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Forecasting citations of scientific patents and publications is a crucial task for understanding the evolution

and development of technological domains and for foresight into emerging technologies. By construing cita-

tions as a time series, the task can be cast into the domain of temporal point processes. Most existing work

on forecasting with temporal point processes, both conventional and neural network-based, only performs

single-step forecasting. In citation forecasting, however, the more salient goal is n-step forecasting: predict-

ing the arrival of the next n citations. In this article, we propose Dynamic Multi-Context Attention Networks

(DMA-Nets), a novel deep learning sequence-to-sequence (Seq2Seq) model with a novel hierarchical dynamic

attention mechanism for long-term citation forecasting. Extensive experiments on two real-world datasets

demonstrate that the proposed model learns better representations of conditional dependencies over his-

torical sequences compared to state-of-the-art counterparts and thus achieves significant performance for

citation predictions.
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1 INTRODUCTION

In academia and industry, innovation and evolution of technology can be thought of as the cou-
pling of prior and new work in either incremental or disruptive fashion. The number and frequency
of citations that a paper or patent receives can reflect the nature of that evolution. Indicators of an
author’s impact, such as g-index [11] and H-index [18], have become well-accepted standard mea-
sures which are applied to individuals, high-tech companies, and institutions alike. Patent citation
statistics have been widely used for the tasks of technology impact analysis [20], patent quality
assessment [3], and identifying emerging technologies at an early stage [28]. Citation forecasting
is a field of growing importance due to the ever faster pace of technological change in increasingly
competitive industrial and academic environments.

Many previous works [1, 55, 56] regard the citation prediction problems as feature-driven re-
gression tasks, that is, domain-specific handcrafted features (e.g., domain keywords, topics, qual-
ity indicators, author information) are collected to formulate a regression model to predict the
future citation count after a given time period. Usually, these models require prior domain knowl-
edge and are hard to extend to different research areas. Also, model performance depends on the
quality of collected features, while in real-world datasets features such as author or institution
information [23] can be noisy, especially when articles from multiple disciplines are involved. Fur-
thermore, this category of models treats features as an accumulated view over a historical window,
and thus ignores crucial patterns that evolve over time.

Another group of methods treats the R&D activities as relational objects in a graph connected
by different links, such as co-author relations and citations [34, 39]. In real-world scenarios, due
to hardware limitations, this group of methods can only be applied to author-level analysis or a
specifically tailored citation network where the total number of vertices and edges are manageable.
Though some sampling techniques [13, 29] were proposed to support the graph-based methods on
the large-scale network, these methods could not effectively preserve the temporal dependency,
which is essential to the citation forecasting task.

Furthermore, it is worth noting that certain time series prediction methods show promise for
citation forecasting [9, 47, 50]. However, these methods are primarily developed and optimized for
regular time series prediction tasks, which present challenges when applied to citation forecasting
due to the irregular arrival time of citations. For instance, the use of multiple convolutional

neural networks (CNNs) to capture periodic patterns, as demonstrated in the works of [47]
and [50], may not be suitable for citation forecasting given the presence of irregular time intervals
and short observation windows in the context of citation data. These irregularities pose additional
complexities that need to be effectively addressed in order to achieve accurate and reliable citation
predictions.

To address the above challenges of citation forecasting problem, point-process-based citation
prediction models [20, 27, 31] have drawn growing attention in recent years. As shown in Figure 1,
the sequence of citations that reference a given paper is naturally a time series. Consequently, it
can be modeled as a temporal point process that modulates the temporal pattern in a series of
points. In theory, the temporal point process is characterized by a conditional intensity function
learned from observing points along the timeline. Conventional methods concentrate on designing
a specific parametric form of the intensity function using heuristic assumptions specific to their
application [17, 37]. For instance, citation forecasting methods [31, 52] usually follow the para-
digm of the general self-exciting process [16] in which intensity spikes whenever a new citation
arrives. This feature is used to simulate that a highly cited paper is more likely to receive more
citations. These conventional methods have two notable drawbacks: (1) heuristic assumptions may
not be able to reflect complicated temporal dependencies in real datasets; and, (2) in practice, the
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Fig. 1. The citation chain for “The Essence of Wildlife Management” from the MAG dataset. The first 4
citations are shown along the timeline with their MAG ID attached by vertical line.

complexity of the intensity function is limited because maximum likelihood estimation requires
integrating intensity over time.

To address the challenges conventional models have in modeling intensity, more recent ap-
proaches use recurrent neural networks (RNNs) [10, 36] to approximate more complicated
conditional intensity functions without heuristic assumptions or prior knowledge of dataset or
application. Most existing RNN-based models [48, 51] have shown improved performance over
conventional methods on both synthetic data and real-world datasets. RNN-based temporal point
process models can be classified into two families: intensity-based models and end-to-end models.
Intensity-based models [10, 48] use the neural network to learn the conditional intensity func-
tion. Similar to conventional methods, this conditional intensity function is integrated over time
to obtain the conditional density function for maximum likelihood estimation and prediction. This
group of models is optimized for observation history and suitable for one-step forecasting. How-
ever, for the task of long-term prediction in which the model inputs combine both the observation
and prediction sequences, the learned intensity function is less reliable due to the lack of ground
truth inputs in the prediction phase. Additionally, the integration operation is a computational bot-
tleneck and can cause numerical instability. The family of end-to-end models [22, 53] combines
the process of representing the intensity function with the process of inference. The advantage of
end-to-end models is that with careful design, the model can be further optimized during the pred-
ication phase, instead of only from the observation sequence. The shortcoming of this approach
is that without an intermediate intensity, predictions can not be guaranteed to monotonically in-
crease over time.

In this article, we propose an RNN-based end-to-end model for citation forecasting. This model
introduces a hierarchical dynamic attention layer which uses two temporal attention mechanisms
to enforce the model’s ability to represent complicated conditional dependencies in real-world
datasets and allow the model to automatically balance the learning process from the observation
side and prediction side. Furthermore, the temporal prediction layer guarantees that the predicted
citations are monotonically increasing along the time dimension. Specifically, the contributions
and highlights of this article are:

— Formulating a Seq2Seq-based framework to provide long-term citation predictions in an end-
to-end fashion by integrating the process of learning intensity function representations and
the process of predicting future citations.

— Designing two novel temporal attention mechanisms to improve the model’s ability to mod-
ulate complicated temporal dependencies and to allow the model to dynamically combine
the observation and prediction sides during the learning process.
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— Conducting extensive experiments on two real-world datasets to demonstrate that our model
is capable of capturing the general shape of citation sequences and can consistently outper-
form other models for the citation forecasting task.

— Curating two large datasets from the United States Patent and Trademark Office

(USPTO) and Microsoft Academic Graph (MAG), which can be used as citation sequences
or citation networks for generalized tasks like temporal point process benchmarks and link
prediction or specific tasks such as citation forecasting. The entire datasets, along with
source code, are publicly available for download.1

The rest of this article is structured as follows: Section 2 presents the background and related
work and Section 3 formulates the problem setup. Section 4 details our proposed DMA-Nets models.
Experiments on two real-world datasets are presented in Section 5. The summary of the research
and future work are concluded in Section 6.

2 RELATED WORK

In this section, we structure the related work into three categories: citation analysis, citation pre-
diction, and neural point process; and discuss related concepts and background.

Citation analysis. Citation analysis has long been studied for the assessment of the impact of
individual researchers [4, 5, 12, 14, 26, 41], publications [2, 6], scientific institutions [33, 40] and
the investigation of the evolution of the science and technology field [35]. The typical citation
analysis method performs statistical analysis on the existing citations corresponding to a set of
papers collected with respect to filters of interest such as publishing journals, year of publication,
and research institutions [38, 42]. For example, Braun et al. [6] combine the number of publications
and the citation rate in a Hirsch-type way to rank the impact of a target journal. Another group
of studies goes beyond traditional bibliometrics analysis and concentrates on the identification of
citation polarity and citation purpose by performing natural language processing (NLP) on citation
contexts [21]. For example, Jha et al. [21] leverage the citation context around the citing sentence
to classify citation purposes into one of six categories which is helpful for applications such as
measuring research dynamics and faceted summarization. Both context-based and bibliometrics-
based methods usually require the collected papers to be stratified within a specific target research
field; that is, they are subject to field variation and are hard to generalize. Furthermore, citation
analysis methods are focused on analyzing existing citations received by a specific target paper,
patent, scholar, or institution, and thus can only be used as an evaluation of the target’s previous
achievement. However, in the increasingly competitive industrial and academic environments, the
ability to identify the potential value of emerging technologies at an early stage is more and more
critical.

