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Abstract

We describe a binding schema markup language (BSML) forritesg data interchange between scientific codes.
Such a facility is an important constituent of scientificlplem solving environments (PSEs). BSML is designed
to integrate with a PSE or application composition systeat thiews model specification and execution as a
problem of managing semistructured data. The data intaggharoblem is addressed by three techniques for
processing semistructured data: validation, binding,@rersion. We present BSML and describe its applica-
tion to a PSE for wireless communications system design.

1 Introduction

Problem solving environments (PSEs) are high-level safivegstems for doing computational science. A simple
example of a PSE is the Web PELLPACK systdn] [20] that addsetssedomain of partial differential equations
(PDEs). Web PELLPACK allows the scientist to access theegyshrough a Web browser, define PDE problems,
choose and configure solution strategies, manage appepaedware resources (for solving the PDE), and visualize
and analyze the results. The scientist thus communicatéstiva PSE in the vernacular of the problem, ‘not in the
language of a particular operating system, programminguage, or network protocol[IL6]. It is 10 years since
the goal of creating PSEs was articulated by an NSF worksseg [(j5] for findings and recommendations). From
providing high-level programming interfaces for widelyedssoftware libraries[[?2], PSEs have now expanded to
diverse application domains such as wood-based compai&segn [1B], aircraft design [[L7], gas turbine dynamics
simulation [Ib], and microarray bioinformatidg [4].

The basic functionalities expected of a PSE include supppthe specification, monitoring, and coordination
of extended problem solving tasks. Many PSE system desigptog thecompositional modelingaradigm, where
the scientist describes data-flow relationships betwede<o terms of a graphical network and the PSE manages
the details of composing the application represented bynéteork. Compositional modeling is not restricted to
such model specification and execution but can also be usedaid in performance modeling of scientific codés [2]
(model analysis).

We view model specification and execution as a data manadgeyariem and describe how a semistructured
data model can be used to address data interchange prollenRIE. Sectioh 3.1 presents a motivating PSE sce-
nario that will help articulate needs from a data managerpergpective. Sectiof] 2 elaborates on these ideas and
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briefly reviews pertinent related work. In particular, iefifies three basic levels of functionality—validatiomd>

ing, and conversion—at which data interchange in appticatomposition can be studied. Sectih§] 3, 4,[&nd 5 de-
scribe our specific contributions along these dimensioniha form of a binding schema markup language (BSML).

Section[p outlines how these ideas can be integrated withexesting PSE system design. A concluding discus-

sion is provided in Sectiof] 7. Aspects of the scenario desdrnext will be used throughout this paper as running

examples.

1.1 Motivating Example

S'W (Site-Specific System Simulator for Wireless system dgsigja PSE being developed at Virginia TecHWs
provides deterministic electromagnetic propagation anchgstic wireless system models for predicting the perfor
mance of wireless systems in specific environments, suclffias buildings. SW is also designed to support the
inclusion of new models into the system, visualization &futes produced by the models, integration of optimiza-
tion loops around the models, validation of models by comsparwith field measurements, and management of the
results produced by a large series of experiment8V Bermits a variety of usage scenarios. We will describe one
scenario in detail.

A wireless design engineer use$V$to study transmitter placement in an indoor environmeoated on the
fourth floor of Durham Hall at Virginia Tech. The engineeriggal is to achieve a certain performance objective
within the given cost constraints. For a narrowband sysp@wer levels at the receiver locations are good indicators
of system performance. Therefore, minimizing the (spatiakrage shortfall of received power with respect to
some power threshold is a meaningful and well defined obgctiThe major cost constraints are the number of
transmitters and their powers. Different transmitter tiges and powers yield different levels of coverage. The
situation is more complicated in a wideband system, buthilyuthe same process applies. A wideband system
includes extra hardware not present in a narrowband systertha performance objective is formulated in terms of
the bit error rate (BER), not just the power level.

The first step in this scenario is to construct a model of $igr@pagation through the wireless communications
channel. $W provides ray tracing as the primary mechanism to modeisgigzific propagation effects such as
transmission (penetration), reflection, and diffractidie second step is to take into account antenna parameters
and system resolution. These two steps are often suffiaeniaddel the performance of a narrowband system.
If a wideband system is being considered, the third step idigure the specific wireless system. Parameters
such as the number of fingers of the rake receiver and forwaod eorrection codes are considered at this step.
S'W provides a Monte-Carlo simulation of a WCDMA (wideband eativision multiple access) family of wireless
systems. In either case, the engineer configures a graphmgfutational components as shown in fig. 1. The ovals
correspond to computational components drawn from a miaof§liages and environments. Hexagons enclose
input and output data. Aggregation is used to simplify therfiaces of the components to each other and to the
optimizer. In Fig[]L, rectangles represent aggregatiore ffopagation model is a component that consists of three
connected subcomponents: triangulation, space paitiipand ray tracing. Similarly, the wireless system model
consists of (roughly) three components: data encodingyreianodeling, and signal decoding. All three steps are
further aggregated into a complete site-specific systemeinobhis model is then used in an optimization loop.
The optimizer changes transmitter parameters (all othempeters remain fixed) and receives feedback on system
performance.

For a given environment definition in AutoCAD, the triangida and space partitioning components are used
to reduce the number of geometric intersection tests thihto@iperformed by the ray tracer. Several iterations
over space partitioning are necessary to achieve accepafilvare performance. However, once the objective (an
average of ten triangles per voxel) is met, the space ity can be reused in all future experiments with this
environment. The engineer then configures the ray tracenlyoaapture reflection and transmission (penetration)
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Figure 2: Optimizing placement of three transmitters toecaighteen rooms and a corridor bounded by the box
in the upper left corner. The bounds for the placement okttr@nsmitters are drawn with dotted lines. The initial
transmitter positions are marked with crosses. The optirooverage transmitter positions are marked with dots.

effects. Although diffraction and scattering are impottarindoor propagation[]5], these phenomena are computa-
tionally expensive to model in an optimization loop. Thagulation and space partitioning codes are meant for
serial execution, whereas the ray tracer and the Monte @arkless system models run on a 200 node Beowulf
cluster of workstations. Post processing is available th Iserial and parallel versions. The ray tracer and the post
processor are written in C, whereas the WCDMA simulatiorvalable in Matlab and Fortran 95 versions.

A series of experiments is performed for various choicet#rana patterns, path loss parameters (influenced by
material properties), and WCDMA system parameters. Theigiexl power delay profiles (PDPs) are then compared
with the measurements from a channel sounder and the prddidt error rates are compared with the published
data. The parameters of the propagation model are calibfatesarious locations. The validated propagation and
wireless system models are finally enclosed in an optintrdtop to determine the locations of transmitters that
will provide adequate performance for a region of interdste optimizer, written in Fortran 95, uses the Dlviding
RECTangles (DIRECT) algorithm of Jones et fl] [19]. The paters to the optimization problem and the optimal
transmitter placement are depicted in ff]g. 2. The optimieeided to move the transmitter in the upper right corner
one room to the right of its initial position and the trangemitin the lower left corner two rooms to the right of its
initial position.

What requirements can we abstract from this scenario andchavihey be flexibly supported by a data model?
We first observe the diversity in the computational envirentn Component codes are written in different languages
and some of them are meant for parallel execution. In a relsgapject such as8V, many components are under
active development, so their I/O specifications change twex. Second, the interconnection among components



is also flexible. Optimizing for power coverage and optimigfor bit error rate, while having similar motivations,
require different topologies of computational componefitsird, since different groups of researchers are involved
in the project, there exists significant cognitive discoim&among vocabularies, data formats, components, and
even methodologies. For example, ray tracing models reptgmwers in a power delay profile in dBm (log scale).
However, WCDMA models work with a normalized linear scalepuise response and an aggregate called the
‘energy-to-noise ratio.” Also, there is more than one waygaltulating the energy-to-noise ratio. Since antennas
generate noise that depends on their parameters, detatiedha descriptions are necessary to calculate this ratio.
However, researchers who are not concerned with antenigndesldom model the system at this level of detail.
The typical practice is to use a fixed noise level in the cakiohs. Simulations of wireless systems abound in such
approximations, ad hoc conversions, and simplifying aggioms.

2 PSE Requirementsfor Data I nterchange

Culling from the above scenario, we arrive at a more fornsldf data interchange requirements for application
composition in a PSE. The PSE must support:

1. components in multiple languages (C, FORTRAN, Matlabl-5Q
2. changes in component interfaces;

changes in interconnections among components;

automatic unit conversion in data-flows;

user-defined conversion filters;

composition of components with slightly different irfeares; and
stream processing.

No o ~w

The reader might be surprised that SQL is listed alongsidBTRAN, but both languages are used H\S
Experiment simulations are written in procedural langsagéile experiment data is stored in a relational database.
Thus, developing a system that integrates with the PSE@mwvient requires more than the ability to link scientific
computing languages. It involves overcoming the impedanisenatch between languages developed for fundamen-
tally different purposes.

