it will still be necessary for
the search procedure to follow the probe sequence until a truly empty position has
been found, simply to verify that a duplicate is not in the table. However, the new
record would actually be inserted into the slot of the first tombstone encountered.

The use of tombstones allows searches to work correctly and allows reuse of
deleted slots. However, after a series of intermixed insertion and deletion opera-
tions, some slots will contain tombstones. This will tend to lengthen the average
distance from a record’s home position to the record itself, beyond where it could
be if the tombstones did not exist. A typical database application will first load a
collection of records into the hash table and then progress to a phase of intermixed
insertions and deletions. After the table is loaded with the initial collection of
records, the first few deletions will lengthen the average probe sequence distance
for records (it will add tombstones). Over time, the average distance will reach
an equilibrium point because insertions will tend to decrease the average distance
by filling in tombstone slots. For example, after initially loading records into the
database, the average path distance might be 1.2 (i.e., an average of 0.2 accesses
per search beyond the home position will be required). After a series of insertions
and deletions, this average distance might increase to 1.6 due to tombstones. This
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seems like a small increase, but it is three times longer on average beyond the home
position than before deletions.

Two possible solutions to this problem are

1. Do a local reorganization upon deletion to try to shorten the average path
length. For example, after deleting a key, continue to follow the probe se-
quence of that key and swap records further down the probe sequence into
the slot of the recently deleted record (being careful not to remove any key
from its probe sequence). This will not work for all collision resolution poli-
cies.

2. Periodically rehash the table by reinserting all records into a new hash table.
Not only will this remove the tombstones, but it also provides an opportunity
to place the most frequently accessed records into their home positions.

9.5 Further Reading

For a comparison of the efficiencies for various self-organizing techniques, see
Bentley and McGeoch, “Amortized Analysis of Self-Organizing Sequential Search
Heuristics” [BM85]. The text compression example of Section 9.2 comes from
Bentley et al., “A Locally Adaptive Data Compression Scheme” [BSTW86]. For
more on Ziv-Lempel coding, see Data Compression: Methods and Theory by
James A. Storer [Sto88]. Knuth covers self-organizing lists and Zipf distributions
in Volume 3 of The Art of Computer Programming[Knu98].

Introduction to Modern Information Retrieval by Salton and McGill [SM83] is
an excellent source for more information about document retrieval techniques.

See the paper “Practical Minimal Perfect Hash Functions for Large Databases”
by Fox et al. [FHCD92] for an introduction and a good algorithm for perfect hash-
ing.

For further details on the analysis for various collision resolution policies, see
Knuth, Volume 3 [Knu98] and Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth, and Patashnik [GKP94].

The model of hashing presented in this chapter has been of a fixed-size hash
table. A problem not addressed is what to do when the hash table gets half full and
more records must be inserted. This is the domain of dynamic hashing methods.
A good introduction to this topic is “Dynamic Hashing Schemes” by R.J. Enbody
and H.C. Du [ED88].

9.6 Exercises

9.1 Create a graph showing expected cost versus the probability of an unsuc-
cessful search when performing sequential search (see Section 9.1). What
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can you say qualitatively about the rate of increase in expected cost as the
probability of unsuccessful search grows?

9.2 Modify the binary search routine of Section 3.5 to implement interpolation
search. Assume that keys are in the range 1 to 10,000, and that all key values
within the range are equally likely to occur.

9.3 Write an algorithm to find the Kth smallest value in an unsorted array of n
numbers (K <= n). Your algorithm should require Θ(n) time in the average
case. Hint: Your algorithm should look similar to Quicksort.

9.4 Example 9.9.3 discusses a distribution where the relative frequencies of the
records match the harmonic series. That is, for every occurrence of the first
record, the second record will appear half as often, the third will appear one
third as often, the fourth one quarter as often, and so on. The actual prob-
ability for the ith record was defined to be 1/(iHn). Explain why this is
correct.

9.5 Graph the equations T(n) = log2 n and T(n) = n/ loge n. Which gives the
better performance, binary search on a sorted list, or sequential search on a
list ordered by frequency where the frequency conforms to a Zipf distribu-
tion? Characterize the difference in running times.

9.6 Assume that the values A through H are stored in a self-organizing list, ini-
tially in ascending order. Consider the three self-organizing list heuristics:
count, move-to-front, and transpose. For count, assume that the record is
moved ahead in the list passing over any other record that its count is now
greater than. For each, show the resulting list and the total number of com-
parisons required resulting from the following series of accesses:

D H H G H E G H G H E C E H G.

9.7 For each of the three self-organizing list heuristics (count, move-to-front, and
transpose), describe a series of record accesses for which it would require the
greatest number of comparisons of the three.

9.8 Write an algorithm to implement the frequency count self-organizing list
heuristic, assuming that the list is implemented using an array. In particu-
lar, write a function FreqCount that takes as input a value to be searched
for and which adjusts the list appropriately. If the value is not already in the
list, add it to the end of the list with a frequency count of one.

9.9 Write an algorithm to implement the move-to-front self-organizing list heuri-
stic, assuming that the list is implemented using an array. In particular, write
a function MoveToFront that takes as input a value to be searched for and
which adjusts the list appropriately. If the value is not already in the list, add
it to the beginning of the list.

9.10 Write an algorithm to implement the transpose self-organizing list heuristic,
assuming that the list is implemented using an array. In particular, write
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a function Transpose that takes as input a value to be searched for and
which adjusts the list appropriately. If the value is not already in the list, add
it to the end of the list.

9.11 Write functions for computing union, intersection, and set difference on ar-
bitrarily long bit vectors used to represent set membership as described in
Section 9.3. Assume that for each operation both vectors are of equal length.

9.12 Compute the probabilities for the following situations. These probabilities
can be computed analytically, or you may write a computer program to gen-
erate the probabilities by simulation.

(a) Out of a group of 23 students, what is the probability that 2 students
share the same birthday?

(b) Out of a group of 100 students, what is the probability that 3 students
share the same birthday?

(c) How many students must be in the class for the probability to be at least
50% that there are 2 who share a birthday in the same month?

9.13 Assume that you are hashing key K to a hash table of n slots (indexed from
0 to n − 1). For each of the following functions h(K), is the function ac-
ceptable as a hash function (i.e., would the hash program work correctly for
both insertions and searches), and if so, is it a good hash function? Function
Random(n) returns a random integer between 0 and n− 1, inclusive.

(a) h(k) = k/n where k and n are integers.
(b) h(k) = 1.
(c) h(k) = (k + Random(n)) mod n.
(d) h(k) = k mod n where n is a prime number.

9.14 Assume that you have a seven-slot closed hash table (the slots are numbered
0 through 6). Show the final hash table that would result if you used the
hash function h(k) = k mod 7 and linear probing on this list of numbers:
3, 12, 9, 2. After inserting the record with key value 2, list for each empty
slot the probability that it will be the next one filled.

9.15 Assume that you have a ten-slot closed hash table (the slots are numbered 0
through 9). Show the final hash table that would result if you used the hash
function h(k) = k mod 10 and quadratic probing on this list of numbers:
3, 12, 9, 2, 79, 46. After inserting the record with key value 46, list for each
empty slot the probability that it will be the next one filled.

9.16 Assume that you have a ten-slot closed hash table (the slots are numbered
0 through 9). Show the final hash table that would result if you used the
hash function h(k) = k mod 10 and pseudo-random probing on this list of
numbers: 3, 12, 9, 2, 79, 44. The permutation of offsets to be used by the
pseudo-random probing will be: 5, 9, 2, 1, 4, 8, 6, 3, 7. After inserting the
record with key value 44, list for each empty slot the probability that it will
be the next one filled.
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9.17 What is the result of running sfold from Section 9.4.1 on the following
strings? Assume a hash table size of 101 slots.

(a) HELLO WORLD
(b) NOW HEAR THIS
(c) HEAR THIS NOW

9.18 Using closed hashing, with double hashing to resolve collisions, insert the
following keys into a hash table of thirteen slots (the slots are numbered
0 through 12). The hash functions to be used are H1 and H2, defined be-
low. You should show the hash table after all eight keys have been inserted.
Be sure to indicate how you are using H1 and H2 to do the hashing. Func-
tion Rev(k) reverses the decimal digits of k, for example, Rev(37) = 73;
Rev(7) = 7.

H1(k) = k mod 13.
H2(k) = (Rev(k + 1) mod 11).

Keys: 2, 8, 31, 20, 19, 18, 53, 27.
9.19 Write an algorithm for a deletion function for hash tables that replaces the

record with a special value indicating a tombstone. Modify the functions
hashInsert and hashSearch to work correctly with tombstones.

9.20 Consider the following permutation for the numbers 1 to 6:

2, 4, 6, 1, 3, 5.

Analyze what will happen if this permutation is used by an implementation of
pseudo-random probing on a hash table of size seven. Will this permutation
solve the problem of primary clustering? What does this say about selecting
a permutation for use when implementing pseudo-random probing?

9.7 Projects

9.1 Implement a binary search and the quadratic binary search of Section 9.1.
Run your implementations over a large range of problem sizes, timing the
results for each algorithm. Graph and compare these timing results.

9.2 Implement the three self-organizing list heuristics count, move-to-front, and
transpose. Compare the cost for running the three heuristics on various input
data. The cost metric should be the total number of comparisons required
when searching the list. It is important to compare the heuristics using input
data for which self-organizing lists are reasonable, that is, on frequency dis-
tributions that are uneven. One good approach is to read text files. The list
should store individual words in the text file. Begin with an empty list, as
was done for the text compression example of Section 9.2. Each time a word
is encountered in the text file, search for it in the self-organizing list. If the
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word is found, reorder the list as appropriate. If the word is not in the list,
add it to the end of the list and then reorder as appropriate.

9.3 Implement the text compression system described in Section 9.2.
9.4 Implement a system for managing document retrieval. Your system should

have the ability to insert (abstract references to) documents into the system,
associate keywords with a given document, and to search for documents with
specified keywords.

9.5 Implement a database stored on disk using bucket hashing. Define records to
be 128 bytes long with a 4-byte key and 120 bytes of data. The remaining
4 bytes are available for you to store necessary information to support the
hash table. A bucket in the hash table will be 1024 bytes long, so each bucket
has space for 8 records. The hash table should consist of 27 buckets (total
space for 216 records with slots indexed by positions 0 to 215) followed by
the overflow bucket at record position 216 in the file. The hash function for
key value K should be K mod 213. (Note that this means the last three
slots in the table will not be home positions for any record.) The collision
resolution function should be linear probing with wrap-around within the
bucket. For example, if a record is hashed to slot 5, the collision resolution
process will attempt to insert the record into the table in the order 5, 6, 7, 0,
1, 2, 3, and finally 4. If a bucket is full, the record should be placed in the
overflow section at the end of the file.
Your hash table should implement the dictionary ADT of Section 4.4. When
you do your testing, assume that the system is meant to store about 100 or so
records at a time.

9.6 Implement the dictionary ADT of Section 4.4 by means of a hash table with
linear probing as the collision resolution policy. You might wish to begin
with the code of Figure 9.9. Using empirical simulation, determine the cost
of insert and delete as α grows (i.e., reconstruct the dashed lines of Fig-
ure 9.10). Then, repeat the experiment using quadratic probing and pseudo-
random probing. What can you say about the relative performance of these
three collision resolution policies?
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Indexing

Many large-scale computing applications are centered around data sets that are too
large to fit into main memory. The classic example is a large database of records
with multiple search keys, requiring the ability to insert, delete, and search for
records. Hashing provides outstanding performance for such situations, but only
in the limited case in which all searches are of the form “find the record with key
value K.” Many applications require more general search capabilities. One exam-
ple is a range query search for all records whose key lies within some range. Other
queries might involve visiting all records in order of their key value, or finding the
record with the greatest key value. Hash tables are not organized to support any of
these queries efficiently.

This chapter introduces file structures used to organize a large collection of
records stored on disk. Such file structures support efficient insertion, deletion, and
search operations, for exact-match queries, range queries, and largest/smallest key
value searches.

Before discussing such file structures, we must become familiar with some ba-
sic file-processing terminology. An entry-sequenced file stores records in the order
that they were added to the file. Entry-sequenced files are the disk-based equivalent
to an unsorted list and so do not support efficient search. The natural solution is to
sort the records by order of the search key. However, a typical database, such as a
collection of employee or customer records maintained by a business, might con-
tain multiple search keys. To answer a question about a particular customer might
require a search on the name of the customer. Businesses often wish to sort and
output the records by zip code order for a bulk mailing. Government paperwork
might require the ability to search by Social Security number. Thus, there might
not be a single “correct” order in which to store the records.

Indexing is the process of associating a key with the location of a correspond-
ing data record. Section 8.5 discussed the concept of a key sort, in which an index
file is created whose records consist of key/pointer pairs. Here, each key is asso-
ciated with a pointer to a complete record in the main database file. The index file

351



352 Chap. 10 Indexing

could be sorted or organized using a tree structure, thereby imposing a logical or-
der on the records without physically rearranging them. One database might have
several associated index files, each supporting efficient access through a different
key field.

Each record of a database normally has a unique identifier, called the primary
key. For example, the primary key for a set of personnel records might be the
Social Security number or ID number for the individual. Unfortunately, the ID
number is generally an inconvenient value on which to perform a search because
the searcher is unlikely to know it. Instead, the searcher might know the desired
employee’s name. Alternatively, the searcher might be interested in finding all
employees whose salary is in a certain range. If these are typical search requests
to the database, then the name and salary fields deserve separate indices. However,
key values in the name and salary indices are not likely to be unique.

A key field such as salary, where a particular key value might be duplicated in
multiple records, is called a secondary key. Most searches are performed using a
secondary key. The secondary key index (or more simply, secondary index) will
associate a secondary key value with the primary key of each record having that
secondary key value. At this point, the full database might be searched directly
for the record with that primary key, or there might be a primary key index (or
primary index) that relates each primary key value with a pointer to the actual
record on disk. In the latter case, only the primary index provides the location of
the actual record on disk, while the secondary indices refer to the primary index.

Indexing is an important technique for organizing large databases, and many
indexing methods have been developed. Direct access through hashing is discussed
in Section 9.4. A simple list sorted by key value can also serve as an index to the
record file. Indexing disk files by sorted lists are discussed in the following section.
Unfortunately, a sorted list does not perform well for insert and delete operations.

A third approach to indexing is the tree index. Trees are typically used to or-
ganize large databases that must support record insertion, deletion, and key range
searches. Section 10.2 briefly describes ISAM, a tentative step toward solving the
problem of storing a large database that must support insertion and deletion of
records. Its shortcomings help to illustrate the value of tree indexing techniques.
Section 10.3 introduces the basic issues related to tree indexing. Section 10.4 in-
troduces the 2-3 tree, a balanced tree structure that is a simple form of the B-tree
covered in Section 10.5. B-trees are the most widely used indexing method for
large disk-based databases, and for implementing file systems. Since they have
such great practical importance, many variations have been invented. Section 10.5
begins with a discussion of the variant normally referred to simply as a “B-tree.”
Section 10.5.1 presents the most widely implemented variant, the B+-tree.
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Linear Index

Database Records

42 73 985237

52 98 37 4273

Figure 10.1 Linear indexing for variable-length records. Each record in the
index file is of fixed length and contains a pointer to the beginning of the corre-
sponding record in the database file.

10.1 Linear Indexing

A linear index is an index file organized as a sequence of key/pointer pairs where
the keys are in sorted order and the pointers either (1) point to the position of the
complete record on disk, (2) point to the position of the primary key in the primary
index, or (3) are actually the value of the primary key. Depending on its size, a
linear index might be stored in main memory or on disk. A linear index provides
a number of advantages. It provides convenient access to variable-length database
records, because each entry in the index file contains a fixed-length key field and
a fixed-length pointer to the beginning of a (variable-length) record as shown in
Figure 10.1. A linear index also allows for efficient search and random access to
database records, because it is amenable to binary search.

If the database contains enough records, the linear index might be too large
to store in main memory. This makes binary search of the index more expensive
because many disk accesses would typically be required by the search process. One
solution to this problem is to store a second-level linear index in main memory that
indicates which disk block in the index file stores a desired key. For example, the
linear index on disk might reside in a series of 1024-byte blocks. If each key/pointer
pair in the linear index requires 8 bytes (a 4-byte key and a 4-byte pointer), then
128 key/pointer pairs are stored per block. The second-level index, stored in main
memory, consists of a simple table storing the value of the key in the first position
of each block in the linear index file. This arrangement is shown in Figure 10.2. If
the linear index requires 1024 disk blocks (1MB), the second-level index contains
only 1024 entries, one per disk block. To find which disk block contains a desired
search key value, first search through the 1024-entry table to find the greatest value
less than or equal to the search key. This directs the search to the proper block in
the index file, which is then read into memory. At this point, a binary search within
this block will produce a pointer to the actual record in the database. Because the
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1 2003 5894

Second Level Index

1 2001 5894 9942 10528 10984

Linear Index: Disk Blocks

56882003

10528

Figure 10.2 A simple two-level linear index. The linear index is stored on disk.
The smaller, second-level index is stored in main memory. Each element in the
second-level index stores the first key value in the corresponding disk block of the
index file. In this example, the first disk block of the linear index stores keys in
the range 1 to 2001, and the second disk block stores keys in the range 2003 to
5688. Thus, the first entry of the second-level index is key value 1 (the first key
in the first block of the linear index), while the second entry of the second-level
index is key value 2003.

second-level index is stored in main memory, accessing a record by this method
requires two disk reads: one from the index file and one from the database file for
the actual record.

Every time a record is inserted to or deleted from the database, all associated
secondary indices must be updated. Updates to a linear index are expensive, be-
cause the entire contents of the array might be shifted. Another problem is that
multiple records with the same secondary key each duplicate that key value within
the index. When the secondary key field has many duplicates, such as when it has
a limited range (e.g., a field to indicate job category from among a small number of
possible job categories), this duplication might waste considerable space.

One improvement on the simple sorted array is a two-dimensional array where
each row corresponds to a secondary key value. A row contains the primary keys
whose records have the indicated secondary key value. Figure 10.3 illustrates this
approach. Now there is no duplication of secondary key values, possibly yielding a
considerable space savings. The cost of insertion and deletion is reduced, because
only one row of the table need be adjusted. Note that a new row is added to the array
when a new secondary key value is added. This might lead to moving many records,
but this will happen infrequently in applications suited to using this arrangement.

A drawback to this approach is that the array must be of fixed size, which
imposes an upper limit on the number of primary keys that might be associated
with a particular secondary key. Furthermore, those secondary keys with fewer
records than the width of the array will waste the remainder of their row. A better
approach is to have a one-dimensional array of secondary key values, where each
secondary key is associated with a linked list. This works well if the index is stored
in main memory, but not so well when it is stored on disk because the linked list
for a given key might be scattered across several disk blocks.
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Figure 10.3 A two-dimensional linear index. Each row lists the primary keys
associated with a particular secondary key value. In this example, the secondary
key is a name. The primary key is a unique four-character code.
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Figure 10.4 Illustration of an inverted list. Each secondary key value is stored
in the secondary key list. Each secondary key value on the list has a pointer to a
list of the primary keys whose associated records have that secondary key value.

Consider a large database of employee records. If the primary key is the em-
ployee’s ID number and the secondary key is the employee’s name, then each
record in the name index associates a name with one or more ID numbers. The
ID number index in turn associates an ID number with a unique pointer to the full
record on disk. The secondary key index in such an organization is also known
as an inverted list or inverted file. It is inverted in that searches work backwards
from the secondary key to the primary key to the actual data record. It is called a
list because each secondary key value has (conceptually) a list of primary keys as-
sociated with it. Figure 10.4 illustrates this arrangement. Here, we have last names
as the secondary key. The primary key is a four-character unique identifier.

Figure 10.5 shows a better approach to storing inverted lists. An array of sec-
ondary key values is shown as before. Associated with each secondary key is a
pointer to an array of primary keys. The primary key array uses a linked-list im-
plementation. This approach combines the storage for all of the secondary key lists
into a single array, probably saving space. Each record in this array consists of a
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Figure 10.5 An inverted list implemented as an array of secondary keys and
combined lists of primary keys. Each record in the secondary key array contains
a pointer to a record in the primary key array. The next field of the primary key
array indicates the next record with that secondary key value.

primary key value and a pointer to the next element on the list. It is easy to insert
and delete secondary keys from this array, making this a good implementation for
disk-based inverted files.

10.2 ISAM

How do we handle large databases that require frequent update? The main problem
with the linear index is that it is a single, large array that does not adjust well to
updates because a single update can require changing the position of every key in
the index. Inverted lists reduce this problem, but they are only suitable for sec-
ondary key indices with many fewer secondary key values than records. The linear
index would perform well as a primary key index if it could somehow be broken
into pieces such that individual updates affect only a part of the index. This con-
cept will be pursued throughout the rest of this chapter, eventually culminating in
the B+-tree, the most widely used indexing method today. But first, we begin by
studying ISAM, an early attempt to solve the problem of large databases requiring
frequent update. Its weaknesses help to illustrate why the B+-tree works so well.

Before the invention of effective tree indexing schemes, a variety of disk-based
indexing methods were in use. All were rather cumbersome, largely because no
adequate method for handling updates was known. Typically, updates would cause
the index to degrade in performance. ISAM is one example of such an index and
was widely used by IBM prior to adoption of the B-tree.

ISAM is based on a modified form of the linear index, as illustrated by Fig-
ure 10.6. Records are stored in sorted order by primary key. The disk file is divided
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Figure 10.6 Illustration of the ISAM indexing system.

among a number of cylinders on disk.1 Each cylinder holds a section of the list in
sorted order. Initially, each cylinder is not filled to capacity, and the extra space is
set aside in the cylinder overflow. In memory is a table listing the lowest key value
stored in each cylinder of the file. Each cylinder contains a table listing the lowest
key value for each block in that cylinder, called the cylinder index. When new
records are inserted, they are placed in the correct cylinder’s overflow area (in ef-
fect, a cylinder acts as a bucket). If a cylinder’s overflow area fills completely, then
a system-wide overflow area is used. Search proceeds by determining the proper
cylinder from the system-wide table kept in main memory. The cylinder’s block
table is brought in from disk and consulted to determine the correct block. If the
record is found in that block, then the search is complete. Otherwise, the cylin-
der’s overflow area is searched. If that is full, and the record is not found, then the
system-wide overflow is searched.

After initial construction of the database, so long as no new records are inserted
or deleted, access is efficient because it requires only two disk fetches. The first
disk fetch recovers the block table for the desired cylinder. The second disk fetch
recovers the block that, under good conditions, contains the record. After many
inserts, the overflow list becomes too long, resulting in significant search time as
the cylinder overflow area fills up. Under extreme conditions, many searches might
eventually lead to the system overflow area. The “solution” to this problem is to
periodically reorganize the entire database. This means re-balancing the records

1Recall from Section 8.2.1 that a cylinder is all of the tracks readable from a particular placement
of the heads on the multiple platters of a disk drive.
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among the cylinders, sorting the records within each cylinder, and updating both
the system index table and the within-cylinder block table. Such reorganization
was typical of database systems during the 1960s and would normally be done
each night or weekly.

10.3 Tree-based Indexing

Linear indexing is efficient when the database is static, that is, when records are
inserted and deleted rarely or never. ISAM is adequate for a limited number of
updates, but not for frequent changes. Because it has essentially two levels of
indexing, ISAM will also break down for a truly large database where the number
of cylinders is too great for the top-level index to fit in main memory.

In their most general form, database applications have the following character-
istics:

1. Large sets of records that are frequently updated.
2. Search is by one or a combination of several keys.
3. Key range queries or min/max queries are used.

For such databases, a better organization must be found. One approach would
be to use the binary search tree (BST) to store primary and secondary key indices.
BSTs can store duplicate key values, they provide efficient insertion and deletion as
well as efficient search, and they can perform efficient range queries. When there
is enough main memory, the BST is a viable option for implementing both primary
and secondary key indices.

Unfortunately, the BST can become unbalanced. Even under relatively good
conditions, the depth of leaf nodes can easily vary by a factor of two. This might
not be a significant concern when the tree is stored in main memory because the
time required is still Θ(log n) for search and update. When the tree is stored on
disk, however, the depth of nodes in the tree becomes crucial. Every time a BST
node B is visited, it is necessary to visit all nodes along the path from the root to B.
Each node on this path must be retrieved from disk. Each disk access returns a
block of information. If a node is on the same block as its parent, then the cost to
find that node is trivial once its parent is in main memory. Thus, it is desirable to
keep subtrees together on the same block. Unfortunately, many times a node is not
on the same block as its parent. Thus, each access to a BST node could potentially
require that another block to be read from disk. Using a buffer pool to store multiple
blocks in memory can mitigate disk access problems if BST accesses display good
locality of reference. But a buffer pool cannot eliminate disk I/O entirely. The
problem becomes greater if the BST is unbalanced, because nodes deep in the tree
have the potential of causing many disk blocks to be read. Thus, there are two
significant issues that must be addressed to have efficient search from a disk-based
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Figure 10.7 Breaking the BST into blocks. The BST is divided among disk
blocks, each with space for three nodes. The path from the root to any leaf is
contained on two blocks.
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Figure 10.8 An attempt to re-balance a BST after insertion can be expensive.
(a) A BST with six nodes in the shape of a complete binary tree. (b) A node with
value 1 is inserted into the BST of (a). To maintain both the complete binary tree
shape and the BST property, a major reorganization of the tree is required.

BST. The first is how to keep the tree balanced. The second is how to arrange the
nodes on blocks so as to keep the number of blocks encountered on any path from
the root to the leaves at a minimum.

We could select a scheme for balancing the BST and allocating BST nodes to
blocks in a way that minimizes disk I/O, as illustrated by Figure 10.7. However,
maintaining such a scheme in the face of insertions and deletions is difficult. In
particular, the tree should remain balanced when an update takes place, but doing
so might require much reorganization. Each update should affect only a few blocks,
or its cost will be too high. As you can see from Figure 10.8, adopting a rule such
as requiring the BST to be complete can cause a great deal of rearranging of data
within the tree.

We can solve these problems by selecting another tree structure that automat-
ically remains balanced after updates, and which is amenable to storing in blocks.
There are a number of balanced tree data structures, and there are also techniques
for keeping BSTs balanced. Examples are the AVL and splay trees discussed in
Section 13.2. As an alternative, Section 10.4 presents the 2-3 tree, which has the
property that its leaves are always at the same level. The main reason for discussing
the 2-3 tree here in preference to the other balanced search trees is that it naturally
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Figure 10.9 A 2-3 tree.

leads to the B-tree of Section 10.5, which is by far the most widely used indexing
method today.

10.4 2-3 Trees

This section presents a data structure called the 2-3 tree. The 2-3 tree is not a binary
tree, but instead its shape obeys the following definition:

1. A node contains one or two keys.
2. Every internal node has either two children (if it contains one key) or three

children (if it contains two keys). Hence the name.
3. All leaves are at the same level in the tree, so the tree is always height bal-

anced.

In addition to these shape properties, the 2-3 tree has a search tree property
analogous to that of a BST. For every node, the values of all descendants in the left
subtree are less than the value of the first key, while values in the center subtree
are greater than or equal to the value of the first key. If there is a right subtree
(equivalently, if the node stores two keys), then the values of all descendants in
the center subtree are less than the value of the second key, while values in the
right subtree are greater than or equal to the value of the second key. To maintain
these shape and search properties requires that special action be taken when nodes
are inserted and deleted. The 2-3 tree has the advantage over the BST in that the
2-3 tree can be kept height balanced at relatively low cost.

Figure 10.9 illustrates the 2-3 tree. Nodes are shown as rectangular boxes with
two key fields. (These nodes actually would contain complete records or pointers
to complete records, but the figures will show only the keys.) Internal nodes with
only two children have an empty right key field. Leaf nodes might contain either
one or two keys. Figure 10.10 is an implementation for the 2-3 tree node. Class
TTNode is assumed to be a private class of the the 2-3 tree class TTTree, and thus
the data members of TTNode will be made public to simplify the presentation.

Note that this sample declaration does not distinguish between leaf and internal
nodes and so is space inefficient, because leaf nodes store three pointers each. The
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template <typename Key, typename E>
class TTNode { // 2-3 tree node structure
public:

E lval; // The node’s left record
Key lkey; // Left record’s key
E rval; // The node’s right record
Key rkey; // Right record’s key
TTNode* left; // Pointer to left child
TTNode* center; // Pointer to middle child
TTNode* right; // Pointer to right child
TTNode() {

center = left = right = NULL;
lkey = rkey = EMPTYKEY;

}
TTNode(Key lk, E lv, Key rk, E rv, TTNode<Key,E>* p1,

TTNode<Key,E>* p2, TTNode<Key,E>* p3) {
lkey = lk; rkey = rk;
lval = lv; rval = rv;
left = p1; center = p2; right = p3;

}
˜TTNode() { }
bool isLeaf() { return left == NULL; }
TTNode<Key,E>* add(TTNode<Key,E>* it);

};

Figure 10.10 The 2-3 tree node implementation.

techniques of Section 5.3.1 can be applied here to implement separate internal and
leaf node types.

From the defining rules for 2-3 trees we can derive relationships between the
number of nodes in the tree and the depth of the tree. A 2-3 tree of height k has at
least 2k−1 leaves, because if every internal node has two children it degenerates to
the shape of a complete binary tree. A 2-3 tree of height k has at most 3k−1 leaves,
because each internal node can have at most three children.

Searching for a value in a 2-3 tree is similar to searching in a BST. Search
begins at the root. If the root does not contain the search key K, then the search
progresses to the only subtree that can possibly contain K. The value(s) stored in
the root node determine which is the correct subtree. For example, if searching for
the value 30 in the tree of Figure 10.9, we begin with the root node. Because 30 is
between 18 and 33, it can only be in the middle subtree. Searching the middle child
of the root node yields the desired record. If searching for 15, then the first step is
again to search the root node. Because 15 is less than 18, the first (left) branch is
taken. At the next level, we take the second branch to the leaf node containing 15.
If the search key were 16, then upon encountering the leaf containing 15 we would
find that the search key is not in the tree. Figure 10.11 is an implementation for the
2-3 tree search method.
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// Find the record that matches a given key value
template <typename Key, typename E>
E TTTree<Key, E>::
findhelp(TTNode<Key,E>* root, Key k) const {
if (root == NULL) return NULL; // value not found
if (k == root->lkey) return root->lval;
if (k == root->rkey) return root->rval;
if (k < root->lkey) // Go left

return findhelp(root->left, k);
else if (root->rkey == EMPTYKEY) // 2 child node

return findhelp(root->center, k); // Go center
else if (k < root->rkey)

return findhelp(root->center, k); // Go center
else return findhelp(root->right, k); // Go right

}

Figure 10.11 Implementation for the 2-3 tree search method.
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Figure 10.12 Simple insert into the 2-3 tree of Figure 10.9. The value 14 is
inserted into the tree at the leaf node containing 15. Because there is room in the
node for a second key, it is simply added to the left position with 15 moved to the
right position.

Insertion into a 2-3 tree is similar to insertion into a BST to the extent that the
new record is placed in the appropriate leaf node. Unlike BST insertion, a new
child is not created to hold the record being inserted, that is, the 2-3 tree does not
grow downward. The first step is to find the leaf node that would contain the record
if it were in the tree. If this leaf node contains only one value, then the new record
can be added to that node with no further modification to the tree, as illustrated in
Figure 10.12. In this example, a record with key value 14 is inserted. Searching
from the root, we come to the leaf node that stores 15. We add 14 as the left value
(pushing the record with key 15 to the rightmost position).

If we insert the new record into a leaf node L that already contains two records,
then more space must be created. Consider the two records of node L and the
record to be inserted without further concern for which two were already in L and
which is the new record. The first step is to split L into two nodes. Thus, a new
node — call it L′ — must be created from free store. L receives the record with
the least of the three key values. L′ receives the greatest of the three. The record
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Figure 10.13 A simple node-splitting insert for a 2-3 tree. The value 55 is added
to the 2-3 tree of Figure 10.9. This makes the node containing values 50 and 52
split, promoting value 52 to the parent node.

with the middle of the three key value is passed up to the parent node along with a
pointer to L′. This is called a promotion. The promoted key is then inserted into
the parent. If the parent currently contains only one record (and thus has only two
children), then the promoted record and the pointer to L′ are simply added to the
parent node. If the parent is full, then the split-and-promote process is repeated.
Figure 10.13 illustrates a simple promotion. Figure 10.14 illustrates what happens
when promotions require the root to split, adding a new level to the tree. In either
case, all leaf nodes continue to have equal depth. Figures 10.15 and 10.16 present
an implementation for the insertion process.

Note that inserthelp of Figure 10.15 takes three parameters. The first is
a pointer to the root of the current subtree, named rt. The second is the key for
the record to be inserted, and the third is the record itself. The return value for
inserthelp is a pointer to a 2-3 tree node. If rt is unchanged, then a pointer to
rt is returned. If rt is changed (due to the insertion causing the node to split), then
a pointer to the new subtree root is returned, with the key value and record value in
the leftmost fields, and a pointer to the (single) subtree in the center pointer field.
This revised node will then be added to the parent, as illustrated in Figure 10.14.

When deleting a record from the 2-3 tree, there are three cases to consider. The
simplest occurs when the record is to be removed from a leaf node containing two
records. In this case, the record is simply removed, and no other nodes are affected.
The second case occurs when the only record in a leaf node is to be removed. The
third case occurs when a record is to be removed from an internal node. In both
the second and the third cases, the deleted record is replaced with another that can
take its place while maintaining the correct order, similar to removing a node from
a BST. If the tree is sparse enough, there is no such record available that will allow
all nodes to still maintain at least one record. In this situation, sibling nodes are
merged together. The delete operation for the 2-3 tree is excessively complex and
will not be described further. Instead, a complete discussion of deletion will be
postponed until the next section, where it can be generalized for a particular variant
of the B-tree.
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Figure 10.14 Example of inserting a record that causes the 2-3 tree root to split.
(a) The value 19 is added to the 2-3 tree of Figure 10.9. This causes the node
containing 20 and 21 to split, promoting 20. (b) This in turn causes the internal
node containing 23 and 30 to split, promoting 23. (c) Finally, the root node splits,
promoting 23 to become the left record in the new root. The result is that the tree
becomes one level higher.

The 2-3 tree insert and delete routines do not add new nodes at the bottom of
the tree. Instead they cause leaf nodes to split or merge, possibly causing a ripple
effect moving up the tree to the root. If necessary the root will split, causing a new
root node to be created and making the tree one level deeper. On deletion, if the
last two children of the root merge, then the root node is removed and the tree will
lose a level. In either case, all leaf nodes are always at the same level. When all
leaf nodes are at the same level, we say that a tree is height balanced. Because the
2-3 tree is height balanced, and every internal node has at least two children, we
know that the maximum depth of the tree is log n. Thus, all 2-3 tree insert, find,
and delete operations require Θ(log n) time.

10.5 B-Trees

This section presents the B-tree. B-trees are usually attributed to R. Bayer and
E. McCreight who described the B-tree in a 1972 paper. By 1979, B-trees had re-
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template <typename Key, typename E>
TTNode<Key,E>* TTTree<Key, E>::
inserthelp(TTNode<Key,E>* rt, const Key k, const E e) {
TTNode<Key,E>* retval;
if (rt == NULL) // Empty tree: create a leaf node for root

return new TTNode<Key,E>(k, e, EMPTYKEY, NULL,
NULL, NULL, NULL);

if (rt->isLeaf()) // At leaf node: insert here
return rt->add(new TTNode<Key,E>(k, e, EMPTYKEY, NULL,

NULL, NULL, NULL));
// Add to internal node
if (k < rt->lkey) {

retval = inserthelp(rt->left, k, e);
if (retval == rt->left) return rt;
else return rt->add(retval);

}
else if((rt->rkey == EMPTYKEY) || (k < rt->rkey)) {

retval = inserthelp(rt->center, k, e);
if (retval == rt->center) return rt;
else return rt->add(retval);

}
else { // Insert right

retval = inserthelp(rt->right, k, e);
if (retval == rt->right) return rt;
else return rt->add(retval);

}
}

Figure 10.15 The 2-3 tree insert routine.

placed virtually all large-file access methods other than hashing. B-trees, or some
variant of B-trees, are the standard file organization for applications requiring inser-
tion, deletion, and key range searches. They are used to implement most modern
file systems. B-trees address effectively all of the major problems encountered
when implementing disk-based search trees:

1. B-trees are always height balanced, with all leaf nodes at the same level.
2. Update and search operations affect only a few disk blocks. The fewer the

number of disk blocks affected, the less disk I/O is required.
3. B-trees keep related records (that is, records with similar key values) on the

same disk block, which helps to minimize disk I/O on searches due to locality
of reference.

4. B-trees guarantee that every node in the tree will be full at least to a certain
minimum percentage. This improves space efficiency while reducing the
typical number of disk fetches necessary during a search or update operation.

A B-tree of order m is defined to have the following shape properties:

• The root is either a leaf or has at least two children.
• Each internal node, except for the root, has between dm/2e and m children.



366 Chap. 10 Indexing

// Add a new key/value pair to the node. There might be a
// subtree associated with the record being added. This
// information comes in the form of a 2-3 tree node with
// one key and a (possibly NULL) subtree through the
// center pointer field.
template <typename Key, typename E>
TTNode<Key,E>* TTNode<Key, E>::add(TTNode<Key,E>* it) {
if (rkey == EMPTYKEY) { // Only one key, add here

if (lkey < it->lkey) {
rkey = it->lkey; rval = it->lval;
right = center; center = it->center;

}
else {

rkey = lkey; rval = lval; right = center;
lkey = it->lkey; lval = it->lval;
center = it->center;

}
return this;

}
else if (lkey >= it->lkey) { // Add left

center = new TTNode<Key,E>(rkey, rval, EMPTYKEY, NULL,
center, right, NULL);

rkey = EMPTYKEY; rval = NULL; right = NULL;
it->left = left; left = it;
return this;

}
else if (rkey < it->lkey) { // Add center

it->center = new TTNode<Key,E>(rkey, rval, EMPTYKEY,
NULL, it->center, right, NULL);

it->left = this;
rkey = EMPTYKEY; rval = NULL; right = NULL;
return it;

}
else { // Add right

TTNode<Key,E>* N1 = new TTNode<Key,E>(rkey, rval,
EMPTYKEY, NULL, this, it, NULL);

it->left = right;
right = NULL; rkey = EMPTYKEY; rval = NULL;
return N1;

}
}

Figure 10.16 The 2-3 tree node add method.
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Figure 10.17 A B-tree of order four.

• All leaves are at the same level in the tree, so the tree is always height bal-
anced.

The B-tree is a generalization of the 2-3 tree. Put another way, a 2-3 tree is a
B-tree of order three. Normally, the size of a node in the B-tree is chosen to fill a
disk block. A B-tree node implementation typically allows 100 or more children.
Thus, a B-tree node is equivalent to a disk block, and a “pointer” value stored
in the tree is actually the number of the block containing the child node (usually
interpreted as an offset from the beginning of the corresponding disk file). In a
typical application, the B-tree’s access to the disk file will be managed using a
buffer pool and a block-replacement scheme such as LRU (see Section 8.3).

Figure 10.17 shows a B-tree of order four. Each node contains up to three keys,
and internal nodes have up to four children.

Search in a B-tree is a generalization of search in a 2-3 tree. It is an alternating
two-step process, beginning with the root node of the B-tree.

1. Perform a binary search on the records in the current node. If a record with
the search key is found, then return that record. If the current node is a leaf
node and the key is not found, then report an unsuccessful search.

2. Otherwise, follow the proper branch and repeat the process.

For example, consider a search for the record with key value 47 in the tree of
Figure 10.17. The root node is examined and the second (right) branch taken. After
examining the node at level 1, the third branch is taken to the next level to arrive at
the leaf node containing a record with key value 47.

B-tree insertion is a generalization of 2-3 tree insertion. The first step is to find
the leaf node that should contain the key to be inserted, space permitting. If there
is room in this node, then insert the key. If there is not, then split the node into two
and promote the middle key to the parent. If the parent becomes full, then it is split
in turn, and its middle key promoted.

Note that this insertion process is guaranteed to keep all nodes at least half full.
For example, when we attempt to insert into a full internal node of a B-tree of order
four, there will now be five children that must be dealt with. The node is split into
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two nodes containing two keys each, thus retaining the B-tree property. The middle
of the five children is promoted to its parent.

10.5.1 B+-Trees

The previous section mentioned that B-trees are universally used to implement
large-scale disk-based systems. Actually, the B-tree as described in the previ-
ous section is almost never implemented, nor is the 2-3 tree as described in Sec-
tion 10.4. What is most commonly implemented is a variant of the B-tree, called
the B+-tree. When greater efficiency is required, a more complicated variant known
as the B∗-tree is used.

When data are static, a linear index provides an extremely efficient way to
search. The problem is how to handle those pesky inserts and deletes. We could try
to keep the core idea of storing a sorted array-based list, but make it more flexible
by breaking the list into manageable chunks that are more easily updated. How
might we do that? First, we need to decide how big the chunks should be. Since
the data are on disk, it seems reasonable to store a chunk that is the size of a disk
block, or a small multiple of the disk block size. If the next record to be inserted
belongs to a chunk that hasn’t filled its block then we can just insert it there. The
fact that this might cause other records in that chunk to move a little bit in the array
is not important, since this does not cause any extra disk accesses so long as we
move data within that chunk. But what if the chunk fills up the entire block that
contains it? We could just split it in half. What if we want to delete a record? We
could just take the deleted record out of the chunk, but we might not want a lot of
near-empty chunks. So we could put adjacent chunks together if they have only
a small amount of data between them. Or we could shuffle data between adjacent
chunks that together contain more data. The big problem would be how to find
the desired chunk when processing a record with a given key. Perhaps some sort
of tree-like structure could be used to locate the appropriate chunk. These ideas
are exactly what motivate the B+-tree. The B+-tree is essentially a mechanism for
managing a sorted array-based list, where the list is broken into chunks.

The most significant difference between the B+-tree and the BST or the stan-
dard B-tree is that the B+-tree stores records only at the leaf nodes. Internal nodes
store key values, but these are used solely as placeholders to guide the search. This
means that internal nodes are significantly different in structure from leaf nodes.
Internal nodes store keys to guide the search, associating each key with a pointer
to a child B+-tree node. Leaf nodes store actual records, or else keys and pointers
to actual records in a separate disk file if the B+-tree is being used purely as an
index. Depending on the size of a record as compared to the size of a key, a leaf
node in a B+-tree of order m might have enough room to store more or less than
m records. The requirement is simply that the leaf nodes store enough records to
remain at least half full. The leaf nodes of a B+-tree are normally linked together
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Figure 10.18 Example of a B+-tree of order four. Internal nodes must store
between two and four children. For this example, the record size is assumed to be
such that leaf nodes store between three and five records.

to form a doubly linked list. Thus, the entire collection of records can be traversed
in sorted order by visiting all the leaf nodes on the linked list. Here is a C++-like
pseudocode representation for the B+-tree node class. Leaf node and internal node
subclasses would implement this base class.

// Abstract class definition for B+-trees
template <typename Key, typename E>class BPNode {
public:

BPNode* lftptr; BPNode* rghtptr; // Links to siblings
virtual ˜BPNode() {} // Base destructor
virtual bool isLeaf() const =0; // True if node is a leaf
virtual bool isFull() const =0; // True if node is full
virtual int numrecs() const =0; // Current num of records
virtual Key* keys() const=0; // Return array of keys

};

An important implementation detail to note is that while Figure 10.17 shows
internal nodes containing three keys and four pointers, class BPNode is slightly
different in that it stores key/pointer pairs. Figure 10.17 shows the B+-tree as it
is traditionally drawn. To simplify implementation in practice, nodes really do
associate a key with each pointer. Each internal node should be assumed to hold
in the leftmost position an additional key that is less than or equal to any possible
key value in the node’s leftmost subtree. B+-tree implementations typically store
an additional dummy record in the leftmost leaf node whose key value is less than
any legal key value.

B+-trees are exceptionally good for range queries. Once the first record in
the range has been found, the rest of the records with keys in the range can be
accessed by sequential processing of the remaining records in the first node, and
then continuing down the linked list of leaf nodes as far as necessary. Figure 10.18
illustrates the B+-tree.

Search in a B+-tree is nearly identical to search in a regular B-tree, except that
the search must always continue to the proper leaf node. Even if the search-key
value is found in an internal node, this is only a placeholder and does not provide
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template <typename Key, typename E>
E BPTree<Key, E>::findhelp(BPNode<Key,E>* rt, const Key k)

const {
int currec = binaryle(rt->keys(), rt->numrecs(), k);
if (rt->isLeaf())

if ((((BPLeaf<Key,E>*)rt)->keys())[currec] == k)
return ((BPLeaf<Key,E>*)rt)->recs(currec);

else return NULL;
else

return findhelp(((BPInternal<Key,E>*)rt)->
pointers(currec), k);

}

Figure 10.19 Implementation for the B+-tree search method.

access to the actual record. To find a record with key value 33 in the B+-tree of
Figure 10.18, search begins at the root. The value 33 stored in the root merely
serves as a placeholder, indicating that keys with values greater than or equal to 33
are found in the second subtree. From the second child of the root, the first branch
is taken to reach the leaf node containing the actual record (or a pointer to the actual
record) with key value 33. Figure 10.19 shows a pseudocode sketch of the B+-tree
search algorithm.

B+-tree insertion is similar to B-tree insertion. First, the leaf L that should
contain the record is found. If L is not full, then the new record is added, and no
other B+-tree nodes are affected. If L is already full, split it in two (dividing the
records evenly among the two nodes) and promote a copy of the least-valued key
in the newly formed right node. As with the 2-3 tree, promotion might cause the
parent to split in turn, perhaps eventually leading to splitting the root and causing
the B+-tree to gain a new level. B+-tree insertion keeps all leaf nodes at equal
depth. Figure 10.20 illustrates the insertion process through several examples. Fig-
ure 10.21 shows a C++-like pseudocode sketch of the B+-tree insert algorithm.

To delete record R from the B+-tree, first locate the leaf L that contains R. If L
is more than half full, then we need only remove R, leaving L still at least half full.
This is demonstrated by Figure 10.22.

If deleting a record reduces the number of records in the node below the min-
imum threshold (called an underflow), then we must do something to keep the
node sufficiently full. The first choice is to look at the node’s adjacent siblings to
determine if they have a spare record that can be used to fill the gap. If so, then
enough records are transferred from the sibling so that both nodes have about the
same number of records. This is done so as to delay as long as possible the next
time when a delete causes this node to underflow again. This process might require
that the parent node has its placeholder key value revised to reflect the true first key
value in each node. Figure 10.23 illustrates the process.
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Figure 10.20 Examples of B+-tree insertion. (a) A B+-tree containing five
records. (b) The result of inserting a record with key value 50 into the tree of (a).
The leaf node splits, causing creation of the first internal node. (c) The B+-tree of
(b) after further insertions. (d) The result of inserting a record with key value 30
into the tree of (c). The second leaf node splits, which causes the internal node to
split in turn, creating a new root.

template <typename Key, typename E>
BPNode<Key,E>* BPTree<Key, E>::inserthelp(BPNode<Key,E>* rt,

const Key& k, const E& e) {
if (rt->isLeaf()) // At leaf node: insert here

return ((BPLeaf<Key,E>*)rt)->add(k, e);
// Add to internal node
int currec = binaryle(rt->keys(), rt->numrecs(), k);
BPNode<Key,E>* temp = inserthelp(

((BPInternal<Key,E>*)root)->pointers(currec), k, e);
if (temp != ((BPInternal<Key,E>*)rt)->pointers(currec))

return ((BPInternal<Key,E>*)rt)->
add(k, (BPInternal<Key,E>*)temp);

else
return rt;

}

Figure 10.21 A C++-like pseudocode sketch of the B+-tree insert algorithm.
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Figure 10.22 Simple deletion from a B+-tree. The record with key value 18 is
removed from the tree of Figure 10.18. Note that even though 18 is also a place-
holder used to direct search in the parent node, that value need not be removed
from internal nodes even if no record in the tree has key value 18. Thus, the
leftmost node at level one in this example retains the key with value 18 after the
record with key value 18 has been removed from the second leaf node.
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Figure 10.23 Deletion from the B+-tree of Figure 10.18 via borrowing from a
sibling. The key with value 12 is deleted from the leftmost leaf, causing the record
with key value 18 to shift to the leftmost leaf to take its place. Note that the parent
must be updated to properly indicate the key range within the subtrees. In this
example, the parent node has its leftmost key value changed to 19.

If neither sibling can lend a record to the under-full node (call it N ), then N
must give its records to a sibling and be removed from the tree. There is certainly
room to do this, because the sibling is at most half full (remember that it had no
records to contribute to the current node), and N has become less than half full
because it is under-flowing. This merge process combines two subtrees of the par-
ent, which might cause it to underflow in turn. If the last two children of the root
merge together, then the tree loses a level. Figure 10.24 illustrates the node-merge
deletion process. Figure 10.25 shows C++-like pseudocode for the B+-tree delete
algorithm.

The B+-tree requires that all nodes be at least half full (except for the root).
Thus, the storage utilization must be at least 50%. This is satisfactory for many
implementations, but note that keeping nodes fuller will result both in less space
required (because there is less empty space in the disk file) and in more efficient
processing (fewer blocks on average will be read into memory because the amount
of information in each block is greater). Because B-trees have become so popular,
many algorithm designers have tried to improve B-tree performance. One method
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Figure 10.24 Deleting the record with key value 33 from the B+-tree of Fig-
ure 10.18 via collapsing siblings. (a) The two leftmost leaf nodes merge together
to form a single leaf. Unfortunately, the parent node now has only one child.
(b) Because the left subtree has a spare leaf node, that node is passed to the right
subtree. The placeholder values of the root and the right internal node are updated
to reflect the changes. Value 23 moves to the root, and old root value 33 moves to
the rightmost internal node.

/** Delete a record with the given key value, and
return true if the root underflows */

template <typename Key, typename E>
bool BPTree<Key, E>::removehelp(BPNode<Key,E>* rt,

const Key& k) {
int currec = binaryle(rt->keys(), rt->numrecs(), k);
if (rt->isLeaf())

if (((BPLeaf<Key,E>*)rt)->keys()[currec] == k)
return ((BPLeaf<Key,E>*)rt)->del(currec);

else return false;
else // Process internal node

if (removehelp(((BPInternal<Key,E>*)rt)->
pointers(currec), k))

// Child will merge if necessary
return ((BPInternal<Key,E>*)rt)->underflow(currec);

else return false;
}

Figure 10.25 C++-like pseudocode for the B+-tree delete algorithm.
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for doing so is to use the B+-tree variant known as the B∗-tree. The B∗-tree is
identical to the B+-tree, except for the rules used to split and merge nodes. Instead
of splitting a node in half when it overflows, the B∗-tree gives some records to its
neighboring sibling, if possible. If the sibling is also full, then these two nodes split
into three. Similarly, when a node underflows, it is combined with its two siblings,
and the total reduced to two nodes. Thus, the nodes are always at least two thirds
full.2

10.5.2 B-Tree Analysis

The asymptotic cost of search, insertion, and deletion of records from B-trees,
B+-trees, and B∗-trees is Θ(log n) where n is the total number of records in the
tree. However, the base of the log is the (average) branching factor of the tree.
Typical database applications use extremely high branching factors, perhaps 100 or
more. Thus, in practice the B-tree and its variants are extremely shallow.