Citation Prediction. Citation prediction has drawn increasing attention for its ability to highlight
significant areas of research, to assess the potential of emerging technologies, and to unfold promis-
ing trends in the industrial and academic environments. From the methodology point of view, the
existing citation prediction models can be organized into three categories: (a) graph-based link
prediction, (b) feature-driven regression methods, and (c) point-process-based methods.

One body of literature formulates the citation prediction problem as to the link prediction task in
a heterogeneous correlation network, that is, to predict the probability of a citation edge between
a pair of paper nodes [25, 30, 58]. Typically, this category of models serves as a supplementary
paper recommendation algorithm for a keyword-based information retrieval system because the
predicted probability can be considered as an indicator showing the non-context correlation be-
tween articles. For example, Yu et al. [58] use topic terms, authors’ information, and publication

1Removed to conform with double-blind submission requirements.
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venues to construct a heterogeneous bibliographic network, which is used to rank and recommend
possible links between the given query to existing papers in the graph. The constructed graph is a
static snapshot of the publication space at a specific timestamp, and therefore capturing evolving
dynamics is not trivial; although recently, researchers [39] have started to explore involving tem-
poral dynamics into a graph by leveraging frequent graph pattern mining. Another drawback of
this category of models is that the graph usually suffers from scalability problems and is usually
only suitable for a relatively small dataset.

Another group of citation prediction models [1, 55, 56] cast the citation prediction problems into
the scope of feature-driven regression tasks. This group of models usually adopt domain-specific
handcrafted features (e.g., domain keywords, topics, quality indicators, author information) to for-
mulate a regression model to predict the future citation count after a given time period. For ex-
ample, Yan et al. [56] extract author attributes, paper topic keywords, and venue features to build
regression models to predict citation counts after 1 year. This category of methods ignores tem-
poral evolution since the features represent an accumulated view over a historical window. Such
handcrafted features require papers to be collected only from similar research areas, and thus these
methods suffer from field variations. Furthermore, model performance depends on collected fea-
tures, but high-quality data for attributes such as author information and paper domain knowledge
are not always available. In particular, when publications from multiple disciplines are used, the
author name ambiguity problem [23] will severely influence model performance by introducing
too much noise.

More recently, researchers seek to overcome the above challenges of the citation forecasting task
by focusing on modulating the citation sequence’s temporal dynamics, leveraging the temporal
point process [20, 27, 31, 43, 52–54, 57, 60]. In this way, the accumulating nature of citations is
represented by an integration of the dynamic changing “intensity” of receiving new citations at
different times. Mathematically, the intensity function can be formulated into this paradigm:

λ(t)dt = Pr(citation arrives in[t , t + dt]|H∗),

where H∗ carries the information of all historical citations received before time t . For citation
forecasting tasks, researchers usually design the intensity function as a self-exciting stochastic
process, assuming its intensity jumps up whenever a new citation is received and then decreases
back towards the base following a decay function. For example, a classic Hawkes process defines
the self-excitation phenomenon among points as:

λh(t) = α0 + β
∑
ti <t

k(t , ti ),

where k(t , ti ) ≥ 0 is an exponential decay kernel that reflects the declining “intensity” of occur-
rence of a new point at time t since the last arrival at time ti , while the summation of kernels∑

ti <t k(t , ti ) modulates the “the rich get richer” effect. In practice, the researchers adapt the inten-
sity function to the specific applications. For example, Jang et al. [20] models the patent forward
citation sequence as a Hawkes process whose intensity first increases on the arrival of new citation
and then decays exponentially back. In contrast to feature-driven methods, point-process-based
models can be trained and improved continuously as the arrival of new citations. As a result, this
group of methods is more suitable for dynamic systems where the model is expected to work “on
the fly” instead of waiting for the newly published papers to accumulate over a time window. Fur-
thermore, these models are more robust to discipline variation since domain prior knowledge is
not required. However, this category of methods usually explicitly designate an intensity func-
tion to represent the correlation structure among citations received which may not fit the real-
world dataset where multiple citation patterns can co-exist [7]. For example, the Hawkes process
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assumption can be violated if the combined effects of past citations are not additive or a past cita-
tion has a delayed effect on the intensity.

Neural Point Process. Recently, to overcome the challenges faced by traditional point process
models, researchers further explore the use of recurrent neural networks (RNNs) [10, 36, 48, 51, 53]
to enhance the model’s representational ability on complicated conditional intensity functions
in real-world patterns. The neural point process does not require heuristic assumptions or prior
knowledge of the data to define an intensity function, but instead, it tends to automatically learn
the intensity function from the data by capturing the temporal pattern with a neural network. As
a result, it is demonstrated [36] to be able to capture effects that a traditional point process model
misses. Also, the neural point process is more robust to domain field variation. In various tasks [48,
51, 53], the neural point process demonstrates its ability to capture the general shape of sequential
data and shows better performance than the traditional point process. Most recently, researchers
started to work on applying the neural point process to the long-term citation prediction task. For
example, Ji et al. [22] proposed a neural point process model for patent citation forecasting by
jointly modeling patent, inventor, and assignee sequence into a sequence-to-sequence structure.

3 PROBLEM FORMULATION

Let C = {C1,C2, . . . ,C|C |} be a set of collected citation sequences for scientific documents (e.g., a
set of papers or patents). The ith sequence is denoted by Ci = {(t1,m1), (t2,m2), . . . , (t |Ci |,m |Ci | )}
where tk and mk refer to the published date and the technology class of the kth citation,
and the 0th citation is the target document itself. The citation sequence can also be rep-
resented in terms of the inter-citation duration between two consecutive citations Ci =

{(τ1,m1), (τ2,m2), . . . , (τ |Ci |,m |Ci | )} where τk = tk − tk−1 refers to the time difference between
the kth citation and the (k − 1)th citation. These two representations are equivalent since the set
of k inter-citation durations can infer the arrival timestamp of the kth citation:

tk = tk−1 + τk = t0 +
k∑

j=1

τj .

In this article, we use inter-citation duration notation because it makes it easier to constrain the
end-to-end model to forecast citations correctly along the time dimension such that tk+1 ≥ tk .

Given data as described above, our problem is as follows: For a scientific document p, using the
first l citations as observations, can we forecast the sequence of the next n citations? The question
breaks down into two variants based on the focus of the problem:

(1) n-step forecasting concentrates on predicting the arrival time and technology class of the
next n ≥ 1 citations {(τl+1,ml+1), (τl+2,ml+2), . . . , (τl+n ,ml+n)}, given the first l citations
{(τ1,m1), (τ2,m2), . . . , (τl ,ml )} of the target document as observations,

(2) one-step forecasting concentrates on predicting only the arrival time of the next citation
(τl+1,ml+1), given the first l citations {(τ1,m1), (τ2,m2), . . . , (τl ,ml )} of the target document
as observations.

The first problem is the most generalized and challenging because there are l citations on the
observation side and n citations on the prediction side. There are two challenges for the task of
forecasting the next n citations. First, there is a tradeoff of learning from the observation side or
from the prediction side. On the one hand, observations are ground truth but there may be too few
to provide enough information to modulate the temporal point process. On the other hand, pre-
dictions are less trustworthy but can provide extra information to the model for learning the tem-
poral point process. Also, errors that occur early in the predication phase can be propagated into
subsequent predictions. All these challenges indeed motivate us to adopt a sequence-to-sequence
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Fig. 2. The motivation of using sequence-to-sequence model for n-step citation prediction task. During train-
ing, the sequence-to-sequence model has the advantage of taking into account both the observation side and
the prediction side which can improve the accuracy of long-term predictions.

Fig. 3. A typical many-to-many structure for one-step forecasting. The model only learns to capture the
temporal dynamics among the observations.

structure which takes into account both the observation side and prediction side during the train-
ing, as shown in Figure 2.

When n = 1, the first problem is relaxed to the one-step forecasting problem, which is the
simpler since learning the temporal point process depends only on the observation side so there
will be no error propagation on the prediction side. Typically, a neural point process for this task
adopts a many-to-many structure, as shown in Figure 3, where only the temporal dynamics of the
observations are captured during training. Since predicting only the next citation does not have
much practical value in real-world applications, we focus only on the task of n-step forecasting.

4 MODELS

In this section, we present our proposed model, DMA-Nets. First we show an overview of the
design of the proposed framework, as demonstrated in Figure 4. Then we detail the input layer
(L1 in Figure 4) and the recurrent representation layer (L2 in Figure 4) used as the base of our
model. Next, we propose the hierarchical dynamic attention mechanism (L3 and L4 in Figure 4)
which empowers the model to modulate complicated correlations between historical citations and
dynamically learn from both the observation side and the prediction side. Finally, we describe the

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 144. Publication date: April 2024.



