
Algorithms for Storytelling
Deept Kumar, Naren Ramakrishnan, Member, IEEE Computer Society,

Richard F. Helm, and Malcolm Potts

Abstract—We formulate a new data mining problem called storytelling as a generalization of redescription mining. In traditional

redescription mining, we are given a set of objects and a collection of subsets defined over these objects. The goal is to view the set

system as a vocabulary and identify two expressions in this vocabulary that induce the same set of objects. Storytelling, on the other

hand, aims to explicitly relate object sets that are disjoint (and, hence, maximally dissimilar) by finding a chain of (approximate)

redescriptions between the sets. This problem finds applications in bioinformatics, for instance, where the biologist is trying to relate a

set of genes expressed in one experiment to another set, implicated in a different pathway. We outline an efficient storytelling

implementation that embeds the CARTwheels redescription mining algorithm in an A� search procedure, using the former to supply

next move operators on search branches to the latter. This approach is practical and effective for mining large data sets and, at the

same time, exploits the structure of partitions imposed by the given vocabulary. Three application case studies are presented: a study

of word overlaps in large English dictionaries, exploring connections between gene sets in a bioinformatics data set, and relating

publications in the PubMed index of abstracts.

Index Terms—Data mining, mining methods and algorithms, retrieval models, graph and tree search strategies.

Ç

1 INTRODUCTION

REDESCRIPTION mining is a recently introduced data
mining problem [1], [2], [3] that seeks to find subsets

of data that afford multiple definitions. The input to
redescription mining is a set of objects and a collection of
subsets defined over these objects. The goal is to view the
set system as a vocabulary of descriptors and identify
clusters of objects that can be defined in at least two ways
using this vocabulary.

For instance, consider the set system in Fig. 1, where the

six objects are books and the descriptors denote books about

traveling in London (Y), books containing information

about places where popes are interred (G), popular books

about the history of codes and ciphers (R), books about

Mary Magdalene (M), and books about the ancient Priory of

Sion (B). An example redescription for this data set is

“books involving Priory of Sion as well as Mary Magdalene

are the same as nontravel books describing where popes are

interred,” or B \M , G� Y . This is an exact redescription

and gives two different ways of defining the singleton set

{“The Da Vinci Code”}. The basic premise of redescription

mining is that object sets that can indeed be defined in at

least two ways are likely to exhibit concerted behavior and

are, hence, interesting. This problem is nontrivial because

we are not directly given the object(s) that must participate

in the redescription nor the set-theoretic constructions to be
used in combining the given descriptors.

Redescriptions such as B \M , G� Y are exact. Other
redescriptions such as Y , G are approximate, since Y and
G do not induce the same set. The quality of a redescription
can be assessed in terms of the Jaccard’s coefficient (the
ratio of the size of the common elements to elements on
either side of the redescription). In this case, the Jaccard’s
coefficient is 1/3. Similarly, the redescription G, R also
holds with Jaccard’s coefficient 1/3. Noticing that these two
approximate redescriptions share a descriptor, we can chain
them to form the sequence: Y , G, R, i.e., some London
travel books (Y) overlap with books about places where
popes are interred (G), some of which are books about
ancient codes (R). We refer to such a chain of approximate
redescriptions as a story. The task of storytelling is, given
the end points of the story (in this case, Y and R), to find a
path between them through a sequence of intermediaries,
each of which is an approximate redescription of its
neighbor(s). As another example of a story, one that holds
with Jaccard’s coefficient 1/2 at each step, we have
B, ðG \MÞ , R.

Why is this problem interesting and relevant? Storytelling
finds application in many domains such as bioinformatics,
computational linguistics, document modeling, social net-
work analysis, and counterterrorism. In these contexts,
stories reveal multiple forms of insights. First, since
intermediaries must conform to a priori knowledge, we
can think of storytelling as a carefully argued process of
removing and adding participants, not unlike a real story.
Knowing exactly which objects must be displaced, and in
what order, helps expose the mechanics of complex relation-
ships. Second, storytelling can be viewed as an abstraction of
relationship navigation for propositional vocabularies and
offers insights similar to what we expect to gain from
techniques such as inductive logic programming applied to
multirelational databases. Third, storytelling reveals insight

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008 1

. D. Kumar is with Feeva Technology, 500 Howard Street, Suite 425, San
Fransisco, CA 94105. E-mail: deept@feeva.com.

. N. Ramakrishnan is with the Department of Computer Science, Virginia
Tech, Blacksburg, VA 24061. E-mail: naren@cs.vt.edu.

. R.F. Helm and M. Potts are with the Department of Biochemistry, Virginia
Tech, Blacksburg, VA 24061. E-mail: {helmrf, geordie}@vt.edu.