As an illustration, consider a B+-tree of order 100 and leaf nodes that contain
up to 100 records. A B+-tree with height one (that is, just a single leaf node) can
have at most 100 records. A B+-tree with height two (a root internal node whose
children are leaves) must have at least 100 records (2 leaves with 50 records each).
It has at most 10,000 records (100 leaves with 100 records each). A B+-tree with
height three must have at least 5000 records (two second-level nodes with 50 chil-
dren containing 50 records each) and at most one million records (100 second-level
nodes with 100 full children each). A B+-tree with height four must have at least
250,000 records and at most 100 million records. Thus, it would require an ex-
tremely large database to generate a B+-tree of more than height four.

The B+-tree split and insert rules guarantee that every node (except perhaps the
root) is at least half full. So they are on average about 3/4 full. But the internal
nodes are purely overhead, since the keys stored there are used only by the tree to
direct search, rather than store actual data. Does this overhead amount to a signifi-
cant use of space? No, because once again the high fan-out rate of the tree structure
means that the vast majority of nodes are leaf nodes. Recall (from Section 6.4) that
a fullK-ary tree has approximately 1/K of its nodes as internal nodes. This means
that while half of a full binary tree’s nodes are internal nodes, in a B+-tree of order
100 probably only about 1/75 of its nodes are internal nodes. This means that the
overhead associated with internal nodes is very low.

We can reduce the number of disk fetches required for the B-tree even more
by using the following methods. First, the upper levels of the tree can be stored in

2This concept can be extended further if higher space utilization is required. However, the update
routines become much more complicated. I once worked on a project where we implemented 3-for-4
node split and merge routines. This gave better performance than the 2-for-3 node split and merge
routines of the B∗-tree. However, the spitting and merging routines were so complicated that even
their author could no longer understand them once they were completed!
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main memory at all times. Because the tree branches so quickly, the top two levels
(levels 0 and 1) require relatively little space. If the B-tree is only height four, then
at most two disk fetches (internal nodes at level two and leaves at level three) are
required to reach the pointer to any given record.

A buffer pool could be used to manage nodes of the B-tree. Several nodes of
the tree would typically be in main memory at one time. The most straightforward
approach is to use a standard method such as LRU to do node replacement. How-
ever, sometimes it might be desirable to “lock” certain nodes such as the root into
the buffer pool. In general, if the buffer pool is even of modest size (say at least
twice the depth of the tree), no special techniques for node replacement will be
required because the upper-level nodes will naturally be accessed frequently.

10.6 Further Reading

For an expanded discussion of the issues touched on in this chapter, see a gen-
eral file processing text such as File Structures: A Conceptual Toolkit by Folk and
Zoellick [FZ98]. In particular, Folk and Zoellick provide a good discussion of
the relationship between primary and secondary indices. The most thorough dis-
cussion on various implementations for the B-tree is the survey article by Comer
[Com79]. Also see [Sal88] for further details on implementing B-trees. See Shaf-
fer and Brown [SB93] for a discussion of buffer pool management strategies for
B+-tree-like data structures.

10.7 Exercises

10.1 Assume that a computer system has disk blocks of 1024 bytes, and that you
are storing records that have 4-byte keys and 4-byte data fields. The records
are sorted and packed sequentially into the disk file.

(a) Assume that a linear index uses 4 bytes to store the key and 4 bytes
to store the block ID for the associated records. What is the greatest
number of records that can be stored in the file if a linear index of size
256KB is used?

(b) What is the greatest number of records that can be stored in the file if
the linear index is also stored on disk (and thus its size is limited only
by the second-level index) when using a second-level index of 1024
bytes (i.e., 256 key values) as illustrated by Figure 10.2? Each element
of the second-level index references the smallest key value for a disk
block of the linear index.

10.2 Assume that a computer system has disk blocks of 4096 bytes, and that you
are storing records that have 4-byte keys and 64-byte data fields. The records
are sorted and packed sequentially into the disk file.
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(a) Assume that a linear index uses 4 bytes to store the key and 4 bytes
to store the block ID for the associated records. What is the greatest
number of records that can be stored in the file if a linear index of size
2MB is used?

(b) What is the greatest number of records that can be stored in the file if
the linear index is also stored on disk (and thus its size is limited only by
the second-level index) when using a second-level index of 4096 bytes
(i.e., 1024 key values) as illustrated by Figure 10.2? Each element of
the second-level index references the smallest key value for a disk block
of the linear index.

10.3 Modify the function binary of Section 3.5 so as to support variable-length
records with fixed-length keys indexed by a simple linear index as illustrated
by Figure 10.1.

10.4 Assume that a database stores records consisting of a 2-byte integer key and
a variable-length data field consisting of a string. Show the linear index (as
illustrated by Figure 10.1) for the following collection of records:

397 Hello world!
82 XYZ
1038 This string is rather long
1037 This is shorter
42 ABC
2222 Hello new world!

10.5 Each of the following series of records consists of a four-digit primary key
(with no duplicates) and a four-character secondary key (with many dupli-
cates).

3456 DEER
2398 DEER
2926 DUCK
9737 DEER
7739 GOAT
9279 DUCK
1111 FROG
8133 DEER
7183 DUCK
7186 FROG

(a) Show the inverted list (as illustrated by Figure 10.4) for this collection
of records.

(b) Show the improved inverted list (as illustrated by Figure 10.5) for this
collection of records.
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10.6 Under what conditions will ISAM be more efficient than a B+-tree imple-
mentation?

10.7 Prove that the number of leaf nodes in a 2-3 tree with height k is between
2k−1 and 3k−1.

10.8 Show the result of inserting the values 55 and 46 into the 2-3 tree of Fig-
ure 10.9.

10.9 You are given a series of records whose keys are letters. The records arrive
in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R, K, E, H, O,
L, J. Show the 2-3 tree that results from inserting these records.

10.10 You are given a series of records whose keys are letters. The records are
inserted in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R, K,
E, H, O, L, J. Show the tree that results from inserting these records when
the 2-3 tree is modified to be a 2-3+ tree, that is, the internal nodes act only
as placeholders. Assume that the leaf nodes are capable of holding up to two
records.

10.11 Show the result of inserting the value 55 into the B-tree of Figure 10.17.
10.12 Show the result of inserting the values 1, 2, 3, 4, 5, and 6 (in that order) into

the B+-tree of Figure 10.18.
10.13 Show the result of deleting the values 18, 19, and 20 (in that order) from the

B+-tree of Figure 10.24b.
10.14 You are given a series of records whose keys are letters. The records are

inserted in the following order: C, S, D, T, A, M, P, I, B, W, N, G, U, R,
K, E, H, O, L, J. Show the B+-tree of order four that results from inserting
these records. Assume that the leaf nodes are capable of storing up to three
records.

10.15 Assume that you have a B+-tree whose internal nodes can store up to 100
children and whose leaf nodes can store up to 15 records. What are the
minimum and maximum number of records that can be stored by the B+-tree
with heights 1, 2, 3, 4, and 5?

10.16 Assume that you have a B+-tree whose internal nodes can store up to 50
children and whose leaf nodes can store up to 50 records. What are the
minimum and maximum number of records that can be stored by the B+-tree
with heights 1, 2, 3, 4, and 5?

10.8 Projects

10.1 Implement a two-level linear index for variable-length records as illustrated
by Figures 10.1 and 10.2. Assume that disk blocks are 1024 bytes in length.
Records in the database file should typically range between 20 and 200 bytes,
including a 4-byte key value. Each record of the index file should store a
key value and the byte offset in the database file for the first byte of the
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corresponding record. The top-level index (stored in memory) should be a
simple array storing the lowest key value on the corresponding block in the
index file.

10.2 Implement the 2-3+ tree, that is, a 2-3 tree where the internal nodes act only
as placeholders. Your 2-3+ tree should implement the dictionary interface of
Section 4.4.

10.3 Implement the dictionary ADT of Section 4.4 for a large file stored on disk
by means of the B+-tree of Section 10.5. Assume that disk blocks are
1024 bytes, and thus both leaf nodes and internal nodes are also 1024 bytes.
Records should store a 4-byte (int) key value and a 60-byte data field. Inter-
nal nodes should store key value/pointer pairs where the “pointer” is actually
the block number on disk for the child node. Both internal nodes and leaf
nodes will need room to store various information such as a count of the
records stored on that node, and a pointer to the next node on that level.
Thus, leaf nodes will store 15 records, and internal nodes will have room to
store about 120 to 125 children depending on how you implement them. Use
a buffer pool (Section 8.3) to manage access to the nodes stored on disk.
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Graphs

Graphs provide the ultimate in data structure flexibility. Graphs can model both
real-world systems and abstract problems, so they are used in hundreds of applica-
tions. Here is a small sampling of the range of problems that graphs are routinely
applied to.

1. Modeling connectivity in computer and communications networks.
2. Representing a map as a set of locations with distances between locations;

used to compute shortest routes between locations.
3. Modeling flow capacities in transportation networks.
4. Finding a path from a starting condition to a goal condition; for example, in

artificial intelligence problem solving.
5. Modeling computer algorithms, showing transitions from one program state

to another.
6. Finding an acceptable order for finishing subtasks in a complex activity, such

as constructing large buildings.
7. Modeling relationships such as family trees, business or military organiza-

tions, and scientific taxonomies.

We begin in Section 11.1 with some basic graph terminology and then define
two fundamental representations for graphs, the adjacency matrix and adjacency
list. Section 11.2 presents a graph ADT and simple implementations based on the
adjacency matrix and adjacency list. Section 11.3 presents the two most commonly
used graph traversal algorithms, called depth-first and breadth-first search, with
application to topological sorting. Section 11.4 presents algorithms for solving
some problems related to finding shortest routes in a graph. Finally, Section 11.5
presents algorithms for finding the minimum-cost spanning tree, useful for deter-
mining lowest-cost connectivity in a network. Besides being useful and interesting
in their own right, these algorithms illustrate the use of some data structures pre-
sented in earlier chapters.

381
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(b) (c)

0

3

4

1

2

7

1

2

3

4

(a)

1

Figure 11.1 Examples of graphs and terminology. (a) A graph. (b) A directed
graph (digraph). (c) A labeled (directed) graph with weights associated with the
edges. In this example, there is a simple path from Vertex 0 to Vertex 3 containing
Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1 also form a path, but not a simple
path because Vertex 1 appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.

11.1 Terminology and Representations

A graph G = (V,E) consists of a set of vertices V and a set of edges E, such
that each edge in E is a connection between a pair of vertices in V.1 The number
of vertices is written |V|, and the number of edges is written |E|. |E| can range
from zero to a maximum of |V|2 − |V|. A graph with relatively few edges is called
sparse, while a graph with many edges is called dense. A graph containing all
possible edges is said to be complete.

A graph with edges directed from one vertex to another (as in Figure 11.1(b))
is called a directed graph or digraph. A graph whose edges are not directed is
called an undirected graph (as illustrated by Figure 11.1(a)). A graph with labels
associated with its vertices (as in Figure 11.1(c)) is called a labeled graph. Two
vertices are adjacent if they are joined by an edge. Such vertices are also called
neighbors. An edge connecting Vertices U and V is written (U, V). Such an edge
is said to be incident on Vertices U and V . Associated with each edge may be a
cost or weight. Graphs whose edges have weights (as in Figure 11.1(c)) are said to
be weighted.

A sequence of vertices v1, v2, ..., vn forms a path of length n− 1 if there exist
edges from vi to vi+1 for 1 ≤ i < n. A path is simple if all vertices on the path are
distinct. The length of a path is the number of edges it contains. A cycle is a path
of length three or more that connects some vertex v1 to itself. A cycle is simple if
the path is simple, except for the first and last vertices being the same.

1Some graph applications require that a given pair of vertices can have multiple or parallel edges
connecting them, or that a vertex can have an edge to itself. However, the applications discussed
in this book do not require either of these special cases, so for simplicity we will assume that they
cannot occur.



Sec. 11.1 Terminology and Representations 383

0 2

4

1 3

6

5

7

Figure 11.2 An undirected graph with three connected components. Vertices 0,
1, 2, 3, and 4 form one connected component. Vertices 5 and 6 form a second
connected component. Vertex 7 by itself forms a third connected component.

A subgraph S is formed from graph G by selecting a subset Vs of G’s vertices
and a subset Es of G’s edges such that for every edge E in Es, both of E’s vertices
are in Vs.

An undirected graph is connected if there is at least one path from any vertex
to any other. The maximally connected subgraphs of an undirected graph are called
connected components. For example, Figure 11.2 shows an undirected graph with
three connected components.

A graph without cycles is called acyclic. Thus, a directed graph without cycles
is called a directed acyclic graph or DAG.

A free tree is a connected, undirected graph with no simple cycles. An equiv-
alent definition is that a free tree is connected and has |V| − 1 edges.

There are two commonly used methods for representing graphs. The adja-
cency matrix is illustrated by Figure 11.3(b). The adjacency matrix for a graph
is a |V| × |V| array. Assume that |V| = n and that the vertices are labeled from
v0 through vn−1. Row i of the adjacency matrix contains entries for Vertex vi.
Column j in row i is marked if there is an edge from vi to vj and is not marked oth-
erwise. Thus, the adjacency matrix requires one bit at each position. Alternatively,
if we wish to associate a number with each edge, such as the weight or distance
between two vertices, then each matrix position must store that number. In either
case, the space requirements for the adjacency matrix are Θ(|V|2).

The second common representation for graphs is the adjacency list, illustrated
by Figure 11.3(c). The adjacency list is an array of linked lists. The array is
|V| items long, with position i storing a pointer to the linked list of edges for Ver-
tex vi. This linked list represents the edges by the vertices that are adjacent to
Vertex vi. The adjacency list is therefore a generalization of the “list of children”
representation for trees described in Section 6.3.1.

Example 11.1 The entry for Vertex 0 in Figure 11.3(c) stores 1 and 4
because there are two edges in the graph leaving Vertex 0, with one going
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Figure 11.3 Two graph representations. (a) A directed graph. (b) The adjacency
matrix for the graph of (a). (c) The adjacency list for the graph of (a).

to Vertex 1 and one going to Vertex 4. The list for Vertex 2 stores an entry
for Vertex 4 because there is an edge from Vertex 2 to Vertex 4, but no entry
for Vertex 3 because this edge comes into Vertex 2 rather than going out.

The storage requirements for the adjacency list depend on both the number of
edges and the number of vertices in the graph. There must be an array entry for
each vertex (even if the vertex is not adjacent to any other vertex and thus has no
elements on its linked list), and each edge must appear on one of the lists. Thus,
the cost is Θ(|V|+ |E|).

Both the adjacency matrix and the adjacency list can be used to store directed
or undirected graphs. Each edge of an undirected graph connecting Vertices U
and V is represented by two directed edges: one from U to V and one from V to
U. Figure 11.4 illustrates the use of the adjacency matrix and the adjacency list for
undirected graphs.

Which graph representation is more space efficient depends on the number of
edges in the graph. The adjacency list stores information only for those edges that
actually appear in the graph, while the adjacency matrix requires space for each
potential edge, whether it exists or not. However, the adjacency matrix requires
no overhead for pointers, which can be a substantial cost, especially if the only
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Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-
rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list
for the graph of (a).

information stored for an edge is one bit to indicate its existence. As the graph be-
comes denser, the adjacency matrix becomes relatively more space efficient. Sparse
graphs are likely to have their adjacency list representation be more space efficient.

Example 11.2 Assume that a vertex index requires two bytes, a pointer
requires four bytes, and an edge weight requires two bytes. Then the adja-
cency matrix for the graph of Figure 11.3 requires 2|V2| = 50 bytes while
the adjacency list requires 4|V| + 6|E| = 56 bytes. For the graph of Fig-
ure 11.4, the adjacency matrix requires the same space as before, while the
adjacency list requires 4|V| + 6|E| = 92 bytes (because there are now 12
edges instead of 6).

The adjacency matrix often requires a higher asymptotic cost for an algorithm
than would result if the adjacency list were used. The reason is that it is common
for a graph algorithm to visit each neighbor of each vertex. Using the adjacency list,
only the actual edges connecting a vertex to its neighbors are examined. However,
the adjacency matrix must look at each of its |V| potential edges, yielding a total
cost of Θ(|V2|) time when the algorithm might otherwise require only Θ(|V|+ |E|)
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time. This is a considerable disadvantage when the graph is sparse, but not when
the graph is closer to full.

11.2 Graph Implementations

We next turn to the problem of implementing a general-purpose graph class. Fig-
ure 11.5 shows an abstract class defining an ADT for graphs. Vertices are defined
by an integer index value. In other words, there is a Vertex 0, Vertex 1, and so
on. We can assume that a graph application stores any additional information of
interest about a given vertex elsewhere, such as a name or application-dependent
value. Note that this ADT is not implemented using a template, because it is the
Graph class users’ responsibility to maintain information related to the vertices
themselves. The Graph class need have no knowledge of the type or content of
the information associated with a vertex, only the index number for that vertex.

Abstract class Graph has methods to return the number of vertices and edges
(methods n and e, respectively). Function weight returns the weight of a given
edge, with that edge identified by its two incident vertices. For example, calling
weight(0, 4) on the graph of Figure 11.1 (c) would return 4. If no such edge
exists, the weight is defined to be 0. So calling weight(0, 2) on the graph of
Figure 11.1 (c) would return 0.

Functions setEdge and delEdge set the weight of an edge and remove an
edge from the graph, respectively. Again, an edge is identified by its two incident
vertices. setEdge does not permit the user to set the weight to be 0, because this
value is used to indicate a non-existent edge, nor are negative edge weights per-
mitted. Functions getMark and setMark get and set, respectively, a requested
value in the Mark array (described below) for Vertex V .

Nearly every graph algorithm presented in this chapter will require visits to all
neighbors of a given vertex. Two methods are provided to support this. They work
in a manner similar to linked list access functions. Function first takes as input
a vertex V , and returns the edge to the first neighbor for V (we assume the neighbor
list is sorted by vertex number). Function next takes as input Vertices V1 and V2
and returns the index for the vertex forming the next edge with V1 after V2 on V1’s
edge list. Function next will return a value of n = |V| once the end of the edge
list for V1 has been reached. The following line appears in many graph algorithms:

for (w = G=>first(v); w < G->n(); w = G->next(v,w))

This for loop gets the first neighbor of v, then works through the remaining neigh-
bors of v until a value equal to G->n() is returned, signaling that all neighbors
of v have been visited. For example, first(1) in Figure 11.4 would return 0.
next(1, 0) would return 3. next(0, 3) would return 4. next(1, 4)
would return 5, which is not a vertex in the graph.
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// Graph abstract class. This ADT assumes that the number
// of vertices is fixed when the graph is created.
class Graph {
private:

void operator =(const Graph&) {} // Protect assignment
Graph(const Graph&) {} // Protect copy constructor

public:
Graph() {} // Default constructor
virtual ˜Graph() {} // Base destructor

// Initialize a graph of n vertices
virtual void Init(int n) =0;

// Return: the number of vertices and edges
virtual int n() =0;
virtual int e() =0;

// Return v’s first neighbor
virtual int first(int v) =0;

// Return v’s next neighbor
virtual int next(int v, int w) =0;

// Set the weight for an edge
// i, j: The vertices
// wgt: Edge weight
virtual void setEdge(int v1, int v2, int wght) =0;

// Delete an edge
// i, j: The vertices
virtual void delEdge(int v1, int v2) =0;

// Determine if an edge is in the graph
// i, j: The vertices
// Return: true if edge i,j has non-zero weight
virtual bool isEdge(int i, int j) =0;

// Return an edge’s weight
// i, j: The vertices
// Return: The weight of edge i,j, or zero
virtual int weight(int v1, int v2) =0;

// Get and Set the mark value for a vertex
// v: The vertex
// val: The value to set
virtual int getMark(int v) =0;
virtual void setMark(int v, int val) =0;

};

Figure 11.5 A graph ADT. This ADT assumes that the number of vertices is
fixed when the graph is created, but that edges can be added and removed. It also
supports a mark array to aid graph traversal algorithms.
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It is reasonably straightforward to implement our graph and edge ADTs using
either the adjacency list or adjacency matrix. The sample implementations pre-
sented here do not address the issue of how the graph is actually created. The user
of these implementations must add functionality for this purpose, perhaps reading
the graph description from a file. The graph can be built up by using the setEdge
function provided by the ADT.

Figure 11.6 shows an implementation for the adjacency matrix. Array Mark
stores the information manipulated by the setMark and getMark functions. The
edge matrix is implemented as an integer array of size n × n for a graph of n ver-
tices. Position (i, j) in the matrix stores the weight for edge (i, j) if it exists. A
weight of zero for edge (i, j) is used to indicate that no edge connects Vertices i
and j.

Given a vertex V , function first locates the position in matrix of the first
edge (if any) of V by beginning with edge (V , 0) and scanning through row V until
an edge is found. If no edge is incident on V , then first returns n.

Function next locates the edge following edge (i, j) (if any) by continuing
down the row of Vertex i starting at position j + 1, looking for an edge. If no
such edge exists, next returns n. Functions setEdge and delEdge adjust the
appropriate value in the array. Function weight returns the value stored in the
appropriate position in the array.

Figure 11.7 presents an implementation of the adjacency list representation for
graphs. Its main data structure is an array of linked lists, one linked list for each
vertex. These linked lists store objects of type Edge, which merely stores the index
for the vertex pointed to by the edge, along with the weight of the edge. Because
the Edge class is assumed to be private to the Graphl class, its data members
have been made public for convenience.

// Edge class for Adjacency List graph representation
class Edge {

int vert, wt;
public:

Edge() { vert = -1; wt = -1; }
Edge(int v, int w) { vert = v; wt = w; }
int vertex() { return vert; }
int weight() { return wt; }

};

Implementation for Graphl member functions is straightforward in principle,
with the key functions being setEdge, delEdge, and weight. They simply
start at the beginning of the adjacency list and move along it until the desired vertex
has been found. Note that isEdge checks to see if j is already the current neighbor
in i’s adjacency list, since this will often be true when processing the neighbors of
each vertex in turn.
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// Implementation for the adjacency matrix representation
class Graphm : public Graph {
private:

int numVertex, numEdge; // Store number of vertices, edges
int **matrix; // Pointer to adjacency matrix
int *mark; // Pointer to mark array

public:
Graphm(int numVert) // Constructor

{ Init(numVert); }

˜Graphm() { // Destructor
delete [] mark; // Return dynamically allocated memory
for (int i=0; i<numVertex; i++)

delete [] matrix[i];
delete [] matrix;

}

void Init(int n) { // Initialize the graph
int i;
numVertex = n;
numEdge = 0;
mark = new int[n]; // Initialize mark array
for (i=0; i<numVertex; i++)

mark[i] = UNVISITED;
matrix = (int**) new int*[numVertex]; // Make matrix
for (i=0; i<numVertex; i++)

matrix[i] = new int[numVertex];
for (i=0; i< numVertex; i++) // Initialize to 0 weights

for (int j=0; j<numVertex; j++)
matrix[i][j] = 0;

}

int n() { return numVertex; } // Number of vertices
int e() { return numEdge; } // Number of edges

// Return first neighbor of "v"
int first(int v) {

for (int i=0; i<numVertex; i++)
if (matrix[v][i] != 0) return i;

return numVertex; // Return n if none
}

// Return v’s next neighbor after w
int next(int v, int w) {

for(int i=w+1; i<numVertex; i++)
if (matrix[v][i] != 0)

return i;
return numVertex; // Return n if none

}
Figure 11.6 An implementation for the adjacency matrix implementation.
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// Set edge (v1, v2) to "wt"
void setEdge(int v1, int v2, int wt) {

Assert(wt>0, "Illegal weight value");
if (matrix[v1][v2] == 0) numEdge++;
matrix[v1][v2] = wt;

}

void delEdge(int v1, int v2) { // Delete edge (v1, v2)
if (matrix[v1][v2] != 0) numEdge--;
matrix[v1][v2] = 0;

}

bool isEdge(int i, int j) // Is (i, j) an edge?
{ return matrix[i][j] != 0; }

int weight(int v1, int v2) { return matrix[v1][v2]; }
int getMark(int v) { return mark[v]; }
void setMark(int v, int val) { mark[v] = val; }

};
Figure 11.6 (continued)

11.3 Graph Traversals

Often it is useful to visit the vertices of a graph in some specific order based on the
graph’s topology. This is known as a graph traversal and is similar in concept to
a tree traversal. Recall that tree traversals visit every node exactly once, in some
specified order such as preorder, inorder, or postorder. Multiple tree traversals exist
because various applications require the nodes to be visited in a particular order.
For example, to print a BST’s nodes in ascending order requires an inorder traver-
sal as opposed to some other traversal. Standard graph traversal orders also exist.
Each is appropriate for solving certain problems. For example, many problems in
artificial intelligence programming are modeled using graphs. The problem domain
may consist of a large collection of states, with connections between various pairs
of states. Solving the problem may require getting from a specified start state to a
specified goal state by moving between states only through the connections. Typi-
cally, the start and goal states are not directly connected. To solve this problem, the
vertices of the graph must be searched in some organized manner.

Graph traversal algorithms typically begin with a start vertex and attempt to
visit the remaining vertices from there. Graph traversals must deal with a number
of troublesome cases. First, it may not be possible to reach all vertices from the
start vertex. This occurs when the graph is not connected. Second, the graph may
contain cycles, and we must make sure that cycles do not cause the algorithm to go
into an infinite loop.
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class Graphl : public Graph {
private:

List<Edge>** vertex; // List headers
int numVertex, numEdge; // Number of vertices, edges
int *mark; // Pointer to mark array

public:
Graphl(int numVert)

{ Init(numVert); }

˜Graphl() { // Destructor
delete [] mark; // Return dynamically allocated memory
for (int i=0; i<numVertex; i++) delete [] vertex[i];
delete [] vertex;

}

void Init(int n) {
int i;
numVertex = n;
numEdge = 0;
mark = new int[n]; // Initialize mark array
for (i=0; i<numVertex; i++) mark[i] = UNVISITED;
// Create and initialize adjacency lists
vertex = (List<Edge>**) new List<Edge>*[numVertex];
for (i=0; i<numVertex; i++)

vertex[i] = new LList<Edge>();
}

int n() { return numVertex; } // Number of vertices
int e() { return numEdge; } // Number of edges

int first(int v) { // Return first neighbor of "v"
if (vertex[v]->length() == 0)

return numVertex; // No neighbor
vertex[v]->moveToStart();
Edge it = vertex[v]->getValue();
return it.vertex();

}

// Get v’s next neighbor after w
int next(int v, int w) {

Edge it;
if (isEdge(v, w)) {

if ((vertex[v]->currPos()+1) < vertex[v]->length()) {
vertex[v]->next();
it = vertex[v]->getValue();
return it.vertex();

}
}
return n(); // No neighbor

}

Figure 11.7 An implementation for the adjacency list.
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// Set edge (i, j) to "weight"
void setEdge(int i, int j, int weight) {

Assert(weight>0, "May not set weight to 0");
Edge currEdge(j, weight);
if (isEdge(i, j)) { // Edge already exists in graph

vertex[i]->remove();
vertex[i]->insert(currEdge);

}
else { // Keep neighbors sorted by vertex index

numEdge++;
for (vertex[i]->moveToStart();

vertex[i]->currPos() < vertex[i]->length();
vertex[i]->next()) {

Edge temp = vertex[i]->getValue();
if (temp.vertex() > j) break;

}
vertex[i]->insert(currEdge);

}
}

void delEdge(int i, int j) { // Delete edge (i, j)
if (isEdge(i,j)) {

vertex[i]->remove();
numEdge--;

}
}

bool isEdge(int i, int j) { // Is (i,j) an edge?
Edge it;
for (vertex[i]->moveToStart();

vertex[i]->currPos() < vertex[i]->length();
vertex[i]->next()) { // Check whole list

Edge temp = vertex[i]->getValue();
if (temp.vertex() == j) return true;

}
return false;

}

int weight(int i, int j) { // Return weight of (i, j)
Edge curr;
if (isEdge(i, j)) {

curr = vertex[i]->getValue();
return curr.weight();

}
else return 0;

}

int getMark(int v) { return mark[v]; }
void setMark(int v, int val) { mark[v] = val; }

};
Figure 11.7 (continued)
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Graph traversal algorithms can solve both of these problems by maintaining a
mark bit for each vertex on the graph. At the beginning of the algorithm, the mark
bit for all vertices is cleared. The mark bit for a vertex is set when the vertex is first
visited during the traversal. If a marked vertex is encountered during traversal, it is
not visited a second time. This keeps the program from going into an infinite loop
when it encounters a cycle.

Once the traversal algorithm completes, we can check to see if all vertices have
been processed by checking the mark bit array. If not all vertices are marked, we
can continue the traversal from another unmarked vertex. Note that this process
works regardless of whether the graph is directed or undirected. To ensure visiting
all vertices, graphTraverse could be called as follows on a graph G:

void graphTraverse(Graph* G) {
int v;
for (v=0; v<G->n(); v++)

G->setMark(v, UNVISITED); // Initialize mark bits
for (v=0; v<G->n(); v++)

if (G->getMark(v) == UNVISITED)
doTraverse(G, v);

}

Function “doTraverse” might be implemented by using one of the graph traver-
sals described in this section.

11.3.1 Depth-First Search

The first method of organized graph traversal is called depth-first search (DFS).
Whenever a vertex V is visited during the search, DFS will recursively visit all
of V’s unvisited neighbors. Equivalently, DFS will add all edges leading out of v
to a stack. The next vertex to be visited is determined by popping the stack and
following that edge. The effect is to follow one branch through the graph to its
conclusion, then it will back up and follow another branch, and so on. The DFS
process can be used to define a depth-first search tree. This tree is composed of
the edges that were followed to any new (unvisited) vertex during the traversal, and
leaves out the edges that lead to already visited vertices. DFS can be applied to
directed or undirected graphs. Here is an implementation for the DFS algorithm:

void DFS(Graph* G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G->setMark(v, VISITED);
for (int w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED)
DFS(G, w);

PostVisit(G, v); // Take appropriate action
}

This implementation contains calls to functions PreVisit and PostVisit.
These functions specify what activity should take place during the search. Just
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Figure 11.8 (a) A graph. (b) The depth-first search tree for the graph when
starting at Vertex A.

as a preorder tree traversal requires action before the subtrees are visited, some
graph traversals require that a vertex be processed before ones further along in the
DFS. Alternatively, some applications require activity after the remaining vertices
are processed; hence the call to function PostVisit. This would be a natural
opportunity to make use of the visitor design pattern described in Section 1.3.2.

Figure 11.8 shows a graph and its corresponding depth-first search tree. Fig-
ure 11.9 illustrates the DFS process for the graph of Figure 11.8(a).

DFS processes each edge once in a directed graph. In an undirected graph,
DFS processes each edge from both directions. Each vertex must be visited, but
only once, so the total cost is Θ(|V|+ |E|).

11.3.2 Breadth-First Search

Our second graph traversal algorithm is known as a breadth-first search (BFS).
BFS examines all vertices connected to the start vertex before visiting vertices fur-
ther away. BFS is implemented similarly to DFS, except that a queue replaces
the recursion stack. Note that if the graph is a tree and the start vertex is at the
root, BFS is equivalent to visiting vertices level by level from top to bottom. Fig-
ure 11.10 provides an implementation for the BFS algorithm. Figure 11.11 shows
a graph and the corresponding breadth-first search tree. Figure 11.12 illustrates the
BFS process for the graph of Figure 11.11(a).

11.3.3 Topological Sort

Assume that we need to schedule a series of tasks, such as classes or construction
jobs, where we cannot start one task until after its prerequisites are completed. We
wish to organize the tasks into a linear order that allows us to complete them one
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Figure 11.9 A detailed illustration of the DFS process for the graph of Fig-
ure 11.8(a) starting at Vertex A. The steps leading to each change in the recursion
stack are described.
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void BFS(Graph* G, int start, Queue<int>* Q) {
int v, w;
Q->enqueue(start); // Initialize Q
G->setMark(start, VISITED);
while (Q->length() != 0) { // Process all vertices on Q

v = Q->dequeue();
PreVisit(G, v); // Take appropriate action
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED) {
G->setMark(w, VISITED);
Q->enqueue(w);

}
}

}

Figure 11.10 Implementation for the breadth-first graph traversal algorithm
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Figure 11.11 (a) A graph. (b) The breadth-first search tree for the graph when
starting at Vertex A.

at a time without violating any prerequisites. We can model the problem using a
DAG. The graph is directed because one task is a prerequisite of another — the
vertices have a directed relationship. It is acyclic because a cycle would indicate
a conflicting series of prerequisites that could not be completed without violating
at least one prerequisite. The process of laying out the vertices of a DAG in a
linear order to meet the prerequisite rules is called a topological sort. Figure 11.14
illustrates the problem. An acceptable topological sort for this example is J1, J2,
J3, J4, J5, J6, J7.

A topological sort may be found by performing a DFS on the graph. When a
vertex is visited, no action is taken (i.e., function PreVisit does nothing). When
the recursion pops back to that vertex, function PostVisit prints the vertex. This
yields a topological sort in reverse order. It does not matter where the sort starts, as
long as all vertices are visited in the end. Figure 11.13 shows an implementation
for the DFS-based algorithm.
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Initial call to BFS on A.
Mark A and put on the queue.

Dequeue A.
Process (A, C).
Mark and enqueue C. Print (A, C).
Process (A, E).
Mark and enqueue E. Print(A, E).

Dequeue C.
Process (C, A). Ignore.
Process (C, B).
Mark and enqueue B. Print (C, B).
Process (C, D).
Mark and enqueue D. Print (C, D).
Process (C, F).
Mark and enqueue F. Print (C, F).

Dequeue E.
Process (E, A). Ignore.
Process (E, F). Ignore.

Dequeue B.
Process (B, C). Ignore.
Process (B, F). Ignore.

Dequeue D.
Process (D, C). Ignore.
Process (D, F). Ignore.

Dequeue F.
Process (F, B). Ignore.
Process (F, C). Ignore.
Process (F, D). Ignore.
BFS is complete.
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Figure 11.12 A detailed illustration of the BFS process for the graph of Fig-
ure 11.11(a) starting at Vertex A. The steps leading to each change in the queue
are described.
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void topsort(Graph* G) { // Topological sort: recursive
int i;
for (i=0; i<G->n(); i++) // Initialize Mark array

G->setMark(i, UNVISITED);
for (i=0; i<G->n(); i++) // Process all vertices

if (G->getMark(i) == UNVISITED)
tophelp(G, i); // Call recursive helper function

}

void tophelp(Graph* G, int v) { // Process vertex v
G->setMark(v, VISITED);
for (int w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED)
tophelp(G, w);

printout(v); // PostVisit for Vertex v
}

Figure 11.13 Implementation for the recursive topological sort.

J1 J2

J3 J4

J5 J7

J6

Figure 11.14 An example graph for topological sort. Seven tasks have depen-
dencies as shown by the directed graph.

Using this algorithm starting at J1 and visiting adjacent neighbors in alphabetic
order, vertices of the graph in Figure 11.14 are printed out in the order J7, J5, J4,
J6, J2, J3, J1. Reversing this yields the topological sort J1, J3, J2, J6, J4, J5, J7.

We can implement topological sort using a queue instead of recursion, as fol-
lows. First visit all edges, counting the number of edges that lead to each vertex
(i.e., count the number of prerequisites for each vertex). All vertices with no pre-
requisites are placed on the queue. We then begin processing the queue. When
Vertex V is taken off of the queue, it is printed, and all neighbors of V (that is, all
vertices that have V as a prerequisite) have their counts decremented by one. Place
on the queue any neighbor whose count becomes zero. If the queue becomes empty
without printing all of the vertices, then the graph contains a cycle (i.e., there is no
possible ordering for the tasks that does not violate some prerequisite). The printed
order for the vertices of the graph in Figure 11.14 using the queue version of topo-
logical sort is J1, J2, J3, J6, J4, J5, J7. Figure 11.15 shows an implementation for
the algorithm.
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// Topological sort: Queue
void topsort(Graph* G, Queue<int>* Q) {

int Count[G->n()];
int v, w;
for (v=0; v<G->n(); v++) Count[v] = 0; // Initialize
for (v=0; v<G->n(); v++) // Process every edge

for (w=G->first(v); w<G->n(); w = G->next(v,w))
Count[w]++; // Add to v2’s prereq count

for (v=0; v<G->n(); v++) // Initialize queue
if (Count[v] == 0) // Vertex has no prerequisites

Q->enqueue(v);
while (Q->length() != 0) { // Process the vertices

v = Q->dequeue();
printout(v); // PreVisit for "v"
for (w=G->first(v); w<G->n(); w = G->next(v,w)) {

Count[w]--; // One less prerequisite
if (Count[w] == 0) // This vertex is now free

Q->enqueue(w);
}

}
}

Figure 11.15 A queue-based topological sort algorithm.

11.4 Shortest-Paths Problems

On a road map, a road connecting two towns is typically labeled with its distance.
We can model a road network as a directed graph whose edges are labeled with
real numbers. These numbers represent the distance (or other cost metric, such as
travel time) between two vertices. These labels may be called weights, costs, or
distances, depending on the application. Given such a graph, a typical problem
is to find the total length of the shortest path between two specified vertices. This
is not a trivial problem, because the shortest path may not be along the edge (if
any) connecting two vertices, but rather may be along a path involving one or more
intermediate vertices. For example, in Figure 11.16, the cost of the path from A to
B to D is 15. The cost of the edge directly from A to D is 20. The cost of the path
from A to C to B to D is 10. Thus, the shortest path from A to D is 10 (not along
the edge connecting A to D). We use the notation d(A, D) = 10 to indicate that the
shortest distance from A to D is 10. In Figure 11.16, there is no path from E to B, so
we set d(E, B) =∞. We define w(A, D) = 20 to be the weight of edge (A, D), that
is, the weight of the direct connection from A to D. Because there is no edge from
E to B, w(E, B) = ∞. Note that w(D, A) = ∞ because the graph of Figure 11.16
is directed. We assume that all weights are positive.
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Figure 11.16 Example graph for shortest-path definitions.

11.4.1 Single-Source Shortest Paths

This section presents an algorithm to solve the single-source shortest-paths prob-
lem. Given Vertex S in Graph G, find a shortest path from S to every other vertex
in G. We might want only the shortest path between two vertices, S and T . How-
ever in the worst case, while finding the shortest path from S to T , we might find
the shortest paths from S to every other vertex as well. So there is no better alg-
orithm (in the worst case) for finding the shortest path to a single vertex than to find
shortest paths to all vertices. The algorithm described here will only compute the
distance to every such vertex, rather than recording the actual path. Recording the
path requires modifications to the algorithm that are left as an exercise.

Computer networks provide an application for the single-source shortest-paths
problem. The goal is to find the cheapest way for one computer to broadcast a
message to all other computers on the network. The network can be modeled by a
graph with edge weights indicating time or cost to send a message to a neighboring
computer.

For unweighted graphs (or whenever all edges have the same cost), the single-
source shortest paths can be found using a simple breadth-first search. When
weights are added, BFS will not give the correct answer.

One approach to solving this problem when the edges have differing weights
might be to process the vertices in a fixed order. Label the vertices v0 to vn−1, with
S = v0. When processing Vertex v1, we take the edge connecting v0 and v1. When
processing v2, we consider the shortest distance from v0 to v2 and compare that to
the shortest distance from v0 to v1 to v2. When processing Vertex vi, we consider
the shortest path for Vertices v0 through vi−1 that have already been processed.
Unfortunately, the true shortest path to vi might go through Vertex vj for j > i.
Such a path will not be considered by this algorithm. However, the problem would
not occur if we process the vertices in order of distance from S. Assume that we
have processed in order of distance from S to the first i− 1 vertices that are closest
to S; call this set of vertices S. We are now about to process the ith closest vertex;
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// Compute shortest path distances from "s".
// Return these distances in "D".
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w;
for (i=0; i<G->n(); i++) { // Process the vertices

v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable vertices
G->setMark(v, VISITED);
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > (D[v] + G->weight(v, w)))
D[w] = D[v] + G->weight(v, w);

}
}

Figure 11.17 An implementation for Dijkstra’s algorithm.

call it X. A shortest path from S to X must have its next-to-last vertex in S. Thus,

d(S,X) = min
U∈S

(d(S,U) + w(U,X)).

In other words, the shortest path from S to X is the minimum over all paths that go
from S to U, then have an edge from U to X, where U is some vertex in S.

This solution is usually referred to as Dijkstra’s algorithm. It works by main-
taining a distance estimate D(X) for all vertices X in V. The elements of D are ini-
tialized to the value INFINITE. Vertices are processed in order of distance from
S. Whenever a vertex V is processed, D(X) is updated for every neighbor X of V .
Figure 11.17 shows an implementation for Dijkstra’s algorithm. At the end, array D
will contain the shortest distance values.

There are two reasonable solutions to the key issue of finding the unvisited
vertex with minimum distance value during each pass through the main for loop.
The first method is simply to scan through the list of |V| vertices searching for the
minimum value, as follows:

int minVertex(Graph* G, int* D) { // Find min cost vertex
int i, v = -1;
// Initialize v to some unvisited vertex
for (i=0; i<G->n(); i++)

if (G->getMark(i) == UNVISITED) { v = i; break; }
for (i++; i<G->n(); i++) // Now find smallest D value

if ((G->getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;

return v;
}

Because this scan is done |V| times, and because each edge requires a constant-
time update to D, the total cost for this approach is Θ(|V|2 + |E|) = Θ(|V|2),
because |E| is in O(|V|2).

The second method is to store unprocessed vertices in a min-heap ordered by
distance values. The next-closest vertex can be found in the heap in Θ(log |V|)
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time. Every time we modify D(X), we could reorder X in the heap by deleting
and reinserting it. This is an example of a priority queue with priority update, as
described in Section 5.5. To implement true priority updating, we would need to
store with each vertex its array index within the heap. A simpler approach is to
add the new (smaller) distance value for a given vertex as a new record in the heap.
The smallest value for a given vertex currently in the heap will be found first, and
greater distance values found later will be ignored because the vertex will already
be marked as VISITED. The only disadvantage to repeatedly inserting distance
values is that it will raise the number of elements in the heap from Θ(|V|) to Θ(|E|)
in the worst case. The time complexity is Θ((|V|+ |E|) log |E|), because for each
edge we must reorder the heap. Because the objects stored on the heap need to
know both their vertex number and their distance, we create a simple class for the
purpose called DijkElem, as follows. DijkElem is quite similar to the Edge
class used by the adjacency list representation.

class DijkElem {
public:

int vertex, distance;
DijkElem() { vertex = -1; distance = -1; }
DijkElem(int v, int d) { vertex = v; distance = d; }

};

Figure 11.18 shows an implementation for Dijkstra’s algorithm using the prior-
ity queue.

Using MinVertex to scan the vertex list for the minimum value is more ef-
ficient when the graph is dense, that is, when |E| approaches |V|2. Using a prior-
ity queue is more efficient when the graph is sparse because its cost is Θ((|V| +
|E|) log |E|). However, when the graph is dense, this cost can become as great as
Θ(|V|2 log |E|) = Θ(|V |2 log |V |).

Figure 11.19 illustrates Dijkstra’s algorithm. The start vertex is A. All vertices
except A have an initial value of∞. After processing Vertex A, its neighbors have
their D estimates updated to be the direct distance from A. After processing C
(the closest vertex to A), Vertices B and E are updated to reflect the shortest path
through C. The remaining vertices are processed in order B, D, and E.

11.5 Minimum-Cost Spanning Trees

The minimum-cost spanning tree (MST) problem takes as input a connected,
undirected graph G, where each edge has a distance or weight measure attached.
The MST is the graph containing the vertices of G along with the subset of G’s
edges that (1) has minimum total cost as measured by summing the values for all of
the edges in the subset, and (2) keeps the vertices connected. Applications where a
solution to this problem is useful include soldering the shortest set of wires needed
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// Dijkstra’s shortest paths algorithm with priority queue
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w; // v is current vertex
DijkElem temp;
DijkElem E[G->e()]; // Heap array with lots of space
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap<DijkElem, DDComp> H(E, 1, G->e()); // Create heap
for (i=0; i<G->n(); i++) { // Now, get distances

do {
if (H.size() == 0) return; // Nothing to remove
temp = H.removefirst();
v = temp.vertex;

} while (G->getMark(v) == VISITED);
G->setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable vertices
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > (D[v] + G->weight(v, w))) { // Update D
D[w] = D[v] + G->weight(v, w);
temp.distance = D[w]; temp.vertex = w;
H.insert(temp); // Insert new distance in heap

}
}

}

Figure 11.18 An implementation for Dijkstra’s algorithm using a priority queue.

A B C D E
Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

Figure 11.19 A listing for the progress of Dijkstra’s algorithm operating on the
graph of Figure 11.16. The start vertex is A.

to connect a set of terminals on a circuit board, and connecting a set of cities by
telephone lines in such a way as to require the least amount of cable.

The MST contains no cycles. If a proposed MST did have a cycle, a cheaper
MST could be had by removing any one of the edges in the cycle. Thus, the MST
is a free tree with |V| − 1 edges. The name “minimum-cost spanning tree” comes
from the fact that the required set of edges forms a tree, it spans the vertices (i.e.,
it connects them together), and it has minimum cost. Figure 11.20 shows the MST
for an example graph.
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Figure 11.20 A graph and its MST. All edges appear in the original graph.
Those edges drawn with heavy lines indicate the subset making up the MST. Note
that edge (C, F) could be replaced with edge (D, F) to form a different MST with
equal cost.

11.5.1 Prim’s Algorithm

The first of our two algorithms for finding MSTs is commonly referred to as Prim’s
algorithm. Prim’s algorithm is very simple. Start with any Vertex N in the graph,
setting the MST to be N initially. Pick the least-cost edge connected to N. This
edge connects N to another vertex; call this M. Add Vertex M and Edge (N, M) to
the MST. Next, pick the least-cost edge coming from either N or M to any other
vertex in the graph. Add this edge and the new vertex it reaches to the MST. This
process continues, at each step expanding the MST by selecting the least-cost edge
from a vertex currently in the MST to a vertex not currently in the MST.

Prim’s algorithm is quite similar to Dijkstra’s algorithm for finding the single-
source shortest paths. The primary difference is that we are seeking not the next
closest vertex to the start vertex, but rather the next closest vertex to any vertex
currently in the MST. Thus we replace the lines

if (D[w] > (D[v] + G->weight(v, w)))
D[w] = D[v] + G->weight(v, w);

in Djikstra’s algorithm with the lines

if (D[w] > G->weight(v, w))
D[w] = G->weight(v, w);

in Prim’s algorithm.
Figure 11.21 shows an implementation for Prim’s algorithm that searches the

distance matrix for the next closest vertex. For each vertex I, when I is processed
by Prim’s algorithm, an edge going to I is added to the MST that we are building.
Array V[I] stores the previously visited vertex that is closest to Vertex I. This
information lets us know which edge goes into the MST when Vertex I is processed.
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void Prim(Graph* G, int* D, int s) { // Prim’s MST algorithm
int V[G->n()]; // Store closest vertex
int i, w;
for (i=0; i<G->n(); i++) { // Process the vertices

int v = minVertex(G, D);
G->setMark(v, VISITED);
if (v != s)

AddEdgetoMST(V[v], v); // Add edge to MST
if (D[v] == INFINITY) return; // Unreachable vertices
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > G->weight(v,w)) {
D[w] = G->weight(v,w); // Update distance
V[w] = v; // Where it came from

}
}

}

Figure 11.21 An implementation for Prim’s algorithm.

The implementation of Figure 11.21 also contains calls to AddEdgetoMST to
indicate which edges are actually added to the MST.

Alternatively, we can implement Prim’s algorithm using a priority queue to find
the next closest vertex, as shown in Figure 11.22. As with the priority queue version
of Dijkstra’s algorithm, the heap’s Elem type stores a DijkElem object.

Prim’s algorithm is an example of a greedy algorithm. At each step in the
for loop, we select the least-cost edge that connects some marked vertex to some
unmarked vertex. The algorithm does not otherwise check that the MST really
should include this least-cost edge. This leads to an important question: Does
Prim’s algorithm work correctly? Clearly it generates a spanning tree (because
each pass through the for loop adds one edge and one unmarked vertex to the
spanning tree until all vertices have been added), but does this tree have minimum
cost?

Theorem 11.1 Prim’s algorithm produces a minimum-cost spanning tree.

Proof: We will use a proof by contradiction. Let G = (V,E) be a graph for which
Prim’s algorithm does not generate an MST. Define an ordering on the vertices
according to the order in which they were added by Prim’s algorithm to the MST:
v0, v1, ..., vn−1. Let edge ei connect (vx, vi) for some x < i and i ≥ 1. Let ej be the
lowest numbered (first) edge added by Prim’s algorithm such that the set of edges
selected so far cannot be extended to form an MST for G. In other words, ej is the
first edge where Prim’s algorithm “went wrong.” Let T be the “true” MST. Call vp
(p < j) the vertex connected by edge ej , that is, ej = (vp, vj).

Because T is a tree, there exists some path in T connecting vp and vj . There
must be some edge e′ in this path connecting vertices vu and vw, with u < j and
w ≥ j. Because ej is not part of T, adding edge ej to T forms a cycle. Edge e′ must
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// Prim’s MST algorithm: priority queue version
void Prim(Graph* G, int* D, int s) {

int i, v, w; // "v" is current vertex
int V[G->n()]; // V[I] stores I’s closest neighbor
DijkElem temp;
DijkElem E[G->e()]; // Heap array with lots of space
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap<DijkElem, DDComp> H(E, 1, G->e()); // Create heap
for (i=0; i<G->n(); i++) { // Now build MST

do {
if(H.size() == 0) return; // Nothing to remove
temp = H.removefirst();
v = temp.vertex;

} while (G->getMark(v) == VISITED);
G->setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v); // Add edge to MST
if (D[v] == INFINITY) return; // Ureachable vertex
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > G->weight(v, w)) { // Update D
D[w] = G->weight(v, w);
V[w] = v; // Update who it came from
temp.distance = D[w]; temp.vertex = w;
H.insert(temp); // Insert new distance in heap

}
}

}

Figure 11.22 An implementation of Prim’s algorithm using a priority queue.

be of lower cost than edge ej , because Prim’s algorithm did not generate an MST.
This situation is illustrated in Figure 11.23. However, Prim’s algorithm would have
selected the least-cost edge available. It would have selected e′, not ej . Thus, it is a
contradiction that Prim’s algorithm would have selected the wrong edge, and thus,
Prim’s algorithm must be correct. 2

Example 11.3 For the graph of Figure 11.20, assume that we begin by
marking Vertex A. From A, the least-cost edge leads to Vertex C. Vertex C
and edge (A, C) are added to the MST. At this point, our candidate edges
connecting the MST (Vertices A and C) with the rest of the graph are (A, E),
(C, B), (C, D), and (C, F). From these choices, the least-cost edge from the
MST is (C, D). So we add Vertex D to the MST. For the next iteration, our
edge choices are (A, E), (C, B), (C, F), and (D, F). Because edges (C, F)
and (D, F) happen to have equal cost, it is an arbitrary decision as to which
gets selected. Say we pick (C, F). The next step marks Vertex E and adds
edge (F, E) to the MST. Following in this manner, Vertex B (through edge
(C, B)) is marked. At this point, the algorithm terminates.
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Figure 11.23 Prim’s MST algorithm proof. The left oval contains that portion of
the graph where Prim’s MST and the “true” MST T agree. The right oval contains
the rest of the graph. The two portions of the graph are connected by (at least)
edges ej (selected by Prim’s algorithm to be in the MST) and e′ (the “correct”
edge to be placed in the MST). Note that the path from vw to vj cannot include
any marked vertex vi, i ≤ j, because to do so would form a cycle.