144:8 T. Ji et al.

Fig. 4. The architecture of DMA-Nets. L1 is the input layer. L2 is the recurrent representation layer. L3 refers
to the local temporal attention (LTA) layer and L4 to the global multi-context temporal attention (GMTA)
layer. Together, these comprise the dynamic hierarchical attention layer. L5 is the prediction layer.

temporal prediction layer and the training procedure which unifies the distinct components of the
proposed framework.

4.1 Model Architecture

By considering the arrival of a citation as an instant point on the timeline of the citation sequence of
a scientific document, we can study the entire citation sequence as a point process that is governed
by a hidden conditional intensity function which models the dependencies of arriving citations
based on historical citations. The joint density of all citations can be represented as

f ((τ1,m1), (τ2,m2), . . .) =
∏

i

f ((τi ,mi )| . . . , (τi−2,mi−2), (τi−1,mi−1)) =
∏

i

f ((τi ,mi )|H∗) , (1)

where τi and mi , respectively, denote the inter-citation duration and the technology class of ith
citation, which are conditioned by the information of all historical citations before the ith citation,
denoted by H∗. With this learned joint density, the future arrival of citations can be predicted
through a generative process; for example, by estimating the expectation of the conditional density
function through numerical integration.

In this article, guided by the Seq2Seq architecture [45], we propose a novel hierarchical dynamic
attention neural network in an end-to-end fashion which integrates the task of representing com-
plicated hidden dependencies across historical citations and the task of predicting the technology
class and arrival timestamp of the next n citations. Figure 4 presents the overall encoder-decoder
architecture of DMA-Nets where the encoder is supplied with the sequence of observed citations
ζe = {(τ1,m1), (τ2,m2), . . . , (τl ,ml )} and the decoder aims to recurrently predict the sequence of
the next n citations ζd = {(τ̂l+1,m̂l+1), (τ̂l+2,m̂l+2), . . . , (τ̂l+n ,m̂l+n)}.

The model consists of four sublayers: the input layer, the recurrent representation layer, the
attention layer, and the prediction layer. The input layer encodes temporal information from the
inputs into dense vectors. The recurrent representation layer captures the hidden long/short de-
pendencies of the current citations over all previous citations. The learned representations enter
the attention layer which consists of two modules: the local temporal attention layer and the global
multi-context temporal attention layer. On top of the recurrent hidden states, the local temporal
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attention layer compiles the temporal influence between each pair of historical citations and gen-
erates intra-encoder states and intra-decoder states. Next, on the decoder side, the global temporal
attention layer fuses multiple contexts obtained by attending to different queries on the infor-
mation embedded by the inner states of both encoder and decoder. Finally, the prediction layer
makes the technology category classification and time-aware timestamp prediction for the next n
citations. Detailed explanations of each layer follows.

4.2 Seq2Seq Structure for Citation Prediction

In this article, we propose a year-month-day embedding method to represent the inter-citation
duration τ between subsequent citations into a dτ -dimension dense vector

at = f t
emb (τ ) = τ

TWt , (2)

where Wt ∈ R3×dτ is a learnable embedding matrix and τ ∈ R3 is obtained by assembling the
discretization of numerical attributes on years, months, and days

years =
⌊ τ

365

⌋
,months =

⌊
τ − 365 × years

30

⌋
, days = τ − 365 × years − 30 × months.

Note here that leap years and the exact number of days in a month are not considered since they
do not affect the model performance. For the document class, a look-up table embedding layer is
adopted to encode it into a vector in dm-dimension space:

am = f m
emb (τ ). (3)

At last, the two embeddings are concatenated together as the input vector to the following recur-
rent representation layer:

a = femb (τ ,m) = [at ; am] ∈ Rdτ +dm . (4)

Given the observation sequence ζe , at each step, the encoder aims to encode and to compile
the hidden dependencies across observed historical citations, thus generating a sequence of hid-
den states he = {he

1 , . . . , h
e
l }, h

e
i ∈ Rdh . The calculation of the ith hidden state he

i is defined in
Equation (5):

ai = femb (τi ,mi ),
he

i = дrnn(ai , h
e
i−1),

(5)

where femb is the input embedding method defined in Equation (4) which transforms the temporal
input τi and document class inputmi into a dense vector ai ∈ Rdτ +dm , and дrnn is a recurrent unit
(e.g., LSTM [19], GRU [8], or vanilla RNN) which captures the dependency structure of the current
input over the hidden state at the previous step he

i−1. Likewise, at each step, the decoder takes as
input the prediction from the previous step and predicts the next inter-citation duration as defined
in Equation (6):

al+i = femb (τ̂l+i ,m̂l+i ),

hd
l+i = дrnn(al+i , h

d
l+i−1),

τ̂l+i+1 = p
t (hd

l+i ),

m̂l+i+1 = p
m(hd

l+i ),

(6)

where pt and pm are functions that predict the arrival time and technology category of the next
citation based on the current hidden state, respectively. In this work, we use an LSTM recurrent
unit because it performs slightly better than GRU and vanillar RNN. And we employ dτ = 32,
dm = 32, and dh = 256.
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4.3 Hierarchical Dynamic Attention Layer

Though recurrent neural networks have been successfully used in various time series prediction
tasks [10], the fact that the last hidden state holds all the memory of the sequence poses a bottle-
neck in learning conditional dependencies across a long sequence of temporal points. Furthermore,
as a consequence of Equation (1), the model’s performance heavily depends on the its ability to
approximate the conditional intensity behind the citation sequence. As a result, we propose a hi-
erarchical dynamic attention layer that explores pairwise citation dynamics from both local and
global perspectives and from the viewpoint of both observations and predictions.

4.3.1 Local Temporal Attention (LTA) Layer. In this layer, we propose a local temporal atten-
tion mechanism to enhance the modulation of conditional dependencies by allowing the model
to access and directly attend to previous hidden states. We illustrate the local temporal attention
mechanism on the encoder. The decoder follows a similar process. Let he

i be the current hidden

state of the encoder and let H e
i = [he

1 ; . . . ; he
i ] ∈ Rdh×i be the i previous hidden states available

along the time dimension. The local temporal attention mechanism aims to generate a correspond-
ing intra-encoder attentional hidden state se

i for hidden state he
i

se
i = LTA(he

i ,H e
i ) + he

i ,

where the second term is a residual connection to improve the stability of the model. To further
enhance the model’s flexibility in representing conditional temporal dependencies, we use multiple
heads [46] to calculate attentional hidden states in different semantic subspaces and concatenate
all the results together as the final se

i . The calculation for the kth head is defined as

se
i,k = LTAk (W1

k he
i ,W

2
kH

e
i ,W

3
kH

e
i )

= LTAk (���e
i , H̄ e

i , H̃ e
i )

=

i∑
j

wi jH̃ e
i, j =

i∑
j

exp(ei j )∑i
k exp(eik )

H̃ e
i, j ,

(7)

where se
i,k

∈ Rdq is an attentional hidden state for head k , and W1
k

, W2
k

, W3
k

are three learnable

dq × dh matrices which project he
i , H e

i into three different subspaces ���e
i ∈ Rdq , H̄ e

i ∈ Rdq×i , and

H̃ e
i ∈ Rdq×i , wi j is normalized ei j measuring the amount of attention ���e

i should pay to H̃ e
i, j (the

jth column of H̃ e
i ), and ei j is calculated by the following score function

ei j =

(
Sigmoid(We

���
e
i )
)TH̃ e

i, j√
dq

,

where We ∈ Rdq×dq is a learnable square matrix. Different from the vanilla dot-product score
function, a non-linear projection of���e

i is used to avoid biased attention towards its neighbor hidden
states (e.g., ���e

i ,���
e
i−1). Also, the score is scaled to avoid values of large magnitude [46]. Finally, se

i is
obtained by concatenating se

i,k
for each head:

se
i = LTA(he

i ,H e
i ) + he

i = concat(se
i,1, . . . , s

e
i,h)W

o + he
i , (8)

where h is the number of heads used, Wo ∈ Rhdq×dh transforms the hdq-dimension result back to

dh-dimension space. Likewise, the intra-decoder attentional hidden state s
〈i+l 〉
d

can be obtained by

sd
l+i = LTA(hd

l+i ,H
d
l+i ) + hd

l+i , (9)
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where Hd
l+i
= [hd

l+1; . . . ; hd
l+i ] refers to all currently available hidden states on the decoder. For

this article, we employ h = 4 and dq = 64.