Manuscript received 6 May 2007; revised 6 Dec. 2007; accepted 17 Jan. 2008;
published online 25 Jan. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-05-0199.
Digital Object Identifier no. 10.1109/TKDE.2008.32.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

into how the underlying Venn diagram of sets is organized,
and how it can be harnessed for explaining disjoint
connections. In particular, we can investigate if certain sets
have a greater propensity for participating in some stories
more than others. Such insights have great explanatory
power and help formulate hypotheses for situating new data
in the context of well-understood processes. Finally, in
domains such as bioinformatics, the emergence of high-
throughput data acquisition systems (e.g., genome-wide
functional screens, microarrays, and RNAi assays) has made
it easy for a domain scientist to define vocabularies and sets.
We argue that these domains are now suffering from
“descriptor overload.” Storytelling promises to be a valuable
tool to attack this problem and reconcile disparate vocabul-
aries.

Why is this problem difficult? Storytelling is nontrivial
because the space of possible descriptor expressions is not
enumerable beforehand and, hence, the network of overlap
relationships cannot be materialized statically. In a typical
application, we have hundreds to thousands of objects and
an order of magnitude greater descriptors, with an even
larger number of possible set-theoretic constructions made
of the descriptors. Effective storytelling solutions must
multiplex the task of constructive induction of descriptor
expressions with focused search toward the end point of the
story.

The main contributions of this paper are twofold: By
casting storytelling as a generalization of redescription
mining, we achieve a compositional data mining approach to
storytelling. Specifically, we show how to embed the
CARTwheels data mining algorithm for mining redescrip-
tions [2], in an A� search procedure to compose sequences
of redescriptions and realize a story. Second, we showcase
three applications of storytelling: a study of word overlaps
in large English dictionaries, exploring connections between
gene sets in a bioinformatics data set, and relating
publications in the PubMed index of abstracts. All of these
applications reveal insight into the underlying vocabularies,
present significant potential for knowledge discovery, and
demonstrate the generality of our algorithms.

This paper also improves upon the preliminary con-
ference version [4] by the use of distance metrics derived

from partitions for storytelling search, new bounding
techniques that can be used by a heuristic to curtail growth
in branching factor, proof of the admissibility of such a
heuristic, empirical validation of the scalability of our
implementation, and the effectiveness of our heuristic over
uninformed search techniques such as breadth first search.

The rest of this paper is organized as follows: Section 2
provides pertinent background on redescriptions and
redescription mining, and is necessary before presenting
the actual storytelling algorithm. Section 3 demonstrates
how to embed the CARTwheels redescription mining
algorithm in A� search, presents a heuristic for use with
A�, and proves its admissibility. This section also covers
implementation details such as fast data structures and
significance testing for stories. Experimental results are
given in Section 4. Connections to related work are drawn
in Section 5, and ideas for future work are presented in
Section 6.

2 BACKGROUND

2.1 Formalisms

We begin by formally defining a few key concepts.

Definition 1. A set system ðO;SÞ is a universal set of objects
O ¼ fo1; o2; . . . ; ong, and a collection S of subsets of O such
that they form a covering of O, i.e.,

S
i Si ¼ O.

Given a set system, we can think of each element of S as
a Boolean function or “feature” that returns true if a given
object from O is present in it, and false otherwise.

Definition 2. A descriptor Z is a Boolean expression over one
or more of the features of S. Given a descriptor Z, we will
denote the set of objects it represents (for a given set system)
by OðZÞ.

Observe that the elements of S are trivially descriptors.

Definition 3. The Jaccard’s coefficient J ðZi; ZjÞ between

descriptors Zi and Zj is given by
jZi\Zjj
jZi[Zjj .

The Jaccard’s coefficient is symmetric. It is zero if the
descriptors Zi and Zj are disjoint, and one if they induce
the same set of objects.

Definition 4. Z0 is an exact redescription of Z if and only if
JðZ;Z0Þ ¼ 1 holds for the given set system.

The operative phrase here is “for the given set system.”
We, thus, exclude trivial redescriptions such as Z1 � ðZ1 �
Z2Þ , Z1 \ Z2 that hold with Jaccard’s coefficient 1 in all
set systems (i.e., irrespective of how Z1 and Z2 are defined).

Definition 5. Z0 is an approximate redescription of Z if and
only if JðZ;Z0Þ < 1.

Definition 6. A story from descriptor Z1 to descriptor Zk
at Jaccard’s threshold � is a sequence of descriptors
Z2;Z3; � � � ;Zk�1 such that J ðZi; ZjÞ � �, 1 � i < k,
j ¼ iþ 1. The length of the story is given by k� 1, i.e.,
the number of redescriptions involved.

Observe that since the intermediaries in the story are
descriptors, they can be general Boolean expressions. In this

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 1. An example input to storytelling.

case, to ensure well posedness, we will require that all
participating expressions conform to a given bias, e.g.,
monotone forms, conjunctions, or are otherwise length-
limited. More information about the specific bias used in
this paper is forthcoming.

The storytelling problem is the following:

Given a set system ðO;SÞ, designated start and end
descriptors Z1 and Zk, and Jaccard’s threshold �, find all
stories from Z1 to Zk.

