
Effective Features of Algorithm Visualizations

Purvi Saraiya, Clifford A. Shaffer, D. Scott McCrickard and Chris North
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

{psaraiya|shaffer|mccricks|north}@cs.vt.edu

ABSTRACT
Many algorithm visualizations have been created, but lit-
tle is known about which features are most important to
their success. We believe that pedagogically useful visu-
alizations exhibit certain features that hold across a wide
range of visualization styles and content. We began our ef-
forts to identify these features with a review that attempted
to identify an initial set of candidates. We then ran two
experiments that attempted to identify the effectiveness for
a subset of features from the list. We identified a small
number of features for algorithm visualizations that seem to
have a significant impact on their pedagogical effectiveness,
and found that several others appear to have little impact.
The single most important feature studied is the ability to
directly control the pace of the visualization. An algorithm
visualization having a minimum of distracting features, and
which focuses on the logical steps of an algorithm, appears
to be best for procedural understanding of the algorithm.
Providing a good example for the visualization to operate
on proved significantly more effective than letting students
construct their own data sets. Finally, a pseudocode display,
a series of questions to guide exploration of the algorithm,
or the ability to back up within the visualization did not
show a significant effect on learning.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems – sorting and search-
ing ; H.5.1 [Information Interfaces and Presentation (e.g.,
HCI)]: Multimedia Information Systems – animations; eval-
uation/methodology

General Terms
Algorithms, experimentation

Keywords
Algorithm visualization, heapsort, courseware

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

1. INTRODUCTION
Algorithms and data structures are essential topics in the

undergraduate computer science curriculum. In our depart-
ment, the sophomore-level data structures course is typically
considered to be one of the toughest by students. Many
teachers are trying to find methods to make this material
easier to understand. One of the most popular methods
currently being investigated is algorithm visualization and
animation (an algorithm visualization is hereafter referred
to as an AV). It is true that students can learn algorithms
without using an AV. But motivated by the age-old adage
“a picture speaks more than thousand words”,1 many re-
searchers and educators assume that students would learn
an algorithm faster and more thoroughly using an AV [3, 4].
Yet, while thousands of AVs can be found on the Internet,
only a very few of these are of any use for learning a new
algorithm.

The effectiveness of an AV is determined by measuring
its pedagogical value [3, 4]. By pedagogical value of an AV
we generally mean how much students learned about that
algorithm by using the AV. In this way, the pedagogical
value for an AV might be compared to some other method
for learning about the algorithm such as a textbook or a
lecture. Others have found that by actively involving stu-
dents [4] as they watch an AV and making students mentally
analyze what they are doing, the pedagogical value of the
AV increases. Only about half of experimental studies con-
ducted on AVs demonstrate a significant effect for the AV,
and lack of significant improvement is often attributable to
the AV not actively engaging the student. According to
Hundhausen [4], participants can be actively involved with
the AV by making them

• construct their own input data sets [6].

• do what-if analyses of an algorithm behavior [6].

• make predictions about the next algorithm steps [7].

• program the target algorithm [5].

• answer questions about the algorithm being visual-
ized [3].

• construct their own AV [4].

Since our goal is to increase the effectiveness of instruction
for algorithms and data structures, we feel that it is impor-
tant to understand the underlying principles of what makes

1It is worth noting that this adage might take AV designers
down the wrong path. As discussed in [4], the way in which
AV technology is used is fundamentally more important than
the presentation form of the AV itself.

for good AVs. We seek to identify a collection of key fea-
tures that are generally exhibited by successful AVs. To this
end, we first identified a candidate list of features, and then
conducted experiments aimed at determining which features
actually have a significant effect.

2. THE LIST OF FEATURES
To prepare an initial list of potential key features, we used

an “expert study” approach. Three of us (Shaffer, North,
McCrickard) are experienced instructors of data structures
and algorithms courses, and we are also experienced both in
designing and implementing visualizations and in evaluat-
ing usability [1, 9, 10]. We began our efforts by assembling
a collection of AVs from the Internet on the heapsort al-
gorithm. Heapsort was selected because a variety of AVs
are readily available, it is an algorithm commonly taught in
data structures courses, and it is of moderate difficulty to
understand. In particular, there is an important distinction
between physical and logical representations for the heap
data structure that must be recognized in order to under-
stand the heapsort algorithm.