4.3.2 Global Multi-Context Temporal Attention (GMTA) Layer. On top of the local temporal at-
tention layer, we propose a global multi-context temporal attention mechanism with the following
considerations in mind. First, the approach should allow the model to continue examining condi-
tional temporal dependencies in the decoder phase. That is, the proposed approach should consider
the attentional hidden states on both sides, unlike the traditional attention strategy [32] which at-
tends only to encoder states. Second, the approach should let the model dynamically determine
the combination of information from the encoder and decoder sides. Third, instead of learning at-
tention weights based only on the state value, we argue that the temporal pattern of the temporal
point process in the input should also be a decisive factor.

Here, we illustrate the computation process of attentional contexts on the encoder side. At
the ith step of the decoder, let sd

l+i
be the decoder’s current attentional hidden state. Let Se =

[se
1 ; . . . ; se

l
] ∈ Rdh×l be the encoder’s l attentional hidden states and Ae = [ae

1 ; . . . ; ae
l
] be the

encoder’s l inputs. Two contexts, ce1
i and ce2

i , are calculated. Again, we employ the multi-head

strategy to calculate ce1
i and ce2

i in different semantic subspaces and use the concatenation for the
final context. For the kth head, both contexts are a weighted sum of projected Se . The difference
is that for ce1

i,k
the attention weight ee1

i j depends on the value of the attentional hidden states sd
l+i

and se
j while for ce2

i,k
the temporal pattern inputs ad

l+i
and ae

j determine the attention weights ee2
i j ,

that is

ee1
i j =

(
Qe1

k
sd

l+i

)T
Ve1

k
se

j
√
dc1

, ee2
i j =

(
Qe2

k
ad

l+i

)T
Ve2

k
ae

j
√
dc2

, (10)

where Qe1
k
,Ve1

k
∈ Rdc1×dh and Qe2

k
,Ve2

k
∈ Rdc2×dh are learnable matrices for linear projection. Then

we have ce1
i,k

and ce2
i,k

calculated as:

ce1
i,k =

l∑
j

exp(ee1
i j )∑l

k exp(ee1
ik
)
Ue1

k se
j , ce2

i,k =

l∑
j

exp(ee2
i j )∑l

k exp(ee2
ik
)
Ue2

k se
j , (11)

where Ue1
k

∈ Rdc1×dh and Ue2
k

∈ Rdc2×dh . Finally, contexts ce1
i and ce2

i are obtained by concatenating
the results of all heads:

ce1
i = GMTAs(sd

l+i , S
e ) = concat(ce1

i,1, . . . , c
e2
i,m1)We1,

ce2
i = GMTAτ (ad

l+i ,A
e , Se ) = concat(ce2

i,1, . . . , c
e2
i,m2)We2,

where m1 and m2 are the number of heads to use for ce1
i and ce2

i , respectively, and both We1 ∈
R

hdc1×dh and We2 ∈ Rhdc2×dh are learnable projection matrices. Likewise, let Sd
l+i

represent all

of the decoder’s previous attentional hidden states and Ad
l+i

all the decoder’s previous inputs.

At the ith step, the decoder context cd1
i and cd2

i can be calculated by GMTAs(sd
l+i
, Sd

l+i
) and

GMTAτ (ad
l+i
,Ad

l+i
, Sd

l+i
), respectively. In this work we employ m1 = 4, dc1 = 64, m2 = 2 and

dc2 = 32.
While the encoder context and the decoder context dynamics integrate the historical represen-

tations unfolding along each side’s timeline separately, it’s challenging to fuse the contexts from
both sides since the importance of the observation and prediction side could be very dynamic
and depending on the dataset. Thus, we propose a gate mechanism that is able to automatically
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determine the balance between the context of the two sides based on the difference of two sides:

дate1 = σ
(
Wд1

���(cd1
i − ce1

i )
���) ,

дate2 = σ
(
Wд2

���(cd2
i − ce2

i )
���) , (12)

whereWд1 andWд2 are both learnable parameters, and σ is the Sigmoid function which is adopted
to enable model to better fuse the contexts via the feature dimension. At last, the context calculated
on the observation and prediction side could be dynamically fused as:

c1
i = ce1

i 	 дate1 + (1 − дate1) 	 cd1
i ,

c2
i = ce2

i 	 дate2 + (1 − дate2) 	 cd2
i .

(13)

4.4 Prediction Layer

The citation sequence has an implicit constraint that future citations always come after the most
recent citation, i.e., ti+1 ≥ ti . Some previous work [52] ignores this constraint. Considering that
ti+1 = ti + τi+1, we have τi+1 ≥ 0; that is, the predicted inter-citation duration should always
be non-negative. With this in mind, we design the temporal prediction layer in which a blend
function combines encoder contexts, decoder contexts, and the current hidden attentional state of
the decoder to generate the fused context ci ∈ Rdh , which is then used for prediction:

ci = concat
(
c1

i , c
2
i , s

d
i , h

d
i

)
Wc ,

τ̂l+i = Softplus(Wτ ci ),
m̂l+i = Softmax(Wmci ),

(14)

where Wc , Wτ , and Wm are all learnable parameters and 	 is the Hadamard product. Note that
the prediction is constrained by the Softplus function to enforce the non-negative requirement.

4.5 Parameter Learning

The loss for the timestamp forecasting consists of two parts: (1) alignment between the predicted
and the ground truth arrival time and (2) the alignment between the predicted and the ground
truth interval. First, intuitively, the most straightforward loss function to optimize the model is to
calculate the difference of alignment of the predicted and the ground truth timestamp:

losst1 =

l+n∑
i=l+1

d
(
t̂i , ti

)
=

l+n∑
i=l+1

��t̂i − ti
�� , (15)

where the (l+1)th citation is the first citation that arrives after the observation window, the (l+n)th
citation is the last citation received, and d is a function calculating the difference between t̂i and
ti . In this article, we use absolute difference. For inter-citation sequence, the loss function can be
derived from Equation (15):

losst1 =

l+n∑
i=l+1

d
���tl +

i∑
j=l+1

τ̂j , tl +
i∑

j=l+1

τj
���

=

l+n∑
i=l+1

������ i∑
j=l+1

(
τ̂j − τj

) ������ .
(16)

We argue that, for time sequence predictions, the error of earlier predictions will be propagated
to later predictions. To alleviate this problem, we further assign weights which decay along the
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decoder’s sequence of predictions:

loss
weighted
t1 =

n+l∑
i=l+1

wi

������ i∑
j=l+1

(
τ̂j − τj

) ������ , (17)

where wi follows an exponential decay function [15]:

wi = exp {−θ (i − l − 1)} ,θ > 0.

Optimizing based only on the alignment of the citation-wise arrival time would lead the model to
ignore the time window with a high density of arriving citations when the inter-arrival period is
relatively small. As a result, we propose another loss function to encourage the model to align the
inter-arrival time directly:

losst2 =

l+n∑
i=l+1

dist (τ̂i ,τi ) , (18)

where dist(·, ·) is the distance function and we adopt the Euclidean distance.
At last, the total loss is the sum of the timestamp loss (Equations (17) and (18)) and the cross-

entropy loss for document category prediction:

loss = loss
weighted
t1 + losst2 −

l+n∑
i=l+1

log(mi ). (19)

For regularization, we use dropout to the output of each sublayer with a dropout rate of 0.1. For
optimization, we adopted the ADAM [24] optimizer for training with learning rate set to 0.0001
and weight decay of 0.0001.

5 EXPERIMENTS

We compare our DMA-Nets experimentally to state-of-the-art methods for modeling temporal
point processes on two large real-world datasets collected from the United States Patent and Trade-
mark Office (USPTO) and the Microsoft Academic Graph (MAG).

5.1 Dataset Description and Experiment Setup

Dataset. USPTO is a patent database documenting 6,819,362 U.S. patents. According to patent law,
new inventions must cite prior arts and differentiate their innovations from them. For each patent,
we construct a citation chain using timestamps of related patents from the database. In order to
make fair comparisons, we use the dataset available in [22] but trim citation chains longer than
100 to conform with limited video memory. Also, long citation chains are relatively rare in prac-
tice and unbalanced sequence lengths lead to unnecessary computation. In summary, the dataset
consists of 15,000 sequences of which 3,000 sequences are the test set and the remaining 12,000
sequences are split 80/20 for training/validation. MAG [44] is a paper database maintained by Mi-
crosoft containing information on around 166,192,182 publications including conference papers,
journal papers, and books. For each paper, we construct a citation chain using its publish date
from the database. We likewise remove papers with chains shorter than 20 and trim chains longer
than 100, and then sample 15,000 sequences with 3,000 for the test set and the rest split 80/20 for
training/validation. The entire MAG database is publicly accessible on Zenodo.2

2https://zenodo.org/record/2593154#.XJmKTaQpBhG
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Metrics. Following similar procedures in [10], [22], [48], and [53], we use mean absolute er-

ror (MAE), root mean squared error (RMSE), and accuracy (ACC) as evaluation metrics for
citation time predictions:

MAE =
1

n

l+n∑
i=l+1

��t̂i − ti
�� ,

RMSE =

√√√
1

n

l+n∑
i=l+1

(
t̂i − ti

)2
.

