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Abstract
The budding yeast cell cycle provides an excellent

example of the need for modeling stochastic effects in
mathematical modeling of biochemical reactions. The
continuous deterministic approach using ordinary differ-
ential equations is adequate for understanding the average
behavior of cells, while the discrete stochastic approach
accurately captures noisy events in the growth-division
cycle. This paper presents a stochastic approximation
of the cell cycle for budding yeast using Gillespie’s
stochastic simulation algorithm. To compare the stochas-
tic results with the average behavior, the simulation must
be run thousands of times. A load balancing algorithm
reduces the cost for making those runs by 14% when run
on a parallel supercomputer.

1. Introduction
The cell-division cycle is the sequence of events that

take place in a eukaryotic cell leading to its replication.
A growing cell replicates all its components and divides
them into two daughter cells, so that each daughter has the
information and machinery necessary to repeat the process
[1]. The cell cycle of the unicellular budding yeast,
Saccharomyces cerevisiae, has been extensively studied.
Mathematical modeling and computational methods are
needed to explain the detailed workings of complex yeast
control systems. Deterministic mathematical modeling
for the budding yeast cell cycle gives the average behavior
of populations of dividing cells [2]. However, some
major regulatory proteins occur in small numbers. As a
result, individual cells have in ways different from the
average. Thus, the stochastic approach provides more
accurate results than does the deterministic one [3]. In
addition, when cell cycle controls are compromised by
mutation, random fluctuations must be accounted for
when modeling the effects of the mutants. Therefore, it
is desirable to translate the deterministic budding yeast
model into a stochastic model, and simulate the model
with an appropriate stochastic method.

Gillespie’s stochastic simulation algorithm (SSA) ([4],
[5]) is well known. It uses Monte Carlo methods
to simulate the chemical reactions. The SSA is
an asymptotically exact stochastic method to simulate
chemical systems, but the SSA is often slow because
it simulates every reaction. Since the SSA was first
published, there have been many attempts to improve the
computational efficiency ([6], [7], [8]). However, the core
ideas remain the same.

Stochastic methods require that the model be cast in
terms of population because they consider reactions with
individual molecules. The problem is, however, that
ODE models are usually based on concentration values.
Therefore, a concentration-based formulation for a model
has to be changed into a population-based formulation
for simulation using a stochastic method. Previous work
[9] explained the conversion process using JigCell [10] in
detail. StochKit [11] is used to do stochastic simulation
of the converted budding yeast model. StochKit supports
various approximate simulation methods based on the
SSA, but only the exact SSA is used to get precise results.

Because the SSA simulates every time step, the SSA is
much slower than a deterministic simulation. Moreover,
the simulation must be run thousands of times to generate
enough data to determine the correct distribution of
the behavior. Therefore, it is desirable to run many
independent SSA simulations in parallel. StochKit
supports MPI for parallel SSA runs, but the user assigns
jobs for each processor. Sometimes, the processor times
for individual runs are quite different. The result is poor
parallel efficiency. This paper presents a load balancing
algorithm to significantly improve the parallel efficiency.

The budding yeast cell cycle model is presented in
Section 2, and the SSA is explained in Section 3.
The load balancing algorithm is presented in Section 4.
Section 5 gives new biological results, and Section 6
concludes.

2. Cell Cycle Model
The molecular machinery of eukaryotic cell cycle

control is known in more detail for budding yeast,
Saccharomyces cerevisiae, than for any other organism.



Figure 1. Wiring diagram of budding yeast.

Therefore, the unicellular budding yeast is an excellent
organism for which to study cell cycle regulation.
Molecular biologists have dissected and characterized
individual components and their interactions to derive a
consensus picture of the regulatory network of budding
yeast. Figure 1 shows the wiring diagram for the
budding yeast model [10]. The diagram should be read
from bottom-left toward top-right. Solid arrows represent
biochemical reactions, and dashed lines represent how
components may influence one another.

Computational biologists traditionally formulate the
complex regulatory network as a set of nonlinear
ordinary differential equations (ODEs) according to the
wiring diagram [2]. This formulation is first translated
to a population-based model using primitive reaction
equations as discussed in Section 5.1. The population-
based formulation is then simulated with an appropriate
stochastic method, as explained in the next section.