2.2 Generalizations

Although our formalism above focused on sets, we also
study multisets in this paper. Here, we consider O to be an
ordered set of elements and model each multiset descriptor
ðZiÞ as a weighted vector VZi defined over O. The weight
corresponding to each element in O could simply be the
frequency of that element in the descriptor or it could be a
more complicated formulation of the same. For multisets,
we use the weighted Jaccard’s coefficient as our similarity
measure between two descriptors. The weighted Jaccard’s
ðJ wÞ between descriptors Zi and Zj can be defined as
follows [5]:

J wðZi; ZjÞ ¼
PjOj
x¼1

ðVZi ½x� � VZj ½x�Þ

PjOj
x¼1

ðVZi ½x�Þ
2 þ

PjOj
x¼1

ðVZj ½x�Þ
2 �

PjOj
x¼1

ðVZi ½x� � VZj ½x�Þ
:
ð1Þ

Notice that the weighted Jaccard’s coefficient reduces to
the unweighted case if we use 1 as the weight for each
element present in a multiset and 0 for elements not in the
multiset. The approach we outline for mining stories for
simple sets generally holds for the case of multiset
descriptors as well. In case any of the steps needs to be
handled differently, we outline the details of the alternate
approach as well.

2.3 Algorithms for Redescription Mining

There are many algorithms proposed for mining redescrip-
tions, some based on systematic enumeration and pruning
(e.g., CHARM-L [3]) and some based on heuristic search
(e.g., CARTwheels [2]). These algorithms also differ in their
choice of bias (conjunctions in CHARM-L, and depth-
limited DNF expressions in CARTwheels). We focus on
CARTwheels as it provides the exploratory features
necessary to incrementally construct stories.

CARTwheels exploits the fact that redescriptions never
occur in isolation but rather in pairs or other groups. For
instance, redescription Zi , Zj coexists with :Zi , :Zj.
This property is used to search for matching partitions
(here, fZi;:Zig and fZj;:Zjg) by growing two binary
decision trees (CARTs) in opposite directions so that they
are matched at the leaves. The nodes in these trees
correspond to Boolean membership variables of the given
descriptors so that we can interpret paths to represent set
intersections, differences, or complements; unions of paths
would correspond to disjunctions. Essentially, one tree
exposes a partition of objects via its choice of descriptors
(e.g., Zi) and the other tree tries to grow to match this

partition using a different choice of descriptors ðZjÞ. If
partition correspondence is established, then paths that join
define redescriptions. CARTwheels explores the space of
possible tree matchings via an alternation process, whereby
trees are repeatedly regrown to match the partitions
exposed by the other tree.

Unlike previous work, where CARTwheels alternation
was configured to enumeratively explore the space of all
redescriptions [2], the main contribution of this paper is to
demonstrate how we can focus the alternation toward a
target descriptor.

3 DESIGNING A STORYTELLER

We embed CARTwheels inside an A� search procedure,
using the former to supply next move operators on search
branches to the latter. Each move is a possible redescription
to be explored, and a heuristic function evaluates these
redescriptions for their potential to lead to the end
descriptor of the story. Backtracking happens when a
previously unexplored move (redescription) appears more
attractive than the current descriptor. The search terminates
when we reach a descriptor that is within the specified
Jaccard’s threshold from the ending descriptor or when
there are no redescriptions left to explore.

In this paper, we focus on story length—number of
redescriptions to reach the end descriptor—as the primary
criterion of optimality, although different criteria might be
more suitable in other applications. The story length is
useful when we desire explainability of stories: shorter
stories are more explainable and appear less tenuous than
longer stories. Applications such as MorphWord (covered
later), time-ordered news summaries, and causal reasoning
between event descriptors are situations where this criter-
ion is relevant. Other criteria that can be considered (but not
studied in this paper) include the number of extraneous
objects (other than the start and end set) introduced by the
story, average Jaccard’s coefficient, conformance to a
domain theory (e.g., as used in inductive logic program-
ming), or some combination of these factors.

3.1 Working Example

For ease of illustration, consider the artificial example in
Fig. 2 with six descriptors fS1;S2;S3;S4;S5;S6g defined
over the universal set O ¼ fo1; o2; o3; o4; o5; o6g (in a realistic
application, the number of descriptors would greatly
exceed the number of objects). Our goal is to find a story

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 3

Fig. 2. Example data for illustrating operation of storytelling algorithm.

between descriptor S1, corresponding to the set fo1g, and
S5, corresponding to the set fo5g, such that each step is a
redescription that holds with Jaccard’s coefficient at least
� ¼ 0:5. In this example, we set the maximum depth of
CARTs used to 2.

We begin with a CART that models the start
descriptor S1 by exposing the partition P1 ¼ fS1;S1g,
i.e., ffo1g; fo2; o3; o4; o5; o6gg. The end descriptor is simi-
larly captured by a CART exposing the partition

P5 ¼ fS5;S5g ¼ ffo1; o2; o3; o4; o6g; fo5gg:

We first translate our requirement of minimum Jaccard’s
coefficient into a threshold on minimum distance between
partitions. (This is necessary because, unlike metrics such as
entropy gain and Gini coefficient, a constraint on Jaccard’s
coefficient does not directly characterize probability dis-
tributions necessary for incremental induction of decision
trees.)