11.5.2 Kruskal’s Algorithm

Our next MST algorithm is commonly referred to as Kruskal’s algorithm. Kruskal’s
algorithm is also a simple, greedy algorithm. First partition the set of vertices into
|V| equivalence classes (see Section 6.2), each consisting of one vertex. Then pro-
cess the edges in order of weight. An edge is added to the MST, and two equiva-
lence classes combined, if the edge connects two vertices in different equivalence
classes. This process is repeated until only one equivalence class remains.

Example 11.4 Figure 11.24 shows the first three steps of Kruskal’s Alg-
orithm for the graph of Figure 11.20. Edge (C, D) has the least cost, and
because C and D are currently in separate MSTs, they are combined. We
next select edge (E, F) to process, and combine these vertices into a single
MST. The third edge we process is (C, F), which causes the MST contain-
ing Vertices C and D to merge with MST containing Vertices E and F. The
next edge to process is (D, F). But because Vertices D and F are currently
in the same MST, this edge is rejected. The algorithm will continue on to
accept edges (B, C) and (A, C) into the MST.

The edges can be processed in order of weight by using a min-heap. This is
generally faster than sorting the edges first, because in practice we need only visit
a small fraction of the edges before completing the MST. This is an example of
finding only a few smallest elements in a list, as discussed in Section 7.6.
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Figure 11.24 Illustration of the first three steps of Kruskal’s MST algorithm as
applied to the graph of Figure 11.20.

The only tricky part to this algorithm is determining if two vertices belong to
the same equivalence class. Fortunately, the ideal algorithm is available for the
purpose — the UNION/FIND algorithm based on the parent pointer representation
for trees described in Section 6.2. Figure 11.25 shows an implementation for the
algorithm. Class KruskalElem is used to store the edges on the min-heap.

Kruskal’s algorithm is dominated by the time required to process the edges.
The differ and UNION functions are nearly constant in time if path compression
and weighted union is used. Thus, the total cost of the algorithm is Θ(|E| log |E|)
in the worst case, when nearly all edges must be processed before all the edges of
the spanning tree are found and the algorithm can stop. More often the edges of the
spanning tree are the shorter ones,and only about |V| edges must be processed. If
so, the cost is often close to Θ(|V| log |E|) in the average case.
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class KruskElem { // An element for the heap
public:

int from, to, distance; // The edge being stored
KruskElem() { from = -1; to = -1; distance = -1; }
KruskElem(int f, int t, int d)

{ from = f; to = t; distance = d; }
};

void Kruskel(Graph* G) { // Kruskal’s MST algorithm
ParPtrTree A(G->n()); // Equivalence class array
KruskElem E[G->e()]; // Array of edges for min-heap
int i;
int edgecnt = 0;
for (i=0; i<G->n(); i++) // Put the edges on the array

for (int w=G->first(i); w<G->n(); w = G->next(i,w)) {
E[edgecnt].distance = G->weight(i, w);
E[edgecnt].from = i;
E[edgecnt++].to = w;

}
// Heapify the edges
heap<KruskElem, Comp> H(E, edgecnt, edgecnt);
int numMST = G->n(); // Initially n equiv classes
for (i=0; numMST>1; i++) { // Combine equiv classes

KruskElem temp;
temp = H.removefirst(); // Get next cheapest edge
int v = temp.from; int u = temp.to;
if (A.differ(v, u)) { // If in different equiv classes

A.UNION(v, u); // Combine equiv classes
AddEdgetoMST(temp.from, temp.to); // Add edge to MST
numMST--; // One less MST

}
}

}
Figure 11.25 An implementation for Kruskal’s algorithm.

11.6 Further Reading

Many interesting properties of graphs can be investigated by playing with the pro-
grams in the Stanford Graphbase. This is a collection of benchmark databases and
graph processing programs. The Stanford Graphbase is documented in [Knu94].

11.7 Exercises

11.1 Prove by induction that a graph with n vertices has at most n(n−1)/2 edges.
11.2 Prove the following implications regarding free trees.

(a) IF an undirected graph is connected and has no simple cycles, THEN
the graph has |V| − 1 edges.

(b) IF an undirected graph has |V| − 1 edges and no cycles, THEN the
graph is connected.
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11.3 (a) Draw the adjacency matrix representation for the graph of Figure 11.26.
(b) Draw the adjacency list representation for the same graph.
(c) If a pointer requires four bytes, a vertex label requires two bytes, and

an edge weight requires two bytes, which representation requires more
space for this graph?

(d) If a pointer requires four bytes, a vertex label requires one byte, and
an edge weight requires two bytes, which representation requires more
space for this graph?

11.4 Show the DFS tree for the graph of Figure 11.26, starting at Vertex 1.
11.5 Write a pseudocode algorithm to create a DFS tree for an undirected, con-

nected graph starting at a specified vertex V .
11.6 Show the BFS tree for the graph of Figure 11.26, starting at Vertex 1.
11.7 Write a pseudocode algorithm to create a BFS tree for an undirected, con-

nected graph starting at a specified vertex V .
11.8 The BFS topological sort algorithm can report the existence of a cycle if one

is encountered. Modify this algorithm to print the vertices possibly appearing
in cycles (if there are any cycles).

11.9 Explain why, in the worst case, Dijkstra’s algorithm is (asymptotically) as
efficient as any algorithm for finding the shortest path from some vertex I to
another vertex J.

11.10 Show the shortest paths generated by running Dijkstra’s shortest-paths alg-
orithm on the graph of Figure 11.26, beginning at Vertex 4. Show the D
values as each vertex is processed, as in Figure 11.19.

11.11 Modify the algorithm for single-source shortest paths to actually store and
return the shortest paths rather than just compute the distances.

11.12 The root of a DAG is a vertex R such that every vertex of the DAG can be
reached by a directed path from R. Write an algorithm that takes a directed
graph as input and determines the root (if there is one) for the graph. The
running time of your algorithm should be Θ(|V|+ |E|).

11.13 Write an algorithm to find the longest path in a DAG, where the length of
the path is measured by the number of edges that it contains. What is the
asymptotic complexity of your algorithm?

11.14 Write an algorithm to determine whether a directed graph of |V| vertices
contains a cycle. Your algorithm should run in Θ(|V|+ |E|) time.

11.15 Write an algorithm to determine whether an undirected graph of |V| vertices
contains a cycle. Your algorithm should run in Θ(|V|) time.

11.16 The single-destination shortest-paths problem for a directed graph is to find
the shortest path from every vertex to a specified vertex V . Write an algorithm
to solve the single-destination shortest-paths problem.

11.17 List the order in which the edges of the graph in Figure 11.26 are visited
when running Prim’s MST algorithm starting at Vertex 3. Show the final
MST.
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Figure 11.26 Example graph for Chapter 11 exercises.

11.18 List the order in which the edges of the graph in Figure 11.26 are visited
when running Kruskal’s MST algorithm. Each time an edge is added to the
MST, show the result on the equivalence array, (e.g., show the array as in
Figure 6.7).

11.19 Write an algorithm to find a maximum cost spanning tree, that is, the span-
ning tree with highest possible cost.

11.20 When can Prim’s and Kruskal’s algorithms yield different MSTs?
11.21 Prove that, if the costs for the edges of Graph G are distinct, then only one

MST exists for G.
11.22 Does either Prim’s or Kruskal’s algorithm work if there are negative edge

weights?
11.23 Consider the collection of edges selected by Dijkstra’s algorithm as the short-

est paths to the graph’s vertices from the start vertex. Do these edges form
a spanning tree (not necessarily of minimum cost)? Do these edges form an
MST? Explain why or why not.

11.24 Prove that a tree is a bipartite graph.
11.25 Prove that any tree (i.e., a connected, undirected graph with no cycles) can

be two-colored. (A graph can be two colored if every vertex can be assigned
one of two colors such that no adjacent vertices have the same color.)

11.26 Write an algorithm that determines if an arbitrary undirected graph is a bipar-
tite graph. If the graph is bipartite, then your algorithm should also identify
the vertices as to which of the two partitions each belongs to.

11.8 Projects

11.1 Design a format for storing graphs in files. Then implement two functions:
one to read a graph from a file and the other to write a graph to a file. Test
your functions by implementing a complete MST program that reads an undi-
rected graph in from a file, constructs the MST, and then writes to a second
file the graph representing the MST.
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11.2 An undirected graph need not explicitly store two separate directed edges to
represent a single undirected edge. An alternative would be to store only a
single undirected edge (I, J) to connect Vertices I and J. However, what if the
user asks for edge (J, I)? We can solve this problem by consistently storing
the edge such that the lesser of I and J always comes first. Thus, if we have
an edge connecting Vertices 5 and 3, requests for edge (5, 3) and (3, 5) both
map to (3, 5) because 3 < 5.
Looking at the adjacency matrix, we notice that only the lower triangle of
the array is used. Thus we could cut the space required by the adjacency
matrix from |V|2 positions to |V|(|V|−1)/2 positions. Read Section 12.2 on
triangular matrices. The re-implement the adjacency matrix representation
of Figure 11.6 to implement undirected graphs using a triangular array.

11.3 While the underlying implementation (whether adjacency matrix or adja-
cency list) is hidden behind the graph ADT, these two implementations can
have an impact on the efficiency of the resulting program. For Dijkstra’s
shortest paths algorithm, two different implementations were given in Sec-
tion 11.4.1 that provide different ways for determining the next closest vertex
at each iteration of the algorithm. The relative costs of these two variants
depend on who sparse or dense the graph is. They might also depend on
whether the graph is implemented using an adjacency list or adjacency ma-
trix.
Design and implement a study to compare the effects on performance for
three variables: (i) the two graph representations (adjacency list and adja-
cency matrix); (ii) the two implementations for Djikstra’s shortest paths alg-
orithm (searching the table of vertex distances or using a priority queue to
track the distances), and (iii) sparse versus dense graphs. Be sure to test your
implementations on a variety of graphs that are sufficiently large to generate
meaningful times.

11.4 The example implementations for DFS and BFS show calls to functions
PreVisit and PostVisit. Re-implement the BFS and DFS functions
to make use of the visitor design pattern to handle the pre/post visit function-
ality.

11.5 Write a program to label the connected components for an undirected graph.
In other words, all vertices of the first component are given the first com-
ponent’s label, all vertices of the second component are given the second
component’s label, and so on. Your algorithm should work by defining any
two vertices connected by an edge to be members of the same equivalence
class. Once all of the edges have been processed, all vertices in a given equiv-
alence class will be connected. Use the UNION/FIND implementation from
Section 6.2 to implement equivalence classes.
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Lists and Arrays Revisited

Simple lists and arrays are the right tools for the many applications. Other situa-
tions require support for operations that cannot be implemented efficiently by the
standard list representations of Chapter 4. This chapter presents a range of topics,
whose unifying thread is that the data structures included are all list- or array-like.
These structures overcome some of the problems of simple linked list and con-
tiguous array representations. This chapter also seeks to reinforce the concept of
logical representation versus physical implementation, as some of the “list” imple-
mentations have quite different organizations internally.

Section 12.1 describes a series of representations for multilists, which are lists
that may contain sublists. Section 12.2 discusses representations for implementing
sparse matrices, large matrices where most of the elements have zero values. Sec-
tion 12.3 discusses memory management techniques, which are essentially a way
of allocating variable-length sections from a large array.

12.1 Multilists

Recall from Chapter 4 that a list is a finite, ordered sequence of items of the form
〈x0, x1, ..., xn−1〉 where n ≥ 0. We can represent the empty list by NULL or 〈〉.
In Chapter 4 we assumed that all list elements had the same data type. In this
section, we extend the definition of lists to allow elements to be arbitrary in nature.
In general, list elements are one of two types.

1. An atom, which is a data record of some type such as a number, symbol, or
string.

2. Another list, which is called a sublist.

A list containing sublists will be written as

〈x1, 〈y1, 〈a1, a2〉, y3〉, 〈z1, z2〉, x4〉.

413



414 Chap. 12 Lists and Arrays Revisited

x1

y1

a1 a2

y3 z1 z2

x4

Figure 12.1 Example of a multilist represented by a tree.

L2

L1

a b

c d e
L3

Figure 12.2 Example of a reentrant multilist. The shape of the structure is a
DAG (all edges point downward).

In this example, the list has four elements. The second element is the sublist
〈y1, 〈a1, a2〉, y3〉 and the third is the sublist 〈z1, z2〉. The sublist 〈y1, 〈a1, a2〉, y3〉
itself contains a sublist. If a list L has one or more sublists, we call L a multi-
list. Lists with no sublists are often referred to as linear lists or chains. Note that
this definition for multilist fits well with our definition of sets from Definition 2.1,
where a set’s members can be either primitive elements or sets.

We can restrict the sublists of a multilist in various ways, depending on whether
the multilist should have the form of a tree, a DAG, or a generic graph. A pure list
is a list structure whose graph corresponds to a tree, such as in Figure 12.1. In other
words, there is exactly one path from the root to any node, which is equivalent to
saying that no object may appear more than once in the list. In the pure list, each
pair of angle brackets corresponds to an internal node of the tree. The members of
the list correspond to the children for the node. Atoms on the list correspond to leaf
nodes.

A reentrant list is a list structure whose graph corresponds to a DAG. Nodes
might be accessible from the root by more than one path, which is equivalent to
saying that objects (including sublists) may appear multiple times in the list as long
as no cycles are formed. All edges point downward, from the node representing a
list or sublist to its elements. Figure 12.2 illustrates a reentrant list. To write out
this list in bracket notation, we can duplicate nodes as necessary. Thus, the bracket
notation for the list of Figure 12.2 could be written

〈〈〈a, b〉〉, 〈〈a, b〉, c〉, 〈c, d, e〉, 〈e〉〉.

For convenience, we will adopt a convention of allowing sublists and atoms to be
labeled, such as “L1:”. Whenever a label is repeated, the element corresponding to
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Figure 12.3 Example of a cyclic list. The shape of the structure is a directed
graph.

that label will be substituted when we write out the list. Thus, the bracket notation
for the list of Figure 12.2 could be written

〈〈L1 :〈a, b〉〉, 〈L1,L2 :c〉, 〈L2, d,L3 :e〉, 〈L3〉〉.

A cyclic list is a list structure whose graph corresponds to any directed graph,
possibly containing cycles. Figure 12.3 illustrates such a list. Labels are required to
write this in bracket notation. Here is the bracket notation for the list of Figure 12.3.

〈L1 :〈L2 :〈a,L1〉〉, 〈L2,L3 :b〉, 〈L3, c, d〉,L4 :〈L4〉〉.

Multilists can be implemented in a number of ways. Most of these should be
familiar from implementations suggested earlier in the book for list, tree, and graph
data structures.

One simple approach is to use a simple array to represent the list. This works
well for chains with fixed-length elements, equivalent to the simple array-based list
of Chapter 4. We can view nested sublists as variable-length elements. To use this
approach, we require some indication of the beginning and end of each sublist. In
essence, we are using a sequential tree implementation as discussed in Section 6.5.
This should be no surprise, because the pure list is equivalent to a general tree
structure. Unfortunately, as with any sequential representation, access to the nth
sublist must be done sequentially from the beginning of the list.

Because pure lists are equivalent to trees, we can also use linked allocation
methods to support direct access to the list of children. Simple linear lists are
represented by linked lists. Pure lists can be represented as linked lists with an
additional tag field to indicate whether the node is an atom or a sublist. If it is a
sublist, the data field points to the first element on the sublist. This is illustrated by
Figure 12.4.

Another approach is to represent all list elements with link nodes storing two
pointer fields, except for atoms. Atoms just contain data. This is the system used by
the programming language LISP. Figure 12.5 illustrates this representation. Either
the pointer contains a tag bit to identify what it points to, or the object being pointed
to stores a tag bit to identify itself. Tags distinguish atoms from list nodes. This
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Figure 12.4 Linked representation for the pure list of Figure 12.1. The first field
in each link node stores a tag bit. If the tag bit stores “+,” then the data field stores
an atom. If the tag bit stores “−,” then the data field stores a pointer to a sublist.

root

B C D

A

Figure 12.5 LISP-like linked representation for the cyclic multilist of Fig-
ure 12.3. Each link node stores two pointers. A pointer either points to an atom,
or to another link node. Link nodes are represented by two boxes, and atoms by
circles.

implementation can easily support reentrant and cyclic lists, because non-atoms
can point to any other node.

12.2 Matrix Representations

Sometimes we need to represent a large, two-dimensional matrix where many of
the elements have a value of zero. One example is the lower triangular matrix that
results from solving systems of simultaneous equations. A lower triangular matrix
stores zero values at all positions [r, c] such that r < c, as shown in Figure 12.6(a).
Thus, the upper-right triangle of the matrix is always zero. Another example is
representing undirected graphs in an adjacency matrix (see Project 11.2). Because
all edges between Vertices i and j go in both directions, there is no need to store
both. Instead we can just store one edge going from the higher-indexed vertex to



Sec. 12.2 Matrix Representations 417

a00 0 0 0
a10 a11 0 0
a20 a21 a22 0
a30 a31 a32 a33

(a)

a00 a01 a02 a03
0 a11 a12 a13
0 0 a22 a23
0 0 0 a33

(b)

Figure 12.6 Triangular matrices. (a) A lower triangular matrix. (b) An upper
triangular matrix.

the lower-indexed vertex. In this case, only the lower triangle of the matrix can
have non-zero values.

We can take advantage of this fact to save space. Instead of storing n(n+ 1)/2
pieces of information in an n × n array, it would save space to use a list of length
n(n+ 1)/2. This is only practical if some means can be found to locate within the
list the element that would correspond to position [r, c] in the original matrix.

We will derive an equation to convert position [r, c] to a position in a one-
dimensional list to store the lower triangular matrix. Note that row 0 of the matrix
has one non-zero value, row 1 has two non-zero values, and so on. Thus, row r
is preceded by r rows with a total of

∑r
k=1 k = (r2 + r)/2 non-zero elements.

Adding c to reach the cth position in the rth row yields the following equation to
convert position [r, c] in the original matrix to the correct position in the list.

matrix[r, c] = list[(r2 + r)/2 + c].

A similar equation can be used to convert coordinates in an upper triangular matrix,
that is, a matrix with zero values at positions [r, c] such that r > c, as shown in
Figure 12.6(b). For an n× n upper triangular matrix, the equation to convert from
matrix coordinates to list positions would be

matrix[r, c] = list[rn− (r2 + r)/2 + c].

A more difficult situation arises when the vast majority of values stored in an
n ×m matrix are zero, but there is no restriction on which positions are zero and
which are non-zero. This is known as a sparse matrix.

One approach to representing a sparse matrix is to concatenate (or otherwise
combine) the row and column coordinates into a single value and use this as a key
in a hash table. Thus, if we want to know the value of a particular position in the
matrix, we search the hash table for the appropriate key. If a value for this position
is not found, it is assumed to be zero. This is an ideal approach when all queries to
the matrix are in terms of access by specified position. However, if we wish to find
the first non-zero element in a given row, or the next non-zero element below the
current one in a given column, then the hash table requires us to check sequentially
through all possible positions in some row or column.
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Another approach is to implement the matrix as an orthogonal list. Consider
the following sparse matrix:

10 23 0 0 0 0 19
45 5 0 93 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

40 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 32 0 12 0 0 7

The corresponding orthogonal array is shown in Figure 12.7. Here we have a
list of row headers, each of which contains a pointer to a list of matrix records.
A second list of column headers also contains pointers to matrix records. Each
non-zero matrix element stores pointers to its non-zero neighbors in the row, both
following and preceding it. Each non-zero element also stores pointers to its non-
zero neighbors following and preceding it in the column. Thus, each non-zero
element stores its own value, its position within the matrix, and four pointers. Non-
zero elements are found by traversing a row or column list. Note that the first
non-zero element in a given row could be in any column; likewise, the neighboring
non-zero element in any row or column list could be at any (higher) row or column
in the array. Thus, each non-zero element must also store its row and column
position explicitly.

To find if a particular position in the matrix contains a non-zero element, we
traverse the appropriate row or column list. For example, when looking for the
element at Row 7 and Column 1, we can traverse the list either for Row 7 or for
Column 1. When traversing a row or column list, if we come to an element with
the correct position, then its value is non-zero. If we encounter an element with
a higher position, then the element we are looking for is not in the sparse matrix.
In this case, the element’s value is zero. For example, when traversing the list
for Row 7 in the matrix of Figure 12.7, we first reach the element at Row 7 and
Column 1. If this is what we are looking for, then the search can stop. If we are
looking for the element at Row 7 and Column 2, then the search proceeds along the
Row 7 list to next reach the element at Column 3. At this point we know that no
element at Row 7 and Column 2 is stored in the sparse matrix.

Insertion and deletion can be performed by working in a similar way to insert
or delete elements within the appropriate row and column lists.

Each non-zero element stored in the sparse matrix representation takes much
more space than an element stored in a simple n × n matrix. When is the sparse
matrix more space efficient than the standard representation? To calculate this, we
need to determine how much space the standard matrix requires, and how much
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Figure 12.7 The orthogonal list sparse matrix representation.

the sparse matrix requires. The size of the sparse matrix depends on the number
of non-zero elements (we will refer to this value as NNZ), while the size of the
standard matrix representation does not vary. We need to know the (relative) sizes
of a pointer and a data value. For simplicity, our calculation will ignore the space
taken up by the row and column header (which is not much affected by the number
of elements in the sparse array).

As an example, assume that a data value, a row or column index, and a pointer
each require four bytes. An n ×m matrix requires 4nm bytes. The sparse matrix
requires 28 bytes per non-zero element (four pointers, two array indices, and one
data value). If we set X to be the percentage of non-zero elements, we can solve
for the value of X below which the sparse matrix representation is more space
efficient. Using the equation

28X = 4mn

and solving forX , we find that the sparse matrix using this implementation is more
space efficient when X < 1/7, that is, when less than about 14% of the elements
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are non-zero. Different values for the relative sizes of data values, pointers, or
matrix indices can lead to a different break-even point for the two implementations.

The time required to process a sparse matrix should ideally depend on NNZ.
When searching for an element, the cost is the number of elements preceding the
desired element on its row or column list. The cost for operations such as adding
two matrices should be Θ(n + m) in the worst case when the one matrix stores n
non-zero elements and the other stores m non-zero elements.

Another representation for sparse matrices is sometimes called the Yale rep-
resentation. Matlab uses a similar representation, with a primary difference being
that the Matlab representation uses column-major order.1 The Matlab representa-
tion stores the sparse matrix using three lists. The first is simply all of the non-zero
element values, in column-major order. The second list stores the start position
within the first list for each column. The third list stores the row positions for each
of the corresponding non-zero values. In the Yale representation, the matrix of
Figure 12.7 would appear as:

Values: 10 45 40 23 5 32 93 12 19 7
Column starts: 0 3 5 5 7 7 7 7
Row positions: 0 1 4 0 1 7 1 7 0 7

If the matrix has c columns, then the total space required will be proportional to
c + 2NNZ. This is good in terms of space. It allows fairly quick access to any
column, and allows for easy processing of the non-zero values along a column.
However, it does not do a good job of providing access to the values along a row,
and is terrible when values need to be added or removed from the representation.
Fortunately, when doing computations such as adding or multiplying two sparse
matrices, the processing of the input matrices and construction of the output matrix
can be done reasonably efficiently.

12.3 Memory Management

Most data structures are designed to store and access objects of uniform size. A
typical example would be an integer stored in a list or a queue. Some applications
require the ability to store variable-length records, such as a string of arbitrary
length. One solution is to store in the list or queue fixed-length pointers to the
variable-length strings. This is fine for data structures stored in main memory.
But if the collection of strings is meant to be stored on disk, then we might need
to worry about where exactly these strings are stored. And even when stored in
main memory, something has to figure out where there are available bytes to hold
the string. We could easily store variable-size records in a queue or stack, where

1Scientific packages tend to prefer column-oriented representations for matrices since this the
dominant access need for the operations to be performed.
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// Memory Manager abstract class
class MemManager {
public:

virtual ˜MemManager() {} // Base destructor

// Store a record and return a handle to it
virtual MemHandle insert(void* info, int length) =0;

// Get back a copy of a stored record
virtual int get(void* info, MemHandle h) =0;

// Release the space associated with a record
virtual void release(MemHandle h) =0;

};

Figure 12.8 A simple ADT for a memory manager.

the restricted order of insertions and deletions makes this easy to deal with. But
in a language like C++ or Java, programmers can allocate and deallocate space in
complex ways through use of new. Where does this space come from? This section
discusses memory management techniques for the general problem of handling
space requests of variable size.

The basic model for memory management is that we have a (large) block of
contiguous memory locations, which we will call the memory pool. Periodically,
memory requests are issued for some amount of space in the pool. The memory
manager has the job of finding a contiguous block of locations of at least the re-
quested size from somewhere within the memory pool. Honoring such a request
is called a memory allocation. The memory manager will typically return some
piece of information that the requester can hold on to so that later it can recover
the record that was just stored by the memory manager. This piece of information
is called a handle. At some point, space that has been requested might no longer
be needed, and this space can be returned to the memory manager so that it can be
reused. This is called a memory deallocation. The memory manager should then
be able to reuse this space to satisfy later memory requests. We can define an ADT
for the memory manager as shown in Figure 12.8.

The user of the MemManager ADT provides a pointer (in parameter info) to
space that holds some record or message to be stored or retrieved. This is similar to
the C++ basic file read/write methods presented in Section 8.4. The fundamental
idea is that the client gives messages to the memory manager for safe keeping. The
memory manager returns a “receipt” for the message in the form of a MemHandle
object. Of course to be practical, a MemHandle must be much smaller than the
typical message to be stored. The client holds the MemHandle object until it
wishes to get the message back.

Method insert lets the client tell the memory manager the length and con-
tents of the message to be stored. This ADT assumes that the memory manager will
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Figure 12.9 Dynamic storage allocation model. Memory is made up of a series
of variable-size blocks, some allocated and some free. In this example, shaded
areas represent memory currently allocated and unshaded areas represent unused
memory available for future allocation.

remember the length of the message associated with a given handle (perhaps in the
handle itself), thus method get does not include a length parameter but instead
returns the length of the message actually stored. Method release allows the
client to tell the memory manager to release the space that stores a given message.

When all inserts and releases follow a simple pattern, such as last requested,
first released (stack order), or first requested, first released (queue order), memory
management is fairly easy. We are concerned here with the general case where
blocks of any size might be requested and released in any order. This is known
as dynamic storage allocation. One example of dynamic storage allocation is
managing free store for a compiler’s runtime environment, such as the system-level
new and delete operations in C++. Another example is managing main memory
in a multitasking operating system. Here, a program might require a certain amount
of space, and the memory manager must keep track of which programs are using
which parts of the main memory. Yet another example is the file manager for a
disk drive. When a disk file is created, expanded, or deleted, the file manager must
allocate or deallocate disk space.

A block of memory or disk space managed in this way is sometimes referred to
as a heap. The term “heap” is being used here in a different way than the heap data
structure discussed in Section 5.5. Here “heap” refers to the memory controlled by
a dynamic memory management scheme.

In the rest of this section, we first study techniques for dynamic memory man-
agement. We then tackle the issue of what to do when no single block of memory
in the memory pool is large enough to honor a given request.

12.3.1 Dynamic Storage Allocation

For the purpose of dynamic storage allocation, we view memory as a single array
which, after a series of memory requests and releases tends to become broken into
a series of variable-size blocks, where some of the blocks are free and some are
reserved or already allocated to store messages. The memory manager typically
uses a linked list to keep track of the free blocks, called the freelist, which is used
for servicing future memory requests. Figure 12.9 illustrates the situation that can
arise after a series of memory allocations and deallocations.
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Small block: External fragmentation

Unused space in allocated block: Internal fragmentation

Figure 12.10 An illustration of internal and external fragmentation. The small
white block labeled ”External fragmentation” is too small to satisfy typical mem-
ory requests. The small grey block labeled ”Internal fragmentation” was allocated
as part of the grey block to its left, but it does not actually store information.

When a memory request is received by the memory manager, some block on
the freelist must be found that is large enough to service the request. If no such
block is found, then the memory manager must resort to a failure policy such as
discussed in Section 12.3.2.

If there is a request for m words, and no block exists of exactly size m, then
a larger block must be used instead. One possibility in this case is that the entire
block is given away to the memory allocation request. This might be desirable
when the size of the block is only slightly larger than the request. This is because
saving a tiny block that is too small to be useful for a future memory request might
not be worthwhile. Alternatively, for a free block of size k, with k > m, up to
k − m space may be retained by the memory manager to form a new free block,
while the rest is used to service the request.

Memory managers can suffer from two types of fragmentation, which refers to
unused space that is too small to be useful. External fragmentation occurs when
a series of memory requests and releases results in small free blocks. Internal
fragmentation occurs when more than m words are allocated to a request for m
words, wasting free storage. This is equivalent to the internal fragmentation that
occurs when files are allocated in multiples of the cluster size. The difference
between internal and external fragmentation is illustrated by Figure 12.10.

Some memory management schemes sacrifice space to internal fragmentation
to make memory management easier (and perhaps reduce external fragmentation).
For example, external fragmentation does not happen in file management systems
that allocate file space in clusters. Another example of sacrificing space to inter-
nal fragmentation so as to simplify memory management is the buddy method
described later in this section.

The process of searching the memory pool for a block large enough to service
the request, possibly reserving the remaining space as a free block, is referred to as
a sequential fit method.
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Figure 12.11 A doubly linked list of free blocks as seen by the memory manager.
Shaded areas represent allocated memory. Unshaded areas are part of the freelist.

Sequential Fit Methods

Sequential-fit methods attempt to find a “good” block to service a storage request.
The three sequential-fit methods described here assume that the free blocks are
organized into a doubly linked list, as illustrated by Figure 12.11.

There are two basic approaches to implementing the freelist. The simpler ap-
proach is to store the freelist separately from the memory pool. In other words,
a simple linked-list implementation such as described in Chapter 4 can be used,
where each node of the linked list contains a pointer to a single free block in the
memory pool. This is fine if there is space available for the linked list itself, sepa-
rate from the memory pool.

The second approach to storing the freelist is more complicated but saves space.
Because the free space is free, it can be used by the memory manager to help it do
its job. That is, the memory manager can temporarily “borrow” space within the
free blocks to maintain its doubly linked list. To do so, each unallocated block must
be large enough to hold these pointers. In addition, it is usually worthwhile to let
the memory manager add a few bytes of space to each reserved block for its own
purposes. In other words, a request for m bytes of space might result in slightly
more than m bytes being allocated by the memory manager, with the extra bytes
used by the memory manager itself rather than the requester. We will assume that
all memory blocks are organized as shown in Figure 12.12, with space for tags and
linked list pointers. Here, free and reserved blocks are distinguished by a tag bit
at both the beginning and the end of the block, for reasons that will be explained.
In addition, both free and reserved blocks have a size indicator immediately after
the tag bit at the beginning of the block to indicate how large the block is. Free
blocks have a second size indicator immediately preceding the tag bit at the end of
the block. Finally, free blocks have left and right pointers to their neighbors in the
free block list.

The information fields associated with each block permit the memory manager
to allocate and deallocate blocks as needed. When a request comes in for m words
of storage, the memory manager searches the linked list of free blocks until it finds
a “suitable” block for allocation. How it determines which block is suitable will
be discussed below. If the block contains exactly m words (plus space for the tag
and size fields), then it is removed from the freelist. If the block (of size k) is large
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Figure 12.12 Blocks as seen by the memory manager. Each block includes
additional information such as freelist link pointers, start and end tags, and a size
field. (a) The layout for a free block. The beginning of the block contains the tag
bit field, the block size field, and two pointers for the freelist. The end of the block
contains a second tag field and a second block size field. (b) A reserved block of
k bytes. The memory manager adds to these k bytes an additional tag bit field and
block size field at the beginning of the block, and a second tag field at the end of
the block.

enough, then the remaining k −m words are reserved as a block on the freelist, in
the current location.

When a block F is freed, it must be merged into the freelist. If we do not
care about merging adjacent free blocks, then this is a simple insertion into the
doubly linked list of free blocks. However, we would like to merge adjacent blocks,
because this allows the memory manager to serve requests of the largest possible
size. Merging is easily done due to the tag and size fields stored at the ends of each
block, as illustrated by Figure 12.13. Here, the memory manager first checks the
unit of memory immediately preceding block F to see if the preceding block (call
it P) is also free. If it is, then the memory unit before P’s tag bit stores the size
of P, thus indicating the position for the beginning of the block in memory. P can
then simply have its size extended to include block F. If block P is not free, then
we just add block F to the freelist. Finally, we also check the bit following the end
of block F. If this bit indicates that the following block (call it S) is free, then S is
removed from the freelist and the size of F is extended appropriately.

We now consider how a “suitable” free block is selected to service a memory
request. To illustrate the process, assume that we have a memory pool with 200
units of storage. After some series of allocation requests and releases, we have
reached a point where there are four free blocks on the freelist of sizes 25, 35, 32,
and 45 (in that order). Assume that a request is made for 30 units of storage. For
our examples, we ignore the overhead imposed for the tag, link, and size fields
discussed above.
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Figure 12.13 Adding block F to the freelist. The word immediately preceding
the start of F in the memory pool stores the tag bit of the preceding block P. If P
is free, merge F into P. We find the end of F by using F’s size field. The word
following the end of F is the tag field for block S. If S is free, merge it into F.

The simplest method for selecting a block would be to move down the free
block list until a block of size at least 30 is found. Any remaining space in this
block is left on the freelist. If we begin at the beginning of the list and work down
to the first free block at least as large as 30, we select the block of size 35. 30 units
of storage will be allocated, leaving a free block with 5 units of space. Because this
approach selects the first block with enough space, it is called first fit. A simple
variation that will improve performance is, instead of always beginning at the head
of the freelist, remember the last position reached in the previous search and start
from there. When the end of the freelist is reached, search begins again at the
head of the freelist. This modification reduces the number of unnecessary searches
through small blocks that were passed over by previous requests.

There is a potential disadvantage to first fit: It might “waste” larger blocks
by breaking them up, and so they will not be available for large requests later.
A strategy that avoids using large blocks unnecessarily is called best fit. Best fit
looks at the entire list and picks the smallest block that is at least as large as the
request (i.e., the “best” or closest fit to the request). Continuing with the preceding
example, the best fit for a request of 30 units is the block of size 32, leaving a
remainder of size 2. Best fit has the disadvantage that it requires that the entire list
be searched. Another problem is that the remaining portion of the best-fit block is
likely to be small, and thus useless for future requests. In other words, best fit tends
to maximize problems of external fragmentation while it minimizes the chance of
not being able to service an occasional large request.

A strategy contrary to best fit might make sense because it tends to minimize the
effects of external fragmentation. This is called worst fit, which always allocates
the largest block on the list hoping that the remainder of the block will be useful
for servicing a future request. In our example, the worst fit is the block of size
45, leaving a remainder of size 15. If there are a few unusually large requests,
this approach will have less chance of servicing them. If requests generally tend
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to be of the same size, then this might be an effective strategy. Like best fit, worst
fit requires searching the entire freelist at each memory request to find the largest
block. Alternatively, the freelist can be ordered from largest to smallest free block,
possibly by using a priority queue implementation.

Which strategy is best? It depends on the expected types of memory requests.
If the requests are of widely ranging size, best fit might work well. If the requests
tend to be of similar size, with rare large and small requests, first or worst fit might
work well. Unfortunately, there are always request patterns that one of the three
sequential fit methods will service, but which the other two will not be able to
service. For example, if the series of requests 600, 650, 900, 500, 100 is made to
a freelist containing blocks 500, 700, 650, 900 (in that order), the requests can all
be serviced by first fit, but not by best fit. Alternatively, the series of requests 600,
500, 700, 900 can be serviced by best fit but not by first fit on this same freelist.

Buddy Methods

Sequential-fit methods rely on a linked list of free blocks, which must be searched
for a suitable block at each memory request. Thus, the time to find a suitable free
block would be Θ(n) in the worst case for a freelist containing n blocks. Merging
adjacent free blocks is somewhat complicated. Finally, we must either use addi-
tional space for the linked list, or use space within the memory pool to support the
memory manager operations. In the second option, both free and reserved blocks
require tag and size fields. Fields in free blocks do not cost any space (because they
are stored in memory that is not otherwise being used), but fields in reserved blocks
create additional overhead.

The buddy system solves most of these problems. Searching for a block of
the proper size is efficient, merging adjacent free blocks is simple, and no tag or
other information fields need be stored within reserved blocks. The buddy system
assumes that memory is of size 2N for some integer N . Both free and reserved
blocks will always be of size 2k for k ≤ N . At any given time, there might be both
free and reserved blocks of various sizes. The buddy system keeps a separate list
for free blocks of each size. There can be at most N such lists, because there can
only be N distinct block sizes.

When a request comes in for m words, we first determine the smallest value of
k such that 2k ≥ m. A block of size 2k is selected from the free list for that block
size if one exists. The buddy system does not worry about internal fragmentation:
The entire block of size 2k is allocated.

If no block of size 2k exists, the next larger block is located. This block is split
in half (repeatedly if necessary) until the desired block of size 2k is created. Any
other blocks generated as a by-product of this splitting process are placed on the
appropriate freelists.
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Figure 12.14 Example of the buddy system. (a) Blocks of size 8. (b) Blocks of
size 4.

The disadvantage of the buddy system is that it allows internal fragmentation.
For example, a request for 257 words will require a block of size 512. The primary
advantages of the buddy system are (1) there is less external fragmentation; (2)
search for a block of the right size is cheaper than, say, best fit because we need
only find the first available block on the block list for blocks of size 2k; and (3)
merging adjacent free blocks is easy.

The reason why this method is called the buddy system is because of the way
that merging takes place. The buddy for any block of size 2k is another block
of the same size, and with the same address (i.e., the byte position in memory,
read as a binary value) except that the kth bit is reversed. For example, the block
of size 8 with beginning address 0000 in Figure 12.14(a) has buddy with address
1000. Likewise, in Figure 12.14(b), the block of size 4 with address 0000 has
buddy 0100. If free blocks are sorted by address value, the buddy can be found by
searching the correct block-size list. Merging simply requires that the address for
the combined buddies be moved to the freelist for the next larger block size.

Other Memory Allocation Methods

In addition to sequential-fit and buddy methods, there are many ad hoc approaches
to memory management. If the application is sufficiently complex, it might be
desirable to break available memory into several memory zones, each with a differ-
ent memory management scheme. For example, some zones might have a simple
memory access pattern of first-in, first-out. This zone can therefore be managed ef-
ficiently by using a simple queue. Another zone might allocate only records of fixed
size, and so can be managed with a simple freelist as described in Section 4.1.2.
Other zones might need one of the general-purpose memory allocation methods
discussed in this section. The advantage of zones is that some portions of memory
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can be managed more efficiently. The disadvantage is that one zone might fill up
while other zones have excess free memory if the zone sizes are chosen poorly.

Another approach to memory management is to impose a standard size on all
memory requests. We have seen an example of this concept already in disk file
management, where all files are allocated in multiples of the cluster size. This
approach leads to internal fragmentation, but managing files composed of clusters
is easier than managing arbitrarily sized files. The cluster scheme also allows us
to relax the restriction that the memory request be serviced by a contiguous block
of memory. Most disk file managers and operating system main memory managers
work on a cluster or page system. Block management is usually done with a buffer
pool to allocate available blocks in main memory efficiently.

12.3.2 Failure Policies and Garbage Collection

At some point when processing a series of requests, a memory manager could en-
counter a request for memory that it cannot satisfy. In some situations, there might
be nothing that can be done: There simply might not be enough free memory to
service the request, and the application may require that the request be serviced im-
mediately. In this case, the memory manager has no option but to return an error,
which could in turn lead to a failure of the application program. However, in many
cases there are alternatives to simply returning an error. The possible options are
referred to collectively as failure policies.

In some cases, there might be sufficient free memory to satisfy the request,
but it is scattered among small blocks. This can happen when using a sequential-
fit memory allocation method, where external fragmentation has led to a series of
small blocks that collectively could service the request. In this case, it might be
possible to compact memory by moving the reserved blocks around so that the
free space is collected into a single block. A problem with this approach is that
the application must somehow be able to deal with the fact that its data have now
been moved to different locations. If the application program relies on the absolute
positions of the data in any way, this would be disastrous. One approach for dealing
with this problem involves the handles returned by the memory manager. A handle
works as a second level of indirection to a memory location. The memory allocation
routine does not return a pointer to the block of storage, but rather a pointer to a the
handle that in turn gives access to the storage. The handle never moves its position,
but the position of the block might be moved and the value of the handle updated.
Of course, this requires that the memory manager keep track of the handles and
how they associate with the stored messages. Figure 12.15 illustrates the concept.

Another failure policy that might work in some applications is to defer the
memory request until sufficient memory becomes available. For example, a multi-
tasking operating system could adopt the strategy of not allowing a process to run
until there is sufficient memory available. While such a delay might be annoying
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Memory BlockHandle

Figure 12.15 Using handles for dynamic memory management. The memory
manager returns the address of the handle in response to a memory request. The
handle stores the address of the actual memory block. In this way, the memory
block might be moved (with its address updated in the handle) without disrupting
the application program.

to the user, it is better than halting the entire system. The assumption here is that
other processes will eventually terminate, freeing memory.

Another option might be to allocate more memory to the memory manager. In
a zoned memory allocation system where the memory manager is part of a larger
system, this might be a viable option. In a C++ program that implements its own
memory manager, it might be possible to get more memory from the system-level
new operator, such as is done by the freelist of Section 4.1.2.

The last failure policy that we will consider is garbage collection. Consider
the following series of statements.

int* p = new int[5];
int* q = new int[10];
p = q;

While in Java this would be no problem (due to automatic garbage collection), in
languages such as C++, this would be considered bad form because the original
space allocated to p is lost as a result of the third assignment. This space cannot
be used again by the program. Such lost memory is referred to as garbage, also
known as a memory leak. When no program variable points to a block of space,
no future access to that space is possible. Of course, if another variable had first
been assigned to point to p’s space, then reassigning p would not create garbage.

Some programming languages take a different view towards garbage. In par-
ticular, the LISP programming language uses the multilist representation of Fig-
ure 12.5, and all storage is in the form either of internal nodes with two pointers
or atoms. Figure 12.16 shows a typical collection of LISP structures, headed by
variables named A, B, and C, along with a freelist.

In LISP, list objects are constantly being put together in various ways as tem-
porary variables, and then all reference to them is lost when the object is no longer
needed. Thus, garbage is normal in LISP, and in fact cannot be avoided during
routine program behavior. When LISP runs out of memory, it resorts to a garbage
collection process to recover the space tied up in garbage. Garbage collection con-
sists of examining the managed memory pool to determine which parts are still
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Figure 12.16 Example of LISP list variables, including the system freelist.

being used and which parts are garbage. In particular, a list is kept of all program
variables, and any memory locations not reachable from one of these variables are
considered to be garbage. When the garbage collector executes, all unused memory
locations are placed in free store for future access. This approach has the advantage
that it allows for easy collection of garbage. It has the disadvantage, from a user’s
point of view, that every so often the system must halt while it performs garbage
collection. For example, garbage collection is noticeable in the Emacs text edi-
tor, which is normally implemented in LISP. Occasionally the user must wait for a
moment while the memory management system performs garbage collection.

The Java programming language also makes use of garbage collection. As in
LISP, it is common practice in Java to allocate dynamic memory as needed, and to
later drop all references to that memory. The garbage collector is responsible for
reclaiming such unused space as necessary. This might require extra time when
running the program, but it makes life considerably easier for the programmer. In
contrast, many large applications written in C++ (even commonly used commercial
software) contain memory leaks that will in time cause the program to fail.

Several algorithms have been used for garbage collection. One is the reference
count algorithm. Here, every dynamically allocated memory block includes space
for a count field. Whenever a pointer is directed to a memory block, the reference
count is increased. Whenever a pointer is directed away from a memory block,
the reference count is decreased. If the count ever becomes zero, then the memory
block is considered garbage and is immediately placed in free store. This approach
has the advantage that it does not require an explicit garbage collection phase, be-
cause information is put in free store immediately when it becomes garbage.
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g h

Figure 12.17 Garbage cycle example. All memory elements in the cycle have
non-zero reference counts because each element has one pointer to it, even though
the entire cycle is garbage (i.e., no static variable in the program points to it).

Reference counts are used by the UNIX file system. Files can have multiple
names, called links. The file system keeps a count of the number of links to each
file. Whenever a file is “deleted,” in actuality its link field is simply reduced by
one. If there is another link to the file, then no space is recovered by the file system.
When the number of links goes to zero, the file’s space becomes available for reuse.

Reference counts have several major disadvantages. First, a reference count
must be maintained for each memory object. This works well when the objects are
large, such as a file. However, it will not work well in a system such as LISP where
the memory objects typically consist of two pointers or a value (an atom). Another
major problem occurs when garbage contains cycles. Consider Figure 12.17. Here
each memory object is pointed to once, but the collection of objects is still garbage
because no pointer points to the collection. Thus, reference counts only work when
the memory objects are linked together without cycles, such as the UNIX file sys-
tem where files can only be organized as a DAG.

Another approach to garbage collection is the mark/sweep strategy. Here, each
memory object needs only a single mark bit rather than a reference counter field.
When free store is exhausted, a separate garbage collection phase takes place as
follows.

1. Clear all mark bits.

2. Perform depth-first search (DFS) following pointers beginning with each
variable on the system’s list of static variables. Each memory element en-
countered during the DFS has its mark bit turned on.

3. A “sweep” is made through the memory pool, visiting all elements. Un-
marked elements are considered garbage and placed in free store.

The advantages of the mark/sweep approach are that it needs less space than is
necessary for reference counts, and it works for cycles. However, there is a major
disadvantage. This is a “hidden” space requirement needed to do the processing.
DFS is a recursive algorithm: Either it must be implemented recursively, in which
case the compiler’s runtime system maintains a stack, or else the memory manager
can maintain its own stack. What happens if all memory is contained in a single
linked list? Then the depth of the recursion (or the size of the stack) is the number
of memory cells! Unfortunately, the space for the DFS stack must be available at
the worst conceivable time, that is, when free memory has been exhausted.
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Figure 12.18 Example of the Deutsch-Schorr-Waite garbage collection alg-
orithm. (a) The initial multilist structure. (b) The multilist structure of (a) at
the instant when link node 5 is being processed by the garbage collection alg-
orithm. A chain of pointers stretching from variable prev to the head node of the
structure has been (temporarily) created by the garbage collection algorithm.

Fortunately, a clever technique allows DFS to be performed without requiring
additional space for a stack. Instead, the structure being traversed is used to hold
the stack. At each step deeper into the traversal, instead of storing a pointer on the
stack, we “borrow” the pointer being followed. This pointer is set to point back
to the node we just came from in the previous step, as illustrated by Figure 12.18.
Each borrowed pointer stores an additional bit to tell us whether we came down
the left branch or the right branch of the link node being pointed to. At any given
instant we have passed down only one path from the root, and we can follow the
trail of pointers back up. As we return (equivalent to popping the recursion stack),
we set the pointer back to its original position so as to return the structure to its
original condition. This is known as the Deutsch-Schorr-Waite garbage collection
algorithm.

12.4 Further Reading

For information on LISP, see The Little LISPer by Friedman and Felleisen [FF89].
Another good LISP reference is Common LISP: The Language by Guy L. Steele
[Ste90]. For information on Emacs, which is both an excellent text editor and
a programming environment, see the GNU Emacs Manual by Richard Stallman
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Figure 12.19 Some example multilists.

[Sta11b]. You can get more information about Java’s garbage collection system
from The Java Programming Language by Ken Arnold and James Gosling [AG06].

For more details on sparse matrix representations, the Yale representation is de-
scribed by Eisenstat, Schultz and Sherman [ESS81]. The MATLAB sparse matrix
representation is described by Gilbert, Moler, and Schreiber [GMS91].

An introductory text on operating systems covers many topics relating to mem-
ory management issues, including layout of files on disk and caching of information
in main memory. All of the topics covered here on memory management, buffer
pools, and paging are relevant to operating system implementation. For example,
see Operating Systems by William Stallings[Sta11a].

12.5 Exercises

12.1 For each of the following bracket notation descriptions, draw the equivalent
multilist in graphical form such as shown in Figure 12.2.

(a) 〈a, b, 〈c, d, e〉, 〈f, 〈g〉, h〉〉
(b) 〈a, b, 〈c, d, L1:e〉, L1〉
(c) 〈L1:a, L1, 〈L2:b〉, L2, 〈L1〉〉

12.2 (a) Show the bracket notation for the list of Figure 12.19(a).
(b) Show the bracket notation for the list of Figure 12.19(b).
(c) Show the bracket notation for the list of Figure 12.19(c).

12.3 Given the linked representation of a pure list such as
〈x1, 〈y1, y2, 〈z1, z2〉, y4〉, 〈w1, w2〉, x4〉,

write an in-place reversal algorithm to reverse the sublists at all levels in-
cluding the topmost level. For this example, the result would be a linked
representation corresponding to

〈x4, 〈w2, w1〉, 〈y4, 〈z2, z1〉, y2, y1〉, x1〉.
12.4 What fraction of the values in a matrix must be zero for the sparse matrix

representation of Section 12.2 to be more space efficient than the standard
two-dimensional matrix representation when data values require eight bytes,
array indices require two bytes, and pointers require four bytes?
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12.5 Write a function to add an element at a given position to the sparse matrix
representation of Section 12.2.

12.6 Write a function to delete an element from a given position in the sparse
matrix representation of Section 12.2.

12.7 Write a function to transpose a sparse matrix as represented in Section 12.2.
12.8 Write a function to add two sparse matrices as represented in Section 12.2.
12.9 Write memory manager allocation and deallocation routines for the situation

where all requests and releases follow a last-requested, first-released (stack)
order.

12.10 Write memory manager allocation and deallocation routines for the situation
where all requests and releases follow a last-requested, last-released (queue)
order.

12.11 Show the result of allocating the following blocks from a memory pool of
size 1000 using first fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.12 Show the result of allocating the following blocks from a memory pool of
size 1000 using best fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.13 Show the result of allocating the following blocks from a memory pool of
size 1000 using worst fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.14 Assume that the memory pool contains three blocks of free storage. Their
sizes are 1300, 2000, and 1000. Give examples of storage requests for which

(a) first-fit allocation will work, but not best fit or worst fit.
(b) best-fit allocation will work, but not first fit or worst fit.
(c) worst-fit allocation will work, but not first fit or best fit.

12.6 Projects

12.1 Implement the orthogonal list sparse matrix representation of Section 12.2.
Your implementation should support the following operations on the matrix:
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• insert an element at a given position,
• delete an element from a given position,
• return the value of the element at a given position,
• take the transpose of a matrix,
• add two matrices, and
• multiply two matrices.

12.2 Implement the Yale model for sparse matrices described at the end of Sec-
tion 12.2. Your implementation should support the following operations on
the matrix:

• insert an element at a given position,
• delete an element from a given position,
• return the value of the element at a given position,
• take the transpose of a matrix,
• add two matrices, and
• multiply two matrices.

12.3 Implement the MemManager ADT shown at the beginning of Section 12.3.
Use a separate linked list to implement the freelist. Your implementation
should work for any of the three sequential-fit methods: first fit, best fit, and
worst fit. Test your system empirically to determine under what conditions
each method performs well.