The last requirement above is related to composability—athikty to create arbitrary component topologies. As
data interchange is pushed deeper into the computationnthef data granularity needs to become correspondingly
smaller. The optimization loop is a good example of fine dasagjarity. We cannot accumulate all transmitter pa-
rameters over all iterations and later convert them to the#b required by the simulation inside the loop, because
transmitter parameters generated by the optimizer depetitecfeedback computed by the simulation. Each block
of transmitters must be processed as soon as it is availaidewise, each value of the objective function must be
made available to the optimizer before it can produce the bleck of transmitters. Usability dictates a similar
requirement. Since some models are computationally ekme(s.g., those meant for parallel execution), incre-
mental feedback should be provided to the user as early aff@sThe stream processing requirement improves
composability and usability, but limits conversions tortgelocal. Global conversions (e.g., XSLT]13]) cannot be
performed because they assume that all the data is avadlbbiee.

While the requirements point to a semistructured data maaeturrently available data management system
supports all forms of PSE functionality. This paper presd¢n¢ prototype of such a system in the form of a markup
language. Observe that all of the above requirements arenaumzed by three standard techniques for working
with semistructured data—validation, binding, and cosiar. Validation establishes data conformance to a given
schema. It is a prerequisite to most of the requiremeBisiding refers to integrating semistructured data with
languages that were designed for different purposes fement 1). Conversion(transformation) takes care of



requirements 2—6. Given two slightly different schemass jtossible to generate it script[fL]] that converts
data instances from one schema to another. Requirementafedi¢hat all such conversions must be local.

2.1 Redated Work

While research in PSEs covers a broad territory, the userofsteictured data representations in computational
science is not established beyond a few projects. Theref@®nly survey standard XML technologies and PSE-
like systems that make (some) use of semistructured dat@uld be unfair to review some of these systems against
PSE data interchange requirements. Instead, our evaiuatlmmsed on how well these systems support validation,
binding, conversion, and stream processing.

Specific XML technologies for document processing are easyassify in terms of our frameworkSchema
languages(e.g., RELAX NG [IP]) deal with validation and, possibly,nbing. Transformation languagege.g.,
XSLT [[L3]) deal with conversion. Several properties of théschnologies hinder their direct applicability to a PSE
setting. First and foremost, these technologies do not wiltk streams of data. Sophisticated schema constraints
and complex transformations can require buffering the whadcument before producing any output. Second,
transformation languages are simply vehicles for applydi scripts. They cannot be used to create edit scripts.
Since our conversions are local, edit script applicatianiv&l, but edit script creation is not.

Four major flavors of PSE-like projects that use semistrectulata representations can be identified:

1. component metadata projects;

2. workflow projects;

3. scientific data interchange projects; and
4. scientific data management projects.

Projects in the first category use XML to store IDL-like (iritece definition language) component descriptions
and miscellaneous component execution parameters. Anpeasfisuch a project is CCAT][9], which is a dis-
tributed object oriented system. CCAT also uses XML for ragsstransport between components, so we say that
it provides an OO binding. The second category of projectgrents component metadata with workflow spec-
ifications. For example, GALH]J8] is a workflow specificaticambuage for executing simulations on distributed
systems. Unlike CCAT, GALE provides XML specifications fanse common types of experiments, such as pa-
rameter sweeps (CCAT uses a scripting language for workfimeigcation). However, GALE does not use XML
for component data. Both the component metadata and worlgtojects use XML to encode data that is not
semistructured. Their use of XML is not dictated by the nemdautomatic conversion. Neither generic binding
mechanisms nor conversion are provided by these projects.

The latter two groups of projects use XML for applicationajatot component metadata. Representatives of
the scientific data interchange group develop flexible adleenpassing schemas for specific application domains.
For example, CACTUS[]7] deals with spatial grid data. CACT&J&hema is complex enough to be considered
semistructured and this project recognizes the need forecsion filters. However, it does not provide multiple
language support and, more importantly, does not accommadeanges in the schema. CACTUS'’s conversion
filters aim at code reuse, not change management. This phgis©O binding and manual conversion (the sequence
of conversions is not determined automatically). Compyeaf the data format precludes stream processing.

Perhaps the most relevant group of projects for our purgasekves the scientific data management community.
Especially interesting are the projects in rapidly evaiMifomains, such as bioinformatics. DataFounfiry L, 14] pro-
vides a unifying database interface to diverse bioinfoitsagources. Both the data and the schema of these sources
evolve quickly, so DataFoundry has to deal with change mamagt—by far more complex change management
than the kind we consider here. However, DataFoundry ordyiges mediatorsfor database access. It does not



CCAT GALE CACTUS DataFoundry RELAXNG XSLT

Validation vV v/ v vV
Binding 00 o]e) SQL 00
Conversion manual vV manual

Stream Processing +/

Table 1: A survey of PSE-like systems and XML technologiesie Binding row shows that most systems sup-
port only one paradigm. Only DataFoundry fully supportsvession. Other systems either provide a library of
conversion primitives and leave their composition up touker (CACTUS) or do not recognize the need for con-
version at all (CCAT). No system or technology fully supgovalidation, binding, and conversion. Most systems
and technologies cannot dynamically process streams af dat

integrate with simulation execution. This system takes ddvantage of conversion, but provides only an SQL
binding. Introducing bindings for procedural languagesildanvolve significant changes to DataFoundry.

Table[l summarizes related work. It turns out that no knowE-RBi& system takes full advantage of both
binding and conversion. XML technologies for validatiorddnnding are well established, but XML transformation
technologies do not support PSE-style conversion. Vensfgstems can integrate with a PSE execution environment
because most of them do not meet the stream processingewrmuit. This paper develops a system that satisfies
all of our data interchange requirements. The next thretosscdescribe our handling of validation, binding, and
conversion. System integration is outlined in Secfijon 6.

3 Validation

Validation establishes conformance of a data instance teem gchema. It is a prerequisite to binding and conver-
sion. (This definition of validation is a small part of the pess of validation in a PSE, which is concerned with
the larger issue of a model being appropriate to solve a giveblem; but, it suffices for the purpose of this paper.)
The schemas for PSE data are easy to obtain since compataticience traditionally uses rigid data structures,
not loosely formatted documents. Describing the data ires in terms of schemas has several benefits. First,
language-neutral schemas allow for interoperability leemvdifferent languages (see requirement 1 in the previous
section). Second, schemas facilitate database storagetaiesial. Third, appropriate schemas help assign ingerpr
tations to various data fields. It is such interpretatiort thakes automatic conversion possible (requirements 2—6).

What kind of validation is appropriate for PSE data? Requéet 7 calls for the most expressive schema
language that can be parsed by a stream parser. In other,wggdse looking for a schema language that can be
defined in terms of an LL(1) grammdJ [3]. (The LR family of gnavars is more expressive, but LR parsers do not
follow stream semantics.) Therefore, a predictive parseegated for a given schema can validate a data instance.
This section describes a schema language (BSML) appregaai PSE and the steps for building a parser generator
for this language. We present an example, an informal oseref BSML features, and a formal definition for a large
subset of BSML in terms of a context-free grammar. Furthexdiotive parser generation is outlined and grammar
transformations specific to BSML are described in detaihaly, we show that BSML is strictly less expressive
than LL(1) grammars.

Let us start with an example. Figurids 3 dhd 4 depict a (sireg)ifschema for an octree environment decompo-
sition. (Fig.[3 describes it in XML notation while Fif] 4 usesion-XML format that will be useful for describing
some functionalities of BSML). This is the most complex sohen S'W, not counting the schema for the schema
language itself. An octree consists of internal and leaksdbat delimit groups of triangles. Recall from Secfioh 1.1
that this grouping is used to limit the intersection testeaytracing. The nested structure of an octree maps nicely



into an XML tree. Since many components work with lists o&nigles, there is a separate schema for a list of
triangles. As the example shows, the features of BSML cjossemble those of other schema languages, such as
RELAX NG. The only noticeable difference is the presencerofsuin the definitions of primitive types. Units will

be useful for certain types of conversions. Figfjre 5 showkldf) grammar generated from the octree schema.
This grammar is then annotated with binding code and useénergte a parser for octree data. The parser can be
linked with a parallel ray tracer written in C.

The DTD for the current version of BSML is given in Appendik Ahe schema language describes primitive
types and schemas. There are four base primitive typegyeintstring, (IEEE) double, and boolean. Users can
derive their own primitive types by range restriction. Uderived types usually have domain-specific flavor, such
as coordinates and distances in the example above. We dappbrs more complicated primitive types, such
as dates and lists, because each PSE component treats ffementy. Schemas consist of four building blocks:
elements, sequences, selections, and repetitions. \sspraking, repetitions can be expressed as selections and
sequences, but they are so common that they deserve speeaimhént. Derivation of schemas by restriction is
not supported, but derivation by extension can be impleetenita inter-schema references. Mixed content is not
supported because it is only used for documentation. lds&aML supports a wildcard content type. The contents
of this type matches anything and is delivered to the compioag a DOM tree[[6]. We do not support referential
integrity constraints because they can delay binding ansl bheak requirement 7. There is no explicit construct for
interleaves. In some ways, interleaves are handled by tneecsion algorithm. In other words, BSML is a simple
schema language that incorporates most common featutesr¢haseful in a PSE.