The specific partition-distance metric we use between
partitions Pi ¼ fZi; Zig and Piþ1 ¼ fZiþ1; Ziþ1g is the López
de Mántaras [6] criterion:

DðPi;Piþ1Þ ¼ �
1

jOj za log
za
jZiþ1j

� �
þ zc log

zc
jZiþ1j

� �� �

� 1

jOj zb log
zb

jZiþ1j

� �
þ zd log

zd

jZiþ1j

� �� �

� 1

jOj za log
za
jZij

� �
þ zb log

zb
jZij

� �� �

� 1

jOj zc log
zc

jZij

� �
þ zd log

zd

jZij

� �� �
;

ð2Þ

where

za ¼ jZi \ Ziþ1j; zb ¼ jZi \ Ziþ1j
zc ¼ jZi \ Ziþ1j; zd ¼ jZi \ Ziþ1j:

In (2), the first four terms correspond to the entropy when
Piþ1 is used to split Pi. Similarly, the last four terms
correspond to the entropy when Pi is used to split Piþ1.
Given jZij and jOj, the distance value in (2) is dependent
on jZi � Ziþ1j and jZiþ1 � Zij. The Jaccard’s coefficient
between Zi and Ziþ1 can also be calculated using these
two quantities as

J ðZi; Ziþ1Þ ¼
jZij � jZi � Ziþ1j
jZij þ jZiþ1 � Zij

:

If we fix the value of jZiþ1 � Zij, where

0 � jZiþ1 � Zij � bðð1� �ÞZiÞ=�c;

there are values of jZi � Ziþ1j, such that

bð1� �ÞZic � jZi � Ziþ1j � 0;

and where the Jaccard’s coefficient between Zi and Ziþ1 is
greater than �.

Fig. 3 shows the behavior of the distance function in (2)
for different values of jZi � Ziþ1j and jZiþ1 � Zij. Here, each
column of data points from the x-axis upward represents
the distance values as jZi � Ziþ1j increases for a fixed value
of jZiþ1 � Zij. This figure clearly indicates the region

(bounded by the points shaded in light color) in which we
need the distance between partitions to lie for the Jaccard’s
threshold to hold. We call the region covered by points in
Fig. 3 the region of similar partitions, which gets narrower
as more extraneous elements are introduced by the
(current) redescription; hence, we can map a Jaccard’s
coefficient threshold between descriptors into a require-
ment of distance between two partitions. Apart from this
simple relationship between the distance metric and
Jaccard’s coefficient, another reason why we chose this
metric is that it promises to provide a better match between
two consecutive partitions given the restricted length of the
trees we construct [6].

The general idea now is to consider the partition exposed
by the current tree and induce new trees to match this
partition. In our previous work [2], we allow these
partitions to be composed of arbitrary blocks so that when
two trees match, we obtain as many redescriptions as there
are matching blocks. In the present work, we focus on only
two-block partitions since, by the statement of the story-
telling problem, both start and end descriptors induce only
two-block partitions and we desire a single chain of
redescriptions between them. Thus, for a one-level tree,
which has only one descriptor such as Zi, the partition
would be Pi ¼ fZi; Zig. For a two-level tree, the partition
would correspond to how the four paths in the tree are
merged to induce a two-block partition.

Consider the beginning partition fS1;S1g. In construct-
ing a tree to match this partition, we look for a descriptor
inducing a two-block partition such that the distance
between that partition and fS1;S1g is minimized. If, for
one or more descriptors, the distance lies in the similar
partitions region, we greedily choose the one which induces
a block Ziþ1 with the highest Jaccard’s coefficient with the
end point of the story. Once the tree has been constructed in
this manner, class assignments at the leaves are made by
majority, and paths that lead to a given class are unioned to
form redescriptions.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 3. Behavior of distance metric used for decision tree construction.
Each column of data points from the x-axis upward represents the
distance values as jZi � Ziþ1j increases for a fixed value of jZiþ1 � Zij.
The lighter data points bound the region in which we need the distance
between partitions to lie for the Jaccard’s threshold to hold. The
parameters used in this plot are jZij ¼ 10, jOj ¼ 100, � ¼ 0:2.

For instance, Fig. 5a shows the decision tree we have
constructed to match the partition fS1;S1g. This tree
provides the first step in the story to be the redescription
S1 , ðS2 � S3Þ. In this example, we show only one possible
“next tree”, but in our implementation, we maintain a
number of such possible matching trees to simulate a
branching process and for potential backtracking. Note that
while the current redescription holds with a Jaccard’s value
of 0.5, the new descriptor does not have any overlap with S5

(the target).
The alternation process is easily understood by consider-

ing the data sets from which each tree is being learned. To
initialize the alternation, we prepare a traditional data set for
classification tree induction (see Fig. 4a), where the entries
correspond to the objects, the class (to be learned) corre-
sponds to membership in the starting descriptor, and the
Boolean features are comprised of the remaining descriptors.
For the next step in our story, we use partition fðS2 �
S3Þ; ðS2 � S3Þg as the classes to match and consider the data
set as shown in Fig. 4b. In constructing the new data set,
observe that we ignore the descriptor that is the top-most

node (here, S2) in the decision tree that defines the current

partition. This ensures that we do not utilize the same

features for matching a partition as those that define the

partition! The one-level tree we learn at this stage is shown in

Fig. 5b. The redescription of interest here is ðS2 � S3Þ , S3,

which also holds with a Jaccard’s coefficient of 0.5. Although

it introduces the element we seek ðo5Þ, the redescription to

the end point of the story, S3 , S5, has only a Jaccard’s

coefficient of 0.25. We, hence, continue the search and obtain

the redescription S3 , S4 which gives us the desired overlap

with the target, and our final redescription, namely S4 , S5.