Compared Baselines. We compare DMA-Nets with state-of-the-art neural point process baselines,
including two intensity-based models and four end-to-end based models. For all baselines, we
adopted their official implementations and utilized the default hyperparameter settings provided
in the implementations. This ensures a fair and consistent comparison among the different models.

— RMTPP [10]. RMTPP uses recurrent units to learn the intensity function for general point
process analysis and is able to predict the next point in an event sequence. RMTPP is a one-
step model, by directing the ith output to the (i + 1)th input, this model becomes a citation
prediction generator.

— CYAN-RNN [48]. CYAN-RNN uses GRU-based recurrent units and attention mechanisms
to learn the intensity function for a general information resharing process and can forecast
the arrival of next resharing behavior. Similar to RMTPP, CYAN-RNN is a one-step model,
by directing the ith output to the (i + 1)th input, this model becomes a citation prediction
generator.

— RPP [53]. RPP is similar to RMTPP, but it uses a fully connected layer to map the embedded
hidden state directly to time predictions. Also, it uses Gaussian penalty to calculate time
prediction loss. RPP is a one-step model. By directing the ith prediction to the (i +1)th input,
we use this model as a citation prediction generator.

— LT-CCP [59]. LT-CCP uses LSTM-based recurrent units to modulate the temporal depen-
dency across citations. It’s worth noting that the LT-CCP is an n-step model.

— GRU-CPM [49]. Like LT-CCP, GRU-CPM is also an n-step forecasting model based on a re-
current neural network structure but with GRU units. GRU-CPM is focused on a small set
of papers on Computer Science and is originally designed to accept hand-crafted features
extracted from author and literature content. We utilize the temporal and document class in-
stead since the literature and author information is unavailable in our dataset, which covers
many different disciplines.

— S2Sd [32]. S2Sd represents a Seq2Seq model with the traditional static attention mechanism.
We used a dot-product score function in the experiments. Seq2seq is an n-step model.

— PC-RNN [22]. PC-RNN is an end-to-end neural point process model for patent citation fore-
casting which is able to integrate multiple observation sequences and have a static attention
mechanism equipped on the prediction side. On the USPTO dataset, we used three sequences
of patent citations, assignee citations, and inventor citations. On the MAG dataset, the ob-
servation side has only paper citation sequences available. PC-RNN is an n-step model.

5.2 Performance Comparison

By restricting the length of the observation window to a different degree, we evaluate all models’
performance on citation forecasting. In the first setting, we adopted a dynamic observation window
by separately using 10%, 30%, 50%, and 80% of the citation sequence as observations. We call this
setting the ratio observation setting. In the second setting, we tested all models with a relatively
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Table 1. Performance Evaluation of Our Method and Peer Methods on USPTO
Dataset under the Settings of 10% and 30% as Observations

Model
10% as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 349.95 477.19 0.576 344.34 466.87 0.147

CYAN-RNN‡ 288.83 391.91 0.832 342.55 494.87 0.623

RPP‡ 318.13 457.98 0.838 464.88 673.89 0.514
LT-CCP 344.86 469.32 0.458 344.94 469.53 0.146
GRU-CPM 344.06 467.60 0.458 344.74 469.31 0.146
S2S 222.42 309.58 0.511 221.43 308.30 0.382
S2Sd 210.49 289.60 0.753 208.53 287.85 0.450
PC-RNN 197.37 278.10 0.779 195.17 281.59 0.462
DMA-Nets 202.01 282.52 0.823 201.08 278.75 0.537

Model
30% as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 258.96 370.65 0.586 236.15 332.64 0.247

CYAN-RNN‡ 191.96 283.46 0.843 212.62 301.52 0.622
RPP‡ 309.07 429.71 0.684 393.05 603.28 0.525
LT-CCP 191.42 288.61 0.457 207.32 311.66 0.154
GRU-CPM 236.19 335.32 0.457 235.80 334.23 0.145
S2S 148.83 223.14 0.587 145.42 219.11 0.481
S2Sd 143.98 215.89 0.756 139.33 206.42 0.560
PC-RNN 132.27 199.28 0.774 129.81 198.39 0.643

DMA-Nets 129.67 194.23 0.847 128.14 192.35 0.620

Timestamp predictions are evaluated using MAE and RMSE. Patent category predictions

are evaluated using ACC. ‡ means this model is a one-step forecasting approach.

static observation window by adopting the first 10, 20, 30, and 40 citations in the sequence as
the observations. We call this setting the fixed-length observation setting. In the experiment, S2S
and S2Sd use the same hyperparameter setting as our proposed model, including hidden state size,
learning rate, and learning steps. The other models used their official settings and implementations.
All results are reported in Tables 1–6.

5.2.1 DMA-Nets Versus One-Step Forecasting Models. Our model consistently outperforms
RMTPP, CYAN-RNN, and RPP for timestamp prediction in all experiments. For instance, under
the ratio observation setting, on the patent dataset, for example, against the best of these three
models, DMA-Nets can obtain 22.36%, 30.45%, 31.10%, and 30.06% gains in MAE on 80%, 50%, 30%,
and 10% observation windows, respectively. The performance of one-step forecasting models drops
significantly as the observation window shrinks. This observation demonstrates our assumption
stated in Section 3, that is, the model should consider prediction side information and errors to
improve overall accuracy. Our proposed model has a significantly better performance by consid-
ering both the citation dynamics on the observation and prediction sides. In the experiments, we
also observed intensity-based methods such as RPP and RMTPP suffer from high variance during
training; that is, the model performance on the validation dataset decreases even though training
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Table 2. Performance Evaluation of Our Method and Peer Methods on USPTO
Dataset under the Settings of 50% and 80% as Observations

Model
50% as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 182.57 271.25 0.587 174.15 252.67 0.243

CYAN-RNN‡ 142.61 221.63 0.842 150.84 229.41 0.634

RPP‡ 234.23 351.27 0.723 195.57 280.44 0.575
LT-CCP 127.65 206.88 0.540 125.21 205.12 0.265
GRU-CPM 169.66 251.95 0.455 167.96 249.60 0.148
S2S 110.45 176.99 0.682 108.01 173.52 0.579
S2Sd 106.93 165.70 0.737 102.27 161.10 0.601
PC-RNN 98.83 156.60 0.758 97.31 153.38 0.659

DMA-Nets 99.19 156.93 0.853 97.97 153.57 0.637

Model
80% as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 83.02 138.22 0.454 84.15 135.31 0.246
CYAN-RNN‡ 71.86 124.23 0.844 79.95 131.63 0.639

RPP‡ 109.36 175.82 0.821 118.94 183.15 0.664
LT-CCP 66.64 119.48 0.792 66.28 119.73 0.456
GRU-CPM 81.82 135.42 0.455 81.55 134.58 0.145
S2S 62.00 108.96 0.742 61.45 109.20 0.631
S2Sd 60.81 105.75 0.819 58.84 102.73 0.669

PC-RNN 56.89 100.38 0.812 56.31 97.14 0.669

DMA-Nets 55.79 97.72 0.857 55.23 96.44 0.668

Timestamp predictions are evaluated using MAE and RMSE. Patent category predictions

are evaluated using ACC. ‡ means this model is a one-step forecasting approach.

loss is decreasing. We argue this is because intensity-based methods use maximum likelihood es-
timation, which is more susceptible to overfitting by using only information from the observation
side. In terms of document class prediction, we observed that our model significantly outperforms
RMTPP and RPP and is competitive with CYAN-RNN. We argue this is because both our model
and CYAN-RNN are empowered by the attention mechanism, which allows the model to look back
at previous document categories during the prediction process.