Parser generation for a BSML schema follows the standaps $tem compiler textbookg][3]:

convert the schema to an LL(1) grammar,

eliminate empty productions and self-derivations,
eliminate left recursion,

perform left factoring,

perform miscellaneous cleanup (described in detaivipglo
compute a predictive parsing table, and

generate parsing code from the table.

NookrwnPE

The only steps specific to this schema language are gergertinL (1) grammar (step 1) and miscellaneous
cleanup (step 5). Since grammars have been in use for a loegitiis pertinent to define BSML semantics in terms
of how the schemas are converted to grammars. The termirattefined by SAX event$ J[LO]. The start of element
and end of element events are denotedume) ande(name), respectively, whereame is element name. We omit
the attributes for simplicity, but BSML supports them in éwious way. Further, we assume that the SAX parser
inlines external entity references. Character data israatted until the next start of element or end of element
event and delivered asddbase, min, max, number, finite, units) terminal, abbreviated as(see Appendix ] for
d's attributes). Generated code checks character datarcoafice to the type constraints. This definitiondok
appropriate since BSML does not support selections basdukedype of character data.

One root non-terminal is initially generated for each scadtock (element, sequence, selection, repetition),
each reference to a primitive type, and each string of usde.cdVe denote non-terminals by capital letters, the
start non-terminal by, the empty string by, and the root non-terminals generated for the children ol s@hema
block by X1, Xs, ..., X,,n > 0. Further, lower-case Greek letters denote (possibly ensgiyuences of terminals,
non-terminals, and, in the next section, user codes. Wisnibtation in mind, the definition of BSML is in Figuﬂa 6
(more details follow in future sections). We slightly deeidrom a context-free grammar to allow for the constraints
on the number of repetitions (see next section). To regemmgrammar generated from a schema according to this
definition will undergo several standard equivalence fansations before a grammar of the form shown in Fidlire 5
is obtained.



<type id="distance’ base="doubl e’ nunber="true’ finite="true />
<type id='coordinate’ base='double’ nunber="true’ finite="true />

<schemm i d="triangles >
<repetition>
<el enent name="tr’ >
<repetition mn=3 nmax="3 >
<el ement nanme="v’ >
<attribute nane='x' type='coordinate’ units=m/>
<attribute nane="y’' type='coordinate’ units=m/>
<attribute nane='z' type='coordinate’ units="m/>
</ el enent >
</repetition>
</ el ement >
</repetition>
</ schema>

<schemn i d="octree’ >
<el ement name=’ octree’ >
<el ement name='o0i’ id="o0i’'>
<attribute nane='x’ type='coordinate’ units="m/>
<attribute nane="y’' type='coordinate’ units="m/>
<attribute nane='z' type='coordinate’ units="m/>
<attribute nane="dx’ type=distance’ units="ni/>
<attribute nane="dy’ type=distance’ units="ni/>
<attribute nane='dz’ type=distance’ units="ni/>
<ref id="triangles' />
<repetition>
<sel ection>
<ref id="o0i"/>
<el ement name='ol’ >
<attribute nane='x' type='coordinate’ units="m/>
<attribute nane="y’' type='coordinate’ units="m/>
<attribute nane='z' type='coordinate’ units="m/>

<attribute nane="dx' type='di stance
<attribute nane="dy’ type='distance
<attribute nane='dz’' type=' distance
<ref id="triangles' />

</ el ement >

</ sel ecti on>

</repetition>

</ el emrent >
</ el ement >
</ schema>

Figure 3. BSML schemas for an octree decomposition of arr@mvient, in XML notation. ‘tr’ stands for a triangle,

units="nm/>
units="nm/>
units="m/>

‘v' stands for a vertex, ‘oi’ stands for an internal node, amldstands for a leaf.



type(di stance, double, $, $, true, true, $)
type(coordinate, double, $, $, true, true, 9$)

schema(triangl es,
repetition($, $, %, 9,
element ($, $, tr
repetition($, $, 3, 3,
element ($, $, v,

attribute($, x, data(coordinate, $,$, 3, % m),
attribute($, y, data(coordinate, $,$, %, % m),
attribute($, z, data(coordinate, $,$,$, %5, m)
)
)
)
)

schema(octr ee,
el enent ($, $, octree,
el enent (oi, $, oi
attribute($, x, data(coordinate, $,$,$, %, m),
attribute($, y, data(coordinate, $,%$, %, % m),
attribute($, z, data(coordinate,$,%$,$,$ M)
attribute($, dx, data(coordinate, $, %, %, $
attribute($, dy, data(coordinate, $, $, 9,3,
attribute($, dz, data(coordinate, $,$, %, 9%,
ref (triangles),
repetition($, $, $, $,
sel ection($, $,
ref(oi),
element ($, $, ol,
attribute($, x, data(coordinate,$,$,9$, % m),
attribute($, y, data(coordinate, $,$, %, % m),
attribute($, z, data(coordinate, $,$, %, % m)
attribute($, dx, data(coordinate, $,$, %, $ m)
attribute($, dy, data(coordinate, $,$ %, $ m)
attribute($, dz, data(coordinate, $,$, %, % m)
ref (triangl es)

Figure 4: BSML schemas from Figug 3 in a non-XML notati$nstands for a missing value, i.e., a suitable default
value is supplied by BSML software.



S — s(octree), s(0i), T, C,e(oi), e(octree)

T — €

;l - {Bt},s(t’r),{BU},S(’U),G(U),{AU},V, {EU}>e(tr)v{At}>T,>{Et}
5’ —  s(tr),{By},s(v),e(v),{Au}, V. {Ey }, e(tr), { A}, T
Vo = s(v),e(v),{4,},V

C — €

C — {Bi},C”,{Ai},C”,{Ei}

C' — s(0i),T,C,e(oi)

C" — s(ol), T,e(ol)

C// N €

C// — I

I — s(oi),T,I

I — s(ol),T,e(ol),{A4;},C"

r — {Bz ,Cl, A,-},C”,{Ei},e(oi),{A,-},C’”

I'  — e(o),{Ai},C"

Figure 5: LL(1) grammar corresponding to the octree scheima&gures[B and]4. Attributes are omitted for
simplicity. Patterns of the forrdc} will be explained in the next section (they are related tcetigipns). Non-
terminalsT’, 77, andV are related to triangles; others are related to octree deesition of a set of triangles.

elementid, opt, name, By, Ba, . .., By) E — s(name), X1, Xo,...,X,,e(name)
E — € ifopt
sequenc@d, opt, By, B, ..., By) Q — X1,Xo...,.X,
Q — € ifopt
selectiorid, opt, By, Ba, ..., By) L — X
L — X2
L - X,
L — ¢ ifopt
repetition(id, opt, min, maz, By, Bs,...,B,) R — {B}, X1,Xo,...,X,,{A}, R ,{E}
R — Xi,Xo,....X,,{A}LR
R — ¢
R — € ifoptormin=20
datgbase, min, max, number, finite,units) D — d(base, min, max, number, finite, units)
codgc) C — {c}

Figure 6: L-attributed definition of BSML. Schema primits/én a non-XML notation, are on the left (see Fig(ire 4
for an example) and their translations to grammar prodostare on the rightBy, Bs, . . ., B, are the children of
the schema block andl;, Xo, ..., X,, are the root non-terminals generated &y, B, . . . , B, respectivelyopt is

a boolean block attribute; true means that the block is aptigB}, {A}, {E}, and{c} are binding codes explained
in the next section. References to schema blocks (denotedfy)) are replaced with root non-terminals of the
blocks being referenced. Definitions related to XML atttésuare omitted.
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The purpose of miscellaneous cleanup is to reduce the nuofimen-terminals in the grammar. These ad-hoc
rewritings do not guarantee that the resultant grammar iismnail in any strict sense. Instead, they address some
inefficiencies that other steps are likely to introduce. Seheleanup steps were also chosen such that if the grammar
were LL(1) before cleanup, it would remain LL(1) after clepn The grammars shown in this paper have undergone
two cleanup rewritings. Each rewriting is applied until mother rewriting is possible.

1. Maximum length common suffixes are factored gt~ e is the maximum length common suffix of a non-
terminal A #£ S if (a) all of A’s productions have the for!d — «;3, 1 < i < n, (b) 8 is of maximum length,
and (c) neithepd nor anyq; containA. If n = 1, A is eliminated from the grammar and all occurrences! of
in the grammar are replaced with(a; = € becaused is of maximum length). We call such non-terminals
trivial. Trivial non-terminals are often introduced by scha-to-grammar conversion rules. nif> 1, all
occurrences ofl on the right-hand sides of all grammar productions are ceplavith A3 and the suffixs is
deleted from all ofA’s productions. The purpose of this rewriting is to uncoveplicate non-terminals for
the next step.

2. Only one of any two duplicate non-terminals is retainedo fion-terminalsd = B are duplicate if whenever
A — «isinthe grammarB — « is also in the grammar, and vice versd.is eliminated ifA # S, B is
eliminated otherwise. This definition is weak, e.d.and B are not considered duplicate Af — «a A5 and
B — aBg are in the grammar. However, it suffices for our purposes.