The three member “expert panel” together viewed five
heapsort AVs. We compared and contrasted the AVs, took
observations about their different characteristics, and at-
tempted to identify what features might increase algorithm
understanding and promote active learning in students. Af-
ter completing the review session, we re-analyzed our obser-
vations and comments to identify a specific list of key fea-
tures that we hypothesize might be characteristic of good
AVs. The features thus identified are as follows.

Ease of use: Interface (usability) flaws can easily ruin an
AV. The typical user will use a given AV only once. He/she
will not be willing to put much effort into learning to use
the AV. If the interface is difficult to use, the student will
need to make a conscious effort to learn it. This that can
prove distracting to a user who is at the same time attempt-
ing to learn an algorithm. Likewise, any operational bugs in
the program will make it impossible to use, or at least dis-
tracting. Any pedagogically useful AV must eliminate any
usability and reliability concerns.

Appropriate feedback: AVs make assumptions about
the background knowledge of their users. AV designers
should make explicit what level of background is expected
of the user, and support that level as necessary. Feedback
messages and other information should be appropriate to
the expected level of algorithm knowledge.

State changes: All AVs display a series of state changes
caused by the algorithm acting on some data structure. De-
signers need to define clearly each logical step in the al-
gorithm, and the visualization that is associated with each
state or state change. Sometimes it is good to provide tex-
tual explanation for some state changes, with this text per-
haps displayed as a series of messages within a particular
area of the visualization.

Window management: If an AV uses multiple win-
dows, it can be difficult to relate actions in one to corre-
sponding actions and updates in another (e.g., text in one
section can be difficult to relate to actions elsewhere within
the AV). Implementors should make sure that when the user
starts the AV, all windows are made visible to the user. AVs
might allow the user to resize or reposition the windows in
a way that he/she is comfortable with.

Multiple views: Many AVs show both a physical view

and a logical view for a data structure. As an example, a
heap can be viewed as an array (its typical physical imple-
mentation) or a tree (its logical representation). The AV
can show clearly the distinctions and connections between
these two views by showing both simultaneously.

User control: Different users have different rates for
understanding and grasping information. Even the same
user may need to work at different speeds when progressing
through the different stages of understanding. Sometimes
users might not “get it” the first time they are working with
a test case. Thus, users should be able to control the speed
of presentation, and they should be able to re-run a test case
or perhaps be able to “back up” through a visualization.

Canned examples and data input: On the one hand,
users are likely to benefit from good test cases that show
them the best and worst performance of an algorithm. On
the other hand, users should also be able to enter their own
test cases that allow them to explore their questions about
how the algorithm behaves.

Pseudocode: Pseudocode for the algorithm can help the
user relate state changes directly to the algorithm’s process.
A pseudocode view can indicate which line of the algorithm
is being executed at each step. Pseudocode should be easy
to understand. Pseudocode will be clearer if presented using
a high-level language rather than a particular programming
language.

We note that the features identified by this process are
generally oriented toward how an AV is used (and abilities
provided to the user) rather than how the AV looks. This
was not a conscious decision made a priori by the reviewers,
but rather seemed a natural result to us. This result matches
the conclusions from [4].

3. EXPERIMENT 1
The list of features in Section 2 represents our initial hy-

potheses for what constitutes effective AVs. Our next goal
after compiling the feature list was to determine which if
any have a significant impact on the ability of an AV to
affect student learning. The feature list actually contains
qualitatively different sorts of features. Most AVs are fail-
ures because they are buggy or their interface is so poor as
to make them unusable. Yet however important this factor
is, as a “feature” we must take fundamental stability and
usability for granted in that it does not make sense to test
whether a program that is unusable or has bugs is inferior
to an otherwise equivalent one that is usable and bug-free.
Likewise, the features of relevant feedback, clearly defined
state changes, and window management are all useful direc-
tives for AV designers to keep in mind when creating an AV
However, we have not thought of a way to test this hypoth-
esis, in that these do not appear to represent capabilities
that an AV might or might not have.