5.2.2 DMA-Nets Versus n-Step Forecasting Methods. Our model generally performs better than
S2S and S2Sd . For instance, on the patent dataset, against the best of these two models, our model
can improve performance on MAE at least by 3.57% in all tests. Also, on the patent dataset, our
model’s performance is competitive with PC-RNN on the citation prediction task, though PC-RNN
uses three information sequences on the observation side. We argue that this boost is attributed
to both the local temporal and the global multi-context temporal attention layers. Our proposed
local temporal attention layer allows both the encoder and the decoder to look back along the tem-
poral dimension at each step and automatically attend to important states in each sequence. First,
this alleviates the burden on the recurrent unit and significantly improves the model’s flexibility to
modulate complicated dependency structures in the observation and prediction sequences. Second,
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Table 3. Performance Evaluation of Our Method and Peer Methods on USPTO
Dataset under the Settings of First 10 and 30 as Observations

Model
First 10 as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 285.30 394.41 0.587 241.52 338.00 0.145

CYAN-RNN‡ 328.68 463.56 0.845 328.68 508.54 0.662

RPP‡ 241.58 338.13 0.453 241.43 337.88 0.138
LT-CCP 236.19 330.94 0.453 202.93 295.31 0.178
GRU-CPM 236.51 331.48 0.453 236.86 331.93 0.145
S2S 177.54 256.84 0.750 169.42 247.45 0.449
S2Sd 175.52 254.72 0.773 168.31 241.65 0.501
PC-RNN 166.90 242.42 0.833 164.69 238.32 0.548
DMA-Nets 173.59 251.70 0.813 165.67 239.66 0.624

Model
First 30 as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 172.00 253.19 0.573 168.75 245.93 0.256

CYAN-RNN‡ 268.41 386.39 0.825 283.26 431.61 0.637
RPP‡ 163.69 237.87 0.441 163.50 237.66 0.141
LT-CCP 130.46 201.40 0.632 126.57 198.00 0.274
GRU-CPM 163.54 237.97 0.441 163.28 237.69 0.152
S2S 124.88 194.62 0.765 120.00 186.48 0.479
S2Sd 121.66 189.82 0.829 117.42 179.98 0.563
PC-RNN 118.29 180.84 0.843 115.55 179.39 0.645
DMA-Nets 118.00 181.17 0.821 111.32 175.47 0.649

Timestamp predictions are evaluated using MAE and RMSE. Patent category predictions

are evaluated using ACC. ‡ means this model is a one-step forecasting approach.

the global multi-context temporal attention layer allows the model to improve the learned depen-
dency structure even in the prediction phase. Furthermore, it empowers the model to automatically
combine learned information from both encoder and decoder for better prediction results. In con-
trast, S2S relies solely on the last hidden state to carry the entire sequence’s information while
S2Sd and PC-RNN only consider static attention on the hidden states of the encoder side.

5.3 Ablation Study

Global Multi-Context Temporal Attention (GMTA) Layer Analysis. We first analyze the con-
tributions of the global multi-context temporal attention layer (GMTA). In this ablation test, we
remove the GMTA layer from DMA-Nets and create one variant, named DMA-Netsд . For DMA-

Netsд , at each step of the decoder, we drop the calculation of the encoder’s contexts ce1
i and ce2

i

and the decoder’s contexts cd1
i and cd2

i (L4 in Figure 4) and instead use only the current attentional

hidden state sd
i as the input for the prediction layer. Consequently, the calculation of the encoder’s

attentional hidden states [se
1 ; . . . ; se

l
] is also removed. In this variant, decoder’s states hd

i and sd
i

carry the burden of holding information of previous states. The performance of DMA-Netsд is re-
ported in Table 7. As expected, DMA-Nets outperforms DMA-Netsд . Intuitively, the GMTA layer
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Table 4. Performance Evaluation of Our Method and Peer Methods on USPTO
Dataset under the Settings of First 50 and 80 as Observations

Model
First 50 as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 146.46 221.23 0.677 129.91 245.93 0.256

CYAN-RNN‡ 225.41 322.21 0.849 240.36 357.52 0.653

RPP‡ 185.60 272.70 0.423 193.29 283.87 0.240
LT-CCP 101.26 161.81 0.559 98.86 158.59 0.270
GRU-CPM 129.72 191.85 0.423 129.76 192.03 0.168
S2S 100.57 158.79 0.777 98.53 154.83 0.502
S2Sd 97.38 155.22 0.836 93.80 148.09 0.589
PC-RNN 93.28 148.22 0.845 92.77 147.89 0.666
DMA-Nets 94.15 150.34 0.818 90.90 145.84 0.667

Model
First 80 as observations

Main-category Sub-category

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 129.88 200.79 0.560 112.77 167.29 0.274

CYAN-RNN‡ 200.06 287.11 0.833 217.73 333.80 0.661
RPP‡ 180.09 261.93 0.404 183.46 266.61 0.337
LT-CPP 82.52 135.47 0.724 81.98 134.59 0.344
GRU-CPM 106.97 162.82 0.404 106.54 162.48 0.176
S2S 83.76 135.14 0.798 80.14 129.61 0.523
S2Sd 80.33 131.38 0.836 79.13 129.10 0.570
PC-RNN 76.98 123.46 0.847 75.70 124.91 0.665
DMA-Nets 75.72 123.27 0.815 72.56 120.30 0.669

Timestamp predictions are evaluated using MAE and RMSE. Patent category predictions are

evaluated using ACC. ‡ means this model is a one-step forecasting approach.

is most beneficial in cases where the model relies more on observations. This is because the GMTA
layer provides a global view of citation sequences and captures the dynamics on both the observa-
tion side and the prediction side. When the GMTA layer is missing, the prediction side dynamics
can be carried by both the recurrent unit and the local attentional state but the historical obser-
vations can be encoded only by the RNN backbone. On the USPTO dataset, we observed that the
performance gain brought by the GMTA layer is most significant when 80% of sequence used as
observations. On the MAG dataset, GMTA layer is most beneficial when 50% of sequence used as
observations.

Local Temporal Attention (LTA) Layer Analysis. Next, we analyze the contributions of the
local temporal attention layer. We created an ablation named DMA-Netsl by removing the local
temporal attention layer from DMA-Nets. As a result, instead of the attentional hidden states {se

i }
and {sd

i }, we used their corresponding RNN hidden states {he
i } and {hd

i } as the input for the subse-
quent global multi-context temporal attention (GMTA) layer. The performance of DMA-Netsl

is also reported in Table 7. The fully fledged DMA-Nets outperforms DMA-Netsl on both datasets,
indicating that the LTA layer improves model performance. Also, DMA-Netsl outperforms both
DMA-Netsд1 and DMA-Netsд2 on both datasets. This further demonstrates that the GTMA layer
can modulate temporal dynamics globally and therefore achieve better model accuracy.
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Table 5. Performance Evaluation of our Method (DMA-Nets) and Peer
Methods on MAG Dataset under the Ratio Observation Setting

Model
10% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 182.59 238.66 0.494 85.83 118.57 0.327

CYAN-RNN‡ 101.06 228.74 0.633 71.85 98.50 0.639

RPP‡ 287.61 387.44 0.563 155.23 234.09 0.603
LT-CCP 57.12 73.95 0.212 48.47 65.20 0.473
GRU-CPM 115.51 154.81 0.205 85.60 117.01 0.206
S2S 72.31 94.65 0.242 59.81 78.71 0.649

S2Sd 55.82 72.55 0.499 47.01 63.16 0.547
PC-RNN 55.45 73.09 0.600 56.67 73.72 0.617
DMA-Nets 54.32 71.43 0.619 41.37 56.40 0.640

Model
50% As Observations 80% As Observations

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 56.18 85.05 0.207 26.23 38.53 0.292

CYAN-RNN‡ 39.83 56.73 0.651 20.34 30.73 0.652
RPP‡ 76.55 107.75 0.609 33.14 48.29 0.666
LT-CCP 32.39 46.84 0.612 18.00 26.65 0.664
GRU-CPM 52.38 74.19 0.300 23.84 33.99 0.416
S2S 41.55 57.48 0.640 21.67 30.49 0.667
S2Sd 32.41 46.07 0.590 17.59 25.97 0.632
PC-RNN 38.40 54.28 0.622 20.99 30.45 0.672

DMA-Nets 28.23 40.58 0.651 18.00 24.19 0.669

Timestamp predictions in days are evaluated using MAE and RMSE and

document category predictions are evaluated using accuracy. ‡ means this

model is a one-step forecasting approach.

5.4 Hyper-Parameter Analysis

We investigate the sensitivity of dh , demb , h,m1,m2, and dropout rate and report the performance
of DMA-Nets on the 80% observation setting. The results are shown in Table 8. We observe that,
in general, DMA-Nets is robust to different hyper-parameter settings. Reducing the model size (dh ,
demb ) will slightly decrease the model’s performance on the patent dataset. We further observe
that using too many or too few heads (h, m1, and m2) will have a negative impact on the model’s
quality.