The expressive power of LL(1) grammars is well known. In pcas the limiting factor is not that the grammar
is LL(1), but that the grammar is annotated with user codé® Aext section gives two examples of grammars that
are not convertible to LL(1) because binding codes are ptegemore interesting question is how the expressive
power of LL(1) grammars compares to the expressive powerSWB. It is easy to see that BSML can express
a proper subset of LL(1) grammars. For exam@e—~ s(z),e(y) is a valid LL(1) grammar, but BSML cannot
express it since no XML document that conforms to this grameaell-formed.

Observation 1. Consider a subset of BSML that excludes repetitions and cs#es. We say that BSML can
express a grammar if a predictive parser generated from some schema in thisatesl subset of BSML can
recognize precisely the langua@¢G). Clearly, BSML cannot express any gramndathat is not LL(1) (by con-
struction of the predictive parser). Further, BSML canngiress an LL(1) grammagF unless:

1. if d; andd, are data terminals if¥, thenVa, 3 : S # T «,d, ds, 3 (data is atomic),

2. if d is a data terminal an = «, d, 3 is a derivation in&, then
Y,y : <[ﬁ =% s(x),y] and[(B =" e(x),~) implies (Vy, 0 : o * 0, e(y))]) (no mixed contents), and

3. if s(z) is a start of element termina},is e or a data terminal, anfl =" «, s(z), 8 is a derivation in&, then
([ﬁ +* gl and[(y # x) implies(Vy : 8 %" ¢, e(y),y)]) ; similarly, if e(y) is an end of element terminal and

S =7 a,e(x), 3 is a derivation inG, then([a #* gl and[(z # y) implies (V0 : o * 0, s(az),g)]) (proper
nesting of elements). O

The first two restrictions are specific to BSML and easy tox.eldowever, the last restriction is inherent in any
XML schema language. A good schema language cannot desto@gnents that are not well-formed. These are
the necessary conditions, but it is not clear whether or mey aire sufficient. We define schemas in terms of the
schema language, not in terms of LL(1) grammars, so comgeftom grammars to schemas is not considered in
this paper.
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This section provided an overview of BSML features and defiBEML in terms of an ‘almost context-free’
grammar. We outlined automatic generation of predictivesgrs that validate XML documents. Further, we have
shown that the descriptive power of BSML is strictly lessnitthat of an LL(1) grammar where the terminals are
SAX events. The next section extends validation to perfoimdibg.

4 Binding

Binding is a way to integrate semistructured data with laggs that were not designed to handle it (requirement 1).
Binding can take several forms, depending on the language=®GRTRAN and C, binding usually means assigning
values to language variables and calling user-defined @ppeotess these values (procedural binding). It can also
mean writing the data out in a format understood by the compb(format conversion). For Matlab and SQL,
binding entails generating a script that contains embedid¢a and processing this script by an interpreter (code
generation). The last two kinds of binding can be thoughtsok8LT-like transformations.

We implement all three kinds of binding by L-attributed défons. The schema language is extended by
allowing user code to be injected in the schema. Schemadaeguthat provide binding are callbohding schema
markup languagesThis section describes bindings in BSML and gives an exaraptheir use. Further, we show
how arbitrary binding codes limit the set of schemas sujgldoty BSML.

Let c denote an arbitrary string of code. Matchifg means executing codevhile consuming no input tokens.
No assumptions are made about the nature. ofn particular,c can (and usually does) produce side effects, so
A — {c1}, {2} and A — {c2},{c1} can yield different results. Ayntax-directed definitiors a context-free
grammar extended by allowing:;} on the right-hand sides of productions. For a syntax-digectefinition to be
useful in binding,c; must contain references to parts of the document beingghawe denote such references by
%, wherex is the id or the name of some element or attribute. Wheefers to an attribute or an element of some
primitive type,%x is a value of the attribute or the data contents of the elenidrd type of%x is determined by the
corresponding primitive type. Whenrefers to an element of a wildcard typ is a DOM tree constructed from
all descendants of, including itself. This feature can be used for XHTML][21]almentation. The set of attributes
(elements) that are available to cadgepends on the placementwh the syntax-directed definition and the parsing
strategy. A syntax-directed definition lisattributed if, for any derivationS =" a{c}3, anyx referenced ir is
defined in all derivations ak. That is, all attributes (elements) must be defined in attefight scan before they are
referenced. L-attributed definitions are easy to impleraétiit an LL(1) parser, but they restrict the set of grammars
reducible to LL(1). Luckily, these restrictions are not ion@nt in practice.

Figure[T gives an example binding schema for a PDP (see 8fcfipand Figurf]8 shows how a parser generated
from this schema converts a PDP encoded in XML to a MatlalpsciThis script will then be executed by an
execution manager (see Sectidn 6). The same schema, wighedif binding code, can convert an XML file to
a number of SQL INSERT statements that record the data inaticehl database. The semantics of user codes
are not limited to printing, so a FORTRAN version of this kimgl can store the PDP in an array to be processed
later. In other words, BSML bindings are compatible with axgcution environment that processes streams of data
(requirement 7). We use the same approach to convert seatisied data to relational data, Matlab scripts, and C
structures.

The{B}, {A}, and{E} codes in Figurg]7 are generated for repetitions. They areauassary for this example,
but are required to enforce that each triangle has thre&esrin the previous example{ B} (begin repetition)
initializes the repetition count to zero. Each repetiti@s lits own stack of count§. A} (append) ensures that the
maximum allowed number of repetitions is not exceedgf} (end) checks the minimum number of repetitions.
Thus, even simple validation (without binding) is implertezhin terms of an L-attributed definition, not just an
LL(1) grammar.

Unfortunately, L-attributed definitions make predictiv@ging of certain grammars impossible. User codes can
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<el ement nane=’ pdp’ >
<el enent name='rds’ optional ="true’ type="time’ units="ns’'/>
<el enent name="ned’ optional = true’ type="tinme’ units="ns’'/>
<el enent nanme='pp’ optional = true’ type= power’ units="dBW/>
<code>M[ </ code>
<repetition>
<el ement nane='ray’ >
<el enent name="tine’ type="tine’ units='ns' />
<el enent nanme=' power’ type='power’ units="dBW/>
</ el ement >
<code>% i me %power </ code>
</repetition>
<code>]; </ code>
</ el emrent >

(Sl) S - S(pdp),R,M,P,{'\A:[ }507 {] ; },e(pdp)

(Ri) R — €

(R2) R — s(rds),d,e(rds)

(My) M — e

(My) M —  s(med),d,e(med) s(pdp) s(rds) s(med) s(pp) s(ray) e(pdp)

() P — ¢ S S

(P,) P — s(pp),d,e(pp) R Ry Ry Ry Ry Ry

(Cl) C — € M Mg ]\/[1 ]\/[1 ]\/[1

(Cy) C — {B},s(ray),s(time),d,e(time), P P, P P,
s(power), d, e(power), e(ray), C Co (&
{% i me Y%ower },{A}, X, {F} X Xo X1

(X)) X — ¢

(X2) X —  s(ray),s(time),d, e(time),

s(power), d, e(power), e(ray),
{% i me Y%ower}, {A}, X

Figure 7: (top) Binding schema for a power delay profilés, med, andpp stand for various optional statistics: rms
delay spread, mean excess delay, and peak power. Thes#cstadre ignored in this example. (left) L-attributed
definition for a power delay profilg.B}, { A}, and{ E'} stand for codes generated by the parser generator to handle
repetitions. Otherwise, the meaning {f} is to print stringe, followed by a new line character, after expanding
element references. For clarity, full suffix factoring wast performed, but trivial productions were eliminated.
(right) Predictive parsing table for a power delay profile.
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<pdp>

<rds>23. 0998</ rds>
<ned>20. 5691</ ned>

<pp>- 75. 5665</ pp> PZ[-88.0937
<ray><time>-4</ti nme><power >- 88. 0937</ power ></r ay> -3 -82. 4416
<ray><time>-3</tine><power >- 82. 4416</ power ></r ay> -2 -78.5346
<ray><time>-2</tinme><power >- 78. 5346</ power ></r ay> -1 -76.2634
<ray><time>-1</ti me><power >- 76. 2634</ power ></r ay> 0 -75. 5665
<ray><ti me>0</ti me><power >- 75. 5665</ power ></ r ay> 1 -76. 4908
<ray><ti me>1</ti ne><power >- 76. 4908</ power ></ r ay> 2 -79.2101
<ray><ti me>2</ti me><power >-79. 2101</ power ></r ay> 3 -84.0673
<ray><ti me>3</ti me><power >- 84. 0673</ power ></r ay> 24 -86. 4976
<ray><ti me>24</ti me><power >- 86. 4976</ power ></r ay> 25 -84.3451
<ray><ti me>25</ti nme><power >- 84. 3451</ power ></r ay> 26 -84.3173
<ray><ti me>26</ti me><power >- 84. 3173</ power ></r ay> 27 -85.963
<ray><tinme>27</ti me><power >- 85. 963</ power ></ r ay> 28 -87.7374
<ray><ti me>28</ti me><power >-87. 7374</ power ></r ay> 29 -88. 6525
<ray><ti me>29</ti me><power >- 88. 6525</ power ></r ay> 43 -89. 2007
<ray><ti me>43</ti me><power >-89. 2007</ power ></r ay> 44 -83.17
<ray><ti nme>44</ti nme><power >- 83. 17</ power ></ r ay> 45 -79.2179
<ray><ti me>45</ti me><power >-79. 2179</ power ></r ay> 46 -77. 3306
<ray><ti me>46</ti ne><power >- 77. 3306</ power ></r ay> 47 -77. 4917
<ray><time>47</ti me><power >-77.4917</ power ></r ay> 48 -79. 645
<ray><ti me>48</ti me><power >- 79. 645</ power ></ r ay> 49 -83. 6205
<ray><ti me>49</ti me><power >- 83. 6205</ power ></r ay> 50 -88.7676

<ray><ti me>50</t
</ pdp>

me><power >- 88.