Our story is thus

S1 , ðS2 � S3Þ , S3 , S4 , S5:

Before we describe our storytelling algorithm in detail, it

is important to recognize the implicit expression bias

used by CARTwheels. Since descriptors are obtained by

fusing one or more paths in a decision tree, the form of

Boolean expressions allowed here can be characterized as

depth-limited DNF, i.e., a disjunction over conjunctions

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 5

Fig. 4. (a) Data set to initialize storytelling algorithm. (b) Data set for the second iteration.

Fig. 5. Storytelling using CARTwheels alternation. Beginning with S1, the starting descriptor exposed by the bottom tree in (a), the alternation

systematically moves toward S5, the ending descriptor in (d). At each step, we alternately keep one of the trees fixed and grow a new tree to match it.

The partition induced by each tree is shown above or below the tree as the case may be. The story mined here is the sequence of redescriptions:

S1 , ðS2 � S3Þ , S3 , S4 , S5.

where each conjunction is of length at most the depth of
the CART.

3.2 Implementation

The storytelling algorithmic framework is shown in Table 1
and follows the outline of the working example above. The
key utility functions are construct_data set, which prepares
the data set D at each alternation; construct_tree, which is
called b (branching factor) times at each step to create trees of
desired depth limit d; eval, which determines if the Jaccard’s
coefficient between the current descriptor and the union of
the paths leading to it in the current tree have a Jaccard’s
coefficient higher than or equal to �; calculate_heuristic_score,

which computes the heuristic score for each tree used to
guide the search; and print_story, which prints the story by
tracing back the sequence of mined redescriptions.

The choice of b and d can be made based on domain-
specific considerations. Smaller values of d use simpler-to-
understand descriptors in the story but run the risk of
inability to find a story. Similarly, larger values of b offer
greater guarantee of completeness of the A� search but
introduce significant penalty in time complexity. Specific
examples of how these values are selected and the tradeoff
analysis are covered later.

In the outer A� search procedure, qualified trees are
placed in the open list OL (a priority queue) and considered

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

TABLE 1
Storytelling Algorithmic Framework

in order of their evaluations. If the heuristic evaluation hN
for the currently picked tree tN is zero, we have arrived at a
tree that has sufficient Jaccard’s overlap with the end point
of the story and we terminate. If hN is not zero, a new set of
classes C for objects in O is induced using the function
paths_to_classes, tN is moved to the closed list, and all trees
induced by construct_tree are placed in the open list. This
process is repeated until there is no tree left in the open list
or a story has been found.

Just as the notion of “class” is revised at each alternation,
so are the candidate set of “features.” Observe that, in the
Initialization step, the set of possible features involves all
except the starting descriptor. Inside the Alternation
subroutine, the candidate set of features is made equal to
all except the feature used at the root of the current tree
(supplied by the routine top).

The heuristic score hj for tree tj is combined with cost
expended so far ðgjÞ to arrive at the evaluation criterion sj.
Nodes in OL are, hence, ordered by sj. We assume unit cost
per redescription so that the story length is the number of
redescriptions required to traverse to the ending descriptor.
The heuristic function h is designed to systematically never
overestimate the number of redescriptions remaining and
takes the value of zero for a tree whose partition is within
the specified Jaccard’s coefficient to the ending descriptor.
We now present details of h and prove its admissibility.

3.3 Heuristic

Table 2 outlines the approach to estimate hj for tree tj. This
algorithm can be understood as follows: Assume that the
new descriptor Zj (provided by tree tj) has fj elements in

common with the target descriptor Y and ej elements that do
not participate in Y . This means that Zj must shed enough of
the ej elements and acquire enough of the jY j � fj elements
in order to have a Jaccard’s threshold of� �with Y . The goal
of calculate_heuristic_score is to estimate the minimum
number of redescriptions required to shed the requisite
number among ej elements and acquire some of the
necessary jY j � fj elements. The procedure first conserva-
tively estimates if the current discrepancies already corre-
spond to a Jaccard’s threshold of� � with Y , in which case it
returns zero. If this is not possible, the procedure estimates
the shortest number of steps in which the deletions and
additions can happen by a recursive computation. Two
extremes are considered at each step—the case where we
can acquire as many of the necessary new elements as
dictated by � without any removals and the case where we
can shed as many of the unnecessary elements as dictated by
� without any additions. This step provides us with the
bounds �fmax and �emax in Table 2. We then search
combinatorially within these ranges for the maximal
number of deletions, for every possible number of additions,
such that � holds, using dynamic programming. The
minimum number of redescriptions over all possibilities is
then returned.