In contrast, the other proposed features represent capabil-
ities that might or might not be provided to a user. An AV
might permit user control of the pacing or not, it might allow
users to enter examples or not, it might provide pre-defined
examples or not, it might provide a pseudocode view or not,
and it might present multiple views of the data structure
or not. The work of Hundhausen et al. [4] and Hansen et
al. [3] indicates that AVs are more effective when the user is
interactive in the sense of being forced to answer questions
about the algorithm, especially to predict future behavior.
This capability can be provided by the AV in some manner.

We conducted an initial experiment with the goal of de-
termining which of these capabilities make a significant dif-
ference to student understanding of the algorithm. We im-
plemented our own AV for the heapsort algorithm in such a
way that various features could be added or removed. The
(optional) features were:

• The ability by users to enter their own data sets.
• An example data set given by the AV.
• A pseudocode display.
• A “back” button enabling users to back up any number

of steps in the presentation.
• A “guide” which presented a series of questions meant

to guide users through the AV and force them to en-
gage with the content of the AV.

Since the space of possible feature combinations is fairly
large, and our population of test subjects is limited, we then
decided on five specific variations of feature sets to compare.
We hypothesized that an AV having more features from the
set would tend to improve pedagogical value, and therefore
students using these features would show increased learning
about the algorithm as compared to those students using an
AV with fewer of these features.

Methods: We recruited as testers undergraduate stu-
dents who had prior knowledge about simple sorting algo-
rithms and knew basic data structures like stacks, queues,
and linked lists. Most of these students had no previous
knowledge about the heapsort algorithm or heaps, and had
little knowledge about tree data structures in general. Stu-
dents were asked to work (there was no time limit) with
one of five variations of the heapsort AV defined below (see
Figure 1). When the students thought that they were suffi-
ciently familiar with the AV, they were asked to take a test
on the heapsort algorithm. All variations used the same
graphical representation of the algorithm. An important
feature common to all these AVs was that students could
control the speed of the algorithm’s execution via use of a
“next” button. Each time the “next” button was pushed,
the AV advanced to the next logical step. Before start-
ing the visualization, all students were provided with some
background information on the heapsort algorithm.

The full-featured version of the heapsort AV used for the
experiment is shown in Figure 1. The features associated
with each of the five versions is shown in Table 1. The avail-
able features indicated in the table include a “next” button
to control speed of the tutorial, a “back” button to back up
one logical step in the presentation, an example given by the
AV, the ability for the user to enter his or her own example,
pseudocode, and a question guide, repsectively.

From the table, we see that Version 1 had (compared to
the others) minimal capabilities. It provided a pre-selected
data set, but students were not permitted to enter their own
test cases. The “back” button was not enabled, nor was
there a pseudocode display. Students were given no guide
questions. Version 2 was slightly more sophisticated than
Version 1. Students were permitted to enter their own data
set, but were not given any example. They could use the
“back” button to revert to previous steps in the algorithm.
Version 3 added a pseudocode display to the features of
Version 2. Again, students were not provided with an exam-
ple data set to start. Version 4 was identical to Version 2,
and added the guide. Version 5 was identical to Version 3,
and added the guide. The difference from Version 4 was the

Figure 1: The heapsort visualization, with pseu-

docode display and back button enabled.

Given Own

Version Next Back Examp Examp Pseudo Guide

1.1 X X

1.2 X X X

1.3 X X X X

1.4 X X X X

1.5 X X X X X

2.1 X X

2.2 X X X X

2.3 X X X X X X

2.4 X

Table 1: Features for each heapsort version, Exper-

iments 1 and 2.

addition of the pseudocode display.
An important goal for our experiment is to find at least

one feature set that provides for a significant difference in
student performance over some other feature set. While it
can be difficult to tease apart what makes an AV effective,
unless we can show that at least some AV is more effective
than another, there can be no hope of determining the cause
of the distinction. This is one reason why we attempted to
provide a version that appears to be devoid of (hypothe-
sized) useful features and another that carries all of the (hy-
pothesized) useful features in hopes of generating at least
one significantly different pair of AVs.