7676</ power ></ray>

l;

Figure 8: (left) An example PDP in XML. The data corresporaa simulated channel in the corridor of the fourth
floor of Durham Hall, Virginia Tech. The post processor samphe channel at 1 ns time intervals to match the
output of a channel sounder. (right) Matlab encoding of tb@®n the left, output by the parser generated from the
schema in Figurf] 7.
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prevent elimination of left recursion or left factoring of k-attributed definition. In the two examples below, gram-
mars induced from the left-attributed definitions by renmgvall user code can be transformed to LL(1). However,
the original L-attributed definitions cannot be transfodteLL (1) without losing the stream semantics of the parser.

Example 1. Consider a left-recursive schema and the correspondingeledirsive grammar (after eliminating
trivial non-terminals):

<sel ection id="s’ > <sequence>
<I-- empty -->

</ sequence> <sequence> S L .
<code>c</ code> <ref id="s' /> g g b
<el enent name=' x’ > <code>b</ code> </ el ement > — {c}, 5, s(x),{b}, e(z)

</ sequence> </sel ection>

This grammar permits a derivation of the fosn="* {c}*, (s(x), {b},e(x))¥, k > 0. However, codé cannot
be executed beforkis known since: executions of code must precede the first execution of cadd herefore, no
LL(1) parser with stream semantics can parse documentsdhé&drm to this schema. On the other hand, removing
{c} from the L-attributed definition yields a grammar that isilgasonverted to LL(1):

S — € S — ¢
S — S;s(x),{b},e(x) S — s(z),{b}e(x),S
This example is easy to generalize. O

Observation 2. Consider a set of all productions for a non-termigll Since any sequencg: }{c2} can be
rewritten as{c}, wherec = ¢;co, we can uniquely represent this set by a single production

A —{atAar[{ca}Aasl - - [{cn} Aan|Bi]Bal - - - [ B,

where nog;,1 < j < m, has a prefixd}A. Immediate left recursion can be eliminated from this patidun
without delaying user code execution if and only if

1. ¢y =cy=---=c, =€ (nouser code to the left) or

2. ([(ﬁj =* v{d}0,1 < j < m)or(a; =* y{d}0,1 < i < n)|implies(d = e)> (no user code to the right)
and(c; = co = --- = ¢,) (Same user code to the left).

In all other cases, execution of user code must be delayddhmtasta; is matched. O
Consider a derivation ofl that is no longer left-recursive (i.e., does not have a prefixd}A). All such
derivations can be written as

A :>+ {Ci1}7{ci2}7"'7{Cik}>ﬁj7aik>"' y gy Oy

whereg;, 1 < j < m, stops left recursion after (at leagt)+ 1 steps and < iy,19,...,i; < n represent the
choices fora; in the derivation. Suppose; =* v{d}0 or o; =* v{d}6. The sequence of codes, c;,, ..., ¢;,
must be executed before codebut the LL(1) parser will only determine this sequenceraiftbas parsed all of
Bj, o, - ., iy, o . Thus, eliminating left recursion entails delaying usedleeexecution in all but the trivial cases
mentioned above.
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Example 2. Left factoring of L-attributed definitions poses similaoptems. Consider the following schema and
L-attributed definition (a more realistic version of thisaexple would have a repetition in place of thelement):

<sel ecti on> <sequence>
<code>c</ code>
<el enent nane=' x'/><el enent nane="y’' />

</ sequence> <sequence> S — A{c},s(x),e(x), s(y), e(y)
<code>d</ code> S — {d},s(x),e(x),s(2),e(z)
<el ement nane='x'/><el enent nanme="z'/>

</ sequence> </sel ection>

The decision about whether to execute ceded cannot be made untily) or s(z) is processed. However, removing
user codes makes this L-attributed definition easy to refagigain, we can show a more general condition. O

Observation 3. Consider a set of all productions for a non-termidalvritten as

A — oqfilaafal - lomBulyivel - - [vm.

such that} = ofy = --- = o}, = a # € (o/ denotes with all user code removed) andis not a prefix of any
Vs Yoy Vi, Let the length ofx be maximum and the lengths @f, 1 < i < n, be minimum subject te > 2, in

which case this representation 4fis unique.A can be left-factored without delaying execution of userecibénd
only if

1. no rewriting ofA in the above form exists (no two definitions_ dfshare the same prefix, less user codes), or
2. a1 = ay = -+ = «y, (same codes to the left) antl— ~1|y2| - - - |7, can be left-factored. O

To summarize, we implement bindings in terms of L-attrilbudefinitions from parsing theory. These bindings
work well in practice, but, in theory, annotating a schena tan be rewritten in LL(1) form can make it no longer
rewritable in LL(1) form. This difficulty is inherent in L-aibuted definitions. We currently assume that the user
is responsible for resolving such conflicts. In practicéesaas for PSE data rarely require complicated grammars.
Repetitions take care of most of the recursive schema defirit To make LL(1) parsing possible, troublesome
content can be simply enclosed in an extra XML element, wistesg and end tags disambiguate the transitions of
the LL(1) parser.

5 Conversion

Conversion is the cornerstone of a system’s ability to hatiianges and interface mismatches. Conversion in a
PSE helps to retain historical data and facilitates inclugif new components. We use change detection principles
from [[L1], with a few important differences. First, our gaghot merely to detect changes, but to make PSE com-
ponents work despite the changes. Second, we detect chartpesschema, not in the data. The PSE environment

must guarantee that the data is in the right format for thepmorant. The job of the component is to process any data
instance that conforms to the right format. Last, changedfiein and conversion are local to the extent possible.

Locality is a virtue not only because it allows for streamgassing, but also because it limits sporadic conversions
between unrelated entities.

Similarly to the two previous sections, this section stavih a comprehensive example. Then, we describe
the core of the conversion algorithm and outline its linmigias. Finally, we extend the initial algorithm to handle
content replacements: unit conversion and user-definedecsion filters. At this point, it should not come as a
surprise to the reader that most of the technical limitatiohconversion are due to binding codes, not to the nature
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of the schema language. Therefore, the tedious detailsrafiing binding codes are omitted. The emphasis is on
non-technical limitations. What forms of semantic coni@rs can be ‘syntactized’ in a schema language? When
does such ‘syntactization’ back fire and produce undesiuécbmes?

The functional statement of the conversion problem can bengas follows. Given the actual scherfiaand
the required schemé,., replace binding codes ifi, with binding codes inS, and conversion codes to obtain the
conversion schemé&.. S. must describe precisely the documents described byut perform the same bindings
ass;.

Example 3. Figure[J depicts two slightly different schemas for antedescriptions in SV. The schema at the
bottom (actual schema) was our first attempt at defining afdataat for antenna descriptions. This version sup-
ported only one antenna type and exhibited several inatiegejresentation choices. E.g., polar coordinates should
have been used instead of Cartesian coordinates becaesmarmtesigners prefer to work in the polar coordinate
system. Antenna gain was not considered in the first verstoause its effect is the same as changing transmitter
power. However, this seemingly unnecessary parametetdshave been included because it results in a more direct
correspondence of simulation input to a physical system.

The schema at the top of Fig. 9 (required schema) improves tiactual schema in several ways. It better
adheres to common practices and supports more antenna type&ver, this schema is different from the actual
schema, while compatibility with old data needs to be re@i(requirement 2). Figufe]10 illustrates how addition
of conversion and binding codes to the actual schema sdieasompatibility problem. A parser generated from the
conversion schema in Figufe] 10 will recognize the actual datl provide the required binding. O

Following [L]], the basic assumption of the conversion atgm is that the actual schenfs, can be converted to
the required schem§&,. by some sequence of ‘standard’ edits. This sequence ofieditdled aredit script Once
the possible types of edits are defined (what we can call as&sion library’), the job of the conversion algorithm
is to (a) find an edit script that transforms the actual schéméo the required schemé&,. and (b) express this
edit script as data transformations, not schema transtansa In other words, the conversion algorithm looks for a
systematic procedure that converts actual data instahaesdnform taS, to the required formas,.. This procedure
is expressed as a conversion schefpéhat has the structure ¢f,, but binding codes fron%,. and the conversion
library. S. is then used to generate a parser that parses data instaméesring toS, and acts as if it parsed data
instances conforming t§,.

Our conversion algorithm supports four kinds of schemasedit

1. generalization,
2. restriction,

3. reordering, and
4. replacement.