For a worked-out example, consider Fig. 6. Here, assume
that our start descriptor (for the universal set O defined
earlier) is defined using the first tree grown in our running
example (Fig. 5a), i.e., S2 � S3. The end descriptor is the
same as in our running example. In the directed graph
shown, each node corresponds to the tuple ðf; eÞ. Thus, the

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 7

TABLE 2
Heuristic for Storytelling A� Search

start node (shown in square) is set to (0, 2) since
it—fo1; o3g—contains none (0) of the required elements
and two spurious elements (which are to be discarded).
Similarly, the end node (shown in a hexagon) is set to (1, 0).
The Jaccard’s coefficient threshold is set to 0.5. For (0, 2),
�fmax ¼ 1 and �emax ¼ 1. Thus, the best possible next states
correspond to the other ends of the two directed edges
starting from (0, 2). However, none of the next two states
possible has the required overlap with (1, 0). Hence, we
recurse the given problem into a smaller subproblem. As an
example, we move to the state (1, 1) from the node (1, 2).
This new state has the required overlap with the final node,
and thus, we have found a path to the final state as
ð0; 2Þ ! ð1; 2Þ ! ð1; 1Þ ! ð1; 0Þ. The other possible nodes
and paths can also be examined in this manner to construct
the whole graph shown. From this graph, the minimum
path length found is 3, and this is the value returned by our
heuristic function for the state (0, 2).

3.4 Proof of Admissibility

To prove that our heuristic is admissible, we must show
that it never overestimates the cost (length) of a path from a
node to the goal. One way to structure the proof is to
characterize the underlying graph or state space in which
the search for a path is conducted (each node in the graph is
an ðf; eÞ pair as before).

We identify four graphs (see Fig. 7) to help structure the
proof:

1. G is a graph whose nodes are all legal ðf; eÞ pairs and
whose edges bring together nodes that can poten-
tially satisfy the Jaccard’s threshold. We say “poten-
tially” because it is not possible to ascertain the exact
overlap between descriptors given only the ðf; eÞ
information. Nevertheless, we know that we need
only retain those ðf; eÞ pairs, where f � jY j and
ðf þ eÞ � jOj. Similarly, for any two nodes Vi ¼
ðfi; eiÞ and Vj ¼ ðfj; ejÞ in G, we can calculate the
maximum value of Jaccard’s coefficient possible
between them as

JmaxðVi; VjÞ ¼
jVi \ Vjj

fi þ ei þ fj þ ej � jVi \ Vjj
;

where jVi \ Vjj is defined as minðfi; fjÞ þminðei; ejÞ.
Then, we need to retain only those edges in G such
that JmaxðVi; VjÞ � �.

2. GS � G, retaining only those ðf; eÞ pairs from G that
are realizable in bias B.

3. GD � G, removing “superfluous” edges between
ðf; eÞ pairs that are deemed unnecessary to reach
the destination from the start of the story. An edge
from ðfi; eiÞ to ðfj; ejÞ is deemed superfluous if either
fi < fj or ei > ej.

4. GC � GD, retaining only those edges from ðfi; eiÞ to
ðfj; ejÞ if, for the given fj � fi improvement in
desired elements, ei � ej is the best reduction in
unwanted elements possible (within the constraints
of the Jaccard’s coefficient).

In more detail, G, GD, and GC are based purely on
analytical calculations on ðf; eÞ pairs, without regard to the
data set at hand. GS is the only graph that is cognizant of the
given data set and CARTwheels bias. The crux of the proof
depends on the following observation:

GS holds the shortest path identified by CARTwheels
alternation, whereas GC holds the shortest path as estimated
by the heuristic.

Hence, the goal is to show that the shortest path in GC
cannot be greater than the shortest path in GS . The following
result establishes this:

Lemma 1. The heuristic defined by calculate_heuristic_score is

admissible.

Proof. The heuristic searches in GC for a shortest path. It is
clear, by construction, that GC cannot overestimate the
cost of the path with regard to GD. To understand the
shortest paths in GD, observe that a path in GD, in its
attempt to gain as much of the missing elements, assumes
that we do not lose any of the elements already present. In
reality, however, we are likely to temporarily lose some of
the required elements. However, all that matters is that
the heuristic considers the best-case scenario since it
provides a lower bound on the actual length. Hence, a
shortest path in GD (and by extension GC) underestimates
the actual cost in G. Now, the bias imposed by GS can only
serve to increase the cost by rendering some of the nodes
of GD unavailable. Furthermore, paths in GS might elect to
temporarily lose desired elements or might choose
suboptimal reductions of unwanted elements. Hence,
the estimate obtained by the heuristic is optimistic in all
respects and is, thus, admissible. tu
The heuristic function defined in Table 2 is applicable for

simple set descriptors. In case the descriptors are modeled
as multisets, we cannot use the same approach. This is

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 6. The working of the heuristic function. The start state (descriptor)
is represented by the tuple (0, 2) and the end node by the tuple (1, 0).
For � ¼ 0:5, the next states considered from each state are connected
by the edges. The two different sets of edges (top and bottom) represent
the paths that could be taken to reach the final state in the minimum (3)
number of steps (redescriptions).