3. SSA
Suppose a biochemical system or pathway involves

N molecular speciesS1, . . ., SN . Xi(t) denotes the
number of molecules of speciesSi at time t. People
would like to generate the evolution of the state vector
X(t) = (X1(t), ..., XN (t)) given that the system was
initially in the state vectorX(t0). Suppose the system
is composed ofM reaction channelsR1, . . ., RM . In a
constant volumeΩ, assume that the system is well-stirred
and in thermal equilibrium at some constant temperature.
There are two important quantities in reaction channels
Rj : the state change vectorv·j = (v1j , ..., vNj), and
propensity functionaj . vij is defined as the change in the
Si molecules’ population caused by oneRj reaction, and
aj(x)dt gives the probability that oneRj reaction will
occur in the next infinitesimal time interval[t, t + dt).

The SSA simulates every reaction event ([4], [5]).
With X(t) = x, p(τ, j|x, t)dτ is defined as the probability
that the next reaction in the system will occur in the

infinitesimal time interval[t + τ, t + τ + dτ), and will

be anRj reaction. By lettinga0(x) ≡
∑M

j=1
aj(x), the

equation

p(τ, j|x, t) = aj(x) exp(−a0(x)τ)

can be obtained. A Monte Carlo method is used to
generateτ andj. On each step of the SSA, two random
numbersr1 and r2 are generated from the uniform (0,1)
distribution. From probability theory, the time for the
next reaction to occur is given byt + τ , where

τ =
1

a0(x)
ln

(

1

r1

)

.

The next reaction indexj is given by the smallest integer
satisfying

j
∑

j′=1

aj′(x) > r2a0(x).

After τ andj are obtained, the system states are updated
by X(t + τ) := x + vj , and the time is updated by
t := t + τ . This simulation iteration proceeds until the
time t reaches the final time.

4. Load Balancing Parallel Implementation
Since this is a stochastic algorithm, the time required

for each run is a little bit different. When hundreds
of trajectories are assigned statically to a processor, the
total simulation times can be quite different across the
processors, causing a serious load imbalance. This
section presents a dynamic load balancing algorithm to
more evenly distribute work to the processors.

The basic idea of the load balancing algorithm is a
master/slave paradigm that dynamically adjusts the task
chunk size. Pseudocode (with constants tuned for the
problem at hand) for the load balancing follows.

Algorithm GetTask(n, p, task)
1. ⊲ Input: n = number of remaining tasks,
2. p = number of processors
3. ⊲ Output: chunk = number of tasks for a processor
4. begin
5. setPoint← floor (n/p)
6. if setPoint > 99 then
7. chunk← floor (setPoint× 0.8)
8. else if setPoint > 5 then
9. chunk← floor (setPoint× 0.5)
10. else then
11. chunk← 1
12. end if
13. end

The idea of varying the task chunk size as the size
of the task queue decreases is well known in parallel
computing, where it is known as guided self-scheduling.
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Figure 2. Static workload distribution.
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Figure 3. Dynamic workload distribution.

It is typical in guided self-scheduling algorithms to use
constants tuned to the application, such as shown on
lines 6-9. Figures 2 and 3 clearly show the advantage
of the load balancing algorithm. Using Virginia Tech’s
2200 processor (2.3 GHz PowerPC 970FX) System X,
100 worker processors were used for 10,000 stochastic
simulations for the budding yeast double mutant APC-A
Cdh1∆. Figure 2 shows the time that each processor
required to complete its assigned tasks. The variance
between processors is high. Figure 3 shows equivalent
times using guided self-scheduling. Here, the variance in
processor times is negligible, even though individual runs
of the simulation have large fluctuations in their times.

Table 1. Execution times for Simple

Distribution.

Parallel Runtime Time (seconds)
Tp(average) 6144.93
Tp(max) 7035.95
Wall clock time 7040.72

Table 2. Execution times for Load

Balancing Distribution.