We use these terms in reference to the required schemailgegequired schema is a generalization of the actual
schema.” Generalization and restriction of schema treesianilar to insertions and deletions in sequence alignment
problems. Reordering and replacement mostly retain thairdard meaning, except we consider replacements of
sets of schema blocks, not individual schema blocks. Weréiice the problem of converting trees to an easier
problem of converting sequences (see Fidule 11). Sequeneersion (ruley) in this initial formulation performs
all conversions but replacements. Then, we slightly retstinis definition to make it practical and generalize rijle
to accommodate replacements (unit conversion and useredetonversion filters).

The conversion algorithm revolves around the ‘determimekition between schemas. Intuitively, an actual
schemaS, should determine a required schefaf any document that conforms 1%, contains sufficient informa-
tion to construct an ‘appropriate’ document that conforms,t ‘Appropriate’ here is obviously a domain-specific
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<el enent nanme=" ant ennas’ >
<repetition>
<el enent nanme=" antenna’ >

<el enent name="id type='string nmn=1/>

<el enent nanme=' phi’ type=
<el enent nanme="theta’ type
<el enent name='gain type=
<code>puts stdout "% d: %
<sel ecti on>
<el enent nane=' wavegui de
<el enent name="wi dt h’
<el enent name=' hei ght’
<code>puts stdout "wav
</ el enent >
<el enent name=' pyrani da
<el enent name="wi dt h’
<el enent name="rw typ
<el enent name=' hei ght’
<el enent name="rh’ typ
<code>puts stdout "pyr
</ el enent >
</ sel ecti on>
</ el ement >
</repetition>
</ el ement >

<el enent nanme=' ant ennas’ >
<repetition>
<el enent nanme=" antenna’ >

angle' />
="angle />

"ratio units=dB

hi % heta %gai n"</ code>

>

type="di stance’ units="nm/>
type="di stance’ units="nm/>
egui de: 9% dt h %hei ght "</ code>

_horn’ >

type="di stance’ units="nm/>

e="di st ance’

units="nm/>

type="di stance’ units="nm/>

e="di st ance’
am dal horn:

uni ts="nmm/>
%\ dt h % w %hei ght

<el enent name="id type='string nmn=1/>

<el enent nanme=' descri ption
<el enent nanme='x' type='co
<el enent name="y’' type='co
<el enent name='z’' type='co
<el enent nane=' wavegui de’ >

<el enent name="wi dth’ type='di stance’
<el enent nanme=' hei ght’ type='di stance’

</ el enent >
</ el enent >
</repetition>
</ el enent >

Figure 9: Two slightly different schemas for a collectionasftennas. The component requires the top schema,
but the data conforms to the bottom schema. The bottom sck@nrapresents antenna orientation in Cartesian

coordinates, not polar coordinates, (b) lacks antenna, §aimequires antenna descriptions, (d) measures antenna
dimensions in inches, not millimeters, and (e) covers omlg antenna type. The schema at the bottom does not

ordi nate’' />
ordi nate’ />
ordi nate’ />

type="*"/>

units="in />
units="in />

optional = true’ default=0"/>

% h" </ code>

contain binding codes because they are irrelevant for #@mele. All binding codes are in Tcl.
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<el ement nanme=' ant ennas’ >
<repetition>
<el ement nane=" antenna’ >

<el enent name="id type='string nmn=1/>

<el enent name='description’ type="*'/>

<el enent nanme=’'x' type=' coordinate’ />

<el enent nanme="y’' type=' coordinate’/>

<el enent name='z' type=' coordinate’/>

<code> <!-- convert coordinates fromrectangular to polar -->
set _r [expr sqgrt(9%&*%+%*Wy+%* %) |
set Y%phi [expr atan2(%, %)]
set % heta [expr acos(%/$ r)]

</ code>

<code> <!-- set default gain -->
set %gain O

</ code>

<code>puts stdout "% d: Y%hi % heta %gai n" </ code>

<el enent nane=' wavegui de’ >
<el enent name="wi dth’ type='distance’ units="mi/>

<code> <!-- convert units frominches to millineters -->
set 9% dth [expr 25.4*%w dth]

</ code>

<el enent nanme=' hei ght’ type='distance’ units="nmm/>

<code> <!-- convert units frominches to mllineters -->
set Y%hei ght [expr 25.4*%ei ght]

</ code>

<code>puts stdout "wavegui de: 9% dth %hei ght"</code>
</ el ement >
</ el ement >
</repetition>
</ el ement >

Figure 10: Actual schema from Figufe 9 (bottom) after inegrconversion and binding codes. This schema de-
scribes the actual documents, but provides the bindingseofequired schema (top of Figdte 9). We usénstead
of % because the latter could interfere with another use of theema
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datgbase,, ming, mazx,, number,, finite,, units,) = datadbase,, min,., max,, number,., finite,, units,)

if base, = base,, ming, > min,, maxr, < max,, number, = number,, finite, = finite,,
units, = units,

elementid,, opt,, name,, Co1,Caz, . .., Capn) = €lementid,., opt,, name,, Cr1, Cray ..., Criy)
if name, = name,., opt, = opt,, Qu(Ca1,Ca2s- -, Can) = Qr(Cr1,Cray ..., Crp)

Xo(idg, opty, . ..) = elementid,, opt,, name,, Cr1,Cra, . .., Crp)
if Opta = Optra Qa(Xa(idaa Optm .. )) i Qr(crh Cr27 e 7Crm)

elementid,, opt,,name,, Co1,Caz, ..., Capn) = X, (id;, 0pty,, . ..)
if opt, = opt,, Qa(Caly Ca2a ) Oan) = Xr(idm opty, .. )

sequenc@dy, opty, Cqa1, Caa, . .., Copn) = sequenc@d,., opt,, Cr1,Cra,y ..., Crp)
if Opta = Optr, Qa(Caly Cag, ey Oan) > Q7«(C¢1, 07«2, ey C¢m)

X (idg, opty, .. .) = sequenc@d,., opt,, Cr1,Cray ..., Crp)
if Opta = Optra Qa(Xa(idaa Optm .. )) i Qr(crh Cr27 e 7Crm)

sequenc@d,, opta, Ca1,Co2, . .., Can) = X, (id,, opt,, . ..)
if optq = opt,, Qa(Caly Ca2a s Oan) = Xr(idm opty, .. )

selectiontid,, opta, Ca1, Ca2, - - -, Can) = selectiontid,., opt,, Cr1,Cra, ..., Crp)
if opty, = opt,.,VCy; : (E”C?«j Cu ™ er)

X (idg, opty, .. .) = selectiorid,., opt,, Cr1,Cray ..., Crp)
if optq, = opt,, (3Cyj : X4(idy, opta,...) = Cpj)

repetition(id,, opta, ming, maz,, Ca1, Cag, - . ., Cap) = repetitior(id,, opt,., min,., mazx,, Cry, Cra, . ..

if ming > min,, mazx, < maz,,opt, = opt,, Qa(Ca1,Ca2, ..., Can) = Qr(Cr1,Cra, ..., Crp)

Xo(idg, opty, .. .) = repetitionid,., opt,, min,, maz,,Cr1,Cra, ..., Crp)
if minr S 17 maxy Z 17 Opta = Optra Qa(Xa(idaa Optaa .. )) i Qr(crla CT’27 e 7Crm)

ref(id,) = ref(id,)
if X,(idg,opta,...) = X, (id,,opt,,...)

Qa(cala Ca27 o 7Can) = Qr(crla CT’27 cee 7Crm)
if \V/Cm'(. .. ,Optrj, .. ) : [(E“Cm : Cm' > er) or (0pt7«j)]

) Crm)

Figure 11: Version 1 of the ‘determines’ relatiof), (id,, opt,, . ..) = X, (id,, opt,, . ..) between an actual schema
block X, (id,, opta, . ..) and a required schema bloék. (id,., opt,, . ..). We use the non-XML notation from Fig-
ure[4 plusX, (id,, opt,, ...) and X,.(id,, opt,, ...) are shortcuts for any schema block (data blocks are never op-
tional and have empty ids}> means logical implication anél means ‘there exists a unique.” The rules are applied
top to bottom, left to right. The first matching rule wins (nacktracking). This definition will be later restricted to
make it computable and rute will be extended to handle replacements.
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notion, and in the absence of a domain theory, there is no draddast measure of ‘appropriateness.” Given two
slightly different schemas, only a domain expert can telethler or not it is meaningful to attempt a conversion
from one form to another. Therefore, our conversion rulesukhbe viewed as heuristics that we have found to
be useful enough to be supported in a conversion library.y Bine neither sound nor complete in an algorithmic
sense (because we do not have an objective, external, reegsaonversion correctness’). Instead, they represent
a tradeoff between soundness and completeness and shocdddbelly evaluated for use in a particular domain.
With this disclaimer in mind, version 1 of the determinestieln betweers,, andS,. (S, determinesS,.; S, = S;)

is defined in Figur§¢ 31. We will also find the notion of schemaieajence useful: we say that two schensgsand

S, areequivalentf S, = S, andS, = S,.