Fig. 7. Sequence of graph transformations used to demonstrate

admissibility of heuristic.

because, for instance, elimination of different subsets from a
given descriptor, even if they are of the same size, will
result in different Jaccard’s coefficients. This implies that we
will have to exhaustively search all combinations for
removal and addition of elements to determine the
theoretically shortest possible story length. To avoid this,
for the case of the weighted Jaccard’s coefficient in (1), we
use a simpler heuristic function wherein we estimate the
maximum weight we can gain/lose at each step. We add
and remove these maximum weight values from our current
document weight. Using this idea, we calculate the number
of steps required to gain enough of the weight for the final
document and lose enough weight from the current
document, to reach a Jaccard’s coefficient above the thresh-
old for the final document (observe that this is still
admissible but not as good a tracker of the shortest story
length).

3.5 Data Structures

The efficient implementation of our storytelling algorithm
hinges on data structures for fast estimation of overlaps. This
problem has been studied by the database community in
various guises, e.g., similarity search [7] and set joins on
similarity predicates [8]. Specific solutions advocate the use
of signature trees [9], hierarchical bitmap indices [10], and
locality sensitive hashing [11], especially the technique of
min-wise independent permutations [12] that is particularly
geared toward the Jaccard’s coefficient. In this paper, we
combine an AD-tree data structure [13] with the signature
tables [14] approach for efficient similarity search in
categorical data.

The signature table is constructed before the Initializa-
tion step mentioned in Table 1. Here, objects in the
universal set are divided into a predefined number of
clusters ðcÞ on the basis of their co-occurrence frequencies.
This is achieved by first constructing a graph where each
object is a node and objects that co-occur form edges. Each
edge is associated with a weight which is the inverse of the
co-occurrence frequency for that edge. The weight asso-
ciated with each node is the sum of the weights of each edge
it is a part of. The total weight of the graph is the sum of the
weight of all nodes. We set the critical weight of the graph
to be the total weight divided by c. For finding each cluster,
we begin with the nodes that are a part of the edge that
currently has the minimum weight associated with it. We
delete these nodes from the graph and add them to the
current cluster. The weight of the cluster is now the sum of
the weights of nodes it contains (as obtained from the
original graph). We continue to add nodes to the cluster that
have the minimum weight in an edge associated with any of
the objects that already are a part of the cluster. This
continues till the weight of the cluster is greater than the
critical weight. At this point, we recalculate the critical
weight on the basis of the nodes remaining in the original
graph and proceed to finding the next set of nodes, till all c
clusters have been found.

Each descriptor, originally a binary vector size jOj, can
now be condensed into a binary vector (the signature) of
size c by encoding a 1 for each cluster that has an object
present in the descriptor and a 0 for each cluster that has no
object in the descriptor.

All descriptors and their co-occurrence frequencies (used
in constructing a decision tree of depth more than 1) are

also built into an AD-tree at this stage. The descriptors at
the top-level of the AD-tree are additionally linked to their
signatures. When a similarity search query is issued, only
nodes that correspond to signatures of interest need to be
investigated. At greater depths in the AD-tree, we can either
construct individual signature tables for each node in the
AD-tree or we can opt to use a traditional AD-tree node that
contains descriptor names and co-occurrence frequencies.
In our implementation, we used traditional AD-tree nodes
at depth greater than 1.

Using these data structures, we can reduce the number of
descriptors searched against at each step and improve the
speed of computation of stories. For instance, in the first call
to the function construct_tree, where we are looking for the
best match for the class X from among the descriptor set D,
we can reduce X to a vector of size c ðXcÞ. Also, we keep a
count of the number of objects in X that belong to each of
the c clusters in the form of a frequency vector fc. The
optimistic Jaccard’s coefficient ðOJ Þ between Xc and a
signature vector V c

i corresponding to a set of descriptors can
then be calculated by the formula

OJ ðXc; V c
i Þ ¼

Pc
j¼1ðfc½j� �Xc½j� � V c

i ½j�ÞPc
j¼1 f

c½j� :

We then compare Xc to all the signature vectors and retain
only those for which the optimistic Jaccard’s coefficient is
above �. This narrows down our search to only those
descriptors that have potential to provide the necessary
overlap.

3.6 Complexity and Significance Analysis

The time and space complexities of our approach can be
characterized by two search spaces: the space of possible
decision trees (CARTs) that are explored at each step of the
alternation and the branching space of the A� search itself.
Using the AD-tree data structure, the space complexity
amounts to OðjSjdÞ. In constructing a decision tree using the
AD-tree data structure, each node in the decision tree
requires, at most, jSj nodes in the AD-tree to be compared
against. Therefore, the time complexity is Oðbl2djSjÞ.
Observe that d is usually fixed to be a constant; hence, the
time complexity is typically driven by the branching
process of A� search.