Parallel Runtime Time (seconds)
Tp(average) 5992.43
Tp(max) 6061.78
Wall clock time 6066.84

Tables 1 and 2 show the average and total times for the
static and dynamic workload distributions. The guided
self-scheduling algorithm reduces system resource use by
approximately 14%.

5. Cell Cycle Results

5.1. Implementation
As was mentioned briefly in Section 2, stochastic

methods require the model to be in terms of population
because they consider reactions with individual molecules.
Because the original budding yeast model is based on
normalized concentration values, a conversion process
from an ODE model into a model in terms of number
of molecules is needed. The conversion process is done
using JigCell, and consists of two phases,unit checking
andmodel conversion [9]. Unit checking verifies physical
unit consistency inside the model. Model conversion
converts the model by changing values of species and
parameters based on the unit information.

After creating the population-based budding yeast
model, there is a technical issue that must be addressed.
An event is triggered when some condition is met. There
are events defined to divide the cell or mark checkpoints
within the cell cycle stages. A typical deterministic event
has the form:

if (X > threshold)

then (Event is triggered)

Because of the random nature of stochastic simulation, as
illustrated in Figure 4, unwanted events can be triggered
when the deterministic formulation for an event is used
in the stochastic model. In Figure 4, an unwanted event
(B) can be triggered with a wanted event (A) by using a
deterministic event handling equation.

Figure 4. Event handling.



Figure 5. Deterministic cell cycles.
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Figure 6. Stochastic cell cycles.

To prevent unwanted events, the event logic has to be
rewritten to tolerate the situation where the value of X
oscillates around the threshold. A second threshold value
can be defined from the threshold and the direction of the
test (greater than or less than). For budding yeast, this
second threshold equals 0.5*threshold (for a greater than
test) or 1.5*threshold (for a less than test). For instance,
the event code above would be changed to:

if (X < second threshold)

then (EventFlag← TRUE)

if (X > threshold AND EventFlag = TRUE)

then (event is triggered;

EventFlag← FALSE)

StochKit [11] was used to do stochastic simulation
of the converted budding yeast model, using the SSA
option for the most precise results. JigCell can generate
the StochKit model file by using the population based
budding yeast model file.

5.2. Wild Type Simulation Results
To compare the stochastic results with deterministic

cell cycle simulation, mass and several representative
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Figure 7. Probability of getting colony.

species’ trajectories are shown in Figures 5 and 6. The
deterministic result is from the XPP ODE simulator using
JigCell. For comparison, the stochastic simulation results
are converted back to normalized concentrations.

5.3. Mutants
For the mutants considered in this paper, stochastic

simulations show that often they neither divide endlessly
nor fail to divide at all, meaning that they divide for
several cycles, then stop dividing. The number of cycles
until stopping division is different for different runs of the
simulation. For a statistical analysis, 10,000 independent
simulations are executed from the same initial point using
the load-balancing parallel algorithm.

Let the random variableX denote the number of
cell divisions before the cell stops dividing, and assume
that the probabilityp of not dividing is constant and
independent of the cell’s previous history. ThenX has a
modified geometric distribution given by

P(X = n) = p(1− p)n wheren = 0, 1, ...
Further, the probability of havingn or more cycles is
given by

P(X ≥ n) = (1 − p)n wheren = 0, 1, ...
If either probability is plotted on a log scale againstn, it
will be a straight line with a slope oflog(1− p). In the
analysis of the mutant simulations, a best least squares fit
straight line is used to extract the slope and estimate the
value ofp.

In wet lab experiments, the viability of mutants is
assessed by determining whether single mutant cells
could grow into a colony. To determine the relationship
between viability and the probability of ceasing to divide,
simulation is used to determine the probability of one
cell producing a colony of size greater than106 in 32
division cycles. 32 division cycles correspond roughly to
incubating the cells on a plate for two days. A 1 mm3

colony has about20× 106 cells. Therefore, it is assumed
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Figure 8. P (X ≥ n).
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Figure 9. log(P (X ≥ n))

that 0.05 mm3 can be visible. The results of these
simulations are summarized in Figure 7. From this figure,
the ability to observe colonies has a nearly switch-like
characteristic with the switching point nearp = 0.25.