12.4 Implement the MemManager ADT shown at the beginning of Section 12.3.
Do not use separate memory for the free list, but instead embed the free list
into the memory pool as shown in Figure 12.12. Your implementation should
work for any of the three sequential-fit methods: first fit, best fit, and worst
fit. Test your system empirically to determine under what conditions each
method performs well.

12.5 Implement the MemManager ADT shown at the beginning of Section 12.3
using the buddy method of Section 12.3.1. Your system should support
requests for blocks of a specified size and release of previously requested
blocks.

12.6 Implement the Deutsch-Schorr-Waite garbage collection algorithm that is il-
lustrated by Figure 12.18.
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Advanced Tree Structures

This chapter introduces several tree structures designed for use in specialized ap-
plications. The trie of Section 13.1 is commonly used to store and retrieve strings.
It also serves to illustrate the concept of a key space decomposition. The AVL
tree and splay tree of Section 13.2 are variants on the BST. They are examples of
self-balancing search trees and have guaranteed good performance regardless of the
insertion order for records. An introduction to several spatial data structures used
to organize point data by xy-coordinates is presented in Section 13.3.

Descriptions of the fundamental operations are given for each data structure.
One purpose for this chapter is to provide opportunities for class programming
projects, so detailed implementations are left to the reader.

13.1 Tries

Recall that the shape of a BST is determined by the order in which its data records
are inserted. One permutation of the records might yield a balanced tree while
another might yield an unbalanced tree, with the extreme case becoming the shape
of a linked list. The reason is that the value of the key stored in the root node splits
the key range into two parts: those key values less than the root’s key value, and
those key values greater than the root’s key value. Depending on the relationship
between the root node’s key value and the distribution of the key values for the
other records in the the tree, the resulting BST might be balanced or unbalanced.
Thus, the BST is an example of a data structure whose organization is based on an
object space decomposition, so called because the decomposition of the key range
is driven by the objects (i.e., the key values of the data records) stored in the tree.

The alternative to object space decomposition is to predefine the splitting posi-
tion within the key range for each node in the tree. In other words, the root could be
predefined to split the key range into two equal halves, regardless of the particular
values or order of insertion for the data records. Those records with keys in the
lower half of the key range will be stored in the left subtree, while those records

437
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with keys in the upper half of the key range will be stored in the right subtree.
While such a decomposition rule will not necessarily result in a balanced tree (the
tree will be unbalanced if the records are not well distributed within the key range),
at least the shape of the tree will not depend on the order of key insertion. Further-
more, the depth of the tree will be limited by the resolution of the key range; that
is, the depth of the tree can never be greater than the number of bits required to
store a key value. For example, if the keys are integers in the range 0 to 1023, then
the resolution for the key is ten bits. Thus, two keys can be identical only until the
tenth bit. In the worst case, two keys will follow the same path in the tree only until
the tenth branch. As a result, the tree will never be more than ten levels deep. In
contrast, a BST containing n records could be as much as n levels deep.

Splitting based on predetermined subdivisions of the key range is called key
space decomposition. In computer graphics, the technique is known as image
space decomposition, and this term is sometimes used to describe the process for
data structures as well. A data structure based on key space decomposition is called
a trie. Folklore has it that “trie” comes from “retrieval.” Unfortunately, that would
imply that the word is pronounced “tree,” which would lead to confusion with reg-
ular use of the word “tree.” “Trie” is actually pronounced as “try.”

Like the B+-tree, a trie stores data records only in leaf nodes. Internal nodes
serve as placeholders to direct the search process. but since the split points are pre-
determined, internal nodes need not store “traffic-directing” key values. Figure 13.1
illustrates the trie concept. Upper and lower bounds must be imposed on the key
values so that we can compute the middle of the key range. Because the largest
value inserted in this example is 120, a range from 0 to 127 is assumed, as 128 is
the smallest power of two greater than 120. The binary value of the key determines
whether to select the left or right branch at any given point during the search. The
most significant bit determines the branch direction at the root. Figure 13.1 shows
a binary trie, so called because in this example the trie structure is based on the
value of the key interpreted as a binary number, which results in a binary tree.

The Huffman coding tree of Section 5.6 is another example of a binary trie. All
data values in the Huffman tree are at the leaves, and each branch splits the range
of possible letter codes in half. The Huffman codes are actually reconstructed from
the letter positions within the trie.

These are examples of binary tries, but tries can be built with any branching
factor. Normally the branching factor is determined by the alphabet used. For
binary numbers, the alphabet is {0, 1} and a binary trie results. Other alphabets
lead to other branching factors.

One application for tries is to store a dictionary of words. Such a trie will be
referred to as an alphabet trie. For simplicity, our examples will ignore case in
letters. We add a special character ($) to the 26 standard English letters. The $
character is used to represent the end of a string. Thus, the branching factor for
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Figure 13.1 The binary trie for the collection of values 2, 7, 24, 31, 37, 40, 42,
120. All data values are stored in the leaf nodes. Edges are labeled with the value
of the bit used to determine the branching direction of each node. The binary
form of the key value determines the path to the record, assuming that each key is
represented as a 7-bit value representing a number in the range 0 to 127.

each node is (up to) 27. Once constructed, the alphabet trie is used to determine
if a given word is in the dictionary. Consider searching for a word in the alphabet
trie of Figure 13.2. The first letter of the search word determines which branch
to take from the root, the second letter determines which branch to take at the
next level, and so on. Only the letters that lead to a word are shown as branches.
In Figure 13.2(b) the leaf nodes of the trie store a copy of the actual words, while
in Figure 13.2(a) the word is built up from the letters associated with each branch.

One way to implement a node of the alphabet trie is as an array of 27 pointers
indexed by letter. Because most nodes have branches to only a small fraction of the
possible letters in the alphabet, an alternate implementation is to use a linked list of
pointers to the child nodes, as in Figure 6.9.

The depth of a leaf node in the alphabet trie of Figure 13.2(b) has little to do
with the number of nodes in the trie, or even with the length of the corresponding
string. Rather, a node’s depth depends on the number of characters required to
distinguish this node’s word from any other. For example, if the words “anteater”
and “antelope” are both stored in the trie, it is not until the fifth letter that the two
words can be distinguished. Thus, these words must be stored at least as deep as
level five. In general, the limiting factor on the depth of nodes in the alphabet trie
is the length of the words stored.

Poor balance and clumping can result when certain prefixes are heavily used.
For example, an alphabet trie storing the common words in the English language
would have many words in the “th” branch of the tree, but none in the “zq” branch.

Any multiway branching trie can be replaced with a binary trie by replacing the
original trie’s alphabet with an equivalent binary code. Alternatively, we can use
the techniques of Section 6.3.4 for converting a general tree to a binary tree without
modifying the alphabet.
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Figure 13.2 Two variations on the alphabet trie representation for a set of ten
words. (a) Each node contains a set of links corresponding to single letters, and
each letter in the set of words has a corresponding link. “$” is used to indicate
the end of a word. Internal nodes direct the search and also spell out the word
one letter per link. The word need not be stored explicitly. “$” is needed to
recognize the existence of words that are prefixes to other words, such as ‘ant’ in
this example. (b) Here the trie extends only far enough to discriminate between the
words. Leaf nodes of the trie each store a complete word; internal nodes merely
direct the search.
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Figure 13.3 The PAT trie for the collection of values 2, 7, 24, 32, 37, 40, 42,
120. Contrast this with the binary trie of Figure 13.1. In the PAT trie, all data
values are stored in the leaf nodes, while internal nodes store the bit position used
to determine the branching decision, assuming that each key is represented as a 7-
bit value representing a number in the range 0 to 127. Some of the branches in this
PAT trie have been labeled to indicate the binary representation for all values in
that subtree. For example, all values in the left subtree of the node labeled 0 must
have value 0xxxxxx (where x means that bit can be either a 0 or a 1). All nodes in
the right subtree of the node labeled 3 must have value 0101xxx. However, we can
skip branching on bit 2 for this subtree because all values currently stored have a
value of 0 for that bit.

The trie implementations illustrated by Figures 13.1 and 13.2 are potentially
quite inefficient as certain key sets might lead to a large number of nodes with only
a single child. A variant on trie implementation is known as PATRICIA, which
stands for “Practical Algorithm To Retrieve Information Coded In Alphanumeric.”
In the case of a binary alphabet, a PATRICIA trie (referred to hereafter as a PAT
trie) is a full binary tree that stores data records in the leaf nodes. Internal nodes
store only the position within the key’s bit pattern that is used to decide on the next
branching point. In this way, internal nodes with single children (equivalently, bit
positions within the key that do not distinguish any of the keys within the current
subtree) are eliminated. A PAT trie corresponding to the values of Figure 13.1 is
shown in Figure 13.3.

Example 13.1 When searching for the value 7 (0000111 in binary) in
the PAT trie of Figure 13.3, the root node indicates that bit position 0 (the
leftmost bit) is checked first. Because the 0th bit for value 7 is 0, take the
left branch. At level 1, branch depending on the value of bit 1, which again
is 0. At level 2, branch depending on the value of bit 2, which again is 0. At
level 3, the index stored in the node is 4. This means that bit 4 of the key is
checked next. (The value of bit 3 is irrelevant, because all values stored in
that subtree have the same value at bit position 3.) Thus, the single branch
that extends from the equivalent node in Figure 13.1 is just skipped. For
key value 7, bit 4 has value 1, so the rightmost branch is taken. Because
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this leads to a leaf node, the search key is compared against the key stored
in that node. If they match, then the desired record has been found.

Note that during the search process, only a single bit of the search key is com-
pared at each internal node. This is significant, because the search key could be
quite large. Search in the PAT trie requires only a single full-key comparison,
which takes place once a leaf node has been reached.

Example 13.2 Consider the situation where we need to store a library of
DNA sequences. A DNA sequence is a series of letters, usually many thou-
sands of characters long, with the string coming from an alphabet of only
four letters that stand for the four amino acids making up a DNA strand.
Similar DNA sequences might have long sections of their string that are
identical. The PAT trie would avoid making multiple full key comparisons
when searching for a specific sequence.

13.2 Balanced Trees

We have noted several times that the BST has a high risk of becoming unbalanced,
resulting in excessively expensive search and update operations. One solution to
this problem is to adopt another search tree structure such as the 2-3 tree or the
binary trie. An alternative is to modify the BST access functions in some way to
guarantee that the tree performs well. This is an appealing concept, and it works
well for heaps, whose access functions maintain the heap in the shape of a complete
binary tree. Unfortunately, requiring that the BST always be in the shape of a
complete binary tree requires excessive modification to the tree during update, as
discussed in Section 10.3.

If we are willing to weaken the balance requirements, we can come up with
alternative update routines that perform well both in terms of cost for the update
and in balance for the resulting tree structure. The AVL tree works in this way,
using insertion and deletion routines altered from those of the BST to ensure that,
for every node, the depths of the left and right subtrees differ by at most one. The
AVL tree is described in Section 13.2.1.

A different approach to improving the performance of the BST is to not require
that the tree always be balanced, but rather to expend some effort toward making
the BST more balanced every time it is accessed. This is a little like the idea of path
compression used by the UNION/FIND algorithm presented in Section 6.2. One
example of such a compromise is called the splay tree. The splay tree is described
in Section 13.2.2.
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Figure 13.4 Example of an insert operation that violates the AVL tree balance
property. Prior to the insert operation, all nodes of the tree are balanced (i.e., the
depths of the left and right subtrees for every node differ by at most one). After
inserting the node with value 5, the nodes with values 7 and 24 are no longer
balanced.

13.2.1 The AVL Tree

The AVL tree (named for its inventors Adelson-Velskii and Landis) should be
viewed as a BST with the following additional property: For every node, the heights
of its left and right subtrees differ by at most 1. As long as the tree maintains this
property, if the tree contains n nodes, then it has a depth of at most O(log n). As
a result, search for any node will cost O(log n), and if the updates can be done in
time proportional to the depth of the node inserted or deleted, then updates will also
cost O(log n), even in the worst case.

The key to making the AVL tree work is to alter the insert and delete routines
so as to maintain the balance property. Of course, to be practical, we must be able
to implement the revised update routines in Θ(log n) time.

Consider what happens when we insert a node with key value 5, as shown in
Figure 13.4. The tree on the left meets the AVL tree balance requirements. After
the insertion, two nodes no longer meet the requirements. Because the original tree
met the balance requirement, nodes in the new tree can only be unbalanced by a
difference of at most 2 in the subtrees. For the bottommost unbalanced node, call
it S, there are 4 cases:

1. The extra node is in the left child of the left child of S.
2. The extra node is in the right child of the left child of S.
3. The extra node is in the left child of the right child of S.
4. The extra node is in the right child of the right child of S.

Cases 1 and 4 are symmetrical, as are cases 2 and 3. Note also that the unbalanced
nodes must be on the path from the root to the newly inserted node.

Our problem now is how to balance the tree in O(log n) time. It turns out that
we can do this using a series of local operations known as rotations. Cases 1 and
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Figure 13.5 A single rotation in an AVL tree. This operation occurs when the
excess node (in subtree A) is in the left child of the left child of the unbalanced
node labeled S. By rearranging the nodes as shown, we preserve the BST property,
as well as re-balance the tree to preserve the AVL tree balance property. The case
where the excess node is in the right child of the right child of the unbalanced
node is handled in the same way.
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Figure 13.6 A double rotation in an AVL tree. This operation occurs when the
excess node (in subtree B) is in the right child of the left child of the unbalanced
node labeled S. By rearranging the nodes as shown, we preserve the BST property,
as well as re-balance the tree to preserve the AVL tree balance property. The case
where the excess node is in the left child of the right child of S is handled in the
same way.

4 can be fixed using a single rotation, as shown in Figure 13.5. Cases 2 and 3 can
be fixed using a double rotation, as shown in Figure 13.6.

The AVL tree insert algorithm begins with a normal BST insert. Then as the
recursion unwinds up the tree, we perform the appropriate rotation on any node
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that is found to be unbalanced. Deletion is similar; however, consideration for
unbalanced nodes must begin at the level of the deletemin operation.

Example 13.3 In Figure 13.4 (b), the bottom-most unbalanced node has
value 7. The excess node (with value 5) is in the right subtree of the left
child of 7, so we have an example of Case 2. This requires a double rotation
to fix. After the rotation, 5 becomes the left child of 24, 2 becomes the left
child of 5, and 7 becomes the right child of 5.

13.2.2 The Splay Tree

Like the AVL tree, the splay tree is not actually a distinct data structure, but rather
reimplements the BST insert, delete, and search methods to improve the perfor-
mance of a BST. The goal of these revised methods is to provide guarantees on the
time required by a series of operations, thereby avoiding the worst-case linear time
behavior of standard BST operations. No single operation in the splay tree is guar-
anteed to be efficient. Instead, the splay tree access rules guarantee that a series
of m operations will take O(m log n) time for a tree of n nodes whenever m ≥ n.
Thus, a single insert or search operation could take O(n) time. However, m such
operations are guaranteed to require a total of O(m log n) time, for an average cost
of O(log n) per access operation. This is a desirable performance guarantee for any
search-tree structure.

Unlike the AVL tree, the splay tree is not guaranteed to be height balanced.
What is guaranteed is that the total cost of the entire series of accesses will be
cheap. Ultimately, it is the cost of the series of operations that matters, not whether
the tree is balanced. Maintaining balance is really done only for the sake of reaching
this time efficiency goal.

The splay tree access functions operate in a manner reminiscent of the move-
to-front rule for self-organizing lists from Section 9.2, and of the path compres-
sion technique for managing parent-pointer trees from Section 6.2. These access
functions tend to make the tree more balanced, but an individual access will not
necessarily result in a more balanced tree.

Whenever a node S is accessed (e.g., when S is inserted, deleted, or is the goal
of a search), the splay tree performs a process called splaying. Splaying moves S
to the root of the BST. When S is being deleted, splaying moves the parent of S to
the root. As in the AVL tree, a splay of node S consists of a series of rotations.
A rotation moves S higher in the tree by adjusting its position with respect to its
parent and grandparent. A side effect of the rotations is a tendency to balance the
tree. There are three types of rotation.

A single rotation is performed only if S is a child of the root node. The single
rotation is illustrated by Figure 13.7. It basically switches S with its parent in a
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Figure 13.7 Splay tree single rotation. This rotation takes place only when
the node being splayed is a child of the root. Here, node S is promoted to the
root, rotating with node P. Because the value of S is less than the value of P,
P must become S’s right child. The positions of subtrees A, B, and C are altered
as appropriate to maintain the BST property, but the contents of these subtrees
remains unchanged. (a) The original tree with P as the parent. (b) The tree after
a rotation takes place. Performing a single rotation a second time will return the
tree to its original shape. Equivalently, if (b) is the initial configuration of the tree
(i.e., S is at the root and P is its right child), then (a) shows the result of a single
rotation to splay P to the root.

way that retains the BST property. While Figure 13.7 is slightly different from
Figure 13.5, in fact the splay tree single rotation is identical to the AVL tree single
rotation.

Unlike the AVL tree, the splay tree requires two types of double rotation. Dou-
ble rotations involve S, its parent (call it P), and S’s grandparent (call it G). The
effect of a double rotation is to move S up two levels in the tree.

The first double rotation is called a zigzag rotation. It takes place when either
of the following two conditions are met:

1. S is the left child of P, and P is the right child of G.
2. S is the right child of P, and P is the left child of G.

In other words, a zigzag rotation is used when G, P, and S form a zigzag. The
zigzag rotation is illustrated by Figure 13.8.

The other double rotation is known as a zigzig rotation. A zigzig rotation takes
place when either of the following two conditions are met:

1. S is the left child of P, which is in turn the left child of G.
2. S is the right child of P, which is in turn the right child of G.

Thus, a zigzig rotation takes place in those situations where a zigzag rotation is not
appropriate. The zigzig rotation is illustrated by Figure 13.9. While Figure 13.9
appears somewhat different from Figure 13.6, in fact the zigzig rotation is identical
to the AVL tree double rotation.
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Figure 13.8 Splay tree zigzag rotation. (a) The original tree with S, P, and G
in zigzag formation. (b) The tree after the rotation takes place. The positions of
subtrees A, B, C, and D are altered as appropriate to maintain the BST property.
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Figure 13.9 Splay tree zigzig rotation. (a) The original tree with S, P, and G
in zigzig formation. (b) The tree after the rotation takes place. The positions of
subtrees A, B, C, and D are altered as appropriate to maintain the BST property.

Note that zigzag rotations tend to make the tree more balanced, because they
bring subtrees B and C up one level while moving subtree D down one level. The
result is often a reduction of the tree’s height by one. Zigzig promotions and single
rotations do not typically reduce the height of the tree; they merely bring the newly
accessed record toward the root.

Splaying node S involves a series of double rotations until S reaches either the
root or the child of the root. Then, if necessary, a single rotation makes S the root.
This process tends to re-balance the tree. Regardless of balance, splaying will make
frequently accessed nodes stay near the top of the tree, resulting in reduced access
cost. Proof that the splay tree meets the guarantee of O(m log n) is beyond the
scope of this book. Such a proof can be found in the references in Section 13.4.
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Example 13.4 Consider a search for value 89 in the splay tree of Fig-
ure 13.10(a). The splay tree’s search operation is identical to searching in
a BST. However, once the value has been found, it is splayed to the root.
Three rotations are required in this example. The first is a zigzig rotation,
whose result is shown in Figure 13.10(b). The second is a zigzag rotation,
whose result is shown in Figure 13.10(c). The final step is a single rotation
resulting in the tree of Figure 13.10(d). Notice that the splaying process has
made the tree shallower.

13.3 Spatial Data Structures

All of the search trees discussed so far — BSTs, AVL trees, splay trees, 2-3 trees,
B-trees, and tries — are designed for searching on a one-dimensional key. A typical
example is an integer key, whose one-dimensional range can be visualized as a
number line. These various tree structures can be viewed as dividing this one-
dimensional number line into pieces.

Some databases require support for multiple keys. In other words, records can
be searched for using any one of several key fields, such as name or ID number.
Typically, each such key has its own one-dimensional index, and any given search
query searches one of these independent indices as appropriate.

A multidimensional search key presents a rather different concept. Imagine
that we have a database of city records, where each city has a name and an xy-
coordinate. A BST or splay tree provides good performance for searches on city
name, which is a one-dimensional key. Separate BSTs could be used to index the x-
and y-coordinates. This would allow us to insert and delete cities, and locate them
by name or by one coordinate. However, search on one of the two coordinates is
not a natural way to view search in a two-dimensional space. Another option is to
combine the xy-coordinates into a single key, say by concatenating the two coor-
dinates, and index cities by the resulting key in a BST. That would allow search by
coordinate, but would not allow for efficient two-dimensional range queries such
as searching for all cities within a given distance of a specified point. The problem
is that the BST only works well for one-dimensional keys, while a coordinate is a
two-dimensional key where neither dimension is more important than the other.

Multidimensional range queries are the defining feature of a spatial applica-
tion. Because a coordinate gives a position in space, it is called a spatial attribute.
To implement spatial applications efficiently requires the use of spatial data struc-
tures. Spatial data structures store data objects organized by position and are an
important class of data structures used in geographic information systems, com-
puter graphics, robotics, and many other fields.
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Figure 13.10 Example of splaying after performing a search in a splay tree.
After finding the node with key value 89, that node is splayed to the root by per-
forming three rotations. (a) The original splay tree. (b) The result of performing
a zigzig rotation on the node with key value 89 in the tree of (a). (c) The result
of performing a zigzag rotation on the node with key value 89 in the tree of (b).
(d) The result of performing a single rotation on the node with key value 89 in the
tree of (c). If the search had been for 91, the search would have been unsuccessful
with the node storing key value 89 being that last one visited. In that case, the
same splay operations would take place.
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This section presents two spatial data structures for storing point data in two or
more dimensions. They are the k-d tree and the PR quadtree. The k-d tree is a
natural extension of the BST to multiple dimensions. It is a binary tree whose split-
ting decisions alternate among the key dimensions. Like the BST, the k-d tree uses
object space decomposition. The PR quadtree uses key space decomposition and so
is a form of trie. It is a binary tree only for one-dimensional keys (in which case it
is a trie with a binary alphabet). For d dimensions it has 2d branches. Thus, in two
dimensions, the PR quadtree has four branches (hence the name “quadtree”), split-
ting space into four equal-sized quadrants at each branch. Section 13.3.3 briefly
mentions two other variations on these data structures, the bintree and the point
quadtree. These four structures cover all four combinations of object versus key
space decomposition on the one hand, and multi-level binary versus 2d-way branch-
ing on the other. Section 13.3.4 briefly discusses spatial data structures for storing
other types of spatial data.

13.3.1 The K-D Tree

The k-d tree is a modification to the BST that allows for efficient processing of
multidimensional keys. The k-d tree differs from the BST in that each level of
the k-d tree makes branching decisions based on a particular search key associated
with that level, called the discriminator. In principle, the k-d tree could be used to
unify key searching across any arbitrary set of keys such as name and zipcode. But
in practice, it is nearly always used to support search on multidimensional coordi-
nates, such as locations in 2D or 3D space. We define the discriminator at level i
to be i mod k for k dimensions. For example, assume that we store data organized
by xy-coordinates. In this case, k is 2 (there are two coordinates), with the x-
coordinate field arbitrarily designated key 0, and the y-coordinate field designated
key 1. At each level, the discriminator alternates between x and y. Thus, a node N
at level 0 (the root) would have in its left subtree only nodes whose x values are less
than Nx (because x is search key 0, and 0 mod 2 = 0). The right subtree would
contain nodes whose x values are greater than Nx. A node M at level 1 would
have in its left subtree only nodes whose y values are less than My. There is no re-
striction on the relative values of Mx and the x values of M’s descendants, because
branching decisions made at M are based solely on the y coordinate. Figure 13.11
shows an example of how a collection of two-dimensional points would be stored
in a k-d tree.

In Figure 13.11 the region containing the points is (arbitrarily) restricted to a
128 × 128 square, and each internal node splits the search space. Each split is
shown by a line, vertical for nodes with x discriminators and horizontal for nodes
with y discriminators. The root node splits the space into two parts; its children
further subdivide the space into smaller parts. The children’s split lines do not
cross the root’s split line. Thus, each node in the k-d tree helps to decompose the
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Figure 13.11 Example of a k-d tree. (a) The k-d tree decomposition for a 128×
128-unit region containing seven data points. (b) The k-d tree for the region of (a).

space into rectangles that show the extent of where nodes can fall in the various
subtrees.

Searching a k-d tree for the record with a specified xy-coordinate is like search-
ing a BST, except that each level of the k-d tree is associated with a particular dis-
criminator.

Example 13.5 Consider searching the k-d tree for a record located at P =
(69, 50). First compare P with the point stored at the root (record A in
Figure 13.11). If P matches the location of A, then the search is successful.
In this example the positions do not match (A’s location (40, 45) is not
the same as (69, 50)), so the search must continue. The x value of A is
compared with that of P to determine in which direction to branch. Because
Ax’s value of 40 is less than P’s x value of 69, we branch to the right subtree
(all cities with x value greater than or equal to 40 are in the right subtree).
Ay does not affect the decision on which way to branch at this level. At the
second level, P does not match record C’s position, so another branch must
be taken. However, at this level we branch based on the relative y values
of point P and record C (because 1 mod 2 = 1, which corresponds to the
y-coordinate). Because Cy’s value of 10 is less than Py’s value of 50, we
branch to the right. At this point, P is compared against the position of D.
A match is made and the search is successful.

If the search process reaches a NULL pointer, then that point is not contained
in the tree. Here is a k-d tree search implementation, equivalent to the findhelp
function of the BST class. KD class private member D stores the key’s dimension.
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// Find the record with the given coordinates
bool findhelp(BinNode<E>* root, int* coord,

E& e, int discrim) const {
// Member "coord" of a node is an integer array storing
// the node’s coordinates.
if (root == NULL) return false; // Empty tree
int* currcoord = (root->val())->coord();
if (EqualCoord(currcoord, coord)) { // Found it

e = root->val();
return true;

}
if (currcoord[discrim] < coord[discrim])

return findhelp(root->left(),coord,e,(discrim+1)%D);
else

return findhelp(root->right(),coord,e,(discrim+1)%D);
}

Inserting a new node into the k-d tree is similar to BST insertion. The k-d tree
search procedure is followed until a NULL pointer is found, indicating the proper
place to insert the new node.

Example 13.6 Inserting a record at location (10, 50) in the k-d tree of
Figure 13.11 first requires a search to the node containing record B. At this
point, the new record is inserted into B’s left subtree.

Deleting a node from a k-d tree is similar to deleting from a BST, but slightly
harder. As with deleting from a BST, the first step is to find the node (call it N)
to be deleted. It is then necessary to find a descendant of N which can be used to
replace N in the tree. If N has no children, then N is replaced with a NULL pointer.
Note that if N has one child that in turn has children, we cannot simply assign N’s
parent to point to N’s child as would be done in the BST. To do so would change the
level of all nodes in the subtree, and thus the discriminator used for a search would
also change. The result is that the subtree would no longer be a k-d tree because a
node’s children might now violate the BST property for that discriminator.

Similar to BST deletion, the record stored in N should be replaced either by the
record in N’s right subtree with the least value of N’s discriminator, or by the record
in N’s left subtree with the greatest value for this discriminator. Assume that N was
at an odd level and therefore y is the discriminator. N could then be replaced by the
record in its right subtree with the least y value (call it Ymin). The problem is that
Ymin is not necessarily the leftmost node, as it would be in the BST. A modified
search procedure to find the least y value in the left subtree must be used to find it
instead. The implementation for findmin is shown in Figure 13.12. A recursive
call to the delete routine will then remove Ymin from the tree. Finally, Ymin’s record
is substituted for the record in node N.

Note that we can replace the node to be deleted with the least-valued node
from the right subtree only if the right subtree exists. If it does not, then a suitable
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// Return a pointer to the node with the least value in root
// for the selected descriminator
BinNode<E>* findmin(BinNode<E>* root,

int discrim, int currdis) const {
// discrim: discriminator key used for minimum search;
// currdis: current level (mod D);
if (root == NULL) return NULL;
BinNode<E> *minnode = findmin(root->left(), discrim,

(currdis+1)%D);
if (discrim != currdis) { // If not at descrim’s level,

// we must search both subtrees
BinNode<E> *rightmin =

findmin(root->right(), discrim, (currdis+1)%D);
// Check if right side has smaller key value
minnode = min(minnode, rightmin, discrim);

} // Now, minnode has the smallest value in children
return min(minnode, root, discrim);

}
Figure 13.12 The k-d tree findmin method. On levels using the minimum
value’s discriminator, branching is to the left. On other levels, both children’s
subtrees must be visited. Helper function min takes two nodes and a discriminator
as input, and returns the node with the smaller value in that discriminator.

replacement must be found in the left subtree. Unfortunately, it is not satisfactory
to replace N’s record with the record having the greatest value for the discriminator
in the left subtree, because this new value might be duplicated. If so, then we
would have equal values for the discriminator in N’s left subtree, which violates
the ordering rules for the k-d tree. Fortunately, there is a simple solution to the
problem. We first move the left subtree of node N to become the right subtree (i.e.,
we simply swap the values of N’s left and right child pointers). At this point, we
proceed with the normal deletion process, replacing the record of N to be deleted
with the record containing the least value of the discriminator from what is now
N’s right subtree.

Assume that we want to print out a list of all records that are within a certain
distance d of a given point P. We will use Euclidean distance, that is, point P is
defined to be within distance d of point N if1

√
(Px − Nx)2 + (Py − Ny)2 ≤ d.

If the search process reaches a node whose key value for the discriminator is
more than d above the corresponding value in the search key, then it is not possible
that any record in the right subtree can be within distance d of the search key be-
cause all key values in that dimension are always too great. Similarly, if the current
node’s key value in the discriminator is d less than that for the search key value,

1A more efficient computation is (Px − Nx)2 + (Py − Ny)2 ≤ d2. This avoids performing a
square root function.
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Figure 13.13 Function InCircle must check the Euclidean distance between
a record and the query point. It is possible for a record A to have x- and y-
coordinates each within the query distance of the query point C, yet have A itself
lie outside the query circle.

then no record in the left subtree can be within the radius. In such cases, the sub-
tree in question need not be searched, potentially saving much time. In the average
case, the number of nodes that must be visited during a range query is linear on the
number of data records that fall within the query circle.

Example 13.7 We will now find all cities in the k-d tree of Figure 13.14
within 25 units of the point (25, 65). The search begins with the root node,
which contains record A. Because (40, 45) is exactly 25 units from the
search point, it will be reported. The search procedure then determines
which branches of the tree to take. The search circle extends to both the
left and the right of A’s (vertical) dividing line, so both branches of the
tree must be searched. The left subtree is processed first. Here, record B is
checked and found to fall within the search circle. Because the node storing
B has no children, processing of the left subtree is complete. Processing of
A’s right subtree now begins. The coordinates of record C are checked
and found not to fall within the circle. Thus, it should not be reported.
However, it is possible that cities within C’s subtrees could fall within the
search circle even if C does not. As C is at level 1, the discriminator at
this level is the y-coordinate. Because 65 − 25 > 10, no record in C’s left
subtree (i.e., records above C) could possibly be in the search circle. Thus,
C’s left subtree (if it had one) need not be searched. However, cities in C’s
right subtree could fall within the circle. Thus, search proceeds to the node
containing record D. Again, D is outside the search circle. Because 25 +
25 < 69, no record in D’s right subtree could be within the search circle.
Thus, only D’s left subtree need be searched. This leads to comparing
record E’s coordinates against the search circle. Record E falls outside the
search circle, and processing is complete. So we see that we only search
subtrees whose rectangles fall within the search circle.
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Figure 13.14 Searching in the k-d treeof Figure 13.11. (a) The k-d tree decom-
position for a 128×128-unit region containing seven data points. (b) The k-d tree
for the region of (a).

// Print all points within distance "rad" of "coord"
void regionhelp(BinNode<E>* root, int* coord,

int rad, int discrim) const {
if (root == NULL) return; // Empty tree
// Check if record at root is in circle
if (InCircle((root->val())->coord(), coord, rad))

cout << root->val() << endl; // Do what is appropriate
int* currcoord = (root->val())->coord();
if (currcoord[discrim] > (coord[discrim] - rad))

regionhelp(root->left(), coord, rad, (discrim+1)%D);
if (currcoord[discrim] < (coord[discrim] + rad))

regionhelp(root->right(), coord, rad, (discrim+1)%D);
}

Figure 13.15 The k-d tree region search method.

Figure 13.15 shows an implementation for the region search method. When
a node is visited, function InCircle is used to check the Euclidean distance
between the node’s record and the query point. It is not enough to simply check
that the differences between the x- and y-coordinates are each less than the query
distances because the the record could still be outside the search circle, as illustrated
by Figure 13.13.

13.3.2 The PR quadtree

In the Point-Region Quadtree (hereafter referred to as the PR quadtree) each node
either has exactly four children or is a leaf. That is, the PR quadtree is a full four-
way branching (4-ary) tree in shape. The PR quadtree represents a collection of
data points in two dimensions by decomposing the region containing the data points
into four equal quadrants, subquadrants, and so on, until no leaf node contains more
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Figure 13.16 Example of a PR quadtree. (a) A map of data points. We de-
fine the region to be square with origin at the upper-left-hand corner and sides of
length 128. (b) The PR quadtree for the points in (a). (a) also shows the block
decomposition imposed by the PR quadtree for this region.

than a single point. In other words, if a region contains zero or one data points, then
it is represented by a PR quadtree consisting of a single leaf node. If the region con-
tains more than a single data point, then the region is split into four equal quadrants.
The corresponding PR quadtree then contains an internal node and four subtrees,
each subtree representing a single quadrant of the region, which might in turn be
split into subquadrants. Each internal node of a PR quadtree represents a single
split of the two-dimensional region. The four quadrants of the region (or equiva-
lently, the corresponding subtrees) are designated (in order) NW, NE, SW, and SE.
Each quadrant containing more than a single point would in turn be recursively di-
vided into subquadrants until each leaf of the corresponding PR quadtree contains
at most one point.

For example, consider the region of Figure 13.16(a) and the corresponding
PR quadtree in Figure 13.16(b). The decomposition process demands a fixed key
range. In this example, the region is assumed to be of size 128× 128. Note that the
internal nodes of the PR quadtree are used solely to indicate decomposition of the
region; internal nodes do not store data records. Because the decomposition lines
are predetermined (i.e, key-space decomposition is used), the PR quadtree is a trie.

Search for a record matching point Q in the PR quadtree is straightforward.
Beginning at the root, we continuously branch to the quadrant that contains Q until
our search reaches a leaf node. If the root is a leaf, then just check to see if the
node’s data record matches point Q. If the root is an internal node, proceed to
the child that contains the search coordinate. For example, the NW quadrant of
Figure 13.16 contains points whose x and y values each fall in the range 0 to 63.
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Figure 13.17 PR quadtree insertion example. (a) The initial PR quadtree con-
taining two data points. (b) The result of inserting point C. The block containing A
must be decomposed into four sub-blocks. Points A and C would still be in the
same block if only one subdivision takes place, so a second decomposition is re-
quired to separate them.

The NE quadrant contains points whose x value falls in the range 64 to 127, and
whose y value falls in the range 0 to 63. If the root’s child is a leaf node, then that
child is checked to see if Q has been found. If the child is another internal node, the
search process continues through the tree until a leaf node is found. If this leaf node
stores a record whose position matches Q then the query is successful; otherwise Q
is not in the tree.

Inserting record P into the PR quadtree is performed by first locating the leaf
node that contains the location of P. If this leaf node is empty, then P is stored
at this leaf. If the leaf already contains P (or a record with P’s coordinates), then
a duplicate record should be reported. If the leaf node already contains another
record, then the node must be repeatedly decomposed until the existing record and
P fall into different leaf nodes. Figure 13.17 shows an example of such an insertion.

Deleting a record P is performed by first locating the node N of the PR quadtree
that contains P. Node N is then changed to be empty. The next step is to look at N’s
three siblings. N and its siblings must be merged together to form a single node N ′

if only one point is contained among them. This merging process continues until
some level is reached at which at least two points are contained in the subtrees rep-
resented by node N ′ and its siblings. For example, if point C is to be deleted from
the PR quadtree representing Figure 13.17(b), the resulting node must be merged
with its siblings, and that larger node again merged with its siblings to restore the
PR quadtree to the decomposition of Figure 13.17(a).

Region search is easily performed with the PR quadtree. To locate all points
within radius r of query point Q, begin at the root. If the root is an empty leaf node,
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then no data points are found. If the root is a leaf containing a data record, then the
location of the data point is examined to determine if it falls within the circle. If
the root is an internal node, then the process is performed recursively, but only on
those subtrees containing some part of the search circle.

Let us now consider how the structure of the PR quadtree affects the design
of its node representation. The PR quadtree is actually a trie (as defined in Sec-
tion 13.1). Decomposition takes place at the mid-points for internal nodes, regard-
less of where the data points actually fall. The placement of the data points does
determine whether a decomposition for a node takes place, but not where the de-
composition for the node takes place. Internal nodes of the PR quadtree are quite
different from leaf nodes, in that internal nodes have children (leaf nodes do not)
and leaf nodes have data fields (internal nodes do not). Thus, it is likely to be ben-
eficial to represent internal nodes differently from leaf nodes. Finally, there is the
fact that approximately half of the leaf nodes will contain no data field.

Another issue to consider is: How does a routine traversing the PR quadtree
get the coordinates for the square represented by the current PR quadtree node?
One possibility is to store with each node its spatial description (such as upper-left
corner and width). However, this will take a lot of space — perhaps as much as the
space needed for the data records, depending on what information is being stored.

Another possibility is to pass in the coordinates when the recursive call is made.
For example, consider the search process. Initially, the search visits the root node
of the tree, which has origin at (0, 0), and whose width is the full size of the space
being covered. When the appropriate child is visited, it is a simple matter for the
search routine to determine the origin for the child, and the width of the square is
simply half that of the parent. Not only does passing in the size and position infor-
mation for a node save considerable space, but avoiding storing such information
in the nodes enables a good design choice for empty leaf nodes, as discussed next.

How should we represent empty leaf nodes? On average, half of the leaf nodes
in a PR quadtree are empty (i.e., do not store a data point). One implementation
option is to use a NULL pointer in internal nodes to represent empty nodes. This
will solve the problem of excessive space requirements. There is an unfortunate
side effect that using a NULL pointer requires the PR quadtree processing meth-
ods to understand this convention. In other words, you are breaking encapsulation
on the node representation because the tree now must know things about how the
nodes are implemented. This is not too horrible for this particular application, be-
cause the node class can be considered private to the tree class, in which case the
node implementation is completely invisible to the outside world. However, it is
undesirable if there is another reasonable alternative.

Fortunately, there is a good alternative. It is called the Flyweight design pattern.
In the PR quadtree, a flyweight is a single empty leaf node that is reused in all places
where an empty leaf node is needed. You simply have all of the internal nodes with
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empty leaf children point to the same node object. This node object is created once
at the beginning of the program, and is never removed. The node class recognizes
from the pointer value that the flyweight is being accessed, and acts accordingly.

Note that when using the Flyweight design pattern, you cannot store coordi-
nates for the node in the node. This is an example of the concept of intrinsic versus
extrinsic state. Intrinsic state for an object is state information stored in the ob-
ject. If you stored the coordinates for a node in the node object, those coordinates
would be intrinsic state. Extrinsic state is state information about an object stored
elsewhere in the environment, such as in global variables or passed to the method.
If your recursive calls that process the tree pass in the coordinates for the current
node, then the coordinates will be extrinsic state. A flyweight can have in its intrin-
sic state only information that is accurate for all instances of the flyweight. Clearly
coordinates do not qualify, because each empty leaf node has its own location. So,
if you want to use a flyweight, you must pass in coordinates.

Another design choice is: Who controls the work, the node class or the tree
class? For example, on an insert operation, you could have the tree class control
the flow down the tree, looking at (querying) the nodes to see their type and reacting
accordingly. This is the approach used by the BST implementation in Section 5.4.
An alternate approach is to have the node class do the work. That is, you have an
insert method for the nodes. If the node is internal, it passes the city record to the
appropriate child (recursively). If the node is a flyweight, it replaces itself with a
new leaf node. If the node is a full node, it replaces itself with a subtree. This is
an example of the Composite design pattern, discussed in Section 5.3.1. Use of the
composite design would be difficult if NULL pointers are used to represent empty
leaf nodes. It turns out that the PR quadtree insert and delete methods are easier to
implement when using the composite design.

13.3.3 Other Point Data Structures

The differences between the k-d tree and the PR quadtree illustrate many of the
design choices encountered when creating spatial data structures. The k-d tree pro-
vides an object space decomposition of the region, while the PR quadtree provides
a key space decomposition (thus, it is a trie). The k-d tree stores records at all
nodes, while the PR quadtree stores records only at the leaf nodes. Finally, the two
trees have different structures. The k-d tree is a binary tree (and need not be full),
while the PR quadtree is a full tree with 2d branches (in the two-dimensional case,
22 = 4). Consider the extension of this concept to three dimensions. A k-d tree for
three dimensions would alternate the discriminator through the x, y, and z dimen-
sions. The three-dimensional equivalent of the PR quadtree would be a tree with
23 or eight branches. Such a tree is called an octree.

We can also devise a binary trie based on a key space decomposition in each
dimension, or a quadtree that uses the two-dimensional equivalent to an object
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Figure 13.18 An example of the bintree, a binary tree using key space decom-
position and discriminators rotating among the dimensions. Compare this with
the k-d tree of Figure 13.11 and the PR quadtree of Figure 13.16.
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Figure 13.19 An example of the point quadtree, a 4-ary tree using object space
decomposition. Compare this with the PR quadtree of Figure 13.11.

space decomposition. The bintree is a binary trie that uses keyspace decomposition
and alternates discriminators at each level in a manner similar to the k-d tree. The
bintree for the points of Figure 13.11 is shown in Figure 13.18. Alternatively, we
can use a four-way decomposition of space centered on the data points. The tree
resulting from such a decomposition is called a point quadtree. The point quadtree
for the data points of Figure 13.11 is shown in Figure 13.19.
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13.3.4 Other Spatial Data Structures

This section has barely scratched the surface of the field of spatial data structures.
Dozens of distinct spatial data structures have been invented, many with variations
and alternate implementations. Spatial data structures exist for storing many forms
of spatial data other than points. The most important distinctions between are the
tree structure (binary or not, regular decompositions or not) and the decomposition
rule used to decide when the data contained within a region is so complex that the
region must be subdivided.

One such spatial data structure is the Region Quadtree for storing images where
the pixel values tend to be blocky, such as a map of the countries of the world.
The region quadtree uses a four-way regular decomposition scheme similar to the
PR quadtree. The decomposition rule is simply to divide any node containing pixels
of more than one color or value.

Spatial data structures can also be used to store line object, rectangle object,
or objects of arbitrary shape (such as polygons in two dimensions or polyhedra in
three dimensions). A simple, yet effective, data structure for storing rectangles or
arbitrary polygonal shapes can be derived from the PR quadtree. Pick a threshold
value c, and subdivide any region into four quadrants if it contains more than c
objects. A special case must be dealt with when more than c object intersect.

Some of the most interesting developments in spatial data structures have to
do with adapting them for disk-based applications. However, all such disk-based
implementations boil down to storing the spatial data structure within some variant
on either B-trees or hashing.

13.4 Further Reading

PATRICIA tries and other trie implementations are discussed in Information Re-
trieval: Data Structures & Algorithms, Frakes and Baeza-Yates, eds. [FBY92].

See Knuth [Knu97] for a discussion of the AVL tree. For further reading on
splay trees, see “Self-adjusting Binary Search” by Sleator and Tarjan [ST85].

The world of spatial data structures is rich and rapidly evolving. For a good
introduction, see Foundations of Multidimensional and Metric Data Structures by
Hanan Samet [Sam06]. This is also the best reference for more information on
the PR quadtree. The k-d tree was invented by John Louis Bentley. For further
information on the k-d tree, in addition to [Sam06], see [Ben75]. For information
on using a quadtree to store arbitrary polygonal objects, see [SH92].

For a discussion on the relative space requirements for two-way versus multi-
way branching, see “A Generalized Comparison of Quadtree and Bintree Storage
Requirements” by Shaffer, Juvvadi, and Heath [SJH93].

Closely related to spatial data structures are data structures for storing multi-
dimensional data (which might not necessarily be spatial in nature). A popular
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data structure for storing such data is the R-tree, which was originally proposed by
Guttman [Gut84].

13.5 Exercises

13.1 Show the binary trie (as illustrated by Figure 13.1) for the following collec-
tion of values: 42, 12, 100, 10, 50, 31, 7, 11, 99.

13.2 Show the PAT trie (as illustrated by Figure 13.3) for the following collection
of values: 42, 12, 100, 10, 50, 31, 7, 11, 99.

13.3 Write the insertion routine for a binary trie as shown in Figure 13.1.
13.4 Write the deletion routine for a binary trie as shown in Figure 13.1.
13.5 (a) Show the result (including appropriate rotations) of inserting the value

39 into the AVL tree on the left in Figure 13.4.
(b) Show the result (including appropriate rotations) of inserting the value

300 into the AVL tree on the left in Figure 13.4.
(c) Show the result (including appropriate rotations) of inserting the value

50 into the AVL tree on the left in Figure 13.4.
(d) Show the result (including appropriate rotations) of inserting the value

1 into the AVL tree on the left in Figure 13.4.
13.6 Show the splay tree that results from searching for value 75 in the splay tree

of Figure 13.10(d).
13.7 Show the splay tree that results from searching for value 18 in the splay tree

of Figure 13.10(d).
13.8 Some applications do not permit storing two records with duplicate key val-

ues. In such a case, an attempt to insert a duplicate-keyed record into a tree
structure such as a splay tree should result in a failure on insert. What is
the appropriate action to take in a splay tree implementation when the insert
routine is called with a duplicate-keyed record?

13.9 Show the result of deleting point A from the k-d tree of Figure 13.11.
13.10 (a) Show the result of building a k-d tree from the following points (in-

serted in the order given). A (20, 20), B (10, 30), C (25, 50), D (35,
25), E (30, 45), F (30, 35), G (55, 40), H (45, 35), I (50, 30).

(b) Show the result of deleting point A from the tree you built in part (a).
13.11 (a) Show the result of deleting F from the PR quadtree of Figure 13.16.

(b) Show the result of deleting records E and F from the PR quadtree of
Figure 13.16.

13.12 (a) Show the result of building a PR quadtree from the following points
(inserted in the order given). Assume the tree is representing a space of
64 by 64 units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30,
45), F (30, 35), G (45, 25), H (45, 30), I (50, 30).

(b) Show the result of deleting point C from the tree you built in part (a).
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(c) Show the result of deleting point F from the resulting tree in part (b).
13.13 On average, how many leaf nodes of a PR quadtree will typically be empty?

Explain why.
13.14 When performing a region search on a PR quadtree, we need only search

those subtrees of an internal node whose corresponding square falls within
the query circle. This is most easily computed by comparing the x and y
ranges of the query circle against the x and y ranges of the square corre-
sponding to the subtree. However, as illustrated by Figure 13.13, the x and
y ranges might overlap without the circle actually intersecting the square.
Write a function that accurately determines if a circle and a square intersect.

13.15 (a) Show the result of building a bintree from the following points (inserted
in the order given). Assume the tree is representing a space of 64 by 64
units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30, 45), F (30,
35), G (45, 25), H (45, 30), I (50, 30).

(b) Show the result of deleting point C from the tree you built in part (a).
(c) Show the result of deleting point F from the resulting tree in part (b).

13.16 Compare the trees constructed for Exercises 12 and 15 in terms of the number
of internal nodes, full leaf nodes, empty leaf nodes, and total depths of the
two trees.

13.17 Show the result of building a point quadtree from the following points (in-
serted in the order given). Assume the tree is representing a space of 64 by
64 units. A (20, 20), B (10, 30), C (25, 50), D (35, 25), E (30, 45), F (31,
35), G (45, 26), H (44, 30), I (50, 30).

13.6 Projects

13.1 Use the trie data structure to devise a program to sort variable-length strings.
The program’s running time should be proportional to the total number of
letters in all of the strings. Note that some strings might be very long while
most are short.

13.2 Define the set of suffix strings for a string S to be S, S without its first char-
acter, S without its first two characters, and so on. For example, the complete
set of suffix strings for “HELLO” would be

{HELLO,ELLO,LLO,LO,O}.

A suffix tree is a PAT trie that contains all of the suffix strings for a given
string, and associates each suffix with the complete string. The advantage
of a suffix tree is that it allows a search for strings using “wildcards.” For
example, the search key “TH*” means to find all strings with “TH” as the
first two characters. This can easily be done with a regular trie. Searching
for “*TH” is not efficient in a regular trie, but it is efficient in a suffix tree.
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Implement the suffix tree for a dictionary of words or phrases, with support
for wildcard search.

13.3 Revise the BST class of Section 5.4 to use the AVL tree rotations. Your new
implementation should not modify the original BST class ADT. Compare
your AVL tree against an implementation of the standard BST over a wide
variety of input data. Under what conditions does the splay tree actually save
time?

13.4 Revise the BST class of Section 5.4 to use the splay tree rotations. Your new
implementation should not modify the original BST class ADT. Compare
your splay tree against an implementation of the standard BST over a wide
variety of input data. Under what conditions does the splay tree actually save
time?

13.5 Implement a city database using the k-d tree. Each database record contains
the name of the city (a string of arbitrary length) and the coordinates of the
city expressed as integer x- and y-coordinates. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. You should also support region queries, that is, a request to
print all records within a given distance of a specified point.

13.6 Implement a city database using the PR quadtree. Each database record con-
tains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x- and y-coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched by
name or coordinate. You should also support region queries, that is, a request
to print all records within a given distance of a specified point.

13.7 Implement and test the PR quadtree, using the composite design to imple-
ment the insert, search, and delete operations.

13.8 Implement a city database using the bintree. Each database record contains
the name of the city (a string of arbitrary length) and the coordinates of the
city expressed as integer x- and y-coordinates. Your database should allow
records to be inserted, deleted by name or coordinate, and searched by name
or coordinate. You should also support region queries, that is, a request to
print all records within a given distance of a specified point.

13.9 Implement a city database using the point quadtree. Each database record
contains the name of the city (a string of arbitrary length) and the coordinates
of the city expressed as integer x- and y-coordinates. Your database should
allow records to be inserted, deleted by name or coordinate, and searched by
name or coordinate. You should also support region queries, that is, a request
to print all records within a given distance of a specified point.

13.10 Use the PR quadtree to implement an efficient solution to Problem 6.5. That
is, store the set of points in a PR quadtree. For each point, the PR quadtree
is used to find those points within distance D that should be equivalenced.
What is the asymptotic complexity of this solution?
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13.11 Select any two of the point representations described in this chapter (i.e., the
k-d tree, the PR quadtree, the bintree, and the point quadtree). Implement
your two choices and compare them over a wide range of data sets. Describe
which is easier to implement, which appears to be more space efficient, and
which appears to be more time efficient.