Results: The following is a summary of the most relevent
findings of the experiment. For complete details on this
experiment, see [8]. When we say that a result is significant,
we mean that the p value is less than 0.05.

66 students participated in the experiment. We omitted
the performance of 2 students, as they had no prior instruc-
tion about sorting, and thus they were quite different from
the target population for this AV. The average GPAs for the
groups were similar. We evaluated pedagogical effectiveness
based on a post-test containing 19 multiple-choice questions
on the heapsort algorithm.

There was no significant difference in the performance of
the participants as measured by a single-factor ANOVA on
total test scores over all 5 variations of the AV. The overall
performance indicated that the users of Version 1 performed
somewhat better overall (not significantly) than users of the
other versions, while those using Version 2 performed some-

what worse (not significantly).
When analyzing the results for individual questions, some

differences emerged. A single-factor ANOVA on test scores
for procedural questions only, over all 5 AV conditions, re-
ported a significant effect (p = .002). The users of Ver-
sion 1 significantly outperformed the users of Versions 3–5
on procedural (algorithm mechanics) questions (p = .00026,
p = .0424, p = .0080, respectively). Users of Versions 2
and 4 performed significantly better than those using Ver-
sion 3 on procedural questions (p = .0251 and p = .010, re-
spectively). Thus, the results suggest that a simple AV that
focuses just on the logical steps of an algorithm and shows
its effect on the data would provide better understanding of
the procedural steps of the algorithm for students who have
no previous knowledge of the algorithm.

On a conceptual question that asked the memory require-
ments of the heapsort algorithm, an ANOVA over all 5 AV
conditions reported a significant effect on participant perfor-
mance (p = .05). Users of Version 3 performed significantly
better than users of Version 4 (p = .010) and somewhat
better (p = 0.087) than users of Version 2. On a concep-
tual question that asked participants to identify the array in
max-heap format from a given set of arrays, an ANOVA over
all 5 AV conditions reported a significant effect on partici-
pant performance (p = .03). Users of Version 5 significantly
outperformed the users of Version 2 (p = .00281) and Ver-
sion 4 (p = .0459). The users of Version 1 outperformed the
users of Version 2 (p = .029).

From these results it seems that a pseudocode display and
guide or a data example covering the important cases might
provide better conceptual understanding of the algorithm.
We were surprised that the participants who had a pseu-
docode display did not perform better on the pseudocode-
related questions as compared to the participants who did
not have a pseudocode display. In general, the results failed
to demonstrate any real differences between the differing
versions. However, the results did provide suggestive infor-
mation that can be used to guide further experiments.

4. EXPERIMENT 2
The first experiment gave generally counter-intuitive re-

sults (essentially, that better performance was achieved by
students using fewer features). We then hypothesized that
two factors not tested for were dominating the results: hav-
ing control over the pace of the algorithm, and having a good
example. Thus, we decided to perform a second experiment
to test the hypothesis that these two factors dominate the
other features.

Methods: Students were asked to work with one of the
four variations of the heapsort AV. When a subject decided
that he/she was sufficiently familiar with the algorithm, they
took a test on the heapsort algorithm. All four variations
used the same graphical representation of the algorithm and
the same textual feedback messages as in Experiment 1. Be-
sides the AV, students were provided with some background
information on the heapsort algorithm. A log file recorded
the time a student spent with the AV and also the number of
times that he/she interacted with the various interface con-
trols. The following four versions were used. A summary of
each version’s features is shown in Table 1.