The first rule (,)) in Figure[1L, for instance, says that a value of primitiveety‘data’) can be substituted for
another if they have the same base type, their ranges areatibhep and they have the same units. It ensures that
all primitive type constraints of,. are met byS,, (restriction). Thus,D, is simply a definition of type derivation
by range restriction (the ‘r’ subscript in this and otheresistands for restriction; similarly, the ‘g’ subscriptrata
for generalization). Rule&, P, and R state the obvious: two black boxes are compatible if they l@mmpatible
wrappers (restriction) and compatible contents (any amiwes). RuleC' says that any choice ifi, must uniquely
determine some choice 4. (restriction). Rule) enforces that every block ifi, is uniquely determined by some
block in S,. This formulation of rule) ignores extra blocks i, (restriction), permits optional elements.$h to
be unmatched (generalization), and allows for contentsdegimg. RuleF' deals with references. Only rulds,,

E, P, C, andR are sound. Ruld’ looks sound, but it makes the determines relation not coalppeit Rule( is
unsound primarily because it ignores ‘unnecessary’ blatks,.

RulesE,, P,, Cy, and R, handle generalizations across schema blocks of (posdiiffgyent types. Their
counterpartst, and P, handle symmetric restrictions (why is there @p or R,.?). RuleC; was demonstrated in
the example above. It is a base case for WleRule C, states that one way to generalize a schema block is to
enclose itin a selection, i.e., provide more choiceS,ithan were available ii§,. This rule is sound. Rules,, P,,
and R, have similar motivations, but they are unsound. Esseytiak assume that decorating any black box with
any number of wrappers does not change the meaning of thie Ixéecc(generalization). Similarly, we assume that
wrappers can be freely removed to expose the black boxi¢tssti).

Consider a sequence of schemas that describes some plsysiteah in progressively greater detail. Suppose
some subsystem is described by a single parameter. Comracticpris to allocate a single schema block to this
subsystem. What happens when a more detailed descriptitiisofubsystem is incorporated into the schema?
Chances are, the original schema block allocated to theystdms will be either (a) augmented with more con-
tents (restriction part of rul€)) or (b) wrapped in another block. The generalization anttioti®n rules handle
case (b). However, blind application of these rules can teatisaster because these rules disregard some semantic
information. Examples will make these points clearer.

Example 4. One common trick used to improve wireless system performasspace-time transmit diversity
(STTD). Instead of a single transmitter antenna, the bag®stuses two transmitter antennas separated by a small
distance. PDPs are very sensitive to device positioningysaincorrelated transmitter antennas can produce widely
different signals at the same receiver location. If theaifrom one of the antennas is weak, the signal from another
antenna will probably be strong, so the overall performasexpected to improve. Consider how addition of STTD
to the ray tracer affects the schema of the transmitter filee driginal schema is on the left and the new schema
(with STTD support) is on the right. The second antenna imopt because STTD is not used in every system due
to cost considerations.

(continued on next page)
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<el enent nanme=' base_station’ >
e o <el enent nane="tx’ >
<el enent nane="tx’ >

A . , <ref id="coordinates’ />
<ref id="coordinates’ /> -, , ., ,
-, <el enent name=' power’ type=' power’'/>
<el enent nane=

ower’' type=' power’'/> , , , ,
<el enent nane=’ ?r eq’ ty}rgzz' dgubl e /> <el ement name='"freq’ type= double’/>
</ el enent >

</ el ement > S . , ,
<el enent name="tx’ optional =" true’ >
<ref id="coordinates’/>
<el enent nanme=' power’ type=' power’/>
<el ement nanme="freq type= double'/>
</ el ement >
</ el ement >

The new ray tracer should be able to work with old data becihgs@ports one or two transmitter antennas. The
old ray tracer should be able to work with new data, albeitéiselts will be approximate when the new data contains
two transmitter antennas. Further generalizing this examap: transmitter antennas would require a repetition. We
support conversion to repetitions, but not from repet#ioRor this example, we could extract any antenna because
they usually have the same parameters and are positionsel trlgether. However, we cannot extract an arbitrary
ray from a PDP because the ray with maximum power is usudinied. Extracting any other ray would typically
produce nonsense results. O

Example 5. Havoc can result if rule’, and E, are applied to the same element. Element names have semantic
meaning, but this particular composition of rules allowsitaary renaming of elements. Such renaming would make
the following two schemas equivalent.

<el enment nanme="tx_gain’ type='ratio /> <elenment nane="snr’ type='ratio />

Even though both transmitter antenna gain and signal-genatio are ratios measured in the same units (dB),
they convey largely different information. We avoid suchtbht mistakes by limiting the application of generaliza-
tion and restriction rules. In particular, no element camdsmmed. O

As the last example illustrates, the ‘determines’ relafiofrigure[I]L needs to be restricted. It is helpful to
redefine this relation in terms of a context-free grammat dlescribessS, S,.. Let the terminals bel enent (,
sequence(, sel ection(,repetition(,ref(,data(,), and all element names and other values used
in two schemas under consideration. Let the non-terminalthe labels of the rules in Figufe] 11, a special start
non-terminal A, and intermediate non-terminals introduced by the rulee dah formally define the necessary
restrictions by limiting the shape of the parse tree §p6,. Consider a patlR;, Rs, ..., R,,n > 0, from some
internal nodeR; # A to some internal nod&,, # A, where allR;,1 < i < n, are rule labels. IR is the set of
restriction rules ang is the set of generalization rules, we require {3t € R) implies(R;_; ¢ G andR; 1 ¢ G),

i.e., restriction and generalization rules cannot be adgl sequence. This restriction of the parse tree disallows
renaming of elements, but does not limit the number of wrepppeound black boxes. Bounded determination deals
with the latter problem. We say thaf, k-determinesS, (S, =* S,) if no pathR;, Rs, ..., R, contains a substring

of (possibly different) generalization (restriction) ealof length greater thak. We leave it up to the reader to
appropriately restrict rulé’ (reference). These restrictions make the ‘determineaticgl computable and enforce
locality of conversions. As a side effect, we have shown thatproblem of constructing a conversion schema
S. from the actual schem&, and the required schentd can be reduced to validation and binding (parsing and
translation). However, schema conversion need not work stitams of data, so a parser more powerful than a
predictive parser should be used.
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It remains to consider requirements 4 and 5: unit converai@huser-defined conversion filters (replacements).
Let D be a set of all primitive types derived from double (recaditth primitive type is defined by the base type, the
range of legal values, and a unit expression). Unit convers.g., converting kg/fnto Ib/in?, is the simpler of the
two replacements. Both actual and required unit expressioa converted to a canonical form (e.g., a fraction of
products of sums of CI units or dB) and then the conversiowtfan is found. Unit conversions are functions of the
form

U:D,— D,,

whereD,, D, € D are specific primitive types. User-defined conversion §ltme functions of the form
H: Dy X Dgg X -+ X Dgpy — Dy X Dypg X -+ X Dy,

wheren, m > 0andallD,;, D,; € D,1 <1i <n,1 < j <m,are specific primitive types. Arithmetic operators and
common mathematical functions are allowed in user-defimedtarsion filters. Each user-defined conversion filter
is tagged with element namesime,1, namegs, . .., namey, andname,1, name,s,...,name., that determine
when the filter applies. Such filters define rules of the form

(element$, $, name,1, D,1), element$, $, name,o, D,2), ..., element$, $, name,,, Drm))-

(element$, $, name,1, Da1), element$, $, namegs, Dy2), . . . ,element$, $, nameq,, Day)) =

Both kinds of filters are compiled into codes such as showngarg[1). Ruley is modified to take advantage of
replacements. Basically, we are looking for (unique) garts of the actual schema blocks, C,s,...,C,, and
required schema blocks,, C,., . .., C,,, such that each set of schema blocks in the required parigtidetermined
by some set of schema blocks in the actual partition. Detetiain can proceed through the rules in Figuie 11, unit
conversions, and user-defined conversion filters (if elgmgtelse fails, optional blocks in the required schema can
remain unmatched).

The ultimate goal of the conversion algorithm is to find a nregiul edit script. However, this goal is impossible
to achieve without knowledge of the domain. What happensnvgexeral edit scripts exist, i.e., the problem of
finding an edit script is ambiguous? Depending on the natlitkecambiguity, we can choose any edit script, the
minimal (in some sense) edit script, or to refuse to perfoamversion. The conversion algorithm described here
either settles for some local minimum (e.g., ridas preferred over rulé’,) or requires uniqueness of conversions
(rulesC, Cy, and most of rule)). Ambiguity remains an open problem that is unlikely to bl/ed by a syntactic
conversion algorithm. Following the principle of least mwastonishment, we choose to reject most of ambiguous
conversions.

Finally, let us consider how binding codes limit converside omit formal treatment of the problem and limit
the discussion to an example. It is easy to see that convensay require delaying binding code execution. This
should not be surprising since one kind of conversion isdedng.

Example6. Consider a required schema with binding codes (left) anccarahschema (right).