13.12 Implement a representation for a collection of (two dimensional) rectangles
using a quadtree based on regular decomposition. Assume that the space
being represented is a square whose width and height are some power of
two. Rectangles are assumed to have integer coordinates and integer width
and height. Pick some value c, and use as a decomposition rule that a region
is subdivided into four equal-sized regions whenever it contains more that c
rectangles. A special case occurs if all of these rectangles intersect at some
point within the current region (because decomposing such a node would
never reach termination). In this situation, the node simply stores pointers
to more than c rectangles. Try your representation on data sets of rectangles
with varying values of c.
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14

Analysis Techniques

Often it is easy to invent an equation to model the behavior of an algorithm or
data structure. Often it is easy to derive a closed-form solution for the equation
should it contain a recurrence or summation. But sometimes analysis proves more
difficult. It may take a clever insight to derive the right model, such as the snow-
plow argument for analyzing the average run length resulting from Replacement
Selection (Section 8.5.2). In this example, once the snowplow argument is under-
stood, the resulting equations follow naturally. Sometimes, developing the model
is straightforward but analyzing the resulting equations is not. An example is the
average-case analysis for Quicksort. The equation given in Section 7.5 simply enu-
merates all possible cases for the pivot position, summing corresponding costs for
the recursive calls to Quicksort. However, deriving a closed-form solution for the
resulting recurrence relation is not as easy.

Many analyses of iterative algorithms use a summation to model the cost of a
loop. Techniques for finding closed-form solutions to summations are presented in
Section 14.1. The cost for many algorithms based on recursion are best modeled
by recurrence relations. A discussion of techniques for solving recurrences is pro-
vided in Section 14.2. These sections build on the introduction to summations and
recurrences provided in Section 2.4, so the reader should already be familiar with
that material.

Section 14.3 provides an introduction to the topic of amortized analysis. Am-
ortized analysis deals with the cost of a series of operations. Perhaps a single
operation in the series has high cost, but as a result the cost of the remaining oper-
ations is limited. Amortized analysis has been used successfully to analyze several
of the algorithms presented in previous sections, including the cost of a series of
UNION/FIND operations (Section 6.2), the cost of partition in Quicksort (Sec-
tion 7.5), the cost of a series of splay tree operations (Section 13.2), and the cost of
a series of operations on self-organizing lists (Section 9.2). Section 14.3 discusses
the topic in more detail.

469
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14.1 Summation Techniques

Consider the following simple summation.

n∑
i=1

i.

In Section 2.6.3 it was proved by induction that this summation has the well-known
closed form n(n + 1)/2. But while induction is a good technique for proving that
a proposed closed-form expression is correct, how do we find a candidate closed-
form expression to test in the first place? Let us try to think through this problem
from first principles, as though we had never seen it before.

A good place to begin analyzing a summation it is to give an estimate of its
value for a given n. Observe that the biggest term for this summation is n, and
there are n terms being summed up. So the total must be less than n2. Actually,
most terms are much less than n, and the sizes of the terms grows linearly. If we
were to draw a picture with bars for the size of the terms, their heights would form a
line, and we could enclose them in a box n units wide and n units high. It is easy to
see from this that a closer estimate for the summation is about (n2)/2. Having this
estimate in hand helps us when trying to determine an exact closed-form solution,
because we will hopefully recognize if our proposed solution is badly wrong.

Let us now consider some ways that we might hit upon an exact equation for
the closed form solution to this summation. One particularly clever approach we
can take is to observe that we can “pair up” the first and last terms, the second and
(n − 1)th terms, and so on. Each pair sums to n + 1. The number of pairs is n/2.
Thus, the solution is n(n+ 1)/2. This is pretty, and there is no doubt about it being
correct. The problem is that it is not a useful technique for solving many other
summations.

Now let us try to do something a bit more general. We already recognized
that, because the largest term is n and there are n terms, the summation is less
than n2. If we are lucky, the closed form solution is a polynomial. Using that as
a working assumption, we can invoke a technique called guess-and-test. We will
guess that the closed-form solution for this summation is a polynomial of the form
c1n

2 + c2n+ c3 for some constants c1, c2, and c3. If this is true, then we can plug
in the answers to small cases of the summation to solve for the coefficients. For
this example, substituting 0, 1, and 2 for n leads to three simultaneous equations.
Because the summation when n = 0 is just 0, c3 must be 0. For n = 1 and n = 2
we get the two equations

c1 + c2 = 1

4c1 + 2c2 = 3,
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which in turn yield c1 = 1/2 and c2 = 1/2. Thus, if the closed-form solution for
the summation is a polynomial, it can only be

1/2n2 + 1/2n+ 0

which is more commonly written

n(n+ 1)

2
.

At this point, we still must do the “test” part of the guess-and-test approach. We
can use an induction proof to verify whether our candidate closed-form solution is
correct. In this case it is indeed correct, as shown by Example 2.11. The induc-
tion proof is necessary because our initial assumption that the solution is a simple
polynomial could be wrong. For example, it might have been that the true solution
includes a logarithmic term, such as c1n2 + c2n log n. The process shown here is
essentially fitting a curve to a fixed number of points. Because there is always an
n-degree polynomial that fits n + 1 points, we have not done enough work to be
sure that we to know the true equation without the induction proof.

Guess-and-test is useful whenever the solution is a polynomial expression. In
particular, similar reasoning can be used to solve for

∑n
i=1 i

2, or more generally∑n
i=1 i

c for c any positive integer. Why is this not a universal approach to solving
summations? Because many summations do not have a polynomial as their closed
form solution.

A more general approach is based on the subtract-and-guess or divide-and-
guess strategies. One form of subtract-and-guess is known as the shifting method.
The shifting method subtracts the summation from a variation on the summation.
The variation selected for the subtraction should be one that makes most of the
terms cancel out. To solve sum f , we pick a known function g and find a pattern in
terms of f(n)− g(n) or f(n)/g(n).

Example 14.1 Find the closed form solution for
∑n

i=1 i using the divide-
and-guess approach. We will try two example functions to illustrate the
divide-and-guess method: dividing by n and dividing by f(n − 1). Our
goal is to find patterns that we can use to guess a closed-form expression as
our candidate for testing with an induction proof. To aid us in finding such
patterns, we can construct a table showing the first few numbers of each
function, and the result of dividing one by the other, as follows.

n 1 2 3 4 5 6 7 8 9 10
f(n) 1 3 6 10 15 21 28 36 46 57

n 1 2 3 4 5 6 7 8 9 10
f(n)/n 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 11/2
f(n−1) 0 1 3 6 10 15 21 28 36 46

f(n)/f(n−1) 3/1 4/2 5/3 6/4 7/5 8/6 9/7 10/8 11/9
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Dividing by both n and f(n − 1) happen to give us useful patterns to
work with. f(n)

n = n+1
2 , and f(n)

f(n−1) = n+1
n−1 . Of course, lots of other

guesses for function g do not work. For example, f(n) − n = f(n −
1). Knowing that f(n) = f(n − 1) + n is not useful for determining the
closed form solution to this summation. Or consider f(n)− f(n− 1) = n.
Again, knowing that f(n) = f(n− 1) + n is not useful. Finding the right
combination of equations can be like finding a needle in a haystack.

In our first example, we can see directly what the closed-form solution
should be. Since f(n)

n = n+1
2 , obviously f(n) = n(n+ 1)/2.

Dividing f(n) by f(n − 1) does not give so obvious a result, but it
provides another useful illustration.

f(n)

f(n− 1)
=

n+ 1

n− 1

f(n)(n− 1) = (n+ 1)f(n− 1)

f(n)(n− 1) = (n+ 1)(f(n)− n)

nf(n)− f(n) = nf(n) + f(n)− n2 − n
2f(n) = n2 + n = n(n+ 1)

f(n) =
n(n+ 1)

2

Once again, we still do not have a proof that f(n) = n(n+1)/2. Why?
Because we did not prove that f(n)/n = (n + 1)/2 nor that f(n)/f(n −
1) = (n + 1)(n − 1). We merely hypothesized patterns from looking at a
few terms. Fortunately, it is easy to check our hypothesis with induction.

Example 14.2 Solve the summation

n∑
i=1

1/2i.

We will begin by writing out a table listing the first few values of the sum-
mation, to see if we can detect a pattern.

n 1 2 3 4 5 6

f(n) 1
2

3
4

7
8

15
16

31
32

63
64

1− f(n) 1
2

1
4

1
8

1
16

1
32

1
64
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By direct inspection of the second line of the table, we might recognize the
pattern f(n) = 2n−1

2n . A simple induction proof can then prove that this
always holds true. Alternatively, consider if we hadn’t noticed the pattern
for the form of f(n). We might observe that f(n) appears to be reaching
an asymptote at one. In which case, we might consider looking at the dif-
ference between f(n) and the expected asymptote. This result is shown in
the last line of the table, which has a clear pattern since the ith entry is of
1/2i. From this we can easily deduce a guess that f(n) = 1 − 1

2n . Again,
a simple induction proof will verify the guess.

Example 14.3 Solve the summation

f(n) =
n∑
i=0

ari = a+ ar + ar2 + · · ·+ arn.

This is called a geometric series. Our goal is to find some function g(n)
such that the difference between f(n) and g(n) one from the other leaves
us with an easily manipulated equation. Because the difference between
consecutive terms of the summation is a factor of r, we can shift terms if
we multiply the entire expression by r:

rf(n) = r

n∑
i=0

ari = ar + ar2 + ar3 + · · ·+ arn+1.

We can now subtract the one equation from the other, as follows:

f(n)− rf(n) = a + ar + ar2 + ar3 + · · ·+ arn

− (ar + ar2 + ar3 + · · ·+ arn)− arn+1.

The result leaves only the end terms:

f(n)− rf(n) =
n∑
i=0

ari − r
n∑
i=0

ari.

(1− r)f(n) = a− arn+1.

Thus, we get the result

f(n) =
a− arn+1

1− r

where r 6= 1.
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Example 14.4 For our second example of the shifting method, we solve

f(n) =
n∑
i=1

i2i = 1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n.

We can achieve our goal if we multiply by two:

2f(n) = 2
n∑
i=1

i2i = 1 · 22 + 2 · 23 + 3 · 24 + · · ·+ (n− 1) · 2n + n · 2n+1.

The ith term of 2f(n) is i · 2i+1, while the (i + 1)th term of f(n) is
(i+ 1) · 2i+1. Subtracting one expression from the other yields the sum-
mation of 2i and a few non-canceled terms:

2f(n)− f(n) = 2

n∑
i=1

i2i −
n∑
i=1

i2i

=
n∑
i=1

i2i+1 −
n∑
i=1

i2i.

Shift i’s value in the second summation, substituting (i+ 1) for i:

= n2n+1 +

n−1∑
i=0

i2i+1 −
n−1∑
i=0

(i+ 1)2i+1.

Break the second summation into two parts:

= n2n+1 +
n−1∑
i=0

i2i+1 −
n−1∑
i=0

i2i+1 −
n−1∑
i=0

2i+1.

Cancel like terms:

= n2n+1 −
n−1∑
i=0

2i+1.

Again shift i’s value in the summation, substituting i for (i+ 1):

= n2n+1 −
n∑
i=1

2i.

Replace the new summation with a solution that we already know:
= n2n+1 −

(
2n+1 − 2

)
.

Finally, reorganize the equation:
= (n− 1)2n+1 + 2.
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14.2 Recurrence Relations

Recurrence relations are often used to model the cost of recursive functions. For
example, the standard Mergesort (Section 7.4) takes a list of size n, splits it in half,
performs Mergesort on each half, and finally merges the two sublists in n steps.
The cost for this can be modeled as

T(n) = 2T(n/2) + n.

In other words, the cost of the algorithm on input of size n is two times the cost for
input of size n/2 (due to the two recursive calls to Mergesort) plus n (the time to
merge the sublists together again).

There are many approaches to solving recurrence relations, and we briefly con-
sider three here. The first is an estimation technique: Guess the upper and lower
bounds for the recurrence, use induction to prove the bounds, and tighten as re-
quired. The second approach is to expand the recurrence to convert it to a summa-
tion and then use summation techniques. The third approach is to take advantage
of already proven theorems when the recurrence is of a suitable form. In particu-
lar, typical divide and conquer algorithms such as Mergesort yield recurrences of a
form that fits a pattern for which we have a ready solution.

14.2.1 Estimating Upper and Lower Bounds

The first approach to solving recurrences is to guess the answer and then attempt
to prove it correct. If a correct upper or lower bound estimate is given, an easy
induction proof will verify this fact. If the proof is successful, then try to tighten
the bound. If the induction proof fails, then loosen the bound and try again. Once
the upper and lower bounds match, you are finished. This is a useful technique
when you are only looking for asymptotic complexities. When seeking a precise
closed-form solution (i.e., you seek the constants for the expression), this method
will probably be too much work.

Example 14.5 Use the guessing technique to find the asymptotic bounds
for Mergesort, whose running time is described by the equation

T(n) = 2T(n/2) + n; T(2) = 1.

We begin by guessing that this recurrence has an upper bound in O(n2). To
be more precise, assume that

T(n) ≤ n2.

We prove this guess is correct by induction. In this proof, we assume that
n is a power of two, to make the calculations easy. For the base case,
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T(2) = 1 ≤ 22. For the induction step, we need to show that T(n) ≤ n2

implies that T(2n) ≤ (2n)2 for n = 2N , N ≥ 1. The induction hypothesis
is

T(i) ≤ i2, for all i ≤ n.

It follows that

T(2n) = 2T(n) + 2n ≤ 2n2 + 2n ≤ 4n2 ≤ (2n)2

which is what we wanted to prove. Thus, T(n) is in O(n2).
Is O(n2) a good estimate? In the next-to-last step we went from n2+2n

to the much larger 4n2. This suggests that O(n2) is a high estimate. If we
guess something smaller, such as T(n) ≤ cn for some constant c, it should
be clear that this cannot work because c2n = 2cn and there is no room for
the extra n cost to join the two pieces together. Thus, the true cost must be
somewhere between cn and n2.

Let us now try T(n) ≤ n log n. For the base case, the definition of the
recurrence sets T(2) = 1 ≤ (2 · log 2) = 2. Assume (induction hypothesis)
that T(n) ≤ n log n. Then,

T(2n) = 2T(n) + 2n ≤ 2n log n+ 2n ≤ 2n(log n+ 1) ≤ 2n log 2n

which is what we seek to prove. In similar fashion, we can prove that T(n)
is in Ω(n log n). Thus, T(n) is also Θ(n log n).

Example 14.6 We know that the factorial function grows exponentially.
How does it compare to 2n? To nn? Do they all grow “equally fast” (in an
asymptotic sense)? We can begin by looking at a few initial terms.

n 1 2 3 4 5 6 7 8 9
n! 1 2 6 24 120 720 5040 40320 362880
2n 2 4 8 16 32 64 128 256 512
nn 1 4 9 256 3125 46656 823543 16777216 387420489

We can also look at these functions in terms of their recurrences.

n! =

{
1 n = 1
n(n− 1)! n > 1

2n =

{
2 n = 1
2(2n−1) n > 1
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nn =

{
n n = 1
n(nn−1) n > 1

At this point, our intuition should be telling us pretty clearly the relative
growth rates of these three functions. But how do we prove formally which
grows the fastest? And how do we decide if the differences are significant
in an asymptotic sense, or just constant factor differences?

We can use logarithms to help us get an idea about the relative growth
rates of these functions. Clearly, log 2n = n. Equally clearly, log nn =
n log n. We can easily see from this that 2n is o(nn), that is, nn grows
asymptotically faster than 2n.

How does n! fit into this? We can again take advantage of logarithms.
Obviously n! ≤ nn, so we know that log n! is O(n log n). But what about
a lower bound for the factorial function? Consider the following.

n! = n× (n− 1)× · · · × n

2
× (

n

2
− 1)× · · · × 2× 1

≥ n

2
× n

2
× · · · × n

2
× 1× · · · × 1× 1

= (
n

2
)n/2

Therefore
log n! ≥ log(

n

2
)n/2 = (

n

2
) log(

n

2
).

In other words, log n! is in Ω(n log n). Thus, log n! = Θ(n log n).
Note that this does not mean that n! = Θ(nn). Because log n2 =

2 log n, it follows that log n = Θ(log n2) but n 6= Θ(n2). The log func-
tion often works as a “flattener” when dealing with asymptotics. That is,
whenever log f(n) is in O(log g(n)) we know that f(n) is in O(g(n)).
But knowing that log f(n) = Θ(log g(n)) does not necessarily mean that
f(n) = Θ(g(n)).

Example 14.7 What is the growth rate of the Fibonacci sequence? We
define the Fibonacci sequence as f(n) = f(n− 1) + f(n− 2) for n ≥ 2;
f(0) = f(1) = 1.

In this case it is useful to compare the ratio of f(n) to f(n − 1). The
following table shows the first few values.

n 1 2 3 4 5 6 7
f(n) 1 2 3 5 8 13 21

f(n)/f(n− 1) 1 2 1.5 1.666 1.625 1.615 1.619
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If we continue for more terms, the ratio appears to converge on a value
slightly greater then 1.618. Assuming f(n)/f(n− 1) really does converge
to a fixed value as n grows, we can determine what that value must be.

f(n)

f(n− 2)
=
f(n− 1)

f(n− 2)
+
f(n− 2)

f(n− 2)
→ x+ 1

For some value x. This follows from the fact that f(n) = f(n − 1) +
f(n − 2). We divide by f(n − 2) to make the second term go away, and
we also get something useful in the first term. Remember that the goal of
such manipulations is to give us an equation that relates f(n) to something
without recursive calls.

For large n, we also observe that:

f(n)

f(n− 2)
=

f(n)

f(n− 1)

f(n− 1)

f(n− 2)
→ x2

as n gets big. This comes from multiplying f(n)/f(n − 2) by f(n −
1)/f(n− 1) and rearranging.

If x exists, then x2−x−1→ 0. Using the quadratic equation, the only
solution greater than one is

x =
1 +
√

5

2
≈ 1.618.

This expression also has the name φ. What does this say about the growth
rate of the Fibonacci sequence? It is exponential, with f(n) = Θ(φn).
More precisely, f(n) converges to

φn − (1− φ)n√
5

.

14.2.2 Expanding Recurrences

Estimating bounds is effective if you only need an approximation to the answer.
More precise techniques are required to find an exact solution. One approach is
called expanding the recurrence. In this method, the smaller terms on the right
side of the equation are in turn replaced by their definition. This is the expanding
step. These terms are again expanded, and so on, until a full series with no recur-
rence results. This yields a summation, and techniques for solving summations can
then be used. A couple of simple expansions were shown in Section 2.4. A more
complex example is given below.
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Example 14.8 Find the solution for

T(n) = 2T(n/2) + 5n2; T(1) = 7.

For simplicity we assume that n is a power of two, so we will rewrite it as
n = 2k. This recurrence can be expanded as follows:

T(n) = 2T(n/2) + 5n2

= 2(2T(n/4) + 5(n/2)2) + 5n2

= 2(2(2T(n/8) + 5(n/4)2) + 5(n/2)2) + 5n2

= 2kT(1) + 2k−1 · 5
( n

2k−1

)2
+ · · ·+ 2 · 5

(n
2

)2
+ 5n2.

This last expression can best be represented by a summation as follows:

7n+ 5
k−1∑
i=0

n2/2i

= 7n+ 5n2
k−1∑
i=0

1/2i.

From Equation 2.6, we have:
= 7n+ 5n2

(
2− 1/2k−1

)
= 7n+ 5n2(2− 2/n)

= 7n+ 10n2 − 10n

= 10n2 − 3n.

This is the exact solution to the recurrence for n a power of two. At this
point, we should use a simple induction proof to verify that our solution is
indeed correct.

Example 14.9 Our next example models the cost of the algorithm to build
a heap. Recall from Section 5.5 that to build a heap, we first heapify the
two subheaps, then push down the root to its proper position. The cost is:

f(n) ≤ 2f(n/2) + 2 log n.

Let us find a closed form solution for this recurrence. We can expand
the recurrence a few times to see that
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f(n) ≤ 2f(n/2) + 2 log n

≤ 2[2f(n/4) + 2 log n/2] + 2 log n

≤ 2[2(2f(n/8) + 2 log n/4) + 2 log n/2] + 2 log n

We can deduce from this expansion that this recurrence is equivalent to
following summation and its derivation:

f(n) ≤
logn−1∑
i=0

2i+1 log(n/2i)

= 2

logn−1∑
i=0

2i(log n− i)

= 2 log n

logn−1∑
i=0

2i − 4

logn−1∑
i=0

i2i−1

= 2n log n− 2 log n− 2n log n+ 4n− 4

= 4n− 2 log n− 4.

14.2.3 Divide and Conquer Recurrences

The third approach to solving recurrences is to take advantage of known theorems
that provide the solution for classes of recurrences. Of particular practical use is
a theorem that gives the answer for a class known as divide and conquer recur-
rences. These have the form

T(n) = aT(n/b) + cnk; T(1) = c

where a, b, c, and k are constants. In general, this recurrence describes a problem
of size n divided into a subproblems of size n/b, while cnk is the amount of work
necessary to combine the partial solutions. Mergesort is an example of a divide and
conquer algorithm, and its recurrence fits this form. So does binary search. We use
the method of expanding recurrences to derive the general solution for any divide
and conquer recurrence, assuming that n = bm.

T(n) = aT(n/b) + cnk

= a(aT(n/b2) + c(n/b)k) + cnk

= a(a[aT(n/b3) + c(n/b2)k] + c(n/b)k) + cnk
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= amT(1) + am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= amc+ am−1c(n/bm−1)k + · · ·+ ac(n/b)k + cnk

= c

m∑
i=0

am−ibik

= cam
m∑
i=0

(bk/a)i.

Note that

am = alogb n = nlogb a. (14.1)

The summation is a geometric series whose sum depends on the ratio r = bk/a.
There are three cases.

1. r < 1. From Equation 2.4,

m∑
i=0

ri < 1/(1− r), a constant.

Thus,
T(n) = Θ(am) = Θ(nlogba).

2. r = 1. Because r = bk/a, we know that a = bk. From the definition
of logarithms it follows immediately that k = logb a. We also note from
Equation 14.1 that m = logb n. Thus,

m∑
i=0

r = m+ 1 = logb n+ 1.

Because am = n logb a = nk, we have

T(n) = Θ(nlogb a log n) = Θ(nk log n).

3. r > 1. From Equation 2.5,

m∑
i=0

r =
rm+1 − 1

r − 1
= Θ(rm).

Thus,

T(n) = Θ(amrm) = Θ(am(bk/a)m) = Θ(bkm) = Θ(nk).

We can summarize the above derivation as the following theorem, sometimes
referred to as the Master Theorem.
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Theorem 14.1 (The Master Theorem) For any recurrence relation of the form
T(n) = aT(n/b) + cnk,T(1) = c, the following relationships hold.

T(n) =


Θ(nlogb a) if a > bk

Θ(nk log n) if a = bk

Θ(nk) if a < bk.

This theorem may be applied whenever appropriate, rather than re-deriving the
solution for the recurrence.

Example 14.10 Apply the Master Theorem to solve

T(n) = 3T(n/5) + 8n2.

Because a = 3, b = 5, c = 8, and k = 2, we find that 3 < 52. Applying
case (3) of the theorem, T(n) = Θ(n2).

Example 14.11 Use the Master Theorem to solve the recurrence relation
for Mergesort:

T(n) = 2T(n/2) + n; T(1) = 1.

Because a = 2, b = 2, c = 1, and k = 1, we find that 2 = 21. Applying
case (2) of the theorem, T(n) = Θ(n log n).

14.2.4 Average-Case Analysis of Quicksort

In Section 7.5, we determined that the average-case analysis of Quicksort had the
following recurrence:

T(n) = cn+
1

n

n−1∑
k=0

[T(k) + T(n− 1− k)], T(0) = T(1) = c.

The cn term is an upper bound on the findpivot and partition steps. This
equation comes from assuming that the partitioning element is equally likely to
occur in any position k. It can be simplified by observing that the two recurrence
terms T(k) and T(n − 1 − k) are equivalent, because one simply counts up from
T (0) to T (n− 1) while the other counts down from T (n− 1) to T (0). This yields

T(n) = cn+
2

n

n−1∑
k=0

T(k).
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This form is known as a recurrence with full history. The key to solving such a
recurrence is to cancel out the summation terms. The shifting method for summa-
tions provides a way to do this. Multiply both sides by n and subtract the result
from the formula for nT(n+ 1):

nT(n) = cn2 + 2
n−1∑
k=1

T(k)

(n+ 1)T(n+ 1) = c(n+ 1)2 + 2
n∑
k=1

T(k).

Subtracting nT(n) from both sides yields:

(n+ 1)T(n+ 1)− nT(n) = c(n+ 1)2 − cn2 + 2T(n)

(n+ 1)T(n+ 1)− nT(n) = c(2n+ 1) + 2T(n)

(n+ 1)T(n+ 1) = c(2n+ 1) + (n+ 2)T(n)

T(n+ 1) =
c(2n+ 1)

n+ 1
+
n+ 2

n+ 1
T(n).

At this point, we have eliminated the summation and can now use our normal meth-
ods for solving recurrences to get a closed-form solution. Note that c(2n+1)

n+1 < 2c,
so we can simplify the result. Expanding the recurrence, we get

T(n+ 1) ≤ 2c+
n+ 2

n+ 1
T(n)

= 2c+
n+ 2

n+ 1

(
2c+

n+ 1

n
T(n− 1)

)
= 2c+

n+ 2

n+ 1

(
2c+

n+ 1

n

(
2c+

n

n− 1
T(n− 2)

))
= 2c+

n+ 2

n+ 1

(
2c+ · · ·+ 4

3
(2c+

3

2
T(1))

)
= 2c

(
1 +

n+ 2

n+ 1
+
n+ 2

n+ 1

n+ 1

n
+ · · ·+ n+ 2

n+ 1

n+ 1

n
· · · 3

2

)
= 2c

(
1 + (n+ 2)

(
1

n+ 1
+

1

n
+ · · ·+ 1

2

))
= 2c+ 2c(n+ 2) (Hn+1 − 1)

for Hn+1, the Harmonic Series. From Equation 2.10, Hn+1 = Θ(log n), so the
final solution is Θ(n log n).
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14.3 Amortized Analysis

This section presents the concept of amortized analysis, which is the analysis for
a series of operations taken as a whole. In particular, amortized analysis allows us
to deal with the situation where the worst-case cost for n operations is less than
n times the worst-case cost of any one operation. Rather than focusing on the indi-
vidual cost of each operation independently and summing them, amortized analysis
looks at the cost of the entire series and “charges” each individual operation with a
share of the total cost.

We can apply the technique of amortized analysis in the case of a series of se-
quential searches in an unsorted array. For n random searches, the average-case
cost for each search is n/2, and so the expected total cost for the series is n2/2.
Unfortunately, in the worst case all of the searches would be to the last item in the
array. In this case, each search costs n for a total worst-case cost of n2. Compare
this to the cost for a series of n searches such that each item in the array is searched
for precisely once. In this situation, some of the searches must be expensive, but
also some searches must be cheap. The total number of searches, in the best, av-
erage, and worst case, for this problem must be

∑n
i=i i ≈ n2/2. This is a factor

of two better than the more pessimistic analysis that charges each operation in the
series with its worst-case cost.

As another example of amortized analysis, consider the process of increment-
ing a binary counter. The algorithm is to move from the lower-order (rightmost)
bit toward the high-order (leftmost) bit, changing 1s to 0s until the first 0 is en-
countered. This 0 is changed to a 1, and the increment operation is done. Below
is C++ code to implement the increment operation, assuming that a binary number
of length n is stored in array A of length n.

for (i=0; ((i<n) && (A[i] == 1)); i++)
A[i] = 0;

if (i < n)
A[i] = 1;

If we count from 0 through 2n − 1, (requiring a counter with at least n bits),
what is the average cost for an increment operation in terms of the number of bits
processed? Naive worst-case analysis says that if all n bits are 1 (except for the
high-order bit), then n bits need to be processed. Thus, if there are 2n increments,
then the cost is n2n. However, this is much too high, because it is rare for so many
bits to be processed. In fact, half of the time the low-order bit is 0, and so only
that bit is processed. One quarter of the time, the low-order two bits are 01, and
so only the low-order two bits are processed. Another way to view this is that the
low-order bit is always flipped, the bit to its left is flipped half the time, the next
bit one quarter of the time, and so on. We can capture this with the summation
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(charging costs to bits going from right to left)

n−1∑
i=0

1

2i
< 2.

In other words, the average number of bits flipped on each increment is 2, leading
to a total cost of only 2 · 2n for a series of 2n increments.

A useful concept for amortized analysis is illustrated by a simple variation on
the stack data structure, where the pop function is slightly modified to take a sec-
ond parameter k indicating that k pop operations are to be performed. This revised
pop function, called multipop, might look as follows:

// pop k elements from stack
void multipop(int k);

The “local” worst-case analysis for multipop is Θ(n) for n elements in the
stack. Thus, if there are m1 calls to push and m2 calls to multipop, then the
naive worst-case cost for the series of operation is m1 +m2 · n = m1 +m2 ·m1.
This analysis is unreasonably pessimistic. Clearly it is not really possible to pop
m1 elements each time multipop is called. Analysis that focuses on single op-
erations cannot deal with this global limit, and so we turn to amortized analysis to
model the entire series of operations.

The key to an amortized analysis of this problem lies in the concept of poten-
tial. At any given time, a certain number of items may be on the stack. The cost for
multipop can be no more than this number of items. Each call to push places
another item on the stack, which can be removed by only a single multipop op-
eration. Thus, each call to push raises the potential of the stack by one item. The
sum of costs for all calls to multipop can never be more than the total potential of
the stack (aside from a constant time cost associated with each call to multipop
itself).

The amortized cost for any series of push and multipop operations is the
sum of three costs. First, each of the push operations takes constant time. Second,
each multipop operation takes a constant time in overhead, regardless of the
number of items popped on that call. Finally, we count the sum of the potentials
expended by all multipop operations, which is at most m1, the number of push
operations. This total cost can therefore be expressed as

m1 + (m2 +m1) = Θ(m1 +m2).

A similar argument was used in our analysis for the partition function in the
Quicksort algorithm (Section 7.5). While on any given pass through the while
loop the left or right pointers might move all the way through the remainder of the
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partition, doing so would reduce the number of times that the while loop can be
further executed.

Our final example uses amortized analysis to prove a relationship between the
cost of the move-to-front self-organizing list heuristic from Section 9.2 and the cost
for the optimal static ordering of the list.

Recall that, for a series of search operations, the minimum cost for a static
list results when the list is sorted by frequency of access to its records. This is
the optimal ordering for the records if we never allow the positions of records to
change, because the most-frequently accessed record is first (and thus has least
cost), followed by the next most frequently accessed record, and so on.

Theorem 14.2 The total number of comparisons required by any series S of n or
more searches on a self-organizing list of length n using the move-to-front heuristic
is never more than twice the total number of comparisons required when series S is
applied to the list stored in its optimal static order.

Proof: Each comparison of the search key with a record in the list is either suc-
cessful or unsuccessful. For m searches, there must be exactly m successful com-
parisons for both the self-organizing list and the static list. The total number of
unsuccessful comparisons in the self-organizing list is the sum, over all pairs of
distinct keys, of the number of unsuccessful comparisons made between that pair.

Consider a particular pair of keys A and B. For any sequence of searches S,
the total number of (unsuccessful) comparisons between A and B is identical to the
number of comparisons between A and B required for the subsequence of S made up
only of searches for A or B. Call this subsequence SAB. In other words, including
searches for other keys does not affect the relative position of A and B and so does
not affect the relative contribution to the total cost of the unsuccessful comparisons
between A and B.

The number of unsuccessful comparisons between A and B made by the move-
to-front heuristic on subsequence SAB is at most twice the number of unsuccessful
comparisons between A and B required when SAB is applied to the optimal static
ordering for the list. To see this, assume that SAB contains i As and j Bs, with i ≤ j.
Under the optimal static ordering, i unsuccessful comparisons are required because
B must appear before A in the list (because its access frequency is higher). Move-to-
front will yield an unsuccessful comparison whenever the request sequence changes
from A to B or from B to A. The total number of such changes possible is 2i because
each change involves an A and each A can be part of at most two changes.

Because the total number of unsuccessful comparisons required by move-to-
front for any given pair of keys is at most twice that required by the optimal static
ordering, the total number of unsuccessful comparisons required by move-to-front
for all pairs of keys is also at most twice as high. Because the number of successful
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comparisons is the same for both methods, the total number of comparisons re-
quired by move-to-front is less than twice the number of comparisons required by
the optimal static ordering. 2

14.4 Further Reading

A good introduction to solving recurrence relations appears in Applied Combina-
torics by Fred S. Roberts [Rob84]. For a more advanced treatment, see Concrete
Mathematics by Graham, Knuth, and Patashnik [GKP94].

Cormen, Leiserson, and Rivest provide a good discussion on various methods
for performing amortized analysis in Introduction to Algorithms [CLRS09]. For
an amortized analysis that the splay tree requires m log n time to perform a series
of m operations on n nodes when m > n, see “Self-Adjusting Binary Search
Trees” by Sleator and Tarjan [ST85]. The proof for Theorem 14.2 comes from
“Amortized Analysis of Self-Organizing Sequential Search Heuristics” by Bentley
and McGeoch [BM85].

14.5 Exercises

14.1 Use the technique of guessing a polynomial and deriving the coefficients to
solve the summation

n∑
i=1

i2.

14.2 Use the technique of guessing a polynomial and deriving the coefficients to
solve the summation

n∑
i=1

i3.

14.3 Find, and prove correct, a closed-form solution for

b∑
i=a

i2.

14.4 Use subtract-and-guess or divide-and-guess to find the closed form solution
for the following summation. You must first find a pattern from which to
deduce a potential closed form solution, and then prove that the proposed
solution is correct.

n∑
i=1

i/2i
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14.5 Use the shifting method to solve the summation

n∑
i=1

i2.

14.6 Use the shifting method to solve the summation

n∑
i=1

2i.

14.7 Use the shifting method to solve the summation

n∑
i=1

i2n−i.

14.8 Consider the following code fragment.

sum = 0; inc = 0;
for (i=1; i<=n; i++)

for (j=1; j<=i; j++) {
sum = sum + inc;
inc++;

}

(a) Determine a summation that defines the final value for variable sum as
a function of n.

(b) Determine a closed-form solution for your summation.
14.9 A chocolate company decides to promote its chocolate bars by including a

coupon with each bar. A bar costs a dollar, and with c coupons you get a free
bar. So depending on the value of c, you get more than one bar of chocolate
for a dollar when considering the value of the coupons. How much chocolate
is a dollar worth (as a function of c)?

14.10 Write and solve a recurrence relation to compute the number of times Fibr is
called in the Fibr function of Exercise 2.11.

14.11 Give and prove the closed-form solution for the recurrence relation T(n) =
T(n− 1) + 1, T(1) = 1.

14.12 Give and prove the closed-form solution for the recurrence relation T(n) =
T(n− 1) + c, T(1) = c.

14.13 Prove by induction that the closed-form solution for the recurrence relation

T(n) = 2T(n/2) + n; T(2) = 1

is in Ω(n log n).
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14.14 For the following recurrence, give a closed-form solution. You should not
give an exact solution, but only an asymptotic solution (i.e., using Θ nota-
tion). You may assume that n is a power of 2. Prove that your answer is
correct.

T(n) = T(n/2) +
√
n for n > 1; T(1) = 1.

14.15 Using the technique of expanding the recurrence, find the exact closed-form
solution for the recurrence relation

T(n) = 2T(n/2) + n; T(2) = 2.

You may assume that n is a power of 2.
14.16 Section 5.5 provides an asymptotic analysis for the worst-case cost of func-

tion buildHeap. Give an exact worst-case analysis for buildHeap.
14.17 For each of the following recurrences, find and then prove (using induction)

an exact closed-form solution. When convenient, you may assume that n is
a power of 2.

(a) T(n) = T(n− 1) + n/2 for n > 1; T(1) = 1.

(b) T(n) = 2T(n/2) + n for n > 2; T(2) = 2.

14.18 Use Theorem 14.1 to prove that binary search requires Θ(log n) time.
14.19 Recall that when a hash table gets to be more than about one half full, its

performance quickly degrades. One solution to this problem is to reinsert
all elements of the hash table into a new hash table that is twice as large.
Assuming that the (expected) average case cost to insert into a hash table is
Θ(1), prove that the average cost to insert is still Θ(1) when this re-insertion
policy is used.

14.20 Given a 2-3 tree with N nodes, prove that inserting M additional nodes re-
quires O(M +N) node splits.

14.21 One approach to implementing an array-based list where the list size is un-
known is to let the array grow and shrink. This is known as a dynamic array.
When necessary, we can grow or shrink the array by copying the array’s con-
tents to a new array. If we are careful about the size of the new array, this
copy operation can be done rarely enough so as not to affect the amortized
cost of the operations.

(a) What is the amortized cost of inserting elements into the list if the array
is initially of size 1 and we double the array size whenever the number
of elements that we wish to store exceeds the size of the array? Assume
that the insert itself cost O(1) time per operation and so we are just
concerned with minimizing the copy time to the new array.
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(b) Consider an underflow strategy that cuts the array size in half whenever
the array falls below half full. Give an example where this strategy leads
to a bad amortized cost. Again, we are only interested in measuring the
time of the array copy operations.

(c) Give a better underflow strategy than that suggested in part (b). Your
goal is to find a strategy whose amortized analysis shows that array
copy requires O(n) time for a series of n operations.

14.22 Recall that two vertices in an undirected graph are in the same connected
component if there is a path connecting them. A good algorithm to find the
connected components of an undirected graph begins by calling a DFS on
the first vertex. All vertices reached by the DFS are in the same connected
component and are so marked. We then look through the vertex mark array
until an unmarked vertex i is found. Again calling the DFS on i, all vertices
reachable from i are in a second connected component. We continue work-
ing through the mark array until all vertices have been assigned to some
connected component. A sketch of the algorithm is as follows:

void DFS component(Graph* G, int v, int component) {
G->setMark(v, component);
for (int w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == 0)
DFS component(G, w, component);

}

void concom(Graph* G) {
int i;
int component = 1; // Counter for current component
for (i=0; i<G->n(); i++) // For n vertices in graph

G->setMark(i, 0); // Vertices start in no component
for (i=0; i<G->n(); i++)

if (G->getMark(i) == 0) // Start a new component
DFS component(G, i, component++);

}

Use the concept of potential from amortized analysis to explain why the total
cost of this algorithm is Θ(|V| + |E|). (Note that this will not be a true
amortized analysis because this algorithm does not allow an arbitrary series
of DFS operations but rather is fixed to do a single call to DFS from each
vertex.)

14.23 Give a proof similar to that used for Theorem 14.2 to show that the total
number of comparisons required by any series of n or more searches S on a
self-organizing list of length n using the count heuristic is never more than
twice the total number of comparisons required when series S is applied to
the list stored in its optimal static order.
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14.24 Use mathematical induction to prove that

n∑
i=1

Fib(i) = Fib(n− 2)− 1, for n ≥ 1.

14.25 Use mathematical induction to prove that Fib(i) is even if and only if n is
divisible by 3.

14.26 Use mathematical induction to prove that for n ≥ 6, fib(n) > (3/2)n−1.
14.27 Find closed forms for each of the following recurrences.

(a) F (n) = F (n− 1) + 3;F (1) = 2.
(b) F (n) = 2F (n− 1);F (0) = 1.
(c) F (n) = 2F (n− 1) + 1;F (1) = 1.
(d) F (n) = 2nF (n− 1);F (0) = 1.
(e) F (n) = 2nF (n− 1);F (0) = 1.
(f) F (n) = 2 +

∑n−1
i=1 F (i);F (1) = 1.

14.28 Find Θ for each of the following recurrence relations.
(a) T (n) = 2T (n/2) + n2.
(b) T (n) = 2T (n/2) + 5.
(c) T (n) = 4T (n/2) + n.
(d) T (n) = 2T (n/2) + n2.
(e) T (n) = 4T (n/2) + n3.
(f) T (n) = 4T (n/3) + n.
(g) T (n) = 4T (n/3) + n2.
(h) T (n) = 2T (n/2) + log n.
(i) T (n) = 2T (n/2) + n log n.

14.6 Projects

14.1 Implement the UNION/FIND algorithm of Section 6.2 using both path com-
pression and the weighted union rule. Count the total number of node ac-
cesses required for various series of equivalences to determine if the actual
performance of the algorithm matches the expected cost of Θ(n log∗ n).





15

Lower Bounds

How do I know if I have a good algorithm to solve a problem? If my algorithm runs
in Θ(n log n) time, is that good? It would be if I were sorting the records stored
in an array. But it would be terrible if I were searching the array for the largest
element. The value of an algorithm must be determined in relation to the inherent
complexity of the problem at hand.

In Section 3.6 we defined the upper bound for a problem to be the upper bound
of the best algorithm we know for that problem, and the lower bound to be the
tightest lower bound that we can prove over all algorithms for that problem. While
we usually can recognize the upper bound for a given algorithm, finding the tightest
lower bound for all possible algorithms is often difficult, especially if that lower
bound is more than the “trivial” lower bound determined by measuring the amount
of input that must be processed.

The benefits of being able to discover a strong lower bound are significant. In
particular, when we can make the upper and lower bounds for a problem meet, this
means that we truly understand our problem in a theoretical sense. It also saves
us the effort of attempting to discover more (asymptotically) efficient algorithms
when no such algorithm can exist.

Often the most effective way to determine the lower bound for a problem is
to find a reduction to another problem whose lower bound is already known. This
is the subject of Chapter 17. However, this approach does not help us when we
cannot find a suitable “similar problem.” Our focus in this chapter is discovering
and proving lower bounds from first principles. Our most significant example of
a lower bounds argument so far is the proof from Section 7.9 that the problem of
sorting is O(n log n) in the worst case.

Section 15.1 reviews the concept of a lower bound for a problem and presents
the basic “algorithm” for finding a good algorithm. Section 15.2 discusses lower
bounds on searching in lists, both those that are unordered and those that are or-
dered. Section 15.3 deals with finding the maximum value in a list, and presents a
model for selection based on building a partially ordered set. Section 15.4 presents
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the concept of an adversarial lower bounds proof. Section 15.5 illustrates the con-
cept of a state space lower bound. Section 15.6 presents a linear time worst-case
algorithm for finding the ith biggest element on a list. Section 15.7 continues our
discussion of sorting with a quest for the algorithm that requires the absolute fewest
number of comparisons needed to sort a list.

15.1 Introduction to Lower Bounds Proofs

The lower bound for the problem is the tightest (highest) lower bound that we can
prove for all possible algorithms that solve the problem.1 This can be a difficult bar,
given that we cannot possibly know all algorithms for any problem, because there
are theoretically an infinite number. However, we can often recognize a simple
lower bound based on the amount of input that must be examined. For example,
we can argue that the lower bound for any algorithm to find the maximum-valued
element in an unsorted list must be Ω(n) because any algorithm must examine all
of the inputs to be sure that it actually finds the maximum value.

In the case of maximum finding, the fact that we know of a simple algorithm
that runs in O(n) time, combined with the fact that any algorithm needs Ω(n) time,
is significant. Because our upper and lower bounds meet (within a constant factor),
we know that we do have a “good” algorithm for solving the problem. It is possible
that someone can develop an implementation that is a “little” faster than an existing
one, by a constant factor. But we know that its not possible to develop one that is
asymptotically better.

We must be careful about how we interpret this last statement, however. The
world is certainly better off for the invention of Quicksort, even though Mergesort
was available at the time. Quicksort is not asymptotically faster than Mergesort, yet
is not merely a “tuning” of Mergesort either. Quicksort is a substantially different
approach to sorting. So even when our upper and lower bounds for a problem meet,
there are still benefits to be gained from a new, clever algorithm.

So now we have an answer to the question “How do I know if I have a good
algorithm to solve a problem?” An algorithm is good (asymptotically speaking) if
its upper bound matches the problem’s lower bound. If they match, we know to
stop trying to find an (asymptotically) faster algorithm. What if the (known) upper
bound for our algorithm does not match the (known) lower bound for the problem?
In this case, we might not know what to do. Is our upper bound flawed, and the
algorithm is really faster than we can prove? Is our lower bound weak, and the true
lower bound for the problem is greater? Or is our algorithm simply not the best?

1Throughout this discussion, it should be understood that any mention of bounds must specify
what class of inputs are being considered. Do we mean the bound for the worst case input? The
average cost over all inputs? Regardless of which class of inputs we consider, all of the issues raised
apply equally.
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Now we know precisely what we are aiming for when designing an algorithm:
We want to find an algorithm who’s upper bound matches the lower bound of the
problem. Putting together all that we know so far about algorithms, we can organize
our thinking into the following “algorithm for designing algorithms.”2

If the upper and lower bounds match,
then stop,
else if the bounds are close or the problem isn’t important,

then stop,
else if the problem definition focuses on the wrong thing,

then restate it,
else if the algorithm is too slow,

then find a faster algorithm,
else if lower bound is too weak,

then generate a stronger bound.

We can repeat this process until we are satisfied or exhausted.
This brings us smack up against one of the toughest tasks in analysis. Lower

bounds proofs are notoriously difficult to construct. The problem is coming up with
arguments that truly cover all of the things that any algorithm possibly could do.
The most common fallacy is to argue from the point of view of what some good
algorithm actually does do, and claim that any algorithm must do the same. This
simply is not true, and any lower bounds proof that refers to specific behavior that
must take place should be viewed with some suspicion.

Let us consider the Towers of Hanoi problem again. Recall from Section 2.5
that our basic algorithm is to move n − 1 disks (recursively) to the middle pole,
move the bottom disk to the third pole, and then move n−1 disks (again recursively)
from the middle to the third pole. This algorithm generates the recurrence T(n) =
2T(n− 1) + 1 = 2n − 1. So, the upper bound for our algorithm is 2n − 1. But is
this the best algorithm for the problem? What is the lower bound for the problem?

For our first try at a lower bounds proof, the “trivial” lower bound is that we
must move every disk at least once, for a minimum cost of n. Slightly better is to
observe that to get the bottom disk to the third pole, we must move every other disk
at least twice (once to get them off the bottom disk, and once to get them over to
the third pole). This yields a cost of 2n− 1, which still is not a good match for our
algorithm. Is the problem in the algorithm or in the lower bound?

We can get to the correct lower bound by the following reasoning: To move the
biggest disk from first to the last pole, we must first have all of the other n−1 disks
out of the way, and the only way to do that is to move them all to the middle pole
(for a cost of at least T(n− 1)). We then must move the bottom disk (for a cost of

2This is a minor reformulation of the “algorithm” given by Gregory J.E. Rawlins in his book
“Compared to What?”
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at least one). After that, we must move the n− 1 remaining disks from the middle
pole to the third pole (for a cost of at least T(n− 1)). Thus, no possible algorithm
can solve the problem in less than 2n − 1 steps. Thus, our algorithm is optimal.3

Of course, there are variations to a given problem. Changes in the problem
definition might or might not lead to changes in the lower bound. Two possible
changes to the standard Towers of Hanoi problem are:

• Not all disks need to start on the first pole.
• Multiple disks can be moved at one time.

The first variation does not change the lower bound (at least not asymptotically).
The second one does.

15.2 Lower Bounds on Searching Lists

In Section 7.9 we presented an important lower bounds proof to show that the
problem of sorting is Θ(n log n) in the worst case. In Chapter 9 we discussed a
number of algorithms to search in sorted and unsorted lists, but we did not provide
any lower bounds proofs to this important problem. We will extend our pool of
techniques for lower bounds proofs in this section by studying lower bounds for
searching unsorted and sorted lists.

15.2.1 Searching in Unsorted Lists

Given an (unsorted) list L of n elements and a search key K, we seek to identify one
element in L which has key value K, if any exists. For the rest of this discussion,
we will assume that the key values for the elements in L are unique, that the set of
all possible keys is totally ordered (that is, the operations <, =, and > are defined
for all pairs of key values), and that comparison is our only way to find the relative
ordering of two keys. Our goal is to solve the problem using the minimum number
of comparisons.

Given this definition for searching, we can easily come up with the standard
sequential search algorithm, and we can also see that the lower bound for this prob-
lem is “obviously” n comparisons. (Keep in mind that the key K might not actually
appear in the list.) However, lower bounds proofs are a bit slippery, and it is in-
structive to see how they can go wrong.

Theorem 15.1 The lower bound for the problem of searching in an unsorted list
is n comparisons.

3Recalling the advice to be suspicious of any lower bounds proof that argues a given behavior
“must” happen, this proof should be raising red flags. However, in this particular case the problem is
so constrained that there really is no (better) alternative to this particular sequence of events.
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Here is our first attempt at proving the theorem.
Proof 1: We will try a proof by contradiction. Assume an algorithm A exists that
requires only n − 1 (or less) comparisons of K with elements of L. Because there
are n elements of L, A must have avoided comparing K with L[i] for some value
i. We can feed the algorithm an input with K in position i. Such an input is legal in
our model, so the algorithm is incorrect. 2

Is this proof correct? Unfortunately no. First of all, any given algorithm need
not necessarily consistently skip any given position i in its n − 1 searches. For
example, it is not necessary that all algorithms search the list from left to right. It
is not even necessary that all algorithms search the same n− 1 positions first each
time through the list.

We can try to dress up the proof as follows: Proof 2: On any given run of the
algorithm, if n − 1 elements are compared against K, then some element position
(call it position i) gets skipped. It is possible that K is in position i at that time, and
will not be found. Therefore, n comparisons are required. 2

Unfortunately, there is another error that needs to be fixed. It is not true that
all algorithms for solving the problem must work by comparing elements of L
against K. An algorithm might make useful progress by comparing elements of L
against each other. For example, if we compare two elements of L, then compare
the greater against K and find that this element is less than K, we know that the
other element is also less than K. It seems intuitively obvious that such compar-
isons won’t actually lead to a faster algorithm, but how do we know for sure? We
somehow need to generalize the proof to account for this approach.

We will now present a useful abstraction for expressing the state of knowledge
for the value relationships among a set of objects. A total order defines relation-
ships within a collection of objects such that for every pair of objects, one is greater
than the other. A partially ordered set or poset is a set on which only a partial
order is defined. That is, there can be pairs of elements for which we cannot de-
cide which is “greater”. For our purpose here, the partial order is the state of our
current knowledge about the objects, such that zero or more of the order relations
between pairs of elements are known. We can represent this knowledge by drawing
directed acyclic graphs (DAGs) showing the known relationships, as illustrated by
Figure 15.1.
Proof 3: Initially, we know nothing about the relative order of the elements in L,
or their relationship to K. So initially, we can view the n elements in L as being in
n separate partial orders. Any comparison between two elements in L can affect
the structure of the partial orders. This is somewhat similar to the UNION/FIND
algorithm implemented using parent pointer trees, described in Section 6.2.

Now, every comparison between elements in L can at best combine two of the
partial orders together. Any comparison between K and an element, say A, in L can
at best eliminate the partial order that contains A. Thus, if we spendm comparisons
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A
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Figure 15.1 Illustration of using a poset to model our current knowledge of the
relationships among a collection of objects. A directed acyclic graph (DAG) is
used to draw the poset (assume all edges are directed downward). In this example,
our knowledge is such that we don’t know how A or B relate to any of the other
objects. However, we know that both C and G are greater than E and F. Further,
we know that C is greater than D, and that E is greater than F.

comparing elements in L we have at least n−m partial orders. Every such partial
order needs at least one comparison against K to make sure that K is not somewhere
in that partial order. Thus, any algorithm must make at least n comparisons in the
worst case. 2

15.2.2 Searching in Sorted Lists

We will now assume that list L is sorted. In this case, is linear search still optimal?
Clearly no, but why not? Because we have additional information to work with that
we do not have when the list is unsorted. We know that the standard binary search
algorithm has a worst case cost of O(log n). Can we do better than this? We can
prove that this is the best possible in the worst case with a proof similar to that used
to show the lower bound on sorting.