Version 1 had a limited number of features. Users en-
tered their own data sets, but were given no example data
set. This version had a “next” button (thus permitting users

to control the pace of the visualization), but no “back” but-
ton, no pseudocode panel, and no question guide. Version

2 was identical to Version 1 with the addition that users
were given an example data set, and could use the “back”
button to revert to previous steps of the algorithm. Ver-

sion 3 extended Version 2 by adding a pseudocode display
and a question guide. Thus, this version had the most fea-
tures. Unlike all other variations, Version 4 animated the
heapsort algorithm at a fixed pace. Students could halt the
animation and change the rate of progress (i.e., set the rate
at which steps of the algorithm took place), but could not
directly control pacing using a “next” button. No example
data set was provided, subjects had to enter their own data
set. There was no “back” button, no pseudocode, and no
question guide. Thus, this version represents the absence of
optional features.

Results: The following is a summary of the most relevent
findings of the experiment. For complete details on this
experiment, see [8].

44 students, 11 for each version, participated in the ex-
periment. The average GPAs for each group were similar.
A single-factor ANOVA on total test scores over all 4 vari-
ations of the AV showed a significant effect (p = 0.0002),
warranting further analysis of pairwise comparisons. Users
of Versions 1, 2, and 3 significantly outperformed users of
Version 4 (p = .029, p = .0001, p = .006, respectively). Ver-
sions 1 and 4 were identical except for the control of algo-
rithm execution. Thus, providing users an absolute control
on the pace of the AV proved to make a significant difference.

For procedural questions only, a single-factor ANOVA over
all 4 variations showed a significant effect (p = 0.0001).
Users of Version 2 significantly outperformed users of Ver-
sion 1 on procedural questions (p = .008). Although there
was no significant difference in performance between users
of Versions 2 and 3, users of Version 2 performed marginally
better than users of Version 3 both overall (p = 0.1), and
on procedural questions (p = .059). Users of Version 2 per-
formed significantly better than users of Version 4 on pro-
cedural questions (p = .0001). Thus, providing a good data
example and having an absolute control on the algorithm
execution proved helpful in procedural understanding of the
algorithm.

Version 2 and Version 3 had every feature in common
other than the pseudocode display and the study guide.
These features appeared to provide only marginal improve-
ment in performance. Analysis of learning time versus per-
formance showed that a larger learning time (at least when
that time is spent observing pseudocode) does not mean that
participants understood the algorithm any better. Users of
Version 3 spent almost double the amount of time with the
AV as compared to users of Version 2. This shows that
having the right set of features could reduce learning time
(versus other feature sets), while using more features may
result in increase in the learning time with little pedagogical
benefit. This result contradicts [4] which suggests that more
time spent with the AV translates into more learning. Our
results suggest that some uses of time are more efficient for
learning than others.

There was no significant performance difference on the
conceptual questions on the test for Experiment 2 between
the various groups. Results from Experiment 1 indicated
that additional features like pseudocode and guide might
prove to be helpful in increasing conceptual understanding

of the algorithm, but the data are weak for this hypothe-
sis. Note that [4] suggests that conceptual questions tend
to be less useful to distinguish pedagogical advantage than
procedural questions.

GPA vs. performance analysis on the tests for both Ex-
periment 1 and Experiment 2 indicated that students having
an extremely low GPA often performed relatively well using
the AVs. This indicates that if AVs are used for teaching
algorithms in class, these students might benefit so as to
increase their relative performance overall. However, we did
not conduct an experiment explicitly to test this hypothe-
sis. This result might well support the finding of [2] that
concrete learners benefit relatively more from AV.

5. CONCLUSIONS
Based on the current AV research, we hypothesized that

there are certain characteristics that are common to peda-
gogically effective AVs. We then proceeded to compile a list
of candidate features that we believed might increase the
pedagogical effectiveness of an AV. To measure the effect of
selected features with the goal of verifying that certain ones
do affect the quality of AVs, we conducted two experiments
using several variants of a heapsort AV. The following is a
list of the key findings from our experiments:

• Allowing a user to step through the AV significantly
improves the pedagogical value over allowing control
of the rate at which the AV runs the presentation.

• Providing students with an example data set that cov-
ers the important cases in an algorithm significantly
increases the pedagogical value of an AV.