It is interesting that some mutants have different fates
in glucose and galactose. The budding yeast cell growth
rate is different with glucose and galactose. In general,
the mass doubling time is 90 minutes for glucose, and
150 minutes for galactose. For example, mutant APC-A
Cdh1∆ has different fates in glucose and galactose.
From Cross’ paper [12], APC-A Cdh1∆ can be partially
rescued in a poor galactose medium, with 8% viability
of spores. In the deterministic model, the double mutant
APC-A Cdh1∆ is inviable with telophase arrest, but
if the mass doubling time is changed into 160 min,
then the mutant becomes viable. The problem with the
deterministic model is that only viable or inviable are
evidenced from a single initial condition.

In a stochastic simulation using the observed mass
doubling time of 150 min in glucose, the fluctuation in
Clb2, sic1, and Cdc6 may allow some cells to achieve
levels that enable them to exit from mitosis. This
mutant is simulated using the parameters ka20′′ = 0,
kscdh= 0, init CDH1T = CDH1 = 0 [2]. In glucose
(MDT = 90), this mutant does not divide and is inviable.
In galactose(MDT = 150), the probability of surviving
at leastn cycles has a modified geometric distribution
as seen in Figures 8 and 9. From the log scale
graph, the least squares fit slope is found to be−1/9,
which gives an estimated probability to cease dividing
of p = 0.22. From Figure 7, this implies that the
probability of a single cell forming a colony is 65%,
which does not match the experimental result. However,
stochastic simulation explains mixed viability results that
a deterministic simulation cannot.

6. Conclusions and Future Work
The budding yeast stochastic simulation results re-

ported here, while limited, show important characteristic
aspects of cell cycle empirical data, such as mixed mutant
viability. Because random fluctuations are important to
acculately simulate mutants, or where major regulatory
proteins occur in small numbers, the stochastic approach
is more realistic and accurate than the deterministic
approach for modeling the budding yeast cell cycle. The
guided self-scheduling load balancing algorithm is effec-
tive for managing the large numbers of SSA trajectories
required by the stochastic approach.

The data collected here are only the first step toward
calculating population doubling times, and probabilities
for successful colony formation of the various mutants.
Those probabilities are one of the tests for verifying that
the simulations match experimental results. The results
are also perhaps skewed by the fact that all simulation
runs begin with a static initial condition that might not be
representative of the true population. In future work, the
author will calculate population statistics and use them to
generate apppropriate initial conditions.

References

[1] Murray, A. and Hunt, T., 1993,The Cell Cycle. An
Introduction, Oxford University Press, New York, USA.

[2] Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R.,
Novak, B, Tyson, J. J., 2004, “Integrative analysis of cell
cycle control in budding yeast”,Mol. Biol. Cell, 15,
3841–3862.

[3] McAdams, H. H. and Arkin, A., 1997, “Stochastic
mechanisms in gene expression”,Proc. Natl. Acad. Sci.,
94, 814–819.

[4] Gillespie, D. T., 1977, “Exact Stochastic Simulation
of Coupled Chemical Reactions”,Journal of Physical
Chemistry, 81, 2340–2361.

[5] Gillespie, D. T., 1976, “A General Method for Numerically
Simulating the Stochastic Time Evolution of Coupled



Chemical Reactions”,Journal of Computational Physics,
22, 403–434.

[6] Gibson, M. A. and Bruck, J., 2000, “Efficient exact
stochastic simulation of chemical systems with many
species and many channels”,Journal of Physical Chem-
istry, 104, 1876–1889.

[7] Gillespie, D. T., 2001, “Approximate accelerated stochastic
simulation of chemically reacting systems”,Journal of
Chemical Physics, 115, 1716–1733.

[8] Cao, Y., Gillespie, D. T. and Petzold, L. R., 2005, “The
slow-scale stochastic simulation algorithm”,Journal of
Chemical Physics, 122, 014116.

[9] Wang, P., Randhawa, R., Shaffer, C. A., Cao, Y.,
Baumann, W. T., 2008, “Converting macromolecular
regulatory models from deterministic to stochastic formu-
lation”, In Proceedings of the 2008 Spring Simulation
Multiconference, SpringSim ’08. ACM, New York,
385-392.