Again we use the decision tree to model our algorithm. Unlike when searching
an unsorted list, comparisons between elements of L tell us nothing new about their
relative order, so we consider only comparisons between K and an element in L. At
the root of the decision tree, our knowledge rules out no positions in L, so all are
potential candidates. As we take branches in the decision tree based on the result
of comparing K to an element in L, we gradually rule out potential candidates.
Eventually we reach a leaf node in the tree representing the single position in L
that can contain K. There must be at least n+ 1 nodes in the tree because we have
n + 1 distinct positions that K can be in (any position in L, plus not in L at all).
Some path in the tree must be at least log n levels deep, and the deepest node in the
tree represents the worst case for that algorithm. Thus, any algorithm on a sorted
array requires at least Ω(log n) comparisons in the worst case.

We can modify this proof to find the average cost lower bound. Again, we
model algorithms using decision trees. Except now we are interested not in the
depth of the deepest node (the worst case) and therefore the tree with the least-
deepest node. Instead, we are interested in knowing what the minimum possible is
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for the “average depth” of the leaf nodes. Define the total path length as the sum
of the levels for each node. The cost of an outcome is the level of the corresponding
node plus 1. The average cost of the algorithm is the average cost of the outcomes
(total path length/n). What is the tree with the least average depth? This is equiva-
lent to the tree that corresponds to binary search. Thus, binary search is optimal in
the average case.

While binary search is indeed an optimal algorithm for a sorted list in the worst
and average cases when searching a sorted array, there are a number of circum-
stances that might lead us to select another algorithm instead. One possibility is
that we know something about the distribution of the data in the array. We saw in
Section 9.1 that if each position in L is equally likely to hold X (equivalently, the
data are well distributed along the full key range), then an interpolation search is
Θ(log log n) in the average case. If the data are not sorted, then using binary search
requires us to pay the cost of sorting the list in advance, which is only worthwhile if
many (at least O(log n)) searches will be performed on the list. Binary search also
requires that the list (even if sorted) be implemented using an array or some other
structure that supports random access to all elements with equal cost. Finally, if we
know all search requests in advance, we might prefer to sort the list by frequency
and do linear search in extreme search distributions, as discussed in Section 9.2.

15.3 Finding the Maximum Value

How can we find the ith largest value in a sorted list? Obviously we just go to the
ith position. But what if we have an unsorted list? Can we do better than to sort
it? If we are looking for the minimum or maximum value, certainly we can do
better than sorting the list. Is this true for the second biggest value? For the median
value? In later sections we will examine those questions. For this section, we
will continue our examination of lower bounds proofs by reconsidering the simple
problem of finding the maximum value in an unsorted list.

Here is a simple algorithm for finding the largest value.

// Return position of largest value in "A" of size "n"
int largest(int A[], int n) {

int currlarge = 0; // Holds largest element position
for (int i=1; i<n; i++) // For each array element
if (A[currlarge] < A[i]) // if A[i] is larger

currlarge = i; // remember its position
return currlarge; // Return largest position

}

Obviously this algorithm requires n comparisons. Is this optimal? It should be
intuitively obvious that it is, but let us try to prove it. (Before reading further you
might try writing down your own proof.)
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Proof 1: The winner must compare against all other elements, so there must be
n− 1 comparisons. 2

This proof is clearly wrong, because the winner does not need to explicitly com-
pare against all other elements to be recognized. For example, a standard single-
elimination playoff sports tournament requires only n − 1 comparisons, and the
winner does not play every opponent. So let’s try again.
Proof 2: Only the winner does not lose. There are n− 1 losers. A single compar-
ison generates (at most) one (new) loser. Therefore, there must be n − 1 compar-
isons. 2

This proof is sound. However, it will be useful later to abstract this by introduc-
ing the concept of posets as we did in Section 15.2.1. We can view the maximum-
finding problem as starting with a poset where there are no known relationships, so
every member of the collection is in its own separate DAG of one element.
Proof 2a: To find the largest value, we start with a poset of n DAGs each with
a single element, and we must build a poset having all elements in one DAG such
that there is one maximum value (and by implication, n − 1 losers). We wish to
connect the elements of the poset into a single DAG with the minimum number of
links. This requires at least n − 1 links. A comparison provides at most one new
link. Thus, a minimum of n− 1 comparisons must be made. 2

What is the average cost of largest? Because it always does the same num-
ber of comparisons, clearly it must cost n − 1 comparisons. We can also consider
the number of assignments that largest must do. Function largest might do
an assignment on any iteration of the for loop.

Because this event does happen, or does not happen, if we are given no informa-
tion about distribution we could guess that an assignment is made after each com-
parison with a probability of one half. But this is clearly wrong. In fact, largest
does an assignment on the ith iteration if and only if A[i] is the biggest of the the
first i elements. Assuming all permutations are equally likely, the probability of
this being true is 1/i. Thus, the average number of assignments done is

1 +
n∑
i=2

1

i
=

n∑
i=1

1

i

which is the Harmonic Series Hn. Hn = Θ(log n). More exactly, Hn is close to
loge n.

How “reliable” is this average? That is, how much will a given run of the
program deviate from the mean cost? According to Čebyšev’s Inequality, an obser-
vation will fall within two standard deviations of the mean at least 75% of the time.
For Largest, the variance is

Hn −
π2

6
= loge n−

π2

6
.
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The standard deviation is thus about
√

loge n. So, 75% of the observations are
between loge n − 2

√
loge n and loge n + 2

√
loge n. Is this a narrow spread or a

wide spread? Compared to the mean value, this spread is pretty wide, meaning that
the number of assignments varies widely from run to run of the program.

15.4 Adversarial Lower Bounds Proofs

Our next problem will be finding the second largest in a collection of objects. Con-
sider what happens in a standard single-elimination tournament. Even if we assume
that the “best” team wins in every game, is the second best the one that loses in the
finals? Not necessarily. We might expect that the second best must lose to the best,
but they might meet at any time.

Let us go through our standard “algorithm for finding algorithms” by first
proposing an algorithm, then a lower bound, and seeing if they match. Unlike
our analysis for most problems, this time we are going to count the exact number
of comparisons involved and attempt to minimize this count. A simple algorithm
for finding the second largest is to first find the maximum (in n− 1 comparisons),
discard it, and then find the maximum of the remaining elements (in n− 2 compar-
isons) for a total cost of 2n− 3 comparisons. Is this optimal? That seems doubtful,
but let us now proceed to the step of attempting to prove a lower bound.

Theorem 15.2 The lower bound for finding the second largest value is 2n− 3.

Proof: Any element that loses to anything other than the maximum cannot be
second. So, the only candidates for second place are those that lost to the maximum.
Function largest might compare the maximum element to n − 1 others. Thus,
we might need n− 2 additional comparisons to find the second largest. 2

This proof is wrong. It exhibits the necessity fallacy: “Our algorithm does
something, therefore all algorithms solving the problem must do the same.”

This leaves us with our best lower bounds argument at the moment being that
finding the second largest must cost at least as much as finding the largest, or n−1.
Let us take another try at finding a better algorithm by adopting a strategy of divide
and conquer. What if we break the list into halves, and run largest on each
half? We can then compare the two winners (we have now used a total of n − 1
comparisons), and remove the winner from its half. Another call to largest on
the winner’s half yields its second best. A final comparison against the winner of
the other half gives us the true second place winner. The total cost is d3n/2e−2. Is
this optimal? What if we break the list into four pieces? The best would be d5n/4e.
What if we break the list into eight pieces? Then the cost would be about d9n/8e.
Notice that as we break the list into more parts, comparisons among the winners of
the parts becomes a larger concern.
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Figure 15.2 An example of building a binomial tree. Pairs of elements are
combined by choosing one of the parents to be the root of the entire tree. Given
two trees of size four, one of the roots is chosen to be the root for the combined
tree of eight nodes.

Looking at this another way, the only candidates for second place are losers to
the eventual winner, and our goal is to have as few of these as possible. So we need
to keep track of the set of elements that have lost in direct comparison to the (even-
tual) winner. We also observe that we learn the most from a comparison when both
competitors are known to be larger than the same number of other values. So we
would like to arrange our comparisons to be against “equally strong” competitors.
We can do all of this with a binomial tree. A binomial tree of height m has 2m

nodes. Either it is a single node (if m = 0), or else it is two height m− 1 binomial
trees with one tree’s root becoming a child of the other. Figure 15.2 illustrates how
a binomial tree with eight nodes would be constructed.

The resulting algorithm is simple in principle: Build the binomial tree for all n
elements, and then compare the dlog ne children of the root to find second place.
We could store the binomial tree as an explicit tree structure, and easily build it in
time linear on the number of comparisons as each comparison requires one link be
added. Because the shape of a binomial tree is heavily constrained, we can also
store the binomial tree implicitly in an array, much as we do for a heap. Assume
that two trees, each with 2k nodes, are in the array. The first tree is in positions 1
to 2k. The second tree is in positions 2k + 1 to 2k+1. The root of each subtree is in
the final array position for that subtree.

To join two trees, we simply compare the roots of the subtrees. If necessary,
swap the subtrees so that tree with the the larger root element becomes the second
subtree. This trades space (we only need space for the data values, no node point-
ers) for time (in the worst case, all of the data swapping might cost O(n log n),
though this does not affect the number of comparisons required). Note that for
some applications, this is an important observation that the array’s data swapping
requires no comparisons. If a comparison is simply a check between two integers,
then of course moving half the values within the array is too expensive. But if a
comparison requires that a competition be held between two sports teams, then the
cost of a little bit (or even a lot) of book keeping becomes irrelevent.

Because the binomial tree’s root has log n children, and building the tree re-
quires n− 1 comparisons, the number of comparisons required by this algorithm is
n+ dlog ne − 2. This is clearly better than our previous algorithm. Is it optimal?



Sec. 15.4 Adversarial Lower Bounds Proofs 503

We now go back to trying to improve the lower bounds proof. To do this,
we introduce the concept of an adversary. The adversary’s job is to make an
algorithm’s cost as high as possible. Imagine that the adversary keeps a list of all
possible inputs. We view the algorithm as asking the adversary for information
about the algorithm’s input. The adversary may never lie, in that its answer must
be consistent with the previous answers. But it is permitted to “rearrange” the input
as it sees fit in order to drive the total cost for the algorithm as high as possible. In
particular, when the algorithm asks a question, the adversary must answer in a way
that is consistent with at least one remaining input. The adversary then crosses out
all remaining inputs inconsistent with that answer. Keep in mind that there is not
really an entity within the computer program that is the adversary, and we don’t
actually modify the program. The adversary operates merely as an analysis device,
to help us reason about the program.

As an example of the adversary concept, consider the standard game of Hang-
man. Player A picks a word and tells player B how many letters the word has.
Player B guesses various letters. If B guesses a letter in the word, then A will in-
dicate which position(s) in the word have the letter. Player B is permitted to make
only so many guesses of letters not in the word before losing.

In the Hangman game example, the adversary is imagined to hold a dictionary
of words of some selected length. Each time the player guesses a letter, the ad-
versary consults the dictionary and decides if more words will be eliminated by
accepting the letter (and indicating which positions it holds) or saying that its not
in the word. The adversary can make any decision it chooses, so long as at least
one word in the dictionary is consistent with all of the decisions. In this way, the
adversary can hope to make the player guess as many letters as possible.

Before explaining how the adversary plays a role in our lower bounds proof,
first observe that at least n− 1 values must lose at least once. This requires at least
n − 1 compares. In addition, at least k − 1 values must lose to the second largest
value. That is, k direct losers to the winner must be compared. There must be at
least n+ k − 2 comparisons. The question is: How low can we make k?

Call the strength of element A[i] the number of elements that A[i] is (known
to be) bigger than. If A[i] has strength a, and A[j] has strength b, then the winner
has strength a+ b+ 1. The algorithm gets to know the (current) strengths for each
element, and it gets to pick which two elements are compared next. The adversary
gets to decide who wins any given comparison. What strategy by the adversary
would cause the algorithm to learn the least from any given comparison? It should
minimize the rate at which any element improves it strength. It can do this by
making the element with the greater strength win at every comparison. This is a
“fair” use of an adversary in that it represents the results of providing a worst-case
input for that given algorithm.



504 Chap. 15 Lower Bounds

To minimize the effects of worst-case behavior, the algorithm’s best strategy is
to maximize the minimum improvement in strength by balancing the strengths of
any two competitors. From the algorithm’s point of view, the best outcome is that
an element doubles in strength. This happens whenever a = b, where a and b are
the strengths of the two elements being compared. All strengths begin at zero, so
the winner must make at least k comparisons when 2k−1 < n ≤ 2k. Thus, there
must be at least n+ dlog ne − 2 comparisons. So our algorithm is optimal.

15.5 State Space Lower Bounds Proofs

We now consider the problem of finding both the minimum and the maximum from
an (unsorted) list of values. This might be useful if we want to know the range of
a collection of values to be plotted, for the purpose of drawing the plot’s scales.
Of course we could find them independently in 2n − 2 comparisons. A slight
modification is to find the maximum in n − 1 comparisons, remove it from the
list, and then find the minimum in n − 2 further comparisons for a total of 2n − 3
comparisons. Can we do better than this?

Before continuing, think a moment about how this problem of finding the mini-
mum and the maximum compares to the problem of the last section, that of finding
the second biggest value (and by implication, the maximum). Which of these two
problems do you think is harder? It is probably not at all obvious to you that one
problem is harder or easier than the other. There is intuition that argues for ei-
ther case. On the one hand intuition might argue that the process of finding the
maximum should tell you something about the second biggest value, more than
that process should tell you about the minimum value. On the other hand, any
given comparison tells you something about which of two can be a candidate for
maximum value, and which can be a candidate for minimum value, thus making
progress in both directions.

We will start by considering a simple divide-and-conquer approach to finding
the minimum and maximum. Split the list into two parts and find the minimum and
maximum elements in each part. Then compare the two minimums and maximums
to each other with a further two comparisons to get the final result. The algorithm
is shown in Figure 15.3.

The cost of this algorithm can be modeled by the following recurrence.

T(n) =


0 n = 1
1 n = 2
T(bn/2c) + T(dn/2e) + 2 n > 2

This is a rather interesting recurrence, and its solution ranges between 3n/2−2
(when n = 2i or n = 21 ± 1) and 5n/3− 2 (when n = 3× 2i). We can infer from
this behavior that how we divide the list affects the performance of the algorithm.
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// Return the minimum and maximum values in A
// between positions l and r
template <typename E>
void MinMax(E A[], int l, int r, E& Min, E& Max) {

if (l == r) { // n=1
Min = A[r];
Max = A[r];

}
else if (l+1 == r) { // n=2

Min = min(A[l], A[r]);
Max = max(A[l], A[r]);

}
else { // n>2

int Min1, Min2, Max1, Max2;
int mid = (l + r)/2;
MinMax(A, l, mid, Min1, Max1);
MinMax(A, mid+1, r, Min2, Max2);
Min = min(Min1, Min2);
Max = max(Max1, Max2);

}
}

Figure 15.3 Recursive algorithm for finding the minimum and maximum values
in an array.

For example, what if we have six items in the list? If we break the list into two
sublists of three elements, the cost would be 8. If we break the list into a sublist of
size two and another of size four, then the cost would only be 7.

With divide and conquer, the best algorithm is the one that minimizes the work,
not necessarily the one that balances the input sizes. One lesson to learn from this
example is that it can be important to pay attention to what happens for small sizes
of n, because any division of the list will eventually produce many small lists.

We can model all possible divide-and-conquer strategies for this problem with
the following recurrence.

T(n) =

 0 n = 1
1 n = 2
min1≤k≤n−1{T(k) + T(n− k)}+ 2 n > 2

That is, we want to find a way to break up the list that will minimize the total
work. If we examine various ways of breaking up small lists, we will eventually
recognize that breaking the list into a sublist of size 2 and a sublist of size n − 2
will always produce results as good as any other division. This strategy yields the
following recurrence.

T(n) =


0 n = 1
1 n = 2
T(n− 2) + 3 n > 2
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This recurrence (and the corresponding algorithm) yields T(n) = d3n/2e − 2
comparisons. Is this optimal? We now introduce yet another tool to our collection
of lower bounds proof techniques: The state space proof.

We will model our algorithm by defining a state that the algorithm must be in at
any given instant. We can then define the start state, the end state, and the transitions
between states that any algorithm can support. From this, we will reason about the
minimum number of states that the algorithm must go through to get from the start
to the end, to reach a state space lower bound.

At any given instant, we can track the following four categories of elements:
• Untested: Elements that have not been tested.
• Winners: Elements that have won at least once, and never lost.
• Losers: Elements that have lost at least once, and never won.
• Middle: Elements that have both won and lost at least once.
We define the current state to be a vector of four values, (U,W,L,M) for

untested, winners, losers, and middles, respectively. For a set of n elements, the
initial state of the algorithm is (n, 0, 0, 0) and the end state is (0, 1, 1, n− 2). Thus,
every run for any algorithm must go from state (n, 0, 0, 0) to state (0, 1, 1, n − 2).
We also observe that once an element is identified to be a middle, it can then be
ignored because it can neither be the minimum nor the maximum.

Given that there are four types of elements, there are 10 types of comparison.
Comparing with a middle cannot be more efficient than other comparisons, so we
should ignore those, leaving six comparisons of interest. We can enumerate the
effects of each comparison type as follows. If we are in state (i, j, k, l) and we have
a comparison, then the state changes are as follows.

U : U (i− 2, j + 1, k + 1, l)
W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)
L : U (i− 1, j + 1, k, l)
or (i− 1, j, k, l + 1)

W : U (i− 1, j, k + 1, l)
or (i− 1, j, k, l + 1)

W : L (i, j, k, l)
or (i, j − 1, k − 1, l + 2)

Now, let us consider what an adversary will do for the various comparisons.
The adversary will make sure that each comparison does the least possible amount
of work in taking the algorithm toward the goal state. For example, comparing a
winner to a loser is of no value because the worst case result is always to learn
nothing new (the winner remains a winner and the loser remains a loser). Thus,
only the following five transitions are of interest:
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...

... i−1

n−i

Figure 15.4 The poset that represents the minimum information necessary to
determine the ith element in a list. We need to know which element has i − 1
values less and n − i values more, but we do not need to know the relationships
among the elements with values less or greater than the ith element.

U : U (i− 2, j + 1, k + 1, l)
L : U (i− 1, j + 1, k, l)
W : U (i− 1, j, k + 1, l)

W : W (i, j − 1, k, l + 1)
L : L (i, j, k − 1, l + 1)

Only the last two transition types increase the number of middles, so there
must be n− 2 of these. The number of untested elements must go to 0, and the first
transition is the most efficient way to do this. Thus, dn/2e of these are required.
Our conclusion is that the minimum possible number of transitions (comparisons)
is n+ dn/2e − 2. Thus, our algorithm is optimal.

15.6 Finding the ith Best Element

We now tackle the problem of finding the ith best element in a list. As observed
earlier, one solution is to sort the list and simply look in the ith position. However,
this process provides considerably more information than we need to solve the
problem. The minimum amount of information that we actually need to know can
be visualized as shown in Figure 15.4. That is, all we need to know is the i − 1
items less than our desired value, and the n− i items greater. We do not care about
the relative order within the upper and lower groups. So can we find the required
information faster than by first sorting? Looking at the lower bound, can we tighten
that beyond the trivial lower bound of n comparisons? We will focus on the specific
question of finding the median element (i.e., the element with rank n/2), because
the resulting algorithm can easily be modified to find the ith largest value for any i.

Looking at the Quicksort algorithm might give us some insight into solving the
median problem. Recall that Quicksort works by selecting a pivot value, partition-
ing the array into those elements less than the pivot and those greater than the pivot,
and moving the pivot to its proper location in the array. If the pivot is in position i,
then we are done. If not, we can solve the subproblem recursively by only consid-
ering one of the sublists. That is, if the pivot ends up in position k > i, then we
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Figure 15.5 A method for finding a pivot for partitioning a list that guarantees
at least a fixed fraction of the list will be in each partition. We divide the list into
groups of five elements, and find the median for each group. We then recursively
find the median of these n/5 medians. The median of five elements is guaran-
teed to have at least two in each partition. The median of three medians from
a collection of 15 elements is guaranteed to have at least five elements in each
partition.

simply solve by finding the ith best element in the left partition. If the pivot is at
position k < i, then we wish to find the i− kth element in the right partition.

What is the worst case cost of this algorithm? As with Quicksort, we get bad
performance if the pivot is the first or last element in the array. This would lead to
possibly O(n2) performance. However, if the pivot were to always cut the array in
half, then our cost would be modeled by the recurrence T(n) = T(n/2) +n = 2n
or O(n) cost.

Finding the average cost requires us to use a recurrence with full history, similar
to the one we used to model the cost of Quicksort. If we do this, we will find that
T(n) is in O(n) in the average case.

Is it possible to modify our algorithm to get worst-case linear time? To do
this, we need to pick a pivot that is guaranteed to discard a fixed fraction of the
elements. We cannot just choose a pivot at random, because doing so will not meet
this guarantee. The ideal situation would be if we could pick the median value for
the pivot each time. But that is essentially the same problem that we are trying to
solve to begin with.

Notice, however, that if we choose any constant c, and then if we pick the
median from a sample of size n/c, then we can guarantee that we will discard
at least n/2c elements. Actually, we can do better than this by selecting small
subsets of a constant size (so we can find the median of each in constant time), and
then taking the median of these medians. Figure 15.5 illustrates this idea. This
observation leads directly to the following algorithm.

• Choose the n/5 medians for groups of five elements from the list. Choosing
the median of five items can be done in constant time.

• Recursively, select M, the median of the n/5 medians-of-fives.
• Partition the list into those elements larger and smaller than M.
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While selecting the median in this way is guaranteed to eliminate a fraction of
the elements (leaving at most d(7n− 5)/10e elements left), we still need to be sure
that our recursion yields a linear-time algorithm. We model the algorithm by the
following recurrence.

T(n) ≤ T(dn/5e) + T(d(7n− 5)/10e) + 6dn/5e+ n− 1.

The T(dn/5e) term comes from computing the median of the medians-of-fives,
the 6dn/5e term comes from the cost to calculate the median-of-fives (exactly six
comparisons for each group of five element), and the T(d(7n−5)/10e) term comes
from the recursive call of the remaining (up to) 70% of the elements that might be
left.

We will prove that this recurrence is linear by assuming that it is true for some
constant r, and then show that T(n) ≤ rn for all n greater than some bound.

T(n) ≤ T(dn
5
e) + T(d7n− 5
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This is true for r ≥ 23 and n ≥ 380. This provides a base case that allows us to
use induction to prove that ∀n ≥ 380,T(n) ≤ 23n.

In reality, this algorithm is not practical because its constant factor costs are so
high. So much work is being done to guarantee linear time performance that it is
more efficient on average to rely on chance to select the pivot, perhaps by picking
it at random or picking the middle value out of the current subarray.

15.7 Optimal Sorting

We conclude this section with an effort to find the sorting algorithm with the ab-
solute fewest possible comparisons. It might well be that the result will not be
practical for a general-purpose sorting algorithm. But recall our analogy earlier to
sports tournaments. In sports, a “comparison” between two teams or individuals
means doing a competition between the two. This is fairly expensive (at least com-
pared to some minor book keeping in a computer), and it might be worth trading a
fair amount of book keeping to cut down on the number of games that need to be
played. What if we want to figure out how to hold a tournament that will give us
the exact ordering for all teams in the fewest number of total games? Of course,
we are assuming that the results of each game will be “accurate” in that we assume
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not only that the outcome of A playing B would always be the same (at least over
the time period of the tournament), but that transitivity in the results also holds. In
practice these are unrealistic assumptions, but such assumptions are implicitly part
of many tournament organizations. Like most tournament organizers, we can sim-
ply accept these assumptions and come up with an algorithm for playing the games
that gives us some rank ordering based on the results we obtain.

Recall Insertion Sort, where we put element i into a sorted sublist of the first i−
1 elements. What if we modify the standard Insertion Sort algorithm to use binary
search to locate where the ith element goes in the sorted sublist? This algorithm
is called binary insert sort. As a general-purpose sorting algorithm, this is not
practical because we then have to (on average) move about i/2 elements to make
room for the newly inserted element in the sorted sublist. But if we count only
comparisons, binary insert sort is pretty good. And we can use some ideas from
binary insert sort to get closer to an algorithm that uses the absolute minimum
number of comparisons needed to sort.

Consider what happens when we run binary insert sort on five elements. How
many comparisons do we need to do? We can insert the second element with one
comparison, the third with two comparisons, and the fourth with 2 comparisons.
When we insert the fifth element into the sorted list of four elements, we need to
do three comparisons in the worst case. Notice exactly what happens when we
attempt to do this insertion. We compare the fifth element against the second. If the
fifth is bigger, we have to compare it against the third, and if it is bigger we have
to compare it against the fourth. In general, when is binary search most efficient?
When we have 2i − 1 elements in the list. It is least efficient when we have 2i

elements in the list. So, we can do a bit better if we arrange our insertions to avoid
inserting an element into a list of size 2i if possible.

Figure 15.6 illustrates a different organization for the comparisons that we
might do. First we compare the first and second element, and the third and fourth
elements. The two winners are then compared, yielding a binomial tree. We can
view this as a (sorted) chain of three elements, with element A hanging off from the
root. If we then insert element B into the sorted chain of three elements, we will
end up with one of the two posets shown on the right side of Figure 15.6, at a cost of
2 comparisons. We can then merge A into the chain, for a cost of two comparisons
(because we already know that it is smaller then either one or two elements, we are
actually merging it into a list of two or three elements). Thus, the total number of
comparisons needed to sort the five elements is at most seven instead of eight.

If we have ten elements to sort, we can first make five pairs of elements (using
five compares) and then sort the five winners using the algorithm just described
(using seven more compares). Now all we need to do is to deal with the original
losers. We can generalize this process for any number of elements as:

• Pair up all the nodes with bn2 c comparisons.
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A

B
or

A

A

Figure 15.6 Organizing comparisons for sorting five elements. First we order
two pairs of elements, and then compare the two winners to form a binomial tree
of four elements. The original loser to the root is labeled A, and the remaining
three elements form a sorted chain. We then insert element B into the sorted
chain. Finally, we put A into the resulting chain to yield a final sorted list.

• Recursively sort the winners.
• Fold in the losers.

We use binary insert to place the losers. However, we are free to choose the
best ordering for inserting, keeping in mind the fact that binary search has the
same cost for 2i through 2i+1 − 1 items. For example, binary search requires three
comparisons in the worst case for lists of size 4, 5, 6, or 7. So we pick the order of
inserts to optimize the binary searches, which means picking an order that avoids
growing a sublist size such that it crosses the boundary on list size to require an
additional comparison. This sort is called merge insert sort, and also known as
the Ford and Johnson sort.

For ten elements, given the poset shown in Figure 15.7 we fold in the last
four elements (labeled 1 to 4) in the order Element 3, Element 4, Element 1, and
finally Element 2. Element 3 will be inserted into a list of size three, costing two
comparisons. Depending on where Element 3 then ends up in the list, Element 4
will now be inserted into a list of size 2 or 3, costing two comparisons in either
case. Depending on where Elements 3 and 4 are in the list, Element 1 will now be
inserted into a list of size 5, 6, or 7, all of which requires three comparisons to place
in sort order. Finally, Element 2 will be inserted into a list of size 5, 6, or 7.

Merge insert sort is pretty good, but is it optimal? Recall from Section 7.9 that
no sorting algorithm can be faster than Ω(n log n). To be precise, the information
theoretic lower bound for sorting can be proved to be dlog n!e. That is, we can
prove a lower bound of exactly dlog n!e comparisons. Merge insert sort gives us
a number of comparisons equal to this information theoretic lower bound for all
values up to n = 12. At n = 12, merge insert sort requires 30 comparisons
while the information theoretic lower bound is only 29 comparisons. However, for
such a small number of elements, it is possible to do an exhaustive study of every
possible arrangement of comparisons. It turns out that there is in fact no possible
arrangement of comparisons that makes the lower bound less than 30 comparisons
when n = 12. Thus, the information theoretic lower bound is an underestimate in
this case, because 30 really is the best that can be done.
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1

2

4

3

Figure 15.7 Merge insert sort for ten elements. First five pairs of elements are
compared. The five winners are then sorted. This leaves the elements labeled 1-4
to be sorted into the chain made by the remaining six elements.

Call the optimal worst cost for n elements S(n). We know that S(n + 1) ≤
S(n)+dlog(n+1)e because we could sort n elements and use binary insert for the
last one. For all n and m, S(n+m) ≤ S(n) + S(m) +M(m,n) where M(m,n)
is the best time to merge two sorted lists. For n = 47, it turns out that we can do
better by splitting the list into pieces of size 5 and 42, and then merging. Thus,
merge sort is not quite optimal. But it is extremely good, and nearly optimal for
smallish numbers of elements.

15.8 Further Reading

Much of the material in this book is also covered in many other textbooks on data
structures and algorithms. The biggest exception is that not many other textbooks
cover lower bounds proofs in any significant detail, as is done in this chapter. Those
that do focus on the same example problems (search and selection) because it tells
such a tight and compelling story regarding related topics, while showing off the
major techniques for lower bounds proofs. Two examples of such textbooks are
“Computer Algorithms” by Baase and Van Gelder [BG00], and “Compared to
What?” by Gregory J.E. Rawlins [Raw92]. “Fundamentals of Algorithmics” by
Brassard and Bratley [BB96] also covers lower bounds proofs.

15.9 Exercises

15.1 Consider the so-called “algorithm for algorithms” in Section 15.1. Is this
really an algorithm? Review the definition of an algorithm from Section 1.4.
Which parts of the definition apply, and which do not? Is the “algorithm for
algorithms” a heuristic for finding a good algorithm? Why or why not?

15.2 Single-elimination tournaments are notorious for their scheduling difficul-
ties. Imagine that you are organizing a tournament for n basketball teams
(you may assume that n = 2i for some integer i). We will further simplify
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things by assuming that each game takes less than an hour, and that each team
can be scheduled for a game every hour if necessary. (Note that everything
said here about basketball courts is also true about processors in a parallel
algorithm to solve the maximum-finding problem).

(a) How many basketball courts do we need to insure that every team can
play whenever we want to minimize the total tournament time?

(b) How long will the tournament be in this case?
(c) What is the total number of “court-hours” available? How many total

hours are courts being used? How many total court-hours are unused?
(d) Modify the algorithm in such a way as to reduce the total number of

courts needed, by perhaps not letting every team play whenever possi-
ble. This will increase the total hours of the tournament, but try to keep
the increase as low as possible. For your new algorithm, how long is the
tournament, how many courts are needed, how many total court-hours
are available, how many court-hours are used, and how many unused?

15.3 Explain why the cost of splitting a list of six into two lists of three to find the
minimum and maximum elements requires eight comparisons, while split-
ting the list into a list of two and a list of four costs only seven comparisons.

15.4 Write out a table showing the number of comparisons required to find the
minimum and maximum for all divisions for all values of n ≤ 13.

15.5 Present an adversary argument as a lower bounds proof to show that n − 1
comparisons are necessary to find the maximum of n values in the worst case.

15.6 Present an adversary argument as a lower bounds proof to show that n com-
parisons are necessary in the worst case when searching for an element with
value X (if one exists) from among n elements.

15.7 Section 15.6 claims that by picking a pivot that always discards at least a
fixed fraction c of the remaining array, the resulting algorithm will be linear.
Explain why this is true. Hint: The Master Theorem (Theorem 14.1) might
help you.

15.8 Show that any comparison-based algorithm for finding the median must use
at least n− 1 comparisons.

15.9 Show that any comparison-based algorithm for finding the second-smallest
of n values can be extended to find the smallest value also, without requiring
any more comparisons to be performed.

15.10 Show that any comparison-based algorithm for sorting can be modified to
remove all duplicates without requiring any more comparisons to be per-
formed.

15.11 Show that any comparison-based algorithm for removing duplicates from a
list of values must use Ω(n log n) comparisons.

15.12 Given a list of n elements, an element of the list is a majority if it appears
more than n/2 times.
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(a) Assume that the input is a list of integers. Design an algorithm that is
linear in the number of integer-integer comparisons in the worst case
that will find and report the majority if one exists, and report that there
is no majority if no such integer exists in the list.

(b) Assume that the input is a list of elements that have no relative ordering,
such as colors or fruit. So all that you can do when you compare two
elements is ask if they are the same or not. Design an algorithm that is
linear in the number of element-element comparisons in the worst case
that will find a majority if one exists, and report that there is no majority
if no such element exists in the list.

15.13 Given an undirected graph G, the problem is to determine whether or not G
is connected. Use an adversary argument to prove that it is necessary to look
at all (n2 − n)/2 potential edges in the worst case.

15.14 (a) Write an equation that describes the average cost for finding the median.

(b) Solve your equation from part (a).

15.15 (a) Write an equation that describes the average cost for finding the ith-
smallest value in an array. This will be a function of both n and i,
T(n, i).

(b) Solve your equation from part (a).

15.16 Suppose that you have n objects that have identical weight, except for one
that is a bit heavier than the others. You have a balance scale. You can place
objects on each side of the scale and see which collection is heavier. Your
goal is to find the heavier object, with the minimum number of weighings.
Find and prove matching upper and lower bounds for this problem.

15.17 Imagine that you are organizing a basketball tournament for 10 teams. You
know that the merge insert sort will give you a full ranking of the 10 teams
with the minimum number of games played. Assume that each game can be
played in less than an hour, and that any team can play as many games in
a row as necessary. Show a schedule for this tournament that also attempts
to minimize the number of total hours for the tournament and the number of
courts used. If you have to make a tradeoff between the two, then attempt to
minimize the total number of hours that basketball courts are idle.

15.18 Write the complete algorithm for the merge insert sort sketched out in Sec-
tion 15.7.

15.19 Here is a suggestion for what might be a truly optimal sorting algorithm. Pick
the best set of comparisons for input lists of size 2. Then pick the best set of
comparisons for size 3, size 4, size 5, and so on. Combine them together into
one program with a big case statement. Is this an algorithm?
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15.10 Projects

15.1 Implement the median-finding algorithm of Section 15.6. Then, modify this
algorithm to allow finding the ith element for any value i < n.





16

Patterns of Algorithms

This chapter presents several fundamental topics related to the theory of algorithms.
Included are dynamic programming (Section 16.1), randomized algorithms (Sec-
tion 16.2), and the concept of a transform (Section 16.3.5). Each of these can be
viewed as an example of an “algorithmic pattern” that is commonly used for a
wide variety of applications. In addition, Section 16.3 presents a number of nu-
merical algorithms. Section 16.2 on randomized algorithms includes the Skip List
(Section 16.2.2). The Skip List is a probabilistic data structure that can be used
to implement the dictionary ADT. The Skip List is no more complicated than the
BST. Yet it often outperforms the BST because the Skip List’s efficiency is not tied
to the values or insertion order of the dataset being stored.

16.1 Dynamic Programming

Consider again the recursive function for computing the nth Fibonacci number.

long fibr(int n) { // Recursive Fibonacci generator
// fibr(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
if ((n == 1) || (n == 2)) return 1; // Base cases
return fibr(n-1) + fibr(n-2); // Recursion

}

The cost of this algorithm (in terms of function calls) is the size of the nth Fi-
bonacci number itself, which our analysis of Section 14.2 showed to be exponential
(approximately n1.62). Why is this so expensive? Primarily because two recursive
calls are made by the function, and the work that they do is largely redundant. That
is, each of the two calls is recomputing most of the series, as is each sub-call, and so
on. Thus, the smaller values of the function are being recomputed a huge number
of times. If we could eliminate this redundancy, the cost would be greatly reduced.
The approach that we will use can also improve any algorithm that spends most of
its time recomputing common subproblems.

517



518 Chap. 16 Patterns of Algorithms

One way to accomplish this goal is to keep a table of values, and first check the
table to see if the computation can be avoided. Here is a straightforward example
of doing so.

int Fibrt(int n, int* Values) {
// Assume Values has at least n slots, and all
// slots are initialized to 0
if (n <= 1) return 1; // Base case
if (Values[n] != 0)

Values[n] = Fibr(n-1, Values) + Fibr(n-2, Values);
return Values[n];

}

This version of the algorithm will not compute a value more than once, so its
cost should be linear. Of course, we didn’t actually need to use a table storing all of
the values, since future computations do not need access to all prior subproblems.
Instead, we could build the value by working from 0 and 1 up to n rather than
backwards from n down to 0 and 1. Going up from the bottom we only need to
store the previous two values of the function, as is done by our iterative version.

long fibi(int n) { // Iterative Fibonacci generator
// fibi(46) is largest value that fits in a long
Assert((n > 0) && (n < 47), "Input out of range");
long past, prev, curr; // Store temporary values
past = prev = curr = 1; // initialize
for (int i=3; i<=n; i++) { // Compute next value

past = prev; // past holds fibi(i-2)
prev = curr; // prev holds fibi(i-1)
curr = past + prev; // curr now holds fibi(i)

}
return curr;

}

Recomputing of subproblems comes up in many algorithms. It is not so com-
mon that we can store only a few prior results as we did for Fibi. Thus, there are
many times where storing a complete table of subresults will be useful.

This approach to designing an algorithm that works by storing a table of results
for subproblems is called dynamic programming. The name is somewhat arcane,
because it doesn’t bear much obvious similarity to the process that is taking place
when storing subproblems in a table. However, it comes originally from the field of
dynamic control systems, which got its start before what we think of as computer
programming. The act of storing precomputed values in a table for later reuse is
referred to as “programming” in that field.

Dynamic programming is a powerful alternative to the standard principle of
divide and conquer. In divide and conquer, a problem is split into subproblems,
the subproblems are solved (independently), and then recombined into a solution
for the problem being solved. Dynamic programming is appropriate whenever (1)
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subproblems are solved repeatedly, and (2) we can find a suitable way of doing the
necessary bookkeeping. Dynamic programming algorithms are usually not imple-
mented by simply using a table to store subproblems for recursive calls (i.e., going
backwards as is done by Fibrt). Instead, such algorithms are typically imple-
mented by building the table of subproblems from the bottom up. Thus, Fibi bet-
ter represents the most common form of dynamic programming than does Fibrt,
even though it doesn’t use the complete table.

16.1.1 The Knapsack Problem

We will next consider a problem that appears with many variations in a variety
of commercial settings. Many businesses need to package items with the greatest
efficiency. One way to describe this basic idea is in terms of packing items into
a knapsack, and so we will refer to this as the Knapsack Problem. We will first
define a particular formulation of the knapsack problem, and then we will discuss
an algorithm to solve it based on dynamic programming. We will see other versions
of the knapsack problem in the exercises and in Chapter 17.

Assume that we have a knapsack with a certain amount of space that we will
define using integer value K. We also have n items each with a certain size such
that that item i has integer size ki. The problem is to find a subset of the n items
whose sizes exactly sum to K, if one exists. For example, if our knapsack has
capacity K = 5 and the two items are of size k1 = 2 and k2 = 4, then no such
subset exists. But if we add a third item of size k3 = 1, then we can fill the knapsack
exactly with the first and third items. We can define the problem more formally as:
Find S ⊂ {1, 2, ..., n} such that ∑

i∈S
ki = K.

Example 16.1 Assume that we are given a knapsack of size K = 163
and 10 items of sizes 4, 9, 15, 19, 27, 44, 54, 68, 73, 101. Can we find a
subset of the items that exactly fills the knapsack? You should take a few
minutes and try to do this before reading on and looking at the answer.

One solution to the problem is: 19, 27, 44, 73.

Example 16.2 Having solved the previous example for knapsack of size
163, how hard is it now to solve for a knapsack of size 164?

Unfortunately, knowing the answer for 163 is of almost no use at all
when solving for 164. One solution is: 9, 54, 101.
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If you tried solving these examples, you probably found yourself doing a lot of
trial-and-error and a lot of backtracking. To come up with an algorithm, we want
an organized way to go through the possible subsets. Is there a way to make the
problem smaller, so that we can apply divide and conquer? We essentially have two
parts to the input: The knapsack size K and the n items. It probably will not do us
much good to try and break the knapsack into pieces and solve the sub-pieces (since
we already saw that knowing the answer for a knapsack of size 163 did nothing to
help us solve the problem for a knapsack of size 164).

So, what can we say about solving the problem with or without the nth item?
This seems to lead to a way to break down the problem. If the nth item is not
needed for a solution (that is, if we can solve the problem with the first n−1 items)
then we can also solve the problem when the nth item is available (we just ignore
it). On the other hand, if we do include the nth item as a member of the solution
subset, then we now would need to solve the problem with the first n − 1 items
and a knapsack of size K − kn (since the nth item is taking up kn space in the
knapsack).

To organize this process, we can define the problem in terms of two parameters:
the knapsack size K and the number of items n. Denote a given instance of the
problem as P (n,K). Now we can say that P (n,K) has a solution if and only if
there exists a solution for either P (n− 1,K) or P (n− 1,K− kn). That is, we can
solve P (n,K) only if we can solve one of the sub problems where we use or do
not use the nth item. Of course, the ordering of the items is arbitrary. We just need
to give them some order to keep things straight.

Continuing this idea, to solve any subproblem of size n − 1, we need only to
solve two subproblems of size n − 2. And so on, until we are down to only one
item that either fills the knapsack or not. This naturally leads to a cost expressed
by the recurrence relation T (n) = 2T (n − 1) + c = Θ(2n). That can be pretty
expensive!

But... we should quickly realize that there are only n(K + 1) subproblems
to solve! Clearly, there is the possibility that many subproblems are being solved
repeatedly. This is a natural opportunity to apply dynamic programming. We sim-
ply build an array of size n × K + 1 to contain the solutions for all subproblems
P (i, k), 1 ≤ i ≤ n, 0 ≤ k ≤ K.

There are two approaches to actually solving the problem. One is to start with
our problem of size P (n,K) and make recursive calls to solve the subproblems,
each time checking the array to see if a subproblem has been solved, and filling
in the corresponding cell in the array whenever we get a new subproblem solution.
The other is to start filling the array for row 1 (which indicates a successful solution
only for a knapsack of size k1). We then fill in the succeeding rows from i = 2 to
n, left to right, as follows.

if P (n− 1,K) has a solution,



Sec. 16.1 Dynamic Programming 521

then P (n,K) has a solution
else if P (n− 1,K − kn) has a solution

then P (n,K) has a solution
else P (n,K) has no solution.

In other words, a new slot in the array gets its solution by looking at two slots in
the preceding row. Since filling each slot in the array takes constant time, the total
cost of the algorithm is Θ(nK).

Example 16.3 Solve the Knapsack Problem for K = 10 and five items
with sizes 9, 2, 7, 4, 1. We do this by building the following array.

0 1 2 3 4 5 6 7 8 9 10

k1=9 O − − − − − − − − I −
k2=2 O − I − − − − − − O −
k3=7 O − O − − − − I − I/O −
k4=4 O − O − I − I O − O −
k5=1 O I O I O I O I/O I O I

Key:
-: No solution for P (i, k).
O: Solution(s) for P (i, k) with i omitted.
I: Solution(s) for P (i, k) with i included.
I/O: Solutions for P (i, k) with i included AND omitted.

For example, P (3, 9) stores value I/O. It contains O because P (2, 9)
has a solution. It contains I because P (2, 2) = P (2, 9 − 7) has a solution.
Since P (5, 10) is marked with an I, it has a solution. We can determine
what that solution actually is by recognizing that it includes the 5th item
(of size 1), which then leads us to look at the solution for P (4, 9). This
in turn has a solution that omits the 4th item, leading us to P (3, 9). At
this point, we can either use the third item or not. We can find a solution
by taking one branch. We can find all solutions by following all branches
when there is a choice.

16.1.2 All-Pairs Shortest Paths

We next consider the problem of finding the shortest distance between all pairs of
vertices in the graph, called the all-pairs shortest-paths problem. To be precise,
for every u, v ∈ V, calculate d(u, v).

One solution is to run Dijkstra’s algorithm for finding the single-source shortest
path (see Section 11.4.1) |V| times, each time computing the shortest path from a
different start vertex. If G is sparse (that is, |E| = Θ(|V|)) then this is a good
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Figure 16.1 An example of k-paths in Floyd’s algorithm. Path 1, 3 is a 0-path
by definition. Path 3, 0, 2 is not a 0-path, but it is a 1-path (as well as a 2-path, a
3-path, and a 4-path) because the largest intermediate vertex is 0. Path 1, 3, 2 is
a 4-path, but not a 3-path because the intermediate vertex is 3. All paths in this
graph are 4-paths.

solution, because the total cost will be Θ(|V|2 + |V||E| log |V|) = Θ(|V|2 log |V|)
for the version of Dijkstra’s algorithm based on priority queues. For a dense graph,
the priority queue version of Dijkstra’s algorithm yields a cost of Θ(|V|3 log |V|),
but the version using MinVertex yields a cost of Θ(|V|3).

Another solution that limits processing time to Θ(|V|3) regardless of the num-
ber of edges is known as Floyd’s algorithm. It is an example of dynamic program-
ming. The chief problem with solving this problem is organizing the search process
so that we do not repeatedly solve the same subproblems. We will do this organi-
zation through the use of the k-path. Define a k-path from vertex v to vertex u to
be any path whose intermediate vertices (aside from v and u) all have indices less
than k. A 0-path is defined to be a direct edge from v to u. Figure 16.1 illustrates
the concept of k-paths.

Define Dk(v, u) to be the length of the shortest k-path from vertex v to vertex u.
Assume that we already know the shortest k-path from v to u. The shortest (k+1)-
path either goes through vertex k or it does not. If it does go through k, then
the best path is the best k-path from v to k followed by the best k-path from k
to u. Otherwise, we should keep the best k-path seen before. Floyd’s algorithm
simply checks all of the possibilities in a triple loop. Here is the implementation
for Floyd’s algorithm. At the end of the algorithm, array D stores the all-pairs
shortest distances.
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// Floyd’s all-pairs shortest paths algorithm
// Store the pair-wise distances in "D"
void Floyd(Graph* G) {

for (int i=0; i<G->n(); i++) // Initialize D with weights
for (int j=0; j<G->n(); j++)

if (G->weight(i, j) != 0) D[i][j] = G->weight(i, j);
for (int k=0; k<G->n(); k++) // Compute all k paths

for (int i=0; i<G->n(); i++)
for (int j=0; j<G->n(); j++)

if (D[i][j] > (D[i][k] + D[k][j]))
D[i][j] = D[i][k] + D[k][j];

}

Clearly this algorithm requires Θ(|V|3) running time, and it is the best choice
for dense graphs because it is (relatively) fast and easy to implement.

16.2 Randomized Algorithms

In this section, we will consider how introducing randomness into our algorithms
might speed things up, although perhaps at the expense of accuracy. But often we
can reduce the possibility for error to be as low as we like, while still speeding up
the algorithm.

16.2.1 Randomized algorithms for finding large values

In Section 15.1 we determined that the lower bound cost of finding the maximum
value in an unsorted list is Ω(n). This is the least time needed to be certain that we
have found the maximum value. But what if we are willing to relax our requirement
for certainty? The first question is: What do we mean by this? There are many
aspects to “certainty” and we might relax the requirement in various ways.

There are several possible guarantees that we might require from an algorithm
that produces X as the maximum value, when the true maximum is Y . So far
we have assumed that we require X to equal Y . This is known as an exact or
deterministic algorithm to solve the problem. We could relax this and require only
thatX’s rank is “close to” Y ’s rank (perhaps within a fixed distance or percentage).
This is known as an approximation algorithm. We could require thatX is “usually”
Y . This is known as a probabilistic algorithm. Finally, we could require only that
X’s rank is “usually” “close” to Y ’s rank. This is known as a heuristic algorithm.

There are also different ways that we might choose to sacrifice reliability for
speed. These types of algorithms also have names.

1. Las Vegas Algorithms: We always find the maximum value, and “usually”
we find it fast. Such algorithms have a guaranteed result, but do not guarantee
fast running time.
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2. Monte Carlo Algorithms: We find the maximum value fast, or we don’t get
an answer at all (but fast). While such algorithms have good running time,
their result is not guaranteed.

Here is an example of an algorithm for finding a large value that gives up its
guarantee of getting the best value in exchange for an improved running time. This
is an example of a probabilistic algorithm, since it includes steps that are affected
by random events. Choose m elements at random, and pick the best one of those
as the answer. For large n, if m ≈ log n, the answer is pretty good. The cost is
m − 1 compares (since we must find the maximum of m values). But we don’t
know for sure what we will get. However, we can estimate that the rank will be
about mn

m+1 . For example, if n = 1, 000, 000 and m = log n = 20, then we expect
that the largest of the 20 randomly selected values be among the top 5% of the n
values.

Next, consider a slightly different problem where the goal is to pick a number
in the upper half of n values. We would pick the maximum from among the first
n+1
2 values for a cost of n/2 comparisons. Can we do better than this? Not if we

want to guarantee getting the correct answer. But if we are willing to accept near
certainty instead of absolute certainty, we can gain a lot in terms of speed.

As an alternative, consider this probabilistic algorithm. Pick 2 numbers and
choose the greater. This will be in the upper half with probability 3/4 (since it is
not in the upper half only when both numbers we choose happen to be in the lower
half). Is a probability of 3/4 not good enough? Then we simply pick more numbers!
For k numbers, the greatest is in upper half with probability 1 − 1

2k
, regardless of

the number n that we pick from, so long as n is much larger than k (otherwise
the chances might become even better). If we pick ten numbers, then the chance
of failure is only one in 210 = 1024. What if we really want to be sure, because
lives depend on drawing a number from the upper half? If we pick 30 numbers,
we can fail only one time in a billion. If we pick enough numbers, then the chance
of picking a small number is less than the chance of the power failing during the
computation. Picking 100 numbers means that we can fail only one time in 10100

which is less chance than any disaster that you can imagine disrupting the process.

16.2.2 Skip Lists

This section presents a probabilistic search structure called the Skip List. Like
BSTs, Skip Lists are designed to overcome a basic limitation of array-based and
linked lists: Either search or update operations require linear time. The Skip List
is an example of a probabilistic data structure, because it makes some of its
decisions at random.

Skip Lists provide an alternative to the BST and related tree structures. The pri-
mary problem with the BST is that it may easily become unbalanced. The 2-3 tree
of Chapter 10 is guaranteed to remain balanced regardless of the order in which data
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values are inserted, but it is rather complicated to implement. Chapter 13 presents
the AVL tree and the splay tree, which are also guaranteed to provide good per-
formance, but at the cost of added complexity as compared to the BST. The Skip
List is easier to implement than known balanced tree structures. The Skip List is
not guaranteed to provide good performance (where good performance is defined
as Θ(log n) search, insertion, and deletion time), but it will provide good perfor-
mance with extremely high probability (unlike the BST which has a good chance
of performing poorly). As such it represents a good compromise between difficulty
of implementation and performance.

Figure 16.2 illustrates the concept behind the Skip List. Figure 16.2(a) shows a
simple linked list whose nodes are ordered by key value. To search a sorted linked
list requires that we move down the list one node at a time, visiting Θ(n) nodes
in the average case. What if we add a pointer to every other node that lets us skip
alternating nodes, as shown in Figure 16.2(b)? Define nodes with a single pointer
as level 0 Skip List nodes, and nodes with two pointers as level 1 Skip List nodes.