• Participants having pseudocode display and an activ-
ity guide spend substantially more time with the AV
as compared to simple AVs that do not have these fea-
tures. These features do not appear to provide signifi-
cant pedagogical benefit on procedural understanding.

These results suggest that we were correct in some of our
hypotheses, in that certain features do significantly increase
the pedagogical effectiveness of an AV, especially control of
the AV pace and having a good example. But the exper-
iments also indicated that we were wrong about the effec-
tiveness of other features. A pseudocode display and using
a history mechanism to revert to a previous step in the al-
gorithm did not prove to have significant pedagogical effec-
tiveness. Providing users with the ability to enter their own
data sets does not provide significant pedagogical value. Fi-
nally, providing students with a question guide did not result
in significant pedagogical value.

Our finding that students given a good example perform
significantly better than students required to construct their
own own examples appears to contradict the results of [6]
and [3]. Their argument is that constucting test cases is
a form of active engagement that should lead to increased
learning. However, it does not surprise us that students
are generally unable to provide good test cases with which
to explore an AV, since these same students are notorious
for having poor ability to generate test cases with which to
debug their own programs.

While it surprised us that pseudocode displays and be-
ing able to back up the AV proved of no significance to
learning, it does not seem too hard in retrospect to accept
that these are relatively minor details compared to con-
trolled pacing through a good tutorial example. Neither

pseudocode display nor the ability to back up really engage
the student. Our results do agree with similar research indi-
cating that people prefer to read procedural instructions in
pictoral form, even though they prefer to write procedural
instructions in textual form [11]. Perhaps program code is
effective for implementing algorithms but not for learning
algorithms.

In contrast, it greatly surprised us that the question guide
seemed to have no significant effect. This finding seems to
contradict the conclusions of earlier work, such as that by
Hundhausen [4]. It was expected that the guide, whose in-
tent is to engage students intellectually with the material by
forcing them to answer questions that require exploration of
the algorithm, would increase learning. This issue deserves
more study. We note that we did not test the pedagogical
effectiveness of requiring students to predict the future be-
havior of the algorithm, which the work of Hansen et al. [3]
suggests is a key feature.

6. REFERENCES
[1] V. Colaso, A. Kamal, P. Saraiya, C. North,

S. McCrickard, and C. Shaffer. Learning and retention
in data structures: A comparison of visualization,
text, and combined methods. In Proceedings of the
World Conference on Educational
Multimedia/Hypermedia and Educational
Telecommunications (ED-MEDIA 2002), June 2002.

[2] M. Crosby and J. Stelovsky. From multimedia
instruction to multimedia evaluation. Journal of
Educational Multimedia and Hypermedia, 4:147–162,
1995.

[3] S. Hansen, N. Narayanan, and Schrimpsher. Helping
learners visualize and comprehend algorithms.
Interactive Multimedia Electronic Journal of
Computer-Enhanced Learning, 1, 2000.

[4] C. Hundhausen, S. Douglas, and J. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing, 2002.

[5] C. Kann, R. Lindeman, and R. Heller. Integrating
algorithm animation into a learning environment.
Computers & Education, 28:223–228.

[6] A. Lawrence. Empirical Studies of the Value of
Algorithm Animation in Algorithm Understanding.
PhD thesis, Department of Computer Science,
Georgia Institute of Technology, 1993.

[7] B. Price, R. Baecker, and I. Small. A principled
taxonomy of software visualization. Journal of Visual
Languages and Computing, 4:211–266, 1993.

[8] P. Saraiya. Effective features of algorithm
visualizations. Master’s thesis, Department of
Computer Science, Virginia Tech, July 2002.

[9] C. Shaffer. A Practical Introduction to Data Structures
and Algorithm Analysis. Prentice Hall, second edition,
2001.

[10] J. Stasko and D. McCrickard. Real clock time
animation support for developing software
visualizations. Australian Computer Journal,
27(3):118–128, Nov. 1995.

[11] P. Wright, A. Lickorish, A. Hull, and N. Umellen.
Graphics in written directions: Appreciated by
readers not by writers. Applied Cognitive Psychology,
9:41–59, 1995.