[10] JigCell, Virginia Tech, http://jigcell.biol.vt.edu.
[11] Li H., Cao Y., Petzold L., Gillespie, D., 2007, “Algorithms

and software for stochastic simulation of biochemical
reacting systems”,Biotechnology Progress, .

[12] Cross, F.R., 2003, “Two redundant oscillatory mechanisms
in the yeast cell cycle”,Dev. Cell, 4,741-752.

[13] Ahn, T., Cao, Y., Watson, L. T., 2008, “Stochastic
Simulation Algorithms for Chemical Reactions”, In
Proceedings of the 2008 International Conference on
BioInformatics & Computational Biology, Arabnia, H. R,
WORLDCOMP’08, 431-436.

[14] Rathinam, M., Petzold, L., Cao, Y. Gillespie, D., 2003,
“Stiffness in stochastic chemically reacting systems: The
implicit tau-leaping method”,Journal of Chemical Physics,
119, 12784–12794.

[15] Rao, C. V and Arkin, A. P, 2003, “Stochastic chemical
kinetics and the quasi-steady-state assumption: Application
to the Gillespie algorithm”,Journal of Chemical Physics,
118, 4999–5010.

[16] Tzafriri, A. R. and Edelman, E. R., 2004, “The total
quasi-steady-state approximation is valid for reversible
enzyme kinetics”,Journal of Theoretical Biology, 226,
303–313.

Biography
Tae-Hyuk Ahn is a Ph.D. student in the Department

of Computer Science at Virginia Polytechnic Institute and
State University. After he received a B.S. in Electrical
Engineering from Yonsei University in Korea, he worked
for Samsung SDS for 4 years. He received his M.S. in
Electrical and Computer Engineering from Northwestern
University. His research interests are stochastic modeling
of biological system, numerical analysis, and parallel
computation.

Pengyuan Wang received his Bachelor of Engineering
degree in Computer Science and Technology from Beijing
University of Technology in July 2006. In the same
year he started graduate study at Virginia Tech, being a
research assistant in the stochastic modeling group. He
graduated with a Master of Science degree in Computer
Science in June 2008. He is now at Cisco Systems, Inc.

Layne T. Watson is a Professor in the Departments
of Computer Science and Mathematics at Virginia Poly-
technic Institute and State University. He received a
B.A. in psychology from the University of Evansville in
1969, and a Ph.D. in mathematics from the University of
Michigan, Ann Arbor, in 1974. His current research inter-
ests include numerical analysis, nonlinear programming,
mathematical software, solid mechanics, fluid mechanics,
image processing, parallel computation, and bioinformat-
ics. Dr. Watson is a Fellow of the IEEE and the National
Institute of Aerospace. He has more than 250 refereed
journal publications in the areas of numerical analysis,
nonlinear programming, mathematical software, parallel
computation, image processing, bioinformatics, and solid
and fluid mechanics. Editorial service includes SIAM
Journal on Optimization, ORSA Journal on Computing,
Computational Optimization and Applications, Evolu-
tionary Optimization, Engineering Computations, and
International Journal of High Performance Computing
Applications.

Yang Cao received his Ph.D. degree in computer
science from the University of California, Santa Barbara
in 2003. He is an Assistant Professor in the Computer
Science Department at the Virginia Polytechnic Institute
and State University. His research focuses on the develop-
ment of multiscale, multiphysics stochastic modeling and
simulation methods and tools that help biologists build,
simulate and analyze complex biological systems.He has
published around 30 refereed journal articles.

Clifford A. Shaffer (Senior member, IEEE and ACM)
received his Ph.D. from the University of Maryland. He
is a Professor of Computer Science at Virginia Tech.
His current research interests are related to developing
Problem Solving Environments for engineering and
science applications. Specific topics include data
structures and algorithms for visualization, collaborative
computing, component architectures, and user interfaces
for specifying models and computations.

William Baumann received his Ph.D. degree in
electrical engineering from the Johns Hopkins University.
He is an Associate Professor in the Department of
Electrical and Computer Engineering at Virginia Tech.
His current research interests are in modeling, analysis and
identification of biological systems in both deterministic
and stochastic settings.