5.5 Time Complexity Analysis

In comparison to the vanilla recurrent neural network-based baselines, our proposed method ex-
hibits higher computational demands. However, it still maintains a quadratic time complexity, en-
suring efficient data processing. Specifically, the time complexity of our method can be expressed
as:

O
(
N ∗ d2

h + N ∗ d2
h + N ∗ d2

h

)
≈ O

(
N ∗ d2

h

)
,

where N is the length of the citation sequence. The first term corresponds to the computational
complexity of the LSTM layer, when the hidden state size, denoted as dh , surpasses the combined
input size of dm + dτ . The second and third terms represent the computational complexity of the
local and global attention layers, respectively.
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Table 6. Performance Evaluation of Our Method (DMA-Nets) and Peer Methods on
MAG Dataset under the Fix-Length Observation Setting

Model
First 10 As Observations First 20 As Observations

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 147.51 206.66 0.590 106.17 147.23 0.611

CYAN-RNN‡ 101.66 159.28 0.660 85.16 135.16 0.664

RPP‡ 224.17 315.02 0.326 163.69 250.56 0.374
LT-CCP 58.87 78.49 0.562 41.80 59.67 0.572
GRU-CPM 83.80 115.01 0.206 54.08 77.66 0.205
S2S 59.20 78.39 0.597 43.16 61.84 0.629
S2Sd 58.65 78.06 0.620 42.54 61.04 0.649
PC-RNN 58.58 78.61 0.628 42.37 62.65 0.664
DMA-Nets 57.33 77.30 0.652 41.30 59.01 0.665

Model
First 30 As Observations First 40 As Observations

MAE RMSE ACC MAE RMSE ACC

RMTPP‡ 84.26 117.32 0.604 75.11 103.77 0.623

CYAN-RNN‡ 75.85 120.34 0.666 56.81 88.94 0.673
RPP‡ 108.85 157.54 0.487 88.44 135.71 0.537
LT-CCP 35.09 51.34 0.627 30.04 44.07 0.632
GRU-CPM 44.58 63.62 0.291 35.82 50.65 0.432
S2S 36.81 54.72 0.629 31.95 47.04 0.656
S2Sd 35.94 52.71 0.658 30.01 44.03 0.670
PC-RNN 36.17 52.99 0.667 29.54 43.49 0.668
DMA-Nets 34.43 49.61 0.675 28.31 41.16 0.679

Timestamp predictions in days are evaluated using MAE and RMSE and document category

predictions are evaluated using accuracy. ‡ means this model is a one-step forecasting approach.

Table 7. Performance Evaluation of Variants of DMA-Nets

USPTO

Model
80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

DMA-Netsд 58.91 100.31 0.850 103.19 162.47 0.843 133.76 198.67 0.838
DMA-Netsl 57.54 99.18 0.857 102.52 160.49 0.850 134.07 198.49 0.847
DMA-Nets 55.79 97.72 0.857 99.19 156.93 0.853 129.67 194.23 0.847

MAG

Model
80% As Observations 50% As Observations 30% As Observations

MAE RMSE ACC MAE RMSE ACC MAE RMSE ACC

DMA-Netsд 20.73 25.41 0.657 31.67 42.89 0.644 43.62 60.93 0.630
DMA-Netsl 19.97 26.01 0.671 30.01 41.93 0.645 43.84 58.41 0.629
DMA-Nets 18.00 24.19 0.669 28.23 40.58 0.651 41.37 56.40 0.640

6 CONCLUSION

In this article, we present a neural network model for forecasting citations of scientific publications.
On top of a traditional Seq2Seq architecture, this model constructs a hierarchical dynamic attention
layer considering both observation and prediction sequences. To enable the model to represent
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Table 8. Hyper-parameter Analysis for DMA-Nets

Hyper-parameters USPTO MAG

demb dh h dq m1 dc1 m2 dc2 dropout MAE ACC MAE ACC

base 64 256 4 64 4 64 2 32 0.1 55.79 0.857 18.00 0.669

dh
64 128 4 32 4 32 2 32 0.1 56.72 0.854 18.77 0.652
64 64 4 16 4 16 2 32 0.1 57.50 0.843 19.97 0.632

demb
32 256 4 64 4 64 2 16 0.1 56.24 0.849 18.77 0.667
16 256 4 64 4 64 2 8 0.1 56.99 0.848 18.70 0.666

h,m1
64 256 8 32 8 32 2 32 0.1 56.15 0.857 17.69 0.656
64 256 2 128 2 128 2 32 0.1 56.22 0.856 19.03 0.669

m2 64 256 4 64 4 64 4 16 0.1 56.97 0.853 17.15 0.665

dropout 64 256 4 64 4 64 2 32 0.3 57.52 0.856 17.97 0.665

interconnected dependencies across observation sequences and prediction sequences, we employ a
local temporal attention mechanism to allow the model to look back along the temporal dimension
and fuse more complicated intra-encoder and intra-decoder hidden attentional states. Additionally,
the global multi-context attention layer encourages the model to learn the temporal point process
from a global viewpoint by considering not only observations but also the predictions that have
already been made. We demonstrate the performance improvement of our model on two real-world
datasets collected from USPTO and MAG. Experimental results demonstrate that our model can
consistently outperform state-of-the-art temporal point process modeling methods for the task of
citation forecasting.

REFERENCES

[1] Daniel E. Acuna, Stefano Allesina, and Konrad P. Kording. 2012. Future impact: Predicting scientific success. Nature

489, 7415 (2012), 201.

[2] Carl T. Bergstrom, Jevin D. West, and Marc A. Wiseman. 2008. The eigenfactor™ metrics. Journal of Neuroscience 28,

45 (2008), 11433–11434.

[3] James Bessen. 2008. The value of US patents by owner and patent characteristics. Research Policy 37, 5 (2008), 932–945.

[4] Aggelos Bletsas and John N. Sahalos. 2009. Hirsch index rankings require scaling and higher moment. Journal of the

American Society for Information Science and Technology 60, 12 (2009), 2577–2586.

[5] Lutz Bornmann and Werner Marx. 2013. Standards for the Application of Bibliometrics in the Evaluation of Individual

Researchers Working in the Natural Sciences. Technical Report.

[6] Tibor Braun, Wolfgang Glänzel, and András Schubert. 2006. A Hirsch-type index for journals. Scientometrics 69,

1 (2006), 169–173.

[7] Tanmoy Chakraborty, Suhansanu Kumar, Pawan Goyal, Niloy Ganguly, and Animesh Mukherjee. 2015. On the cate-

gorization of scientific citation profiles in computer science. Commun. ACM 58, 9 (2015), 82–90.

[8] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

[9] Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, and Xiangnan He. 2019. Modeling extreme events in time series

prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

1114–1122.

[10] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. 2016. Recurrent

marked temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining. ACM, 1555–1564.

[11] Leo Egghe. 2006. Theory and practise of the g-index. Scientometrics 69, 1 (2006), 131–152.

[12] Leo Egghe. 2014. A good normalized impact and concentration measure. Journal of the Association for Information

Science and Technology 65, 10 (2014), 2152–2154.

[13] Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-Gonzalez, Sibon Li,

Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al. 2022. TF-GNN: Graph neural networks in TensorFlow. arXiv

preprint arXiv:2207.03522 (2022).

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 144. Publication date: April 2024.



144:22 T. Ji et al.

[14] Emilio Ferrara and Alfonso E. Romero. 2013. Scientific impact evaluation and the effect of self-citations: Mitigat-

ing the bias by discounting the h-index. Journal of the American Society for Information Science and Technology 64,

11 (2013), 2332–2339.

[15] Vladimir Filimonov and Didier Sornette. 2015. Apparent criticality and calibration issues in the Hawkes self-excited

point process model: Application to high-frequency financial data. Quantitative Finance 15, 8 (2015), 1293–1314.

[16] Alan G. Hawkes. 1971. Spectra of some self-exciting and mutually exciting point processes. Biometrika 58, 1 (1971),

83–90.

[17] Agnès Helmstetter and Didier Sornette. 2002. Subcritical and supercritical regimes in epidemic models of earthquake

aftershocks. Journal of Geophysical Research: Solid Earth 107, B10 (2002), ESE–10.

[18] Jorge E. Hirsch. 2005. An index to quantify an individual’s scientific research output. Proceedings of the National

academy of Sciences 102, 46 (2005), 16569–16572.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.

[20] Hyun Jin Jang, Han-Gyun Woo, and Changyong Lee. 2017. Hawkes process-based technology impact analysis. Journal

of Informetrics 11, 2 (2017), 511–529.