<sequence>
<el ement nane="a’' type= double' />
<code>cl</ code>
<repetition>
<ref id="b' />
<code>c2</ code>
</repetition>
<sequence>

<sequence>
<repetition><ref id="b'/></repetition>
<el ement nane='x’ type='double’ />
<el enent nane="y’' type='double' />
<sequence>
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Assume that there exists a user-defined conversion filt¢rctieulatesa from x andy. If we ignore binding
codec2, conversion is clearly local. However, conversion with present will require delaying all executions of
c2 until c1 is executed. The latter can only happen when the last pieteeafichema is matched. In other words,
binding codes should be placed as late as possible in thensche O

This section presented a number of local conversions apptegdor PSE data. Conversions are carried out
by extra codes injected in the actual schema. The conveasgmrithm was built around the ‘determines’ relation
between schemas. The algorithm has some technical liontatielated to binding codes, but its major limitation
is conceptual. Conversion, in the form presented here,rigastic. It is based on the weak semistructured data
model, not on the underlying domain theory (wireless comigations). Therefore, we can only speculate about the
causes of differences between the actual and required sshdrhere is no guarantee that automatic conversion will
produce meaningful results. A stronger data model is nacgs$s perform complex, yet meaningful, conversions.

6 Integration with a PSE

A complete PSE requires functionality far beyond validatibinding, and conversion. BSML ensures that the com-
ponents can read streams of XML data, but it does not supgsks tsuch as scheduling, communication, database
storage and retrieval, connecting multiple componentsargiven topology, and computational steering. We broadly
call software that performs all of these tasksexecution managerFigure[1R illustrates how BSML software and
the execution manager function together.

From a systems point of view, BSML schemas are metadata arBISML software is a parser generator. Recall
that the parser generator generates parsers that perfdidatia, binding, and conversion functions (every such
generated parser will be able to take input data and stre@mmoigh the component). Both the data and the metadata
are stored in a database. We can distinguish three kinds @&fdiat@: schemas, component metadata, and model
instance metadata. Only one form of metadata (schemas)esaslokd in this paper. Component metadata contains
component’s local parameters, such as executable nanggaprming language, and input/output port schemas. It
is the kind of metadata used in CCAT. Model instance metadatacomponent topology and other global execution
parameters, serves a purpose similar to GALE’s workflowifipations. It supports our requirement 3.

A parser is lazily generated for each used combination ofpmorant’s input port schema (required schema) and
the schema of the data instance connected to this port (&cio@ama). Component metadata specifies how linking
must be performed (e.g., which of the three kinds of binditeggase). Component instances are further managed
by the execution manager. Model instance metadata speotveso execute the model instance (e.g., the topology
and the number of processors), while model instance dateses the actual (data) input to the model instance. To
summarize, the BSML parser generator creates compon¢ahges—programs that take a number of XML streams
as inputs and produce a number of XML streams as outputs.ré@fiesentation is appropriate for management of a
PSE execution environment.

6.1 Statusof Prototype

In S*W, the execution manager is implemented in Tcl/Tk and most@tomponent metadata is hard-coded. Model
instance metadata consists primarily of the number of [gsmrs and a cross-product of references to model instance
data. An (incomplete) example of such a specification is

‘compute power coverage maps for these three transmittatiéms in Torgersen Hall and show a graph
of BERs with the signal-to-noise ratio varying from zero weetty dB in steps of two dB; use thirty
nodes of a 200-node Beowulf cluster.’

PostgreSQL and the filesystem serve the role of the databasge files (e.g., floor plans) are typically stored in the
filesystem and small ones (e.g., PDPs) are usually impantedPiostgreSQL. The parser generator is written in SWI
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Figure 12: BSML integration with PSE execution environmemhe BSML parser generator creates parsers that
handle input ports of each component. Execution managéraieithe execution of a model instance that consists
of components, model instance data, and model instancelaiataFigurd]1 partially defines one such instance.

Prolog. It generates parsers in Tcl. Currently, these paese used mostly in the execution manager, visualization
components, and database interfacing components.

7 Discussion

We have described the use of validation, binding, and ceiverfacilities to solve data interchange problems in a
PSE. Since all three concepts are closely related to paasitigranslation, viewing application composition in terms
of data management uncovers well-understood solutionstéoface mismatch problems. The semistructured data
model allows us to syntactically define several forms of epsions that are usually implemented by hand-written
mediators in PSEs. Such automation reduces the cost of R@Bpment and, more importantly, brings PSEs closer
to their ultimate goal — namely, PSE users should be solviieg domain-specific problems, not be beset by the
technical details of component composition in a heterogesi€omputing environment.

Several extensions to the present work are envisionedt, Fiesexpressiveness of schema languages for data
interchange and application composition can be formalbratterized. This will allow us to reason about require-
ments such as stream processing from a modeling perspeStiod a study will also lead to a better understanding
of the roles that a markup language can play in a PSE. Secataf|alv relationships between components can be
made explicit. BSML guarantees that any component instba@dble to process streams of data, but synchronization
issues are meant to be resolved by the execution managhteiigtegration of BSML and composition frameworks
can be explored. Finally, the overall view of a PSE as a semcistred data management system deserves further
exploration. For example, it seems possible to autométicgnerate workflow specifications from queries on a
semistructured database of simulation results.

Any good problem solving facility is characterized by ‘wligets you get away with.” BSML is unique among
PSE projects in that it allows a modeler or engineer to flgxibtorporate application-specific considerations for
data interchange, without insisting on an implementatiocabulary for components.
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A BSML DTD
<IENTITY % bool ean "(true|false|t]|f]|yes|no|ly|n)">

<l-- attributes of primtive types:
mn - mninumvalue or string length (inclusive)
max - maxi num val ue or string length (inclusive)
nunber - true neans NaN is not allowed (doubles only)
finite - true means +/ -infinity is not allowed (doubles only)
units - units for this type (doubles only)

>
<IENTITY % type_attributes "
nmn CDATA #| MPLI ED
max CDATA #| MPLI ED
number %ool ean; #| MPLI ED
finite %ool ean; #| MPLI ED
units CDATA #| MPLI ED
">
<l-- what schemas and schena bl ocks are conposed of -->

<IENTITY % schenma_contents "
(el enent | sequence | selection | repetition)
"s
<IENTITY % bl ock_contents "
(%schema_contents; | default | ref | code)
s
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<l-- a collection of schenas -->
<! ELEMENT schenas ((description)?, (type | schemn)*)>
<I ATTLI ST schemas>

<I-- primtive type: attributes above and an optiona
enuneration of |egal values; derivation works by restriction
builtin base types are: integer, string, double, boolean -->
<! ELEMENT type ((description)?, (values)?)>

<! ATTLI ST type

id CDATA #REQUI RED
base CDATA #REQUI RED
% ype_attri butes;
>
<l-- enuneration of |legal values, no value is legal if enpty -->

<! ELEMENT val ues ((val ue)*)>
<! ATTLI ST val ues>

<! ELEMENT val ue (#PCDATA) >
<! ATTLI ST val ue>

<!-- schema -->
<I ELEMENT schema ((description)?, (code)*, (%chema_contents;), (code)*)>
<! ATTLI ST schena
id CDATA #REQUI RED
>

<l-- an elenent can contain either
(a) character data of a primtive type (type attribute is present),
(b) zero or nore schema bl ocks (type attribute is absent), or
(c) when type="*', any contents.
-->
<l ELEMENT el enent ((description)?, (attribute)*,
((values)? | (%l ock _contents;)*))>
<I ATTLI ST el enment

name CDATA #REQUI RED
id CDATA #| MPLI ED
opti onal %ool ean; "fal se"
type CDATA #| MPLI ED
% ype_attributes;
def aul t CDATA #| MPLI ED
>
<l-- an attribute nust contain a value of sone prinmtive type -->

<IELEMENT attribute ((description)?, (values)?)>
<! ATTLI ST attribute

name CDATA #REQUI RED
id CDATA #| MPLI ED
type CDATA "string"
% ype_attributes;

def aul t CDATA #| MPLI ED
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<l-- a sequence is just a grouping, for convenience -->
<! ELEMENT sequence ((description)?, (%l ock contents;)*)>
<I ATTLI ST sequence

id CDATA #1 MPLI ED
opti onal %bool ean; "fal se"
>
<l-- a selection denotes a nutually exclusive choice of contents -->

<l ELEMENT sel ection ((description)?, (%l ock contents;)+)>
<! ATTLI ST sel ection

id CDATA #| MPLI ED
optional %ool ean; "fal se"
>
<l-- a repetition denotes [nin..nmax] repetitions of contents -->

<l ELEMENT repetition ((description)?, (%l ock _contents)*)>
<I ATTLI ST repetition

id CDATA #| MPLI ED
opti onal %ool ean; "fal se"
nmn CDATA "o
max CDATA "inf"
>
<l-- areference to sone block id in this schenm,

or to an id of a different schema -->
<l ELEMENT ref ((description)?)>
<! ATTLI ST r ef

id CDATA #REQUI RED
>

<l-- user code; |anguage and conponent attributes facilitate
schema reuse (different conponents can have the sanme schens,
but different binding codes) -->

<! ELEMENT code (#PCDATA) >

<! ATTLI ST code

| anguage CDATA #1 MPLI ED
conponent CDATA #| MPLI ED
>
<l-- default contents rmust conformto BSML schema bl ock -->

<! ELEMENT default ANY>

<l-- XHTM. usual ly goes here -->
<! ELEMENT descri ption ANY>
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