To search, follow the level 1 pointers until a value greater than the search key
has been found, go back to the previous level 1 node, then revert to a level 0 pointer
to travel one more node if necessary. This effectively cuts the work in half. We
can continue adding pointers to selected nodes in this way — give a third pointer
to every fourth node, give a fourth pointer to every eighth node, and so on — until
we reach the ultimate of log n pointers in the first and middle nodes for a list of
n nodes as illustrated in Figure 16.2(c). To search, start with the bottom row of
pointers, going as far as possible and skipping many nodes at a time. Then, shift
up to shorter and shorter steps as required. With this arrangement, the worst-case
number of accesses is Θ(log n).

We will store with each Skip List node an array named forward that stores
the pointers as shown in Figure 16.2(c). Position forward[0] stores a level 0
pointer, forward[1] stores a level 1 pointer, and so on. The Skip List object
includes data member level that stores the highest level for any node currently
in the Skip List. The Skip List stores a header node named head with level
pointers. The find function is shown in Figure 16.3.

Searching for a node with value 62 in the Skip List of Figure 16.2(c) begins at
the header node. Follow the header node’s pointer at level, which in this example
is level 2. This points to the node with value 31. Because 31 is less than 62, we
next try the pointer from forward[2] of 31’s node to reach 69. Because 69 is
greater than 62, we cannot go forward but must instead decrement the current level
counter to 1. We next try to follow forward[1] of 31 to reach the node with
value 58. Because 58 is smaller than 62, we follow 58’s forward[1] pointer
to 69. Because 69 is too big, follow 58’s level 0 pointer to 62. Because 62 is not
less than 62, we fall out of the while loop and move one step forward to the node
with value 62.
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Figure 16.2 Illustration of the Skip List concept. (a) A simple linked list.
(b) Augmenting the linked list with additional pointers at every other node. To
find the node with key value 62, we visit the nodes with values 25, 31, 58, and 69,
then we move from the node with key value 58 to the one with value 62. (c) The
ideal Skip List, guaranteeing O(log n) search time. To find the node with key
value 62, we visit nodes in the order 31, 69, 58, then 69 again, and finally, 62.

E find(const Key& k) const {
SkipNode<Key,E> *x = head; // Dummy header node
for (int i=level; i>=0; i--)

while ((x->forward[i] != NULL) &&
(k > x->forward[i]->k))

x = x->forward[i];
x = x->forward[0]; // Move to actual record, if it exists
if ((x != NULL) && (k == x->k)) return x->it;
return NULL;

}
Figure 16.3 Implementation for the Skip List find function.
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void insert(const Key& k, const E& it) {
int i;
SkipNode<Key,E> *x = head; // Start at header node
int newLevel = randomLevel(); // Select level for new node
if (newLevel > level) { // New node is deepest in list

AdjustHead(newLevel); // Add null pointers to header
level = newLevel;

}
SkipNode<Key,E>* update[level+1]; // Track level ends
for(i=level; i>=0; i--) { // Search for insert position

while((x->forward[i] != NULL) && (x->forward[i]->k < k))
x = x->forward[i];

update[i] = x; // Keep track of end at level i
}
x = new SkipNode<Key,E>(k, it, newLevel); // New node
for (i=0; i<=newLevel; i++) { // Splice into list

x->forward[i] = update[i]->forward[i]; // Where x points
update[i]->forward[i] = x; // What points to x

}
reccount++;

}
Figure 16.4 Implementation for the Skip List Insert function.

The ideal Skip List of Figure 16.2(c) has been organized so that (if the first and
last nodes are not counted) half of the nodes have only one pointer, one quarter
have two, one eighth have three, and so on. The distances are equally spaced; in
effect this is a “perfectly balanced” Skip List. Maintaining such balance would be
expensive during the normal process of insertions and deletions. The key to Skip
Lists is that we do not worry about any of this. Whenever inserting a node, we
assign it a level (i.e., some number of pointers). The assignment is random, using
a geometric distribution yielding a 50% probability that the node will have one
pointer, a 25% probability that it will have two, and so on. The following function
determines the level based on such a distribution:

// Pick a level using an exponential distribution
int randomLevel(void) {

int level = 0;
while (Random(2) == 0) level++;
return level;

}

Once the proper level for the node has been determined, the next step is to find
where the node should be inserted and link it in as appropriate at all of its levels.
Figure 16.4 shows an implementation for inserting a new value into the Skip List.

Figure 16.5 illustrates the Skip List insertion process. In this example, we
begin by inserting a node with value 10 into an empty Skip List. Assume that
randomLevel returns a value of 1 (i.e., the node is at level 1, with 2 pointers).
Because the empty Skip List has no nodes, the level of the list (and thus the level
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Figure 16.5 Illustration of Skip List insertion. (a) The Skip List after inserting
initial value 10 at level 1. (b) The Skip List after inserting value 20 at level 0.
(c) The Skip List after inserting value 5 at level 0. (d) The Skip List after inserting
value 2 at level 3. (e) The final Skip List after inserting value 30 at level 2.
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of the header node) must be set to 1. The new node is inserted, yielding the Skip
List of Figure 16.5(a).

Next, insert the value 20. Assume this time that randomLevel returns 0. The
search process goes to the node with value 10, and the new node is inserted after,
as shown in Figure 16.5(b). The third node inserted has value 5, and again assume
that randomLevel returns 0. This yields the Skip List of Figure 16.5.c.

The fourth node inserted has value 2, and assume that randomLevel re-
turns 3. This means that the level of the Skip List must rise, causing the header
node to gain an additional two (NULL) pointers. At this point, the new node is
added to the front of the list, as shown in Figure 16.5(d).

Finally, insert a node with value 30 at level 2. This time, let us take a close
look at what array update is used for. It stores the farthest node reached at each
level during the search for the proper location of the new node. The search pro-
cess begins in the header node at level 3 and proceeds to the node storing value 2.
Because forward[3] for this node is NULL, we cannot go further at this level.
Thus, update[3] stores a pointer to the node with value 2. Likewise, we cannot
proceed at level 2, so update[2] also stores a pointer to the node with value 2.
At level 1, we proceed to the node storing value 10. This is as far as we can go
at level 1, so update[1] stores a pointer to the node with value 10. Finally, at
level 0 we end up at the node with value 20. At this point, we can add in the new
node with value 30. For each value i, the new node’s forward[i] pointer is
set to be update[i]->forward[i], and the nodes stored in update[i] for
indices 0 through 2 have their forward[i] pointers changed to point to the new
node. This “splices” the new node into the Skip List at all levels.

The remove function is left as an exercise. It is similar to insertion in that the
update array is built as part of searching for the record to be deleted. Then those
nodes specified by the update array have their forward pointers adjusted to point
around the node being deleted.

A newly inserted node could have a high level generated by randomLevel,
or a low level. It is possible that many nodes in the Skip List could have many
pointers, leading to unnecessary insert cost and yielding poor (i.e., Θ(n)) perfor-
mance during search, because not many nodes will be skipped. Conversely, too
many nodes could have a low level. In the worst case, all nodes could be at level 0,
equivalent to a regular linked list. If so, search will again require Θ(n) time. How-
ever, the probability that performance will be poor is quite low. There is only one
chance in 1024 that ten nodes in a row will be at level 0. The motto of probabilistic
data structures such as the Skip List is “Don’t worry, be happy.” We simply accept
the results of randomLevel and expect that probability will eventually work in
our favor. The advantage of this approach is that the algorithms are simple, while
requiring only Θ(log n) time for all operations in the average case.
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In practice, the Skip List will probably have better performance than a BST. The
BST can have bad performance caused by the order in which data are inserted. For
example, if n nodes are inserted into a BST in ascending order of their key value,
then the BST will look like a linked list with the deepest node at depth n− 1. The
Skip List’s performance does not depend on the order in which values are inserted
into the list. As the number of nodes in the Skip List increases, the probability of
encountering the worst case decreases geometrically. Thus, the Skip List illustrates
a tension between the theoretical worst case (in this case, Θ(n) for a Skip List
operation), and a rapidly increasing probability of average-case performance of
Θ(log n), that characterizes probabilistic data structures.

16.3 Numerical Algorithms

This section presents a variety of algorithms related to mathematical computations
on numbers. Examples are activities like multiplying two numbers or raising a
number to a given power. In particular, we are concerned with situations where
built-in integer or floating-point operations cannot be used because the values being
operated on are too large. Similar concerns arise for operations on polynomials or
matrices.

Since we cannot rely on the hardware to process the inputs in a single constant-
time operation, we are concerned with how to most effectively implement the op-
eration to minimize the time cost. This begs a question as to how we should apply
our normal measures of asymptotic cost in terms of growth rates on input size.
First, what is an instance of addition or multiplication? Each value of the operands
yields a different problem instance. And what is the input size when multiplying
two numbers? If we view the input size as two (since two numbers are input), then
any non-constant-time algorithm has a growth rate that is infinitely high compared
to the growth of the input. This makes no sense, especially in light of the fact that
we know from grade school arithmetic that adding or multiplying numbers does
seem to get more difficult as the value of the numbers involved increases. In fact,
we know from standard grade school algorithms that the cost of standard addition
is linear on the number of digits being added, and multiplication has cost n × m
when multiplying an m-digit number by an n-digit number.

The number of digits for the operands does appear to be a key consideration
when we are performing a numeric algorithm that is sensitive to input size. The
number of digits is simply the log of the value, for a suitable base of the log. Thus,
for the purpose of calculating asymptotic growth rates of algorithms, we will con-
sider the “size” of an input value to be the log of that value. Given this view, there
are a number of features that seem to relate such operations.

• Arithmetic operations on large values are not cheap.
• There is only one instance of value n.
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• There are 2k instances of length k or less.
• The size (length) of value n is log n.
• The cost of a particular algorithm can decrease when n increases in value

(say when going from a value of 2k − 1 to 2k to 2k + 1), but generally
increases when n increases in length.

16.3.1 Exponentiation

We will start our examination of standard numerical algorithms by considering how
to perform exponentiation. That is, how do we compute mn? We could multiply
by m a total of n − 1 times. Can we do better? Yes, there is a simple divide
and conquer approach that we can use. We can recognize that, when n is even,
mn = mn/2mn/2. If n is odd, then mn = mbn/2cmbn/2cm. This leads to the
following recursive algorithm

int Power(base, exp) {
if exp = 0 return 1;
int half = Power(base, exp/2); // integer division of exp
half = half * half;
if (odd(exp)) then half = half * base;
return half;

}

Function Power has recurrence relation

f(n) =

{
0 n = 1
f(bn/2c) + 1 + n mod 2 n > 1

whose solution is
f(n) = blog nc+ β(n)− 1

where β is the number of 1’s in the binary representation of n.
How does this cost compare with the problem size? The original problem size

is logm + log n, and the number of multiplications required is log n. This is far
better (in fact, exponentially better) than performing n− 1 multiplications.

16.3.2 Largest Common Factor

We will next present Euclid’s algorithm for finding the largest common factor
(LCF) for two integers. The LCF is the largest integer that divides both inputs
evenly.

First we make this observation: If k divides n andm, then k divides n−m. We
know this is true because if k divides n then n = ak for some integer a, and if k
divides m then m = bk for some integer b. So, LCF (n,m) = LCF (n−m,n) =
LCF (m,n−m) = LCF (m,n).
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Now, for any value n there exists k and l such that

n = km+ l where m > l ≥ 0.

From the definition of the mod function, we can derive the fact that

n = bn/mcm+ n mod m.

Since the LCF is a factor of both n and m, and since n = km + l, the LCF must
therefore be a factor of both km and l, and also the largest common factor of each
of these terms. As a consequence, LCF (n,m) = LCF (m, l) = LCF (m,n mod
m).

This observation leads to a simple algorithm. We will assume that n ≥ m. At
each iteration we replace n with m and m with n mod m until we have driven m
to zero.

int LCF(int n, int m) {
if (m == 0) return n;
return LCF(m, n % m);

}

To determine how expensive this algorithm is, we need to know how much
progress we are making at each step. Note that after two iterations, we have re-
placed n with n mod m. So the key question becomes: How big is n mod m
relative to n?

n ≥ m ⇒ n/m ≥ 1

⇒ 2bn/mc > n/m

⇒ mbn/mc > n/2

⇒ n− n/2 > n−mbn/mc = n mod m

⇒ n/2 > n mod m

Thus, function LCF will halve its first parameter in no more than 2 iterations.
The total cost is then O(log n).

16.3.3 Matrix Multiplication

The standard algorithm for multiplying two n × n matrices requires Θ(n3) time.
It is possible to do better than this by rearranging and grouping the multiplications
in various ways. One example of this is known as Strassen’s matrix multiplication
algorithm.

For simplicity, we will assume that n is a power of two. In the following, A
and B are n× n arrays, while Aij and Bij refer to arrays of size n/2× n/2. Using
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this notation, we can think of matrix multiplication using divide and conquer in the
following way:[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
.

Of course, each of the multiplications and additions on the right side of this
equation are recursive calls on arrays of half size, and additions of arrays of half
size, respectively. The recurrence relation for this algorithm is

T (n) = 8T (n/2) + 4(n/2)2 = Θ(n3).

This closed form solution can easily be obtained by applying the Master Theo-
rem 14.1.

Strassen’s algorithm carefully rearranges the way that the various terms are
multiplied and added together. It does so in a particular order, as expressed by the
following equation:[

A11 A12

A21 A22

][
B11 B12

B21 B22

]
=

[
s1 + s2 − s4 + s6 s4 + s5

s6 + s7 s2 − s3 + s5 − s7

]
.

In other words, the result of the multiplication for an n × n array is obtained by
a different series of matrix multiplications and additions for n/2 × n/2 arrays.
Multiplications between subarrays also use Strassen’s algorithm, and the addition
of two subarrays requires Θ(n2) time. The subfactors are defined as follows:

s1 = (A12 −A22) · (B21 +B22)

s2 = (A11 +A22) · (B11 +B22)

s3 = (A11 −A21) · (B11 +B12)

s4 = (A11 +A12) ·B22

s5 = A11 · (B12 −B22)

s6 = A22 · (B21 −B11)

s7 = (A21 +A22) ·B11

With a little effort, you should be able to verify that this peculiar combination of
operations does in fact produce the correct answer!

Now, looking at the list of operations to compute the s factors, and then count-
ing the additions/subtractions needed to put them together to get the final answers,
we see that we need a total of seven (array) multiplications and 18 (array) addi-
tions/subtractions to do the job. This leads to the recurrence

T (n) = 7T (n/2) + 18(n/2)2

T (n) = Θ(nlog2 7) = Θ(n2.81).



534 Chap. 16 Patterns of Algorithms

We obtained this closed form solution again by applying the Master Theorem.
Unfortunately, while Strassen’s algorithm does in fact reduce the asymptotic

complexity over the standard algorithm, the cost of the large number of addition
and subtraction operations raises the constant factor involved considerably. This
means that an extremely large array size is required to make Strassen’s algorithm
practical in real applications.

16.3.4 Random Numbers

The success of randomized algorithms such as were presented in Section 16.2 de-
pend on having access to a good random number generator. While modern compil-
ers are likely to include a random number generator that is good enough for most
purposes, it is helpful to understand how they work, and to even be able to construct
your own in case you don’t trust the one provided. This is easy to do.

First, let us consider what a random sequence. From the following list, which
appears to be a sequence of “random” numbers?

• 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
• 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
• 2, 7, 1, 8, 2, 8, 1, 8, 2, ...

In fact, all three happen to be the beginning of a some sequence in which one
could continue the pattern to generate more values (in case you do not recognize
it, the third one is the initial digits of the irrational constant e). Viewed as a series
of digits, ideally every possible sequence has equal probability of being generated
(even the three sequences above). In fact, definitions of randomness generally have
features such as:

• One cannot predict the next item. The series is unpredictable.
• The series cannot be described more briefly than simply listing it out. This is

the equidistribution property.

There is no such thing as a random number sequence, only “random enough”
sequences. A sequence is pseudorandom if no future term can be predicted in
polynomial time, given all past terms.

Most computer systems use a deterministic algorithm to select pseudorandom
numbers.1 The most commonly used approach historically is known as the Linear
Congruential Method (LCM). The LCM method is quite simple. We begin by
picking a seed that we will call r(1). Then, we can compute successive terms as
follows.

r(i) = (r(i− 1)× b) mod t

where b and t are constants.
1Another approach is based on using a computer chip that generates random numbers resulting

from “thermal noise” in the system. Time will tell if this approach replaces deterministic approaches.
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By definition of the mod function, all generated numbers must be in the range
0 to t − 1. Now, consider what happens when r(i) = r(j) for values i and j. Of
course then r(i+ 1) = r(j + 1) which means that we have a repeating cycle.

Since the values coming out of the random number generator are between 0 and
t− 1, the longest cycle that we can hope for has length t. In fact, since r(0) = 0, it
cannot even be quite this long. It turns out that to get a good result, it is crucial to
pick good values for both b and t. To see why, consider the following example.

Example 16.4 Given a t value of 13, we can get very different results
depending on the b value that we pick, in ways that are hard to predict.

r(i) = 6r(i− 1) mod 13 =
..., 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

r(i) = 7r(i− 1) mod 13 =
..., 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, ...

r(i) = 5r(i− 1) mod 13 =
..., 1, 5, 12, 8, 1, ...
..., 2, 10, 11, 3, 2, ...
..., 4, 7, 9, 6, 4, ...
..., 0, 0, ...

Clearly, a b value of 5 is far inferior to b values of 6 or 7 in this example.

If you would like to write a simple LCM random number generator of your
own, an effective one can be made with the following formula.

r(i) = 16807r(i− 1) mod 231 − 1.

16.3.5 The Fast Fourier Transform

As noted at the beginning of this section, multiplication is considerably more diffi-
cult than addition. The cost to multiply two n-bit numbers directly is O(n2), while
addition of two n-bit numbers is O(n).

Recall from Section 2.3 that one property of logarithms is

log nm = log n+ logm.

Thus, if taking logarithms and anti-logarithms were cheap, then we could reduce
multiplication to addition by taking the log of the two operands, adding, and then
taking the anti-log of the sum.

Under normal circumstances, taking logarithms and anti-logarithms is expen-
sive, and so this reduction would not be considered practical. However, this re-
duction is precisely the basis for the slide rule. The slide rule uses a logarithmic
scale to measure the lengths of two numbers, in effect doing the conversion to log-
arithms automatically. These two lengths are then added together, and the inverse
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logarithm of the sum is read off another logarithmic scale. The part normally con-
sidered expensive (taking logarithms and anti-logarithms) is cheap because it is a
physical part of the slide rule. Thus, the entire multiplication process can be done
cheaply via a reduction to addition. In the days before electronic calculators, slide
rules were routinely used by scientists and engineers to do basic calculations of this
nature.

Now consider the problem of multiplying polynomials. A vector a of n values
can uniquely represent a polynomial of degree n− 1, expressed as

Pa(x) =

n−1∑
i=0

aix
i.

Alternatively, a polynomial can be uniquely represented by a list of its values at
n distinct points. Finding the value for a polynomial at a given point is called
evaluation. Finding the coefficients for the polynomial given the values at n points
is called interpolation.

To multiply two n− 1-degree polynomials A and B normally takes Θ(n2) co-
efficient multiplications. However, if we evaluate both polynomials (at the same
points), we can simply multiply the corresponding pairs of values to get the corre-
sponding values for polynomial AB.

Example 16.5 Polynomial A: x2 + 1.
Polynomial B: 2x2 − x+ 1.
Polynomial AB: 2x4 − x3 + 3x2 − x+ 1.
When we multiply the evaluations of A and B at points 0, 1, and -1, we

get the following results.

AB(−1) = (2)(4) = 8

AB(0) = (1)(1) = 1

AB(1) = (2)(2) = 4

These results are the same as when we evaluate polynomial AB at these
points.

Note that evaluating any polynomial at 0 is easy. If we evaluate at 1 and -
1, we can share a lot of the work between the two evaluations. But we would
need five points to nail down polynomial AB, since it is a degree-4 polynomial.
Fortunately, we can speed processing for any pair of values c and −c. This seems
to indicate some promising ways to speed up the process of evaluating polynomials.
But, evaluating two points in roughly the same time as evaluating one point only
speeds the process by a constant factor. Is there some way to generalized these
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observations to speed things up further? And even if we do find a way to evaluate
many points quickly, we will also need to interpolate the five values to get the
coefficients of AB back.

So we see that we could multiply two polynomials in less than Θ(n2) operations
if a fast way could be found to do evaluation/interpolation of 2n−1 points. Before
considering further how this might be done, first observe again the relationship
between evaluating a polynomial at values c and −c. In general, we can write
Pa(x) = Ea(x) + Oa(x) where Ea is the even powers and Oa is the odd powers.
So,

Pa(x) =

n/2−1∑
i=0

a2ix
2i +

n/2−1∑
i=0

a2i+1x
2i+1

The significance is that when evaluating the pair of values c and −c, we get

Ea(c) +Oa(c) = Ea(c)−Oa(−c)
Oa(c) = −Oa(−c)

Thus, we only need to compute the Es and Os once instead of twice to get both
evaluations.

The key to fast polynomial multiplication is finding the right points to use for
evaluation/interpolation to make the process efficient. In particular, we want to take
advantage of symmetries, such as the one we see for evaluating x and −x. But we
need to find even more symmetries between points if we want to do more than cut
the work in half. We have to find symmetries not just between pairs of values, but
also further symmetries between pairs of pairs, and then pairs of pairs of pairs, and
so on.

Recall that a complex number z has a real component and an imaginary compo-
nent. We can consider the position of z on a number line if we use the y dimension
for the imaginary component. Now, we will define a primitive nth root of unity if

1. zn = 1 and
2. zk 6= 1 for 0 < k < n.

z0, z1, ..., zn−1 are called the nth roots of unity. For example, when n = 4, then
z = i or z = −i. In general, we have the identities eiπ = −1, and zj = e2πij/n =
−12j/n. The significance is that we can find as many points on a unit circle as we
would need (see Figure 16.6). But these points are special in that they will allow
us to do just the right computation necessary to get the needed symmetries to speed
up the overall process of evaluating many points at once.

The next step is to define how the computation is done. Define an n×n matrix
Az with row i and column j as

Az = (zij).
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Figure 16.6 Examples of the 4th and 8th roots of unity.

The idea is that there is a row for each root (row i for zi) while the columns corre-
spond to the power of the exponent of the x value in the polynomial. For example,
when n = 4 we have z = i. Thus, the Az array appears as follows.

Az =

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

Let a = [a0, a1, ..., an−1]
T be a vector that stores the coefficients for the polyno-

mial being evaluated. We can then do the calculations to evaluate the polynomial
at the nth roots of unity by multiplying theAz matrix by the coefficient vector. The
resulting vector Fz is called the Discrete Fourier Transform for the polynomial.

Fz = Aza = b.

bi =
n−1∑
k=0

akz
ik.

When n = 8, then z =
√
i, since

√
i
8

= 1. So, the corresponding matrix is as
follows.

Az =

1 1 1 1 1 1 1 1

1
√
i i i

√
i −1 −

√
i −i −i

√
i

1 i −1 −i 1 i −1 −i
1 i

√
i −i

√
i −1 −i

√
i i −

√
i

1 −1 1 −1 1 −1 1 −1

1 −
√
i i −i

√
i −1

√
i −i i

√
i

1 −i −1 i 1 −i −1 i

1 −i
√
i −i −

√
i −1 i

√
i i

√
i

We still have two problems. We need to be able to multiply this matrix and
the vector faster than just by performing a standard matrix-vector multiplication,
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otherwise the cost is still n2 multiplies to do the evaluation. Even if we can mul-
tiply the matrix and vector cheaply, we still need to be able to reverse the process.
That is, after transforming the two input polynomials by evaluating them, and then
pair-wise multiplying the evaluated points, we must interpolate those points to get
the resulting polynomial back that corresponds to multiplying the original input
polynomials.

The interpolation step is nearly identical to the evaluation step.

F−1z = A−1z b′ = a′.

We need to find A−1z . This turns out to be simple to compute, and is defined as
follows.

A−1z =
1

n
A1/z.

In other words, interpolation (the inverse transformation) requires the same com-
putation as evaluation, except that we substitute 1/z for z (and multiply by 1/n at
the end). So, if we can do one fast, we can do the other fast.

If you examine the example Az matrix for n = 8, you should see that there
are symmetries within the matrix. For example, the top half is identical to the
bottom half with suitable sign changes on some rows and columns. Likewise for the
left and right halves. An efficient divide and conquer algorithm exists to perform
both the evaluation and the interpolation in Θ(n log n) time. This is called the
Discrete Fourier Transform (DFT). It is a recursive function that decomposes
the matrix multiplications, taking advantage of the symmetries made available by
doing evaluation at the nth roots of unity. The algorithm is as follows.

Fourier Transform(double *Polynomial, int n) {
// Compute the Fourier transform of Polynomial
// with degree n. Polynomial is a list of
// coefficients indexed from 0 to n-1. n is
// assumed to be a power of 2.
double Even[n/2], Odd[n/2], List1[n/2], List2[n/2];

if (n==1) return Polynomial[0];

for (j=0; j<=n/2-1; j++) {
Even[j] = Polynomial[2j];
Odd[j] = Polynomial[2j+1];

}
List1 = Fourier Transform(Even, n/2);
List2 = Fourier Transform(Odd, n/2);
for (j=0; j<=n-1, J++) {

Imaginary z = pow(E, 2*i*PI*j/n);
k = j % (n/2);
Polynomial[j] = List1[k] + z*List2[k];

}
return Polynomial;

}
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Thus, the full process for multiplying polynomials A and B using the Fourier
transform is as follows.

1. Represent an n− 1-degree polynomial as 2n− 1 coefficients:

[a0, a1, ..., an−1, 0, ..., 0]

2. Perform Fourier Transform on the representations for A and B

3. Pairwise multiply the results to get 2n− 1 values.

4. Perform the inverse Fourier Transform to get the 2n− 1 degree poly-
nomial AB.

16.4 Further Reading

For further information on Skip Lists, see “Skip Lists: A Probabilistic Alternative
to Balanced Trees” by William Pugh [Pug90].

16.5 Exercises

16.1 Solve Towers of Hanoi using a dynamic programming algorithm.

16.2 There are six possible permutations of the lines

for (int k=0; k<G.n(); k++)
for (int i=0; i<G.n(); i++)

for (int j=0; j<G.n(); j++)

in Floyd’s algorithm. Which ones give a correct algorithm?

16.3 Show the result of running Floyd’s all-pairs shortest-paths algorithm on the
graph of Figure 11.26.

16.4 The implementation for Floyd’s algorithm given in Section 16.1.2 is ineffi-
cient for adjacency lists because the edges are visited in a bad order when
initializing array D. What is the cost of of this initialization step for the adja-
cency list? How can this initialization step be revised so that it costs Θ(|V|2)
in the worst case?

16.5 State the greatest possible lower bound that you can prove for the all-pairs
shortest-paths problem, and justify your answer.

16.6 Show the Skip List that results from inserting the following values. Draw
the Skip List after each insert. With each value, assume the depth of its
corresponding node is as given in the list.
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value depth
5 2
20 0
30 0
2 0
25 1
26 3
31 0

16.7 If we had a linked list that would never be modified, we can use a simpler
approach than the Skip List to speed access. The concept would remain the
same in that we add additional pointers to list nodes for efficient access to the
ith element. How can we add a second pointer to each element of a singly
linked list to allow access to an arbitrary element in O(log n) time?

16.8 What is the expected (average) number of pointers for a Skip List node?
16.9 Write a function to remove a node with given value from a Skip List.

16.10 Write a function to find the ith node on a Skip List.

16.6 Projects

16.1 Complete the implementation of the Skip List-based dictionary begun in Sec-
tion 16.2.2.

16.2 Implement both a standard Θ(n3) matrix multiplication algorithm and Stras-
sen’s matrix multiplication algorithm (see Exercise 14.16.3.3). Using empir-
ical testing, try to estimate the constant factors for the runtime equations of
the two algorithms. How big must n be before Strassen’s algorithm becomes
more efficient than the standard algorithm?
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Limits to Computation

This book describes data structures that can be used in a wide variety of problems,
and many examples of efficient algorithms. In general, our search algorithms strive
to be at worst in O(log n) to find a record, and our sorting algorithms strive to be
in O(n log n). A few algorithms have higher asymptotic complexity. Both Floyd’s
all-pairs shortest-paths algorithm and standard matrix multiply have running times
of Θ(n3) (though for both, the amount of data being processed is Θ(n2)).

We can solve many problems efficiently because we have available (and choose
to use) efficient algorithms. Given any problem for which you know some alg-
orithm, it is always possible to write an inefficient algorithm to “solve” the problem.
For example, consider a sorting algorithm that tests every possible permutation of
its input until it finds the correct permutation that provides a sorted list. The running
time for this algorithm would be unacceptably high, because it is proportional to
the number of permutations which is n! for n inputs. When solving the minimum-
cost spanning tree problem, if we were to test every possible subset of edges to
see which forms the shortest minimum spanning tree, the amount of work would
be proportional to 2|E| for a graph with |E| edges. Fortunately, for both of these
problems we have more clever algorithms that allow us to find answers (relatively)
quickly without explicitly testing every possible solution.

Unfortunately, there are many computing problems for which the best possible
algorithm takes a long time to run. A simple example is the Towers of Hanoi
problem, which requires 2n moves to “solve” a tower with n disks. It is not possible
for any computer program that solves the Towers of Hanoi problem to run in less
than Ω(2n) time, because that many moves must be printed out.

Besides those problems whose solutions must take a long time to run, there are
also many problems for which we simply do not know if there are efficient algo-
rithms or not. The best algorithms that we know for such problems are very slow,
but perhaps there are better ones waiting to be discovered. Of course, while having
a problem with high running time is bad, it is even worse to have a problem that
cannot be solved at all! Such problems do exist, and are discussed in Section 17.3.

543
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This chapter presents a brief introduction to the theory of expensive and im-
possible problems. Section 17.1 presents the concept of a reduction, which is the
central tool used for analyzing the difficulty of a problem (as opposed to analyzing
the cost of an algorithm). Reductions allow us to relate the difficulty of various
problems, which is often much easier than doing the analysis for a problem from
first principles. Section 17.2 discusses “hard” problems, by which we mean prob-
lems that require, or at least appear to require, time exponential on the input size.
Finally, Section 17.3 considers various problems that, while often simple to define
and comprehend, are in fact impossible to solve using a computer program. The
classic example of such a problem is deciding whether an arbitrary computer pro-
gram will go into an infinite loop when processing a specified input. This is known
as the halting problem.

17.1 Reductions

We begin with an important concept for understanding the relationships between
problems, called reduction. Reduction allows us to solve one problem in terms
of another. Equally importantly, when we wish to understand the difficulty of a
problem, reduction allows us to make relative statements about upper and lower
bounds on the cost of a problem (as opposed to an algorithm or program).

Because the concept of a problem is discussed extensively in this chapter, we
want notation to simplify problem descriptions. Throughout this chapter, a problem
will be defined in terms of a mapping between inputs and outputs, and the name of
the problem will be given in all capital letters. Thus, a complete definition of the
sorting problem could appear as follows:

SORTING:
Input: A sequence of integers x0, x1, x2, ..., xn−1.
Output: A permutation y0, y1, y2, ..., yn−1 of the sequence such that yi ≤ yj

whenever i < j.

When you buy or write a program to solve one problem, such as sorting, you
might be able to use it to help solve a different problem. This is known in software
engineering as software reuse. To illustrate this, let us consider another problem.

PAIRING:
Input: Two sequences of integers X = (x0, x1, ..., xn−1) and Y =

(y0, y1, ..., yn−1).
Output: A pairing of the elements in the two sequences such that the least

value in X is paired with the least value in Y , the next least value in X is paired
with the next least value in Y , and so on.
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Figure 17.1 An illustration of PAIRING. The two lists of numbers are paired up
so that the least values from each list make a pair, the next smallest values from
each list make a pair, and so on.

Figure 17.1 illustrates PAIRING. One way to solve PAIRING is to use an exist-
ing sorting program to sort each of the two sequences, and then pair off items based
on their position in sorted order. Technically we say that in this solution, PAIRING
is reduced to SORTING, because SORTING is used to solve PAIRING.

Notice that reduction is a three-step process. The first step is to convert an
instance of PAIRING into two instances of SORTING. The conversion step in this
example is not very interesting; it simply takes each sequence and assigns it to an
array to be passed to SORTING. The second step is to sort the two arrays (i.e., apply
SORTING to each array). The third step is to convert the output of SORTING to
the output for PAIRING. This is done by pairing the first elements in the sorted
arrays, the second elements, and so on.

A reduction of PAIRING to SORTING helps to establish an upper bound on the
cost of PAIRING. In terms of asymptotic notation, assuming that we can find one
method to convert the inputs to PAIRING into inputs to SORTING “fast enough,”
and a second method to convert the result of SORTING back to the correct result
for PAIRING “fast enough,” then the asymptotic cost of PAIRING cannot be more
than the cost of SORTING. In this case, there is little work to be done to convert
from PAIRING to SORTING, or to convert the answer from SORTING back to the
answer for PAIRING, so the dominant cost of this solution is performing the sort
operation. Thus, an upper bound for PAIRING is in O(n log n).

It is important to note that the pairing problem does not require that elements
of the two sequences be sorted. This is merely one possible way to solve the prob-
lem. PAIRING only requires that the elements of the sequences be paired correctly.
Perhaps there is another way to do it? Certainly if we use sorting to solve PAIR-
ING, the algorithms will require Ω(n log n) time. But, another approach might
conceivably be faster.
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There is another use of reductions aside from applying an old algorithm to solve
a new problem (and thereby establishing an upper bound for the new problem).
That is to prove a lower bound on the cost of a new problem by showing that it
could be used as a solution for an old problem with a known lower bound.

Assume we can go the other way and convert SORTING to PAIRING “fast
enough.” What does this say about the minimum cost of PAIRING? We know
from Section 7.9 that the cost of SORTING in the worst and average cases is in
Ω(n log n). In other words, the best possible algorithm for sorting requires at least
n log n time.

Assume that PAIRING could be done in O(n) time. Then, one way to create a
sorting algorithm would be to convert SORTING into PAIRING, run the algorithm
for PAIRING, and finally convert the answer back to the answer for SORTING.
Provided that we can convert SORTING to/from PAIRING “fast enough,” this pro-
cess would yield an O(n) algorithm for sorting! Because this contradicts what we
know about the lower bound for SORTING, and the only flaw in the reasoning is
the initial assumption that PAIRING can be done in O(n) time, we can conclude
that there is no O(n) time algorithm for PAIRING. This reduction process tells us
that PAIRING must be at least as expensive as SORTING and so must itself have a
lower bound in Ω(n log n).

To complete this proof regarding the lower bound for PAIRING, we need now
to find a way to reduce SORTING to PAIRING. This is easily done. Take an in-
stance of SORTING (i.e., an array A of n elements). A second array B is generated
that simply stores i in position i for 0 ≤ i < n. Pass the two arrays to PAIRING.
Take the resulting set of pairs, and use the value from the B half of the pair to tell
which position in the sorted array the A half should take; that is, we can now reorder
the records in the A array using the corresponding value in the B array as the sort
key and running a simple Θ(n) Binsort. The conversion of SORTING to PAIRING
can be done in O(n) time, and likewise the conversion of the output of PAIRING
can be converted to the correct output for SORTING in O(n) time. Thus, the cost
of this “sorting algorithm” is dominated by the cost for PAIRING.

Consider any two problems for which a suitable reduction from one to the other
can be found. The first problem takes an arbitrary instance of its input, which we
will call I, and transforms I to a solution, which we will call SLN. The second prob-
lem takes an arbitrary instance of its input, which we will call I′, and transforms I′

to a solution, which we will call SLN′. We can define reduction more formally as a
three-step process:

1. Transform an arbitrary instance of the first problem to an instance of the
second problem. In other words, there must be a transformation from any
instance I of the first problem to an instance I′ of the second problem.

2. Apply an algorithm for the second problem to the instance I′, yielding a
solution SLN′.
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Figure 17.2 The general process for reduction shown as a “blackbox” diagram.

3. Transform SLN′ to the solution of I, known as SLN. Note that SLN must in
fact be the correct solution for I for the reduction to be acceptable.

Figure 17.2 shows a graphical representation of the general reduction process,
showing the role of the two problems, and the two transformations. Figure 17.3
shows a similar diagram for the reduction of SORTING to PAIRING.

It is important to note that the reduction process does not give us an algorithm
for solving either problem by itself. It merely gives us a method for solving the first
problem given that we already have a solution to the second. More importantly for
the topics to be discussed in the remainder of this chapter, reduction gives us a way
to understand the bounds of one problem in terms of another. Specifically, given
efficient transformations, the upper bound of the first problem is at most the upper
bound of the second. Conversely, the lower bound of the second problem is at least
the lower bound of the first.

As a second example of reduction, consider the simple problem of multiplying
two n-digit numbers. The standard long-hand method for multiplication is to mul-
tiply the last digit of the first number by the second number (taking Θ(n) time),
multiply the second digit of the first number by the second number (again taking
Θ(n) time), and so on for each of the n digits of the first number. Finally, the in-
termediate results are added together. Note that adding two numbers of length M
andN can easily be done in Θ(M+N) time. Because each digit of the first number
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Figure 17.3 A reduction of SORTING to PAIRING shown as a “blackbox”
diagram.

is multiplied against each digit of the second, this algorithm requires Θ(n2) time.
Asymptotically faster (but more complicated) algorithms are known, but none is so
fast as to be in O(n).

Next we ask the question: Is squaring an n-digit number as difficult as multi-
plying two n-digit numbers? We might hope that something about this special case
will allow for a faster algorithm than is required by the more general multiplication
problem. However, a simple reduction proof serves to show that squaring is “as
hard” as multiplying.

The key to the reduction is the following formula:

X × Y =
(X + Y )2 − (X − Y )2

4
.

The significance of this formula is that it allows us to convert an arbitrary instance
of multiplication to a series of operations involving three addition/subtractions
(each of which can be done in linear time), two squarings, and a division by 4.
Note that the division by 4 can be done in linear time (simply convert to binary,
shift right by two digits, and convert back).

This reduction shows that if a linear time algorithm for squaring can be found,
it can be used to construct a linear time algorithm for multiplication.
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Our next example of reduction concerns the multiplication of two n× n matri-
ces. For this problem, we will assume that the values stored in the matrices are sim-
ple integers and that multiplying two simple integers takes constant time (because
multiplication of two int variables takes a fixed number of machine instructions).
The standard algorithm for multiplying two matrices is to multiply each element
of the first matrix’s first row by the corresponding element of the second matrix’s
first column, then adding the numbers. This takes Θ(n) time. Each of the n2 el-
ements of the solution are computed in similar fashion, requiring a total of Θ(n3)
time. Faster algorithms are known (see the discussion of Strassen’s Algorithm in
Section 16.3.3), but none are so fast as to be in O(n2).

Now, consider the case of multiplying two symmetric matrices. A symmetric
matrix is one in which entry ij is equal to entry ji; that is, the upper-right triangle
of the matrix is a mirror image of the lower-left triangle. Is there something about
this restricted case that allows us to multiply two symmetric matrices faster than
in the general case? The answer is no, as can be seen by the following reduction.
Assume that we have been given two n × n matrices A and B. We can construct a
2n× 2n symmetric matrix from an arbitrary matrix A as follows:[

0 A
AT 0

]
.

Here 0 stands for an n×nmatrix composed of zero values, A is the original matrix,
and AT stands for the transpose of matrix A.1 Note that the resulting matrix is now
symmetric. We can convert matrix B to a symmetric matrix in a similar manner.
If symmetric matrices could be multiplied “quickly” (in particular, if they could
be multiplied together in Θ(n2) time), then we could find the result of multiplying
two arbitrary n × n matrices in Θ(n2) time by taking advantage of the following
observation: [

0 A
AT 0

] [
0 BT

B 0

]
=

[
AB 0

0 ATBT

]
.

In the above formula, AB is the result of multiplying matrices A and B together.

17.2 Hard Problems

There are several ways that a problem could be considered hard. For example, we
might have trouble understanding the definition of the problem itself. At the be-
ginning of a large data collection and analysis project, developers and their clients
might have only a hazy notion of what their goals actually are, and need to work
that out over time. For other types of problems, we might have trouble finding or
understanding an algorithm to solve the problem. Understanding spoken English

1The transpose operation takes position ij of the original matrix and places it in position ji of the
transpose matrix. This can easily be done in n2 time for an n× n matrix.
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and translating it to written text is an example of a problem whose goals are easy
to define, but whose solution is not easy to discover. But even though a natural
language processing algorithm might be difficult to write, the program’s running
time might be fairly fast. There are many practical systems today that solve aspects
of this problem in reasonable time.

None of these is what is commonly meant when a computer theoretician uses
the word “hard.” Throughout this section, “hard” means that the best-known alg-
orithm for the problem is expensive in its running time. One example of a hard
problem is Towers of Hanoi. It is easy to understand this problem and its solution.
It is also easy to write a program to solve this problem. But, it takes an extremely
long time to run for any “reasonably” large value of n. Try running a program to
solve Towers of Hanoi for only 30 disks!

The Towers of Hanoi problem takes exponential time, that is, its running time
is Θ(2n). This is radically different from an algorithm that takes Θ(n log n) time
or Θ(n2) time. It is even radically different from a problem that takes Θ(n4) time.
These are all examples of polynomial running time, because the exponents for all
terms of these equations are constants. Recall from Chapter 3 that if we buy a new
computer that runs twice as fast, the size of problem with complexity Θ(n4) that
we can solve in a certain amount of time is increased by the fourth root of two.
In other words, there is a multiplicative factor increase, even if it is a rather small
one. This is true for any algorithm whose running time can be represented by a
polynomial.

Consider what happens if you buy a computer that is twice as fast and try to
solve a bigger Towers of Hanoi problem in a given amount of time. Because its
complexity is Θ(2n), we can solve a problem only one disk bigger! There is no
multiplicative factor, and this is true for any exponential algorithm: A constant
factor increase in processing power results in only a fixed addition in problem-
solving power.

There are a number of other fundamental differences between polynomial run-
ning times and exponential running times that argues for treating them as quali-
tatively different. Polynomials are closed under composition and addition. Thus,
running polynomial-time programs in sequence, or having one program with poly-
nomial running time call another a polynomial number of times yields polynomial
time. Also, all computers known are polynomially related. That is, any program
that runs in polynomial time on any computer today, when transferred to any other
computer, will still run in polynomial time.

There is a practical reason for recognizing a distinction. In practice, most poly-
nomial time algorithms are “feasible” in that they can run reasonably large inputs
in reasonable time. In contrast, most algorithms requiring exponential time are
not practical to run even for fairly modest sizes of input. One could argue that
a program with high polynomial degree (such as n100) is not practical, while an
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exponential-time program with cost 1.001n is practical. But the reality is that we
know of almost no problems where the best polynomial-time algorithm has high
degree (they nearly all have degree four or less), while almost no exponential-time
algorithms (whose cost is (O(cn)) have their constant c close to one. So there is not
much gray area between polynomial and exponential time algorithms in practice.

For the rest of this chapter, we define a hard algorithm to be one that runs in
exponential time, that is, in Ω(cn) for some constant c > 1. A definition for a hard
problem will be presented in the next section.

17.2.1 The Theory of NP-Completeness

Imagine a magical computer that works by guessing the correct solution from
among all of the possible solutions to a problem. Another way to look at this is
to imagine a super parallel computer that could test all possible solutions simul-
taneously. Certainly this magical (or highly parallel) computer can do anything a
normal computer can do. It might also solve some problems more quickly than a
normal computer can. Consider some problem where, given a guess for a solution,
checking the solution to see if it is correct can be done in polynomial time. Even
if the number of possible solutions is exponential, any given guess can be checked
in polynomial time (equivalently, all possible solutions are checked simultaneously
in polynomial time), and thus the problem can be solved in polynomial time by our
hypothetical magical computer. Another view of this concept is this: If you cannot
get the answer to a problem in polynomial time by guessing the right answer and
then checking it, then you cannot do it in polynomial time in any other way.

The idea of “guessing” the right answer to a problem — or checking all possible
solutions in parallel to determine which is correct — is called non-determinism.
An algorithm that works in this manner is called a non-deterministic algorithm,
and any problem with an algorithm that runs on a non-deterministic machine in
polynomial time is given a special name: It is said to be a problem in NP . Thus,
problems in NP are those problems that can be solved in polynomial time on a
non-deterministic machine.

Not all problems requiring exponential time on a regular computer are in NP .
For example, Towers of Hanoi is not inNP , because it must print out O(2n) moves
for n disks. A non-deterministic machine cannot “guess” and print the correct
answer in less time.

On the other hand, consider the TRAVELING SALESMAN problem.

TRAVELING SALESMAN (1)
Input: A complete, directed graph G with positive distances assigned to

each edge in the graph.
Output: The shortest simple cycle that includes every vertex.
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Figure 17.4 An illustration of the TRAVELING SALESMAN problem. Five
vertices are shown, with edges between each pair of cities. The problem is to visit
all of the cities exactly once, returning to the start city, with the least total cost.

Figure 17.4 illustrates this problem. Five vertices are shown, with edges and
associated costs between each pair of edges. (For simplicity Figure 17.4 shows an
undirected graph, assuming that the cost is the same in both directions, though this
need not be the case.) If the salesman visits the cities in the order ABCDEA, he
will travel a total distance of 13. A better route would be ABDCEA, with cost 11.
The best route for this particular graph would be ABEDCA, with cost 9.

We cannot solve this problem in polynomial time with a guess-and-test non-
deterministic computer. The problem is that, given a candidate cycle, while we can
quickly check that the answer is indeed a cycle of the appropriate form, and while
we can quickly calculate the length of the cycle, we have no easy way of knowing
if it is in fact the shortest such cycle. However, we can solve a variant of this
problem cast in the form of a decision problem. A decision problem is simply one
whose answer is either YES or NO. The decision problem form of TRAVELING
SALESMAN is as follows:

TRAVELING SALESMAN (2)
Input: A complete, directed graph G with positive distances assigned to

each edge in the graph, and an integer k.
Output: YES if there is a simple cycle with total distance ≤ k containing

every vertex in G, and NO otherwise.

We can solve this version of the problem in polynomial time with a non-deter-
ministic computer. The non-deterministic algorithm simply checks all of the pos-
sible subsets of edges in the graph, in parallel. If any subset of the edges is an
appropriate cycle of total length less than or equal to k, the answer is YES; oth-
erwise the answer is NO. Note that it is only necessary that some subset meet the
requirement; it does not matter how many subsets fail. Checking a particular sub-
set is done in polynomial time by adding the distances of the edges and verifying
that the edges form a cycle that visits each vertex exactly once. Thus, the checking
algorithm runs in polynomial time. Unfortunately, there are 2|E| subsets to check,
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so this algorithm cannot be converted to a polynomial time algorithm on a regu-
lar computer. Nor does anybody in the world know of any other polynomial time
algorithm to solve TRAVELING SALESMAN on a regular computer, despite the
fact that the problem has been studied extensively by many computer scientists for
many years.

It turns out that there is a large collection of problems with this property: We
know efficient non-deterministic algorithms, but we do not know if there are effi-
cient deterministic algorithms. At the same time, we have not been able to prove
that any of these problems do not have efficient deterministic algorithms. This class
of problems is called NP-complete. What is truly strange and fascinating about
NP-complete problems is that if anybody ever finds the solution to any one of
them that runs in polynomial time on a regular computer, then by a series of reduc-
tions, every other problem that is in NP can also be solved in polynomial time on
a regular computer!

Define a problem to be NP-hard if any problem in NP can be reduced to X
in polynomial time. Thus, X is as hard as any problem in NP . A problem X is
defined to be NP-complete if

1. X is in NP , and
2. X is NP-hard.

The requirement that a problem be NP-hard might seem to be impossible, but
in fact there are hundreds of such problems, including TRAVELING SALESMAN.
Another such problem is called K-CLIQUE.

K-CLIQUE
Input: An arbitrary undirected graph G and an integer k.
Output: YES if there is a complete subgraph of at least k vertices, and NO

otherwise.

Nobody knows whether there is a polynomial time solution for K-CLIQUE, but if
such an algorithm is found for K-CLIQUE or for TRAVELING SALESMAN, then
that solution can be modified to solve the other, or any other problem in NP , in
polynomial time.

The primary theoretical advantage of knowing that a problem P1 isNP-comp-
lete is that it can be used to show that another problem P2 isNP-complete. This is
done by finding a polynomial time reduction of P1 to P2. Because we already know
that all problems inNP can be reduced to P1 in polynomial time (by the definition
ofNP-complete), we now know that all problems can be reduced to P2 as well by
the simple algorithm of reducing to P1 and then from there reducing to P2.

There is a practical advantage to knowing that a problem is NP-complete. It
relates to knowing that if a polynomial time solution can be found for any prob-
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Figure 17.5 Our knowledge regarding the world of problems requiring expo-
nential time or less. Some of these problems are solvable in polynomial time by a
non-deterministic computer. Of these, some are known to be NP-complete, and
some are known to be solvable in polynomial time on a regular computer.

lem that is NP-complete, then a polynomial solution can be found for all such
problems. The implication is that,

1. Because no one has yet found such a solution, it must be difficult or impos-
sible to do; and

2. Effort to find a polynomial time solution for one NP-complete problem can
be considered to have been expended for all NP-complete problems.

How is NP-completeness of practical significance for typical programmers?
Well, if your boss demands that you provide a fast algorithm to solve a problem,
she will not be happy if you come back saying that the best you could do was
an exponential time algorithm. But, if you can prove that the problem is NP-
complete, while she still won’t be happy, at least she should not be mad at you! By
showing that her problem is NP-complete, you are in effect saying that the most
brilliant computer scientists for the last 50 years have been trying and failing to find
a polynomial time algorithm for her problem.

Problems that are solvable in polynomial time on a regular computer are said
to be in class P . Clearly, all problems in P are solvable in polynomial time on
a non-deterministic computer simply by neglecting to use the non-deterministic
capability. Some problems inNP areNP-complete. We can consider all problems
solvable in exponential time or better as an even bigger class of problems because
all problems solvable in polynomial time are solvable in exponential time. Thus, we
can view the world of exponential-time-or-better problems in terms of Figure 17.5.

The most important unanswered question in theoretical computer science is
whether P = NP . If they are equal, then there is a polynomial time algorithm
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for TRAVELING SALESMAN and all related problems. Because TRAVELING
SALESMAN is known to beNP-complete, if a polynomial time algorithm were to
be found for this problem, then all problems inNP would also be solvable in poly-
nomial time. Conversely, if we were able to prove that TRAVELING SALESMAN
has an exponential time lower bound, then we would know that P 6= NP .

17.2.2 NP-Completeness Proofs

To start the process of being able to prove problems are NP-complete, we need to
prove just one problem H is NP-complete. After that, to show that any problem
X is NP-hard, we just need to reduce H to X . When doing NP-completeness
proofs, it is very important not to get this reduction backwards! If we reduce can-
didate problem X to known hard problem H , this means that we use H as a step to
solving X . All that means is that we have found a (known) hard way to solve X .
However, when we reduce known hard problem H to candidate problem X , that
means we are using X as a step to solve H . And if we know that H is hard, that
means X must also be hard (because if X were not hard, then neither would H be
hard).

So a crucial first step to getting this whole theory off the ground is finding one
problem that is NP-hard. The first proof that a problem is NP-hard (and because
it is in NP , therefore NP-complete) was done by Stephen Cook. For this feat,
Cook won the first Turing award, which is the closest Computer Science equivalent
to the Nobel Prize. The “grand-daddy” NP-complete problem that Cook used is
call SATISFIABILITY (or SAT for short).