[21] Rahul Jha, Amjad-Abu Jbara, Vahed Qazvinian, and Dragomir R. Radev. 2017. NLP-driven citation analysis for scien-

tometrics. Natural Language Engineering 23, 1 (2017), 93–130.

[22] Taoran Ji, Zhiqian Chen, Nathan Self, Kaiqun Fu, Chang-Tien Lu, and Naren Ramakrishnan. 2019. Patent citation

dynamics modeling via multi-attention recurrent networks. In Proceedings of the 28th International Joint Conference

on Artificial Intelligence (IJCAI 2019) (Macao, China, August 10–16, 2019). 2621–2627. https://doi.org/10.24963/ijcai.

2019/364

[23] Jinseok Kim, Jana Diesner, Heejun Kim, Amirhossein Aleyasen, and Hwan-Min Kim. 2014. Why name ambiguity

resolution matters for scholarly big data research. In Proceedings of the 2014 IEEE International Conference on Big Data

(Big Data ’14). IEEE, 1–6.

[24] Diederik P. Kingma and Jimmy Ba. 2014. ADAM: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[25] Thomas N. Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).

[26] David F. Klosik and Stefan Bornholdt. 2014. The citation wake of publications detects nobel laureates’ papers. PloS

One 9, 12 (2014).

[27] Changyong Lee, Yangrae Cho, Hyeonju Seol, and Yongtae Park. 2012. A stochastic patent citation analysis approach

to assessing future technological impacts. Technological Forecasting and Social Change 79, 1 (2012), 16–29.

[28] Changyong Lee, Ohjin Kwon, Myeongjung Kim, and Daeil Kwon. 2018. Early identification of emerging technologies:

A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change 127 (2018),

291–303.

[29] Yunjae Lee, Jinha Chung, and Minsoo Rhu. 2022. SmartSAGE: Training large-scale graph neural networks using in-

storage processing architectures. arXiv preprint arXiv:2205.04711 (2022).

[30] Hanwen Liu, Huaizhen Kou, Chao Yan, and Lianyong Qi. 2019. Link prediction in paper citation network to construct

paper correlation graph. EURASIP Journal on Wireless Communications and Networking 2019, 1 (2019), 1–12.

[31] Xin Liu, Junchi Yan, Shuai Xiao, Xiangfeng Wang, Hongyuan Zha, and Stephen M. Chu. 2017. On predictive patent

valuation: Forecasting patent citations and their types. In Proceedings of the 31st AAAI Conference on Artificial Intelli-

gence.

[32] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025 (2015).

[33] Francesco Alessandro Massucci and Domingo Docampo. 2019. Measuring the academic reputation through citation

networks via PageRank. Journal of Informetrics 13, 1 (2019), 185–201.

[34] Amy McGovern, Lisa Friedland, Michael Hay, Brian Gallagher, Andrew Fast, Jennifer Neville, and David Jensen. 2003.

Exploiting relational structure to understand publication patterns in high-energy physics. ACM SIGKDD Explorations

Newsletter 5, 2 (2003), 165–172.

[35] Lokman I. Meho. 2007. The rise and rise of citation analysis. Physics World 20, 1 (2007), 32.

[36] Hongyuan Mei and Jason M. Eisner. 2017. The neural Hawkes process: A neurally self-modulating multivariate point

process. In Advances in Neural Information Processing Systems. 6754–6764.

[37] Swapnil Mishra, Marian-Andrei Rizoiu, and Lexing Xie. 2016. Feature driven and point process approaches for popular-

ity prediction. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.

ACM, 1069–1078.

[38] Bluma C. Peritz. 1992. On the objectives of citation analysis: Problems of theory and method. Journal of the American

Society for Information Science 43, 6 (1992), 448–451.

[39] Nataliia Pobiedina and Ryutaro Ichise. 2016. Citation count prediction as a link prediction problem. Applied Intelligence

44, 2 (2016), 252–268.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 144. Publication date: April 2024.

https://doi.org/10.24963/ijcai.2019/364


Citation Forecasting with Multi-Context Attention-Aided Dependency Modeling 144:23

[40] Gangan Prathap. 2014. A three-class, three-dimensional bibliometric performance indicator. Journal of the Association

for Information Science and Technology 65, 7 (2014), 1506–1508.

[41] Filippo Radicchi and Claudio Castellano. 2013. Analysis of bibliometric indicators for individual scholars in a large

data set. Scientometrics 97, 3 (2013), 627–637.

[42] Filippo Radicchi, Santo Fortunato, and Claudio Castellano. 2008. Universality of citation distributions: Toward an

objective measure of scientific impact. Proceedings of the National Academy of Sciences 105, 45 (2008), 17268–17272.

[43] Huawei Shen, Dashun Wang, Chaoming Song, and Albert-László Barabási. 2014. Modeling and predicting popularity

dynamics via reinforced poisson processes. In Proceedings of the 28th AAAI Conference on Artificial Intelligence.

[44] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and Kuansan Wang. 2015. An

overview of Microsoft academic service (MAS) and applications. In Proceedings of the 24th International Conference on

World Wide Web. ACM, 243–246.

[45] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Advances

in Neural Information Processing Systems. 3104–3112.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 5998–6008.

[47] Kang Wang, Kenli Li, Liqian Zhou, Yikun Hu, Zhongyao Cheng, Jing Liu, and Cen Chen. 2019. Multiple convolutional

neural networks for multivariate time series prediction. Neurocomputing 360 (2019), 107–119.

[48] Yongqing Wang, Huawei Shen, Shenghua Liu, Jinhua Gao, and Xueqi Cheng. 2017. Cascade dynamics modeling with

attention-based recurrent neural network. In Proceedings of the 26th International Joint Conference on Artificial Intel-

ligence. AAAI Press, 2985–2991.

[49] Jiaqi Wen, Liyun Wu, and Jianping Chai. 2020. Paper citation count prediction based on recurrent neural network

with gated recurrent unit. In Proceedings of the 2020 IEEE 10th International Conference on Electronics Information and

Emergency Communication (ICEIEC ’20). IEEE, 303–306.

[50] Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, Louis Faust, and Nitesh V. Chawla. 2018. Restful: Resolution-aware

forecasting of behavioral time series data. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management. 1073–1082.

[51] Shuai Xiao, Junchi Yan, Mehrdad Farajtabar, Le Song, Xiaokang Yang, and Hongyuan Zha. 2019. Learning time series

associated event sequences with recurrent point process networks. IEEE Transactions on Neural Networks and Learning

Systems (2019).

[52] Shuai Xiao, Junchi Yan, Changsheng Li, Bo Jin, Xiangfeng Wang, Xiaokang Yang, Stephen M. Chu, and Hongyuan

Zha. 2016. On modeling and predicting individual paper citation count over time. In Proceedings of IJCAI. 2676–2682.

[53] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu. 2017. Modeling the intensity function

of point process via recurrent neural networks. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

[54] Junchi Yan, Shuai Xiao, Changsheng Li, Bo Jin, Xiangfeng Wang, Bin Ke, Xiaokang Yang, and Hongyuan Zha. 2016.

Modeling contagious merger and acquisition via point processes with a profile regression prior. In Proceedings of

IJCAI. 2690–2696.

[55] Rui Yan, Congrui Huang, Jie Tang, Yan Zhang, and Xiaoming Li. 2012. To better stand on the shoulder of giants. In

Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries. 51–60.

[56] Rui Yan, Jie Tang, Xiaobing Liu, Dongdong Shan, and Xiaoming Li. 2011. Citation count prediction: Learning to

estimate future citations for literature. In Proceedings of the 20th ACM International Conference on Information and

Knowledge Management. 1247–1252.

[57] Shuang-Hong Yang and Hongyuan Zha. 2013. Mixture of mutually exciting processes for viral diffusion. In Proceedings

of the International Conference on Machine Learning. 1–9.

[58] Xiao Yu, Quanquan Gu, Mianwei Zhou, and Jiawei Han. 2012. Citation prediction in heterogeneous bibliographic

networks. In Proceedings of the 2012 SIAM International Conference on Data Mining. SIAM, 1119–1130.

[59] Sha Yuan, Jie Tang, Yu Zhang, Yifan Wang, and Tong Xiao. 2022. Modeling and predicting citation count via recurrent

neural network with long short-term memory. arXiv preprint arXiv:1811.02129 (2022).

[60] Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learning triggering kernels for multi-dimensional hawkes processes. In

Proceedings of the International Conference on Machine Learning. 1301–1309.

Received 17 January 2022; revised 14 June 2023; accepted 12 February 2024

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 6, Article 144. Publication date: April 2024.