A Boolean expression includes Boolean variables combined using the opera-
tors AND (·), OR (+), and NOT (to negate Boolean variable x we write x). A
literal is a Boolean variable or its negation. A clause is one or more literals OR’ed
together. Let E be a Boolean expression over variables x1, x2, ..., xn. Then we
define Conjunctive Normal Form (CNF) to be a Boolean expression written as a
series of clauses that are AND’ed together. For example,

E = (x5 + x7 + x8 + x10) · (x2 + x3) · (x1 + x3 + x6)

is in CNF, and has three clauses. Now we can define the problem SAT.

SATISFIABILITY (SAT)
Input: A Boolean expressionE over variables x1, x2, ... in Conjunctive Nor-

mal Form.
Output: YES if there is an assignment to the variables that makes E true,

NO otherwise.

Cook proved that SAT is NP-hard. Explaining Cook’s proof is beyond the
scope of this book. But we can briefly summarize it as follows. Any decision
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problem F can be recast as some language acceptance problem L:

F (I) = YES⇔ L(I ′) = ACCEPT.

That is, if a decision problem F yields YES on input I, then there is a language L
containing string I′ where I′ is some suitable transformation of input I. Conversely,
if F would give answer NO for input I, then I’s transformed version I′ is not in the
language L.

Turing machines are a simple model of computation for writing programs that
are language acceptors. There is a “universal” Turing machine that can take as in-
put a description for a Turing machine, and an input string, and return the execution
of that machine on that string. This Turing machine in turn can be cast as a Boolean
expression such that the expression is satisfiable if and only if the Turing machine
yields ACCEPT for that string. Cook used Turing machines in his proof because
they are simple enough that he could develop this transformation of Turing ma-
chines to Boolean expressions, but rich enough to be able to compute any function
that a regular computer can compute. The significance of this transformation is that
any decision problem that is performable by the Turing machine is transformable
to SAT. Thus, SAT is NP-hard.

As explained above, to show that a decision problem X is NP-complete, we
prove that X is in NP (normally easy, and normally done by giving a suitable
polynomial-time, nondeterministic algorithm) and then prove that X is NP-hard.
To prove that X is NP-hard, we choose a known NP-complete problem, say A.
We describe a polynomial-time transformation that takes an arbitrary instance I of
A to an instance I′ of X . We then describe a polynomial-time transformation from
SLN′ to SLN such that SLN is the solution for I. The following example provides a
model for how an NP-completeness proof is done.

3-SATISFIABILITY (3 SAT)
Input: A Boolean expression E in CNF such that each clause contains ex-

actly 3 literals.
Output: YES if the expression can be satisfied, NO otherwise.

Example 17.1 3 SAT is a special case of SAT. Is 3 SAT easier than SAT?
Not if we can prove it to be NP-complete.
Theorem 17.1 3 SAT is NP-complete.
Proof: Prove that 3 SAT is in NP: Guess (nondeterministically) truth
values for the variables. The correctness of the guess can be verified in
polynomial time.

Prove that 3 SAT is NP-hard: We need a polynomial-time reduction
from SAT to 3 SAT. Let E = C1 · C2 · ... · Ck be any instance of SAT. Our
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strategy is to replace any clause Ci that does not have exactly three literals
with a set of clauses each having exactly three literals. (Recall that a literal
can be a variable such as x, or the negation of a variable such as x.) Let
Ci = x1 + x2 + ...+ xj where x1, ..., xj are literals.

1. j = 1, so Ci = x1. Replace Ci with C ′i:

(x1 + y + z) · (x1 + y + z) · (x1 + y + z) · (x1 + y + z)

where y and z are variables not appearing in E. Clearly, C ′i is satisfi-
able if and only if (x1) is satisfiable, meaning that x1 is true.

2. J = 2, so Ci = (x1 + x2). Replace Ci with

(x1 + x2 + z) · (x1 + x2 + z)

where z is a new variable not appearing in E. This new pair of clauses
is satisfiable if and only if (x1 + x2) is satisfiable, that is, either x1 or
x2 must be true.

3. j > 3. Replace Ci = (x1 + x2 + · · ·+ xj) with

(x1 + x2 + z1) · (x3 + z1 + z2) · (x4 + z2 + z3) · ...

·(xj−2 + zj−4 + zj−3) · (xj−1 + xj + zj−3)

where z1, ..., zj−3 are new variables.
After appropriate replacements have been made for each Ci, a Boolean

expression results that is an instance of 3 SAT. Each replacement is satisfi-
able if and only if the original clause is satisfiable. The reduction is clearly
polynomial time.

For the first two cases it is fairly easy to see that the original clause
is satisfiable if and only if the resulting clauses are satisfiable. For the
case were we replaced a clause with more than three literals, consider the
following.

1. If E is satisfiable, then E′ is satisfiable: Assume xm is assigned
true. Then assign zt, t ≤ m − 2 as true and zk, t ≥ m − 1 as
false. Then all clauses in Case (3) are satisfied.

2. If x1, x2, ..., xj are all false, then z1, z2, ..., zj−3 are all true. But
then (xj−1 + xj−2 + zj−3) is false.

2

Next we define the problem VERTEX COVER for use in further examples.

VERTEX COVER:
Input: A graph G and an integer k.
Output: YES if there is a subset S of the vertices in G of size k or less such

that every edge of G has at least one of its endpoints in S, and NO otherwise.
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Example 17.2 In this example, we make use of a simple conversion be-
tween two graph problems.
Theorem 17.2 VERTEX COVER is NP-complete.
Proof: Prove that VERTEX COVER is in NP: Simply guess a subset
of the graph and determine in polynomial time whether that subset is in fact
a vertex cover of size k or less.

Prove that VERTEX COVER is NP-hard: We will assume that K-
CLIQUE is already known to be NP-complete. (We will see this proof in
the next example. For now, just accept that it is true.)

Given that K-CLIQUE isNP-complete, we need to find a polynomial-
time transformation from the input to K-CLIQUE to the input to VERTEX
COVER, and another polynomial-time transformation from the output for
VERTEX COVER to the output for K-CLIQUE. This turns out to be a
simple matter, given the following observation. Consider a graph G and
a vertex cover S on G. Denote by S′ the set of vertices in G but not in S.
There can be no edge connecting any two vertices in S′ because, if there
were, then S would not be a vertex cover. Denote by G′ the inverse graph
for G, that is, the graph formed from the edges not in G. If S is of size
k, then S′ forms a clique of size n − k in graph G′. Thus, we can reduce
K-CLIQUE to VERTEX COVER simply by converting graph G to G′, and
asking if G′ has a VERTEX COVER of size n− k or smaller. If YES, then
there is a clique in G of size k; if NO then there is not. 2

Example 17.3 So far, our NP-completeness proofs have involved trans-
formations between inputs of the same “type,” such as from a Boolean ex-
pression to a Boolean expression or from a graph to a graph. Sometimes an
NP-completeness proof involves a transformation between types of inputs,
as shown next.
Theorem 17.3 K-CLIQUE is NP-complete.
Proof: K-CLIQUE is in NP , because we can just guess a collection of k
vertices and test in polynomial time if it is a clique. Now we show that K-
CLIQUE is NP-hard by using a reduction from SAT. An instance of SAT
is a Boolean expression

B = C1 · C2 · ... · Cm

whose clauses we will describe by the notation

Ci = y[i, 1] + y[i, 2] + ...+ y[i, ki]
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Figure 17.6 The graph generated from Boolean expressionB = (x1+x2)·(x1+
x2 +x3) · (x1 +x3). Literals from the first clause are labeled C1, and literals from
the second clause are labeled C2. There is an edge between every pair of vertices
except when both vertices represent instances of literals from the same clause, or
a negation of the same variable. Thus, the vertex labeled C1:y1 does not connect
to the vertex labeled C1 : y2 (because they are literals in the same clause) or the
vertex labeled C2:y1 (because they are opposite values for the same variable).

where ki is the number of literals in Clause ci. We will transform this to an
instance of K-CLIQUE as follows. We build a graph

G = {v[i, j]|1 ≤ i ≤ m, 1 ≤ j ≤ ki},

that is, there is a vertex in G corresponding to every literal in Boolean
expression B. We will draw an edge between each pair of vertices v[i1, j1]
and v[i2, j2] unless (1) they are two literals within the same clause (i1 = i2)
or (2) they are opposite values for the same variable (i.e., one is negated
and the other is not). Set k = m. Figure 17.6 shows an example of this
transformation.

B is satisfiable if and only if G has a clique of size k or greater. B being
satisfiable implies that there is a truth assignment such that at least one
literal y[i, ji] is true for each i. If so, then these m literals must correspond
to m vertices in a clique of size k = m. Conversely, if G has a clique of
size k or greater, then the clique must have size exactly k (because no two
vertices corresponding to literals in the same clause can be in the clique)
and there is one vertex v[i, ji] in the clique for each i. There is a truth
assignment making each y[i, ji] true. That truth assignment satisfies B.

We conclude that K-CLIQUE is NP-hard, therefore NP-complete. 2



560 Chap. 17 Limits to Computation

17.2.3 Coping with NP-Complete Problems

Finding that your problem isNP-complete might not mean that you can just forget
about it. Traveling salesmen need to find reasonable sales routes regardless of the
complexity of the problem. What do you do when faced with an NP-complete
problem that you must solve?

There are several techniques to try. One approach is to run only small instances
of the problem. For some problems, this is not acceptable. For example, TRAVEL-
ING SALESMAN grows so quickly that it cannot be run on modern computers for
problem sizes much over 30 cities, which is not an unreasonable problem size for
real-life situations. However, some other problems in NP , while requiring expo-
nential time, still grow slowly enough that they allow solutions for problems of a
useful size.

Consider the Knapsack problem from Section 16.1.1. We have a dynamic pro-
gramming algorithm whose cost is Θ(nK) for n objects being fit into a knapsack of
size K. But it turns out that Knapsack is NP-complete. Isn’t this a contradiction?
Not when we consider the relationship between n andK. How big isK? Input size
is typically O(n lgK) because the item sizes are smaller than K. Thus, Θ(nK) is
exponential on input size.

This dynamic programming algorithm is tractable if the numbers are “reason-
able.” That is, we can successfully find solutions to the problem when nK is in
the thousands. Such an algorithm is called a pseudo-polynomial time algorithm.
This is different from TRAVELING SALESMAN which cannot possibly be solved
when n = 100 given current algorithms.

A second approach to handling NP-complete problems is to solve a special
instance of the problem that is not so hard. For example, many problems on graphs
are NP-complete, but the same problem on certain restricted types of graphs is
not as difficult. For example, while the VERTEX COVER and K-CLIQUE prob-
lems are NP-complete in general, there are polynomial time solutions for bipar-
tite graphs (i.e., graphs whose vertices can be separated into two subsets such
that no pair of vertices within one of the subsets has an edge between them). 2-
SATISFIABILITY (where every clause in a Boolean expression has at most two
literals) has a polynomial time solution. Several geometric problems require only
polynomial time in two dimensions, but are NP-complete in three dimensions or
more. KNAPSACK is considered to run in polynomial time if the numbers (and
K) are “small.” Small here means that they are polynomial on n, the number of
items.

In general, if we want to guarantee that we get the correct answer for an NP-
complete problem, we potentially need to examine all of the (exponential number
of) possible solutions. However, with some organization, we might be able to either
examine them quickly, or avoid examining a great many of the possible answers
in some cases. For example, Dynamic Programming (Section 16.1) attempts to
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organize the processing of all the subproblems to a problem so that the work is
done efficiently.

If we need to do a brute-force search of the entire solution space, we can use
backtracking to visit all of the possible solutions organized in a solution tree. For
example, SATISFIABILITY has 2n possible ways to assign truth values to the n
variables contained in the Boolean expression being satisfied. We can view this as
a tree of solutions by considering that we have a choice of making the first variable
true or false. Thus, we can put all solutions where the first variable is true on
one side of the tree, and the remaining solutions on the other. We then examine the
solutions by moving down one branch of the tree, until we reach a point where we
know the solution cannot be correct (such as if the current partial collection of as-
signments yields an unsatisfiable expression). At this point we backtrack and move
back up a node in the tree, and then follow down the alternate branch. If this fails,
we know to back up further in the tree as necessary and follow alternate branches,
until finally we either find a solution that satisfies the expression or exhaust the
tree. In some cases we avoid processing many potential solutions, or find a solution
quickly. In others, we end up visiting a large portion of the 2n possible solutions.

Banch-and-Bounds is an extension of backtracking that applies to optimiza-
tion problems such as TRAVELING SALESMAN where we are trying to find the
shortest tour through the cities. We traverse the solution tree as with backtrack-
ing. However, we remember the best value found so far. Proceeding down a given
branch is equivalent to deciding which order to visit cities. So any node in the so-
lution tree represents some collection of cities visited so far. If the sum of these
distances exceeds the best tour found so far, then we know to stop pursuing this
branch of the tree. At this point we can immediately back up and take another
branch. If we have a quick method for finding a good (but not necessarily best)
solution, we can use this as an initial bound value to effectively prune portions of
the tree.

Another coping strategy is to find an approximate solution to the problem.
There are many approaches to finding approximate solutions. One way is to use
a heuristic to solve the problem, that is, an algorithm based on a “rule of thumb”
that does not always give the best answer. For example, the TRAVELING SALES-
MAN problem can be solved approximately by using the heuristic that we start at
an arbitrary city and then always proceed to the next unvisited city that is closest.
This rarely gives the shortest path, but the solution might be good enough. There
are many other heuristics for TRAVELING SALESMAN that do a better job.

Some approximation algorithms have guaranteed performance, such that the
answer will be within a certain percentage of the best possible answer. For exam-
ple, consider this simple heuristic for the VERTEX COVER problem: Let M be
a maximal (not necessarily maximum) matching in G. A matching pairs vertices
(with connecting edges) so that no vertex is paired with more than one partner.
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Maximal means to pick as many pairs as possible, selecting them in some order un-
til there are no more available pairs to select. Maximum means the matching that
gives the most pairs possible for a given graph. If OPT is the size of a minimum
vertex cover, then |M | ≤ 2 · OPT because at least one endpoint of every matched
edge must be in any vertex cover.

A better example of a guaranteed bound on a solution comes from simple
heuristics to solve the BIN PACKING problem.

BIN PACKING:
Input: Numbers x1, x2, ..., xn between 0 and 1, and an unlimited supply of

bins of size 1 (no bin can hold numbers whose sum exceeds 1).
Output: An assignment of numbers to bins that requires the fewest possible

bins.

BIN PACKING in its decision form (i.e., asking if the items can be packed in
less than k bins) is known to be NP-complete. One simple heuristic for solving
this problem is to use a “first fit” approach. We put the first number in the first
bin. We then put the second number in the first bin if it fits, otherwise we put it in
the second bin. For each subsequent number, we simply go through the bins in the
order we generated them and place the number in the first bin that fits. The number
of bins used is no more than twice the sum of the numbers, because every bin
(except perhaps one) must be at least half full. However, this “first fit” heuristic can
give us a result that is much worse than optimal. Consider the following collection
of numbers: 6 of 1/7+ ε, 6 of 1/3+ ε, and 6 of 1/2+ ε, where ε is a small, positive
number. Properly organized, this requires 6 bins. But if done wrongly, we might
end up putting the numbers into 10 bins.

A better heuristic is to use decreasing first fit. This is the same as first fit, except
that we keep the bins sorted from most full to least full. Then when deciding where
to put the next item, we place it in the fullest bin that can hold it. This is similar to
the “best fit” heuristic for memory management discussed in Section 12.3. The sig-
nificant thing about this heuristic is not just that it tends to give better performance
than simple first fit. This decreasing first fit heuristic can be proven to require no
more than 11/9 the optimal number of bins. Thus, we have a guarantee on how
much inefficiency can result when using the heuristic.

The theory ofNP-completeness gives a technique for separating tractable from
(probably) intractable problems. Recalling the algorithm for generating algorithms
in Section 15.1, we can refine it for problems that we suspect are NP-complete.
When faced with a new problem, we might alternate between checking if it is
tractable (that is, we try to find a polynomial-time solution) and checking if it is
intractable (we try to prove the problem is NP-complete). While proving that
some problem is NP-complete does not actually make our upper bound for our
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algorithm match the lower bound for the problem with certainty, it is nearly as
good. Once we realize that a problem isNP-complete, then we know that our next
step must either be to redefine the problem to make it easier, or else use one of the
“coping” strategies discussed in this section.

17.3 Impossible Problems

Even the best programmer sometimes writes a program that goes into an infinite
loop. Of course, when you run a program that has not stopped, you do not know
for sure if it is just a slow program or a program in an infinite loop. After “enough
time,” you shut it down. Wouldn’t it be great if your compiler could look at your
program and tell you before you run it that it will get into an infinite loop? To be
more specific, given a program and a particular input, it would be useful to know if
executing the program on that input will result in an infinite loop without actually
running the program.

Unfortunately, the Halting Problem, as this is called, cannot be solved. There
will never be a computer program that can positively determine, for an arbitrary
program P, if P will halt for all input. Nor will there even be a computer program
that can positively determine if arbitrary program P will halt for a specified input I.
How can this be? Programmers look at programs regularly to determine if they will
halt. Surely this can be automated. As a warning to those who believe any program
can be analyzed in this way, carefully examine the following code fragment before
reading on.

while (n > 1)
if (ODD(n))

n = 3 * n + 1;
else

n = n / 2;

This is a famous piece of code. The sequence of values that is assigned to n
by this code is sometimes called the Collatz sequence for input value n. Does
this code fragment halt for all values of n? Nobody knows the answer. Every
input that has been tried halts. But does it always halt? Note that for this code
fragment, because we do not know if it halts, we also do not know an upper bound
for its running time. As for the lower bound, we can easily show Ω(log n) (see
Exercise 3.14).

Personally, I have faith that someday some smart person will completely ana-
lyze the Collatz function, proving once and for all that the code fragment halts for
all values of n. Doing so may well give us techniques that advance our ability to
do algorithm analysis in general. Unfortunately, proofs from computability — the
branch of computer science that studies what is impossible to do with a computer
— compel us to believe that there will always be another bit of program code that
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we cannot analyze. This comes as a result of the fact that the Halting Problem is
unsolvable.

17.3.1 Uncountability

Before proving that the Halting Problem is unsolvable, we first prove that not all
functions can be implemented as a computer program. This must be so because the
number of programs is much smaller than the number of possible functions.

A set is said to be countable (or countably infinite if it is a set with an infinite
number of members) if every member of the set can be uniquely assigned to a
positive integer. A set is said to be uncountable (or uncountably infinite) if it is
not possible to assign every member of the set to its own positive integer.

To understand what is meant when we say “assigned to a positive integer,”
imagine that there is an infinite row of bins, labeled 1, 2, 3, and so on. Take a set
and start placing members of the set into bins, with at most one member per bin. If
we can find a way to assign all of the set members to bins, then the set is countable.
For example, consider the set of positive even integers 2, 4, and so on. We can
assign an integer i to bin i/2 (or, if we don’t mind skipping some bins, then we can
assign even number i to bin i). Thus, the set of even integers is countable. This
should be no surprise, because intuitively there are “fewer” positive even integers
than there are positive integers, even though both are infinite sets. But there are not
really any more positive integers than there are positive even integers, because we
can uniquely assign every positive integer to some positive even integer by simply
assigning positive integer i to positive even integer 2i.

On the other hand, the set of all integers is also countable, even though this set
appears to be “bigger” than the set of positive integers. This is true because we can
assign 0 to positive integer 1, 1 to positive integer 2, -1 to positive integer 3, 2 to
positive integer 4, -2 to positive integer 5, and so on. In general, assign positive
integer value i to positive integer value 2i, and assign negative integer value −i to
positive integer value 2i + 1. We will never run out of positive integers to assign,
and we know exactly which positive integer every integer is assigned to. Because
every integer gets an assignment, the set of integers is countably infinite.

Are the number of programs countable or uncountable? A program can be
viewed as simply a string of characters (including special punctuation, spaces, and
line breaks). Let us assume that the number of different characters that can appear
in a program is P . (Using the ASCII character set, P must be less than 128, but
the actual number does not matter). If the number of strings is countable, then
surely the number of programs is also countable. We can assign strings to the
bins as follows. Assign the null string to the first bin. Now, take all strings of
one character, and assign them to the next P bins in “alphabetic” or ASCII code
order. Next, take all strings of two characters, and assign them to the next P 2 bins,
again in ASCII code order working from left to right. Strings of three characters
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are likewise assigned to bins, then strings of length four, and so on. In this way, a
string of any given length can be assigned to some bin.

By this process, any string of finite length is assigned to some bin. So any pro-
gram, which is merely a string of finite length, is assigned to some bin. Because all
programs are assigned to some bin, the set of all programs is countable. Naturally
most of the strings in the bins are not legal programs, but this is irrelevant. All that
matters is that the strings that do correspond to programs are also in the bins.

Now we consider the number of possible functions. To keep things simple,
assume that all functions take a single positive integer as input and yield a sin-
gle positive integer as output. We will call such functions integer functions. A
function is simply a mapping from input values to output values. Of course, not
all computer programs literally take integers as input and yield integers as output.
However, everything that computers read and write is essentially a series of num-
bers, which may be interpreted as letters or something else. Any useful computer
program’s input and output can be coded as integer values, so our simple model
of computer input and output is sufficiently general to cover all possible computer
programs.

We now wish to see if it is possible to assign all of the integer functions to the
infinite set of bins. If so, then the number of functions is countable, and it might
then be possible to assign every integer function to a program. If the set of integer
functions cannot be assigned to bins, then there will be integer functions that must
have no corresponding program.

Imagine each integer function as a table with two columns and an infinite num-
ber of rows. The first column lists the positive integers starting at 1. The second
column lists the output of the function when given the value in the first column
as input. Thus, the table explicitly describes the mapping from input to output for
each function. Call this a function table.

Next we will try to assign function tables to bins. To do so we must order the
functions, but it does not matter what order we choose. For example, Bin 1 could
store the function that always returns 1 regardless of the input value. Bin 2 could
store the function that returns its input. Bin 3 could store the function that doubles
its input and adds 5. Bin 4 could store a function for which we can see no simple
relationship between input and output.2 These four functions as assigned to the first
four bins are shown in Figure 17.7.

Can we assign every function to a bin? The answer is no, because there is
always a way to create a new function that is not in any of the bins. Suppose that
somebody presents a way of assigning functions to bins that they claim includes
all of the functions. We can build a new function that has not been assigned to

2There is no requirement for a function to have any discernible relationship between input and
output. A function is simply a mapping of inputs to outputs, with no constraint on how the mapping
is determined.
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Figure 17.7 An illustration of assigning functions to bins.
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Figure 17.8 Illustration for the argument that the number of integer functions is
uncountable.

any bin, as follows. Take the output value for input 1 from the function in the first
bin. Call this value F1(1). Add 1 to it, and assign the result as the output of a new
function for input value 1. Regardless of the remaining values assigned to our new
function, it must be different from the first function in the table, because the two
give different outputs for input 1. Now take the output value for 2 from the second
function in the table (known as F2(2)). Add 1 to this value and assign it as the
output for 2 in our new function. Thus, our new function must be different from
the function of Bin 2, because they will differ at least at the second value. Continue
in this manner, assigning Fnew(i) = Fi(i) + 1 for all values i. Thus, the new
function must be different from any function Fi at least at position i. This procedure
for constructing a new function not already in the table is called diagonalization.
Because the new function is different from every other function, it must not be in
the table. This is true no matter how we try to assign functions to bins, and so the
number of integer functions is uncountable. The significance of this is that not all
functions can possibly be assigned to programs, so there must be functions with no
corresponding program. Figure 17.8 illustrates this argument.
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17.3.2 The Halting Problem Is Unsolvable

While there might be intellectual appeal to knowing that there exists some function
that cannot be computed by a computer program, does this mean that there is any
such useful function? After all, does it really matter if no program can compute a
“nonsense” function such as shown in Bin 4 of Figure 17.7? Now we will prove
that the Halting Problem cannot be computed by any computer program. The proof
is by contradiction.

We begin by assuming that there is a function named halt that can solve the
Halting Problem. Obviously, it is not possible to write out something that does not
exist, but here is a plausible sketch of what a function to solve the Halting Problem
might look like if it did exist. Function halt takes two inputs: a string representing
the source code for a program or function, and another string representing the input
that we wish to determine if the input program or function halts on. Function halt
does some work to make a decision (which is encapsulated into some fictitious
function named PROGRAM HALTS). Function halt then returns true if the input
program or function does halt on the given input, and false otherwise.

bool halt(string prog, string input) {
if (PROGRAM HALTS(prog, input))

return true;
else

return false;
}

We now will examine two simple functions that clearly can exist because the
complete code for them is presented here:

// Return true if "prog" halts when given itself as input
bool selfhalt(char *prog) {
if (halt(prog, prog))

return true;
else

return false;
}

// Return the reverse of what selfhalt returns on "prog"
void contrary(char *prog) {

if (selfhalt(prog))
while (true); // Go into an infinite loop

}

What happens if we make a program whose sole purpose is to execute the func-
tion contrary and run that program with itself as input? One possibility is that
the call to selfhalt returns true; that is, selfhalt claims that contrary
will halt when run on itself. In that case, contrary goes into an infinite loop (and
thus does not halt). On the other hand, if selfhalt returns false, then halt is
proclaiming that contrary does not halt on itself, and contrary then returns,
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that is, it halts. Thus, contrary does the contrary of what halt says that it will
do.

The action of contrary is logically inconsistent with the assumption that
halt solves the Halting Problem correctly. There are no other assumptions we
made that might cause this inconsistency. Thus, by contradiction, we have proved
that halt cannot solve the Halting Problem correctly, and thus there is no program
that can solve the Halting Problem.

Now that we have proved that the Halting Problem is unsolvable, we can use
reduction arguments to prove that other problems are also unsolvable. The strat-
egy is to assume the existence of a computer program that solves the problem in
question and use that program to solve another problem that is already known to be
unsolvable.

Example 17.4 Consider the following variation on the Halting Problem.
Given a computer program, will it halt when its input is the empty string?
That is, will it halt when it is given no input? To prove that this problem is
unsolvable, we will employ a standard technique for computability proofs:
Use a computer program to modify another computer program.
Proof: Assume that there is a function Ehalt that determines whether
a given program halts when given no input. Recall that our proof for the
Halting Problem involved functions that took as parameters a string rep-
resenting a program and another string representing an input. Consider
another function combine that takes a program P and an input string I as
parameters. Function combine modifies P to store I as a static variable S
and further modifies all calls to input functions within P to instead get their
input from S. Call the resulting program P ′. It should take no stretch of the
imagination to believe that any decent compiler could be modified to take
computer programs and input strings and produce a new computer program
that has been modified in this way. Now, take P ′ and feed it to Ehalt. If
Ehalt says that P ′ will halt, then we know that P would halt on input I.
In other words, we now have a procedure for solving the original Halting
Problem. The only assumption that we made was the existence of Ehalt.
Thus, the problem of determining if a program will halt on no input must
be unsolvable. 2

Example 17.5 For arbitrary program P, does there exist any input for
which P halts?
Proof: This problem is also uncomputable. Assume that we had a function
Ahalt that, when given program P as input would determine if there is
some input for which P halts. We could modify our compiler (or write
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a function as part of a program) to take P and some input string w, and
modify it so that w is hardcoded inside P, with P reading no input. Call this
modified program P ′. Now, P ′ always behaves the same way regardless of
its input, because it ignores all input. However, because w is now hardwired
inside of P ′, the behavior we get is that of P when given w as input. So, P ′

will halt on any arbitrary input if and only if P would halt on input w. We
now feed P ′ to function Ahalt. If Ahalt could determine that P ′ halts
on some input, then that is the same as determining that P halts on input w.
But we know that that is impossible. Therefore, Ahalt cannot exist. 2

There are many things that we would like to have a computer do that are un-
solvable. Many of these have to do with program behavior. For example, proving
that an arbitrary program is “correct,” that is, proving that a program computes a
particular function, is a proof regarding program behavior. As such, what can be
accomplished is severely limited. Some other unsolvable problems include:

• Does a program halt on every input?
• Does a program compute a particular function?
• Do two programs compute the same function?
• Does a particular line in a program get executed?

This does not mean that a computer program cannot be written that works on
special cases, possibly even on most programs that we would be interested in check-
ing. For example, some C compilers will check if the control expression for a
while loop is a constant expression that evaluates to false. If it is, the compiler
will issue a warning that the while loop code will never be executed. However, it
is not possible to write a computer program that can check for all input programs
whether a specified line of code will be executed when the program is given some
specified input.

Another unsolvable problem is whether a program contains a computer virus.
The property “contains a computer virus” is a matter of behavior. Thus, it is not
possible to determine positively whether an arbitrary program contains a computer
virus. Fortunately, there are many good heuristics for determining if a program
is likely to contain a virus, and it is usually possible to determine if a program
contains a particular virus, at least for the ones that are now known. Real virus
checkers do a pretty good job, but, it will always be possible for malicious people
to invent new viruses that no existing virus checker can recognize.

17.4 Further Reading

The classic text on the theory of NP-completeness is Computers and Intractabil-
ity: A Guide to the Theory of NP-completeness by Garey and Johnston [GJ79].
The Traveling Salesman Problem, edited by Lawler et al. [LLKS85], discusses
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many approaches to finding an acceptable solution to this particular NP-complete
problem in a reasonable amount of time.

For more information about the Collatz function see “On the Ups and Downs
of Hailstone Numbers” by B. Hayes [Hay84], and “The 3x + 1 Problem and its
Generalizations” by J.C. Lagarias [Lag85].

For an introduction to the field of computability and impossible problems, see
Discrete Structures, Logic, and Computability by James L. Hein [Hei09].

17.5 Exercises

17.1 Consider this algorithm for finding the maximum element in an array: First
sort the array and then select the last (maximum) element. What (if anything)
does this reduction tell us about the upper and lower bounds to the problem
of finding the maximum element in a sequence? Why can we not reduce
SORTING to finding the maximum element?

17.2 Use a reduction to prove that squaring an n × n matrix is just as expensive
(asymptotically) as multiplying two n× n matrices.

17.3 Use a reduction to prove that multiplying two upper triangular n × n matri-
ces is just as expensive (asymptotically) as multiplying two arbitrary n × n
matrices.

17.4 (a) Explain why computing the factorial of n by multiplying all values
from 1 to n together is an exponential time algorithm.

(b) Explain why computing an approximation to the factorial of n by mak-
ing use of Stirling’s formula (see Section 2.2) is a polynomial time
algorithm.

17.5 Consider this algorithm for solving the K-CLIQUE problem. First, generate
all subsets of the vertices containing exactly k vertices. There areO(nk) such
subsets altogether. Then, check whether any subgraphs induced by these
subsets is complete. If this algorithm ran in polynomial time, what would
be its significance? Why is this not a polynomial-time algorithm for the K-
CLIQUE problem?

17.6 Write the 3 SAT expression obtained from the reduction of SAT to 3 SAT
described in Section 17.2.1 for the expression

(a+ b+ c+ d) · (d) · (b+ c) · (a+ b) · (a+ c) · (b).

Is this expression satisfiable?
17.7 Draw the graph obtained by the reduction of SAT to the K-CLIQUE problem

given in Section 17.2.1 for the expression

(a+ b+ c) · (a+ b+ c) · (a+ b+ c) · (a+ b+ c).

Is this expression satisfiable?
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17.8 A Hamiltonian cycle in graph G is a cycle that visits every vertex in the
graph exactly once before returning to the start vertex. The problem HAMIL-
TONIAN CYCLE asks whether graph G does in fact contain a Hamiltonian
cycle. Assuming that HAMILTONIAN CYCLE isNP-complete, prove that
the decision-problem form of TRAVELING SALESMAN is NP-complete.

17.9 Use the assumption that VERTEX COVER isNP-complete to prove that K-
CLIQUE is also NP-complete by finding a polynomial time reduction from
VERTEX COVER to K-CLIQUE.

17.10 We define the problem INDEPENDENT SET as follows.

INDEPENDENT SET
Input: A graph G and an integer k.
Output: YES if there is a subset S of the vertices in G of size k or

greater such that no edge connects any two vertices in S, and NO other-
wise.

Assuming that K-CLIQUE is NP-complete, prove that INDEPENDENT
SET is NP-complete.

17.11 Define the problem PARTITION as follows:

PARTITION
Input: A collection of integers.
Output: YES if the collection can be split into two such that the sum

of the integers in each partition sums to the same amount. NO otherwise.

(a) Assuming that PARTITION is NP-complete, prove that the decision
form of BIN PACKING is NP-complete.

(b) Assuming that PARTITION is NP-complete, prove that KNAPSACK
is NP-complete.

17.12 Imagine that you have a problem P that you know is NP-complete. For
this problem you have two algorithms to solve it. For each algorithm, some
problem instances of P run in polynomial time and others run in exponen-
tial time (there are lots of heuristic-based algorithms for real NP-complete
problems with this behavior). You can’t tell beforehand for any given prob-
lem instance whether it will run in polynomial or exponential time on either
algorithm. However, you do know that for every problem instance, at least
one of the two algorithms will solve it in polynomial time.

(a) What should you do?
(b) What is the running time of your solution?
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(c) What does it say about the question of P = NP if the conditions
described in this problem existed?

17.13 Here is another version of the knapsack problem, which we will call EXACT
KNAPSACK. Given a set of items each with given integer size, and a knap-
sack of size integer k, is there a subset of the items which fits exactly within
the knapsack?
Assuming that EXACT KNAPSACK isNP-complete, use a reduction argu-
ment to prove that KNAPSACK is NP-complete.

17.14 The last paragraph of Section 17.2.3 discusses a strategy for developing a
solution to a new problem by alternating between finding a polynomial time
solution and proving the problem NP-complete. Refine the “algorithm for
designing algorithms” from Section 15.1 to incorporate identifying and deal-
ing with NP-complete problems.

17.15 Prove that the set of real numbers is uncountable. Use a proof similar to the
proof in Section 17.3.1 that the set of integer functions is uncountable.

17.16 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if an arbitrary program will print any output is un-
solvable.

17.17 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if an arbitrary program executes a particular state-
ment within that program is unsolvable.

17.18 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining if two arbitrary programs halt on exactly the same
inputs is unsolvable.

17.19 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether there is some input on which two arbitrary
programs will both halt is unsolvable.

17.20 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether an arbitrary program halts on all inputs is
unsolvable.

17.21 Prove, using a reduction argument such as given in Section 17.3.2, that the
problem of determining whether an arbitrary program computes a specified
function is unsolvable.

17.22 Consider a program named COMP that takes two strings as input. It returns
TRUE if the strings are the same. It returns FALSE if the strings are different.
Why doesn’t the argument that we used to prove that a program to solve the
halting problem does not exist work to prove that COMP does not exist?

17.6 Projects

17.1 Implement VERTEX COVER; that is, given graph G and integer k, answer
the question of whether or not there is a vertex cover of size k or less. Begin
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by using a brute-force algorithm that checks all possible sets of vertices of
size k to find an acceptable vertex cover, and measure the running time on a
number of input graphs. Then try to reduce the running time through the use
of any heuristics you can think of. Next, try to find approximate solutions to
the problem in the sense of finding the smallest set of vertices that forms a
vertex cover.

17.2 Implement KNAPSACK (see Section 16.1). Measure its running time on a
number of inputs. What is the largest practical input size for this problem?

17.3 Implement an approximation of TRAVELING SALESMAN; that is, given a
graph G with costs for all edges, find the cheapest cycle that visits all vertices
in G. Try various heuristics to find the best approximations for a wide variety
of input graphs.

17.4 Write a program that, given a positive integer n as input, prints out the Collatz
sequence for that number. What can you say about the types of integers that
have long Collatz sequences? What can you say about the length of the
Collatz sequence for various types of integers?
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A

Utility Functions

Here are various utility functions used by the C++ example programs in this text.

// Return true iff "x" is even
inline bool EVEN(int x) { return (x % 2) == 0; }

// Return true iff "x" is odd
inline bool ODD(int x) { return (x % 2) != 0; }

// Assert: If "val" is false, print a message and terminate
// the program
void Assert(bool val, string s) {

if (!val) { // Assertion failed -- close the program
cout << "Assertion Failed: " << s << endl;
exit(-1);

}
}

// Swap two elements in a generic array
template<typename E>
inline void swap(E A[], int i, int j) {

E temp = A[i];
A[i] = A[j];
A[j] = temp;

}
// Random number generator functions

inline void Randomize() // Seed the generator
{ srand(1); }

// Return a random value in range 0 to n-1
inline int Random(int n)

{ return rand() % (n); }
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relation, 27, 48
estimation, 25, 46–48, 52, 53, 55–57,

65
exact-match query, see search,

exact-match query
exponential growth rate, see growth

rate, exponential
expression tree, 162–166
extent, 279
external sorting, see sorting, external

factorial function, 29, 34, 36, 45, 49,
73, 81, 86, 126, 262, 265, 570

Stirling’s approximation, 29, 265
Fibonacci sequence, 34, 49–51, 91,

477–478, 517
FIFO list, 128
file access, 290–291
file manager, 276, 278, 282, 422, 423,

429
file processing, 82, 232, 303
file structure, 9, 275, 351, 375
first fit, see memory management, first

fit
floor function, 30
floppy disk drive, 277
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Floyd’s algorithm, 521–523, 540, 543
flyweight, see design pattern, flyweight
fragmentation, 279, 282, 423, 427–429

external, 423
internal, 279, 423

free store, 110–111
free tree, 383, 403, 409
freelist, 120, 123
fstream class, 290–291
full binary tree theorem, 153–155, 166,

196, 221
function, mathematical, 16

general tree, 203–227
ADT, 204–205, 223
converting to binary tree, 218, 224
dynamic implementations, 224
implementation, 213–218
left-child/right-sibling, 215, 224
list of children, 214–215, 224, 383
parent pointer implementation,

207–213, 445
terminology, 203–204
traversal, see traversal

Geographic Information System, 7–8
geometric distribution, 318, 527, 530
gigabyte, 29
graph, xv, 22, 381–412, 415

adjacency list, 381, 383, 384, 391,
410

adjacency matrix, 381, 383, 384,
388, 389, 410, 416

ADT, 381, 386, 388
connected component, 383, 412,

490
edge, 382
implementation, 381, 386–388
modeling of problems, 381, 390,

396, 399, 400, 402
parallel edge, 382
representation, 383–386
self loop, 382

terminology, 381–383
traversal, see traversal, graph
undirected, 382, 416
vertex, 382

greatest common divisor, see largest
common factor

greedy algorithm, 189, 405, 407
growth rate, 55, 58–60, 86

asymptotic, 65
constant, 58, 66
exponential, 60, 64, 544, 549–563
linear, 60, 63, 65, 82
quadratic, 60, 63, 64, 82, 83

halting problem, 563–569
Hamiltonian cycle, 571
Harmonic Series, 33, 319, 483
hashing, 7, 10, 31, 62, 312, 324–345,

351, 352, 365, 417, 461, 489
analysis of, 339–344
bucket, 331–333, 349
closed, 330–339, 348
collision resolution, 325, 331–339,

343, 345
deletion, 344–345, 348
double, 339, 348
dynamic, 345
hash function, 325–329, 347
home position, 331
linear probing, 333–336, 339, 342,

343, 347, 349
load factor, 341
open, 330–331
perfect, 325, 345
primary clustering, 336–338
probe function, 334, 336–339
probe sequence, 334–339, 341–345
pseudo-random probing, 337–339
quadratic probing, 338, 339, 347
search, 334
table, 324
tombstone, 344



INDEX 589

header node, 123, 133
heap, 151, 153, 168, 178–185, 196, 198,

201, 251–252, 270, 401, 407
building, 181–184
for memory management, 422
insert, 181, 182
max-heap, 179
min-heap, 179, 297
partial ordering property, 179
remove, 184, 185
siftdown, 183, 184, 270, 271

Heapsort, 179, 251–253, 260, 270, 297
heuristic, 561–562
hidden obligations, see obligations,

hidden
Huffman coding tree, 151, 153, 162,

185–196, 198–201, 226, 438
prefix property, 194

independent set, 571
index, 11, 267, 351–378

file, 293, 351
inverted list, 355, 376
linear, 8, 353–355, 376, 377
tree, 352, 358–375

induction, 224
induction, proof by, see proof, induction
inheritance, xvi, 97, 100, 105, 141, 162,

164, 165, 167
inorder traversal, see traversal, inorder
input size, 57, 61
Insertion Sort, 76, 233–236, 238–241,

250, 260, 262–267, 269, 270
Double, 269

integer representation, 4, 8–9, 20, 148
inversion, 235, 239
inverted list, see index, inverted list
ISAM, 352, 356–358, 377

k-d tree, 450–455, 459, 461, 464
K-ary tree, 218–219, 223, 224, 455
key, 133–137

kilobyte, 29
knapsack problem, 560, 572, 573
Kruskal’s algorithm, xv, 252, 407–408,

411

largest common factor, 50, 531–532
latency, 278, 280, 281
least frequently used (LFU), 284, 306,

320
least recently used (LRU), 284, 306,

308, 320, 367
LIFO list, 120
linear growth, see growth rate, linear
linear index, see index, linear
linear search, see search, sequential
link, see list, link class
linked list, see list, linked
LISP, 48, 415, 430, 432, 433
list, 23, 95–149, 151, 187, 352, 413,

415, 489
ADT, 9, 95–99, 145
append, 100, 116
array-based, 8, 95, 100–103,

112–114, 121, 148
basic operations, 96
circular, 146
comparison of space requirements,

146
current position, 96, 97, 104–106,

113
doubly linked, 115–120, 146, 148,

160
space, 118–120

element, 96, 114–115
freelist, 110–112, 422–432
head, 96, 100, 105
implementations compared,

112–114
initialization, 96, 100
insert, 96, 100, 102, 104–106, 109,

113, 116, 119, 151
link class, 103
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linked, 8, 95, 100, 103–106,
112–114, 354, 413, 437, 524,
525, 529

node, 103–105, 116, 117
notation, 96
ordered by frequency, 317–323,

469
orthogonal, 418
remove, 96, 100, 106, 109, 113,

116, 118, 119
search, 151, 311–323
self-organizing, xv, 62, 320–323,

343, 345, 346, 348, 445,
486–487

singly linked, 103, 115
sorted, 4, 96, 139–142
space requirements, 112–113, 146
tail, 96
terminology, 96
unsorted, 96

locality of reference, 278, 282, 343,
358, 365

logarithm, 31–32, 49, 535–536
log∗, 213, 223

logical representation, see data
structure, physical vs. logical
form

lookup table, 81
lower bound, 55, 67–70, 342

sorting, 261–265, 546

map, 381, 399
Master Theorem, see recurrence

relation, Master Theorem
matching, 561
matrix, 416–420

multiplication, 548, 549
sparse, xv, 9, 413, 417–420, 434,

435
triangular, 416, 417

megabyte, 29

member, see object-oriented
programming, member

member function, see object-oriented
programming, member
function

memory management, 11, 413,
420–435

ADT, 421, 436
best fit, 426, 562
buddy method, 423, 427–428, 436
failure policy, 423, 429–433
first fit, 426, 562
garbage collection, 430–433
memory allocation, 421
memory pool, 421
sequential fit, 423–427, 435
worst fit, 426

Mergesort, 126, 241–244, 256, 260,
269, 475, 480, 482

external, 294–296
multiway merging, 300–302,

306–308
metaphor, 10, 19
Microsoft Windows, 278, 303
millisecond, 29
minimum-cost spanning tree, 231, 252,

381, 402–408, 410, 411, 543
modulus function, 28, 30
move-to-front, 320–323, 346, 486–487
multilist, 26, 413–416, 434
multiway merging, see Mergesort,

multiway merging

nested parentheses, 22, 147
networks, 381, 400
new, 110–111, 116, 422
NP , see problem, NP
null pointer, 103

O notation, 65–70, 87
object-oriented programming, 9, 11–16,

19–20
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class, xvi, 9, 96
class hierarchy, 14–15, 160–166,

458–459
inheritance, xvi
members and objects, 8, 9

obligations, hidden, 142, 158, 289
octree, 459
Ω notation, 67–70, 87
one-way list, 103
operating system, 18, 178, 276, 278,

281–284, 294, 297, 422, 429,
434

operator overloading, xvi, 110
overhead, 81, 112–113

binary tree, 197
matrix, 418
stack, 124

pairing, 544–546
palindrome, 147
partial order, 28, 49, 179

poset, 28
partition, 571
path compression, 212–213, 224, 491
permutation, 29, 49, 50, 81, 82, 252,

263–265, 341
physical representation, see data

structure, physical vs. logical
form

Pigeonhole Principle, 51, 131
point quadtree, 460, 464
pop, see stack, pop
postorder traversal, see traversal,

postorder
powerset, see set, powerset
PR quadtree, 13, 162, 218, 450,

455–459, 461, 463, 464
preorder traversal, see traversal,

preorder
prerequisite problem, 381
Prim’s algorithm, 404–406, 410, 411
primary index, 352

primary key, 352
priority queue, 151, 168, 187, 201, 402,

405
probabilistic data structure, 517,

524–530
problem, 6, 16, 18, 544

analysis of, 55, 76–77, 232,
261–265

hard, 549–563
impossible, 563–569
instance, 16
NP , 551
NP-complete, 551–563, 569
NP-hard, 553

problem solving, 19
program, 3, 18

running time, 56–57
programming style, 19
proof

contradiction, 39–40, 51, 405, 546,
567, 568

direct, 39
induction, 34, 39–44, 48, 51, 154,

182, 192, 196, 265, 409,
470–473, 475, 476, 479, 488,
489, 491, 509

pseudo-polynomial time algorithm, 560
pseudocode, xvii, 17
push, see stack, push

quadratic growth, see growth rate,
quadratic

queue, 95, 103, 128–133, 147, 394,
397, 398

array-based, 128–131
circular, 128–131, 147
dequeue, 128, 133
empty vs. full, 130–131
enqueue, 128
implementations compared, 133
linked, 133, 134
priority, see priority queue
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terminology, 128
Quicksort, 126, 235, 244–252, 260,

267, 270, 292, 294, 296, 346,
469

analysis, 482–483

Radix Sort, 255–260, 262, 271
RAM, 274, 275
Random, 30
range query, 352, see search, range

query
real-time applications, 61, 62
recurrence relation, 34–35, 51, 249,

469, 475–483, 487, 488
divide and conquer, 480–482
estimating, 475–478
expanding, 478, 480, 489
Master Theorem, 480–482
solution, 35

recursion, xiv, 34, 36–38, 40, 41, 49,
50, 73, 111, 125, 157–158,
172, 197, 200, 242–244, 267,
269, 270, 432

implemented by stack, 124–128,
250

replaced by iteration, 50, 126
reduction, 262, 544–549, 568, 570, 572
relation, 27–29, 48, 49
replacement selection, 179, 296–301,

307, 308, 469
resource constraints, 5, 6, 16, 55, 56
run (in sorting), 294
run file, 294, 295
running-time equation, 58

satisfiability, 555–561
Scheme, 48
search, 21, 82, 311–349, 351

binary, 31, 73–75, 89–91, 266, 314,
346, 353, 367, 480, 489

defined, 311

exact-match query, 7–8, 10, 311,
312, 351

in a dictionary, 314
interpolation, 314–317, 346
jump, 313–314
methods, 311
multi-dimensional, 448
range query, 7–8, 10, 311, 324,

351, 358
sequential, 21, 57–58, 61–62, 66,

67, 73–75, 89, 91, 312–313,
322, 346, 484

sets, 323–324
successful, 311
unsuccessful, 311, 341

search trees, 62, 178, 352, 356, 359,
365, 442, 445, 448

secondary index, 352
secondary key, 352
secondary storage, 273–282, 304–306
sector, 277, 279, 281, 292
seek, 277, 280
Selection Sort, 237–239, 250, 260, 266
self-organizing lists, see list,

self-organizing
sequence, 27, 29, 49, 96, 312, 323, 353,

544
sequential search, see search, sequential
sequential tree implementations,

219–222, 225, 226
serialization, 220
set, 25–29, 49

powerset, 26, 29
search, 312, 323–324
subset, superset, 26
terminology, 25–26
union, intersection, difference, 26,

323, 347
Shellsort, 235, 239–241, 260, 267
shortest paths, 381, 399–402, 410
simulation, 85
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Skip List, xv, 524–530, 540, 541
slide rule, 32, 535
software engineering, xiii, 4, 19, 544
sorting, 17, 21, 22, 57, 61, 62, 76–77,

79, 82, 231–271, 313, 322,
544–546

adaptive, 265
comparing algorithms, 232–233,

259–261, 302
exchange sorting, 238–239
external, xv, 168, 232, 251, 273,

291–303, 306–308
internal, xv
lower bound, 232, 261–265
small data sets, 233, 250, 265, 268
stable algorithms, 232, 266
terminology, 232–233

spatial data structure, 437, 448–461
splay tree, 178, 196, 359, 437, 442,

445–448, 461, 462, 464, 469,
525

stable sorting alorithms, see sorting,
stable algorithms

stack, 95, 103, 120–128, 147, 197, 200,
250, 266, 267, 270, 393–395,
485

array-based, 121–122
constructor, 121
implementations compared, 124
insert, 120
linked, 123, 124
pop, 120–122, 124, 149
push, 120–122, 124, 149
remove, 120
terminology, 120
top, 120–122, 124
two in one array, 124, 147
variable-size elements, 148

Strassen’s algorithm, 532, 541
strategy, see design pattern, strategy

subclass, see object-oriented
programming, class hierarchy

subset, see set, subset
suffix tree, 463
summation, 32–34, 41, 42, 51, 72, 73,

90, 177, 184, 248, 249, 318,
319, 417, 469–474, 479, 481,
482, 484, 485, 487

guess and test, 487
list of solutions, 33, 34
notation, 32
shifting method, 471–474, 483,

488
swap, 30

tape drive, 276, 291
template, 114
templates, xvi, 12, 97
text compression, 151, 185–195,

322–323, 345, 349
Θ notation, 68–70, 89
topological sort, 381, 394–398, 410
total order, 28, 49, 179
Towers of Hanoi, 36–38, 126, 543, 550
tradeoff, xiii, 3, 13, 75, 279, 292

disk-based space/time principle,
82, 343

space/time principle, 81–82, 97,
120, 185, 343

transportation network, 381, 399
transpose, 321, 322, 346
traveling salesman, 551–553, 560, 561,

571, 573
traversal

binary tree, 126, 151, 155–160,
163, 169, 177, 197, 390

enumeration, 155, 169, 220
general tree, 205–206, 223
graph, 381, 390–398

tree
height balanced, 364, 365, 367, 525
terminology, 151



594 INDEX

trie, 162, 186, 196, 259, 437–442, 462,
463

alphabet, 438
binary, 438
PATRICIA, 439–442, 461, 462

tuple, 27
Turing machine, 556
two-coloring, 44
2-3 tree, 178, 352, 360–364, 367, 370,

377, 378, 442, 489, 524
type, 8

uncountability, 564–566
UNION/FIND, xv, 207, 408, 412, 469,

491
units of measure, 29, 47
UNIX, 245, 278, 303, 432
upper bound, 55, 65–69

variable-length record, 148, 149, 353,
377, 413, 415, 420

sorting, 233
vector, 27, 113
vertex cover, 557, 558, 560, 561, 571,

572
virtual function, xvi, 167
virtual memory, 284–286, 294, 306
visitor, see design pattern, visitor

weighted union rule, 210–212,
223–224, 491

worst fit, see memory management,
worst fit

worst-case analysis, 61–62, 67

Zipf distribution, 319, 326, 346
Ziv-Lempel coding, 323, 345