The significance of a story is assessed at the level of each
redescription participating in the story. To assess the
significance of redescription Zi , Ziþ1, we use the cumu-
lative hypergeometric distribution [15] to determine the
probability of obtaining a rate of co-occurrence of Zi and
Ziþ1 (over the object domain), given their marginal
occurrence probabilities, and comparing it to the observed
rate of co-occurrence by chance. For simple set descriptors,
this amounts to the probability ðpÞ that a randomly
constructed Ziþ1 of size jZiþ1j has an overlap of at least
jZi \ Ziþ1j with the fixed set Zi:

pðZi; Ziþ1Þ ¼ 1�
XjZi\Ziþ1j�1

j¼0

jZij
j

� �
jOj � jZij
jZiþ1j � j

� �

jOj
jZiþ1j

� � : ð3Þ

To account for multiple hypothesis testing, the signifi-
cance threshold is determined by first characterizing the
distribution for all descriptors tested. This is achieved by

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 9

fixing Zi and randomly sampling from the set of available
descriptors. For each such descriptor Zk sampled, we use
the formula in (3) to determine the co-occurrence prob-
ability of an overlap of at least jZi \ Zkj. We use the q-value
approach [16] suggested for estimating false discovery rate
to calculate the adjusted significance of the probability
obtained for the redescription between Zi and Ziþ1. For all
redescriptions considered in our case studies, the q-value
threshold was set to 0.01.

For the case of multisets, elements having unequal
weights implies that (3) cannot be used for estimating the
probability we seek. Therefore, we employ a simulation
methodology wherein we randomly generate multisets of
size jZiþ1j with each element associated with a weight
assigned to it. We calculate the proportion of these
randomly generated sets that have an overlap greater than
J wðZi; Ziþ1Þ with Zi to estimate the probability pðZi; Ziþ1Þ.
This process needs to be repeated for randomly chosen
descriptors to obtain the distribution of probability required
for estimating the q-value.

4 EXPERIMENTAL RESULTS

Our three experimental studies are meant to address
diverse questions:

1. What is the tradeoff between number and length of
stories mined?

2. How does the time taken to find stories scale with
the length of the stories mined?

3. Is the node evaluation criterion for storytelling
search ðsj ¼ gj þ hjÞ more informed than vanilla
breadth first search ðsj ¼ gjÞ?

4. Do the stories discovered by our algorithm shed
domain-specific insights?

We undertake systematic studies over many applications to
answer the first three questions and provide illustrative
examples to address the last question, where appropriate.
The first application characterizes word overlaps in large
English dictionaries and illustrates scalability of the
implementation and how the different parameter settings
affect the quality of stories mined. The second application,
involving gene sets in bioinformatics, uses decision trees of
depth 2 and showcases the constructive induction capabil-
ities of CARTwheels when used for storytelling. This
application and the third, which builds stories between
PubMed abstracts, also illustrate interesting nuggets of
discovered knowledge.

4.1 Word Overlaps

In our first study, we implement storytelling for the
MorphWord puzzle wherein we are given two words,
e.g., PURE and WOOL, and we must morph one into the
other by changing only one letter at a time (meaningfully).
One solution is

PURE! PORE! POLE! POLL! POOL!WOOL:

Here, we can think of a word as a set of (letter, position)
tuples so that all meaningful English words constitute the
descriptors. Each step of this story is an approximate
redescription between two four-element sets, having three
elements in common. It is important to note that words that
are anagrams of each other (e.g., “ELVIS” and “LIVES”) will

not have a Jaccard’s coefficient of 1, since position is
important.

We harvested words of length 3 to 13 words from
the Wordox dictionary of English words (http://www.
esclub.gr/games/wordox/), yielding more than
160,000 words. Consistent with the MorphWord puzzle,
we restrict all CARTs to be of depth d ¼ 1 and study
the effect of � and b on the number of stories possible,
length of stories mined, and time taken to mine stories.
For ease of interpretation, we recast Jaccard’s thresholds
in terms of the number of letters in common ðlcÞ
between two words. Although MorphWord is tradition-
ally formulated with lc ¼ 1, we explore higher lc values
as well. Due to space restrictions, we present our results
on subsets of the master word list, namely, 5 letter
words ðL5Þ and 10 letter words ðL10Þ. In each case, we
selected 100,000 pairs of words at random and tried to
find stories between them, with different lc and b
settings. An example story we mined with five letter
words (with setting lc ¼ 3) is:

BOOTH, BOATS, BEAMS, DEADS,
GRADS, GRADE, CRAZE, CRASH, FLASH:

Fig. 8 (first column) depicts plots of the fraction of stories
(out of 100,000) mined with various story lengths as a
function of lc, for a branching factor b ¼ 5. In these plots, a
story length of 0, rather counterintuitively, implies that no
story was found for the word pair considered. The critical
story length where the majority of stories are mined steadily
increases as lc is increased. This is because, as lc is
increased, more overlap is required at each step of the
story such that it takes longer for one word to morph into
another. At the same time, the total number of stories mined
decreases as lc is increased, due to the lack of viable
redescriptions.

To study the effect of b on the length of stories mined, we
focus our attention on lc values of 2 for L5 and 5 for L10.
Fig. 9 (first column) shows plots of the fraction of stories
mined with various lengths as a function of b. As before, a
path length of 0 in the plots implies that no story was found
for the word pair considered. Here, there are qualitative
changes between the two data sets (Fig. 9, first column, top
and bottom rows).

For L5, the lc value chosen (2) supports a significant
number of short stories. This lc value affords a high number
of possible redescriptions per descriptor (about 20-100),
making it highly likely that the A� algorithm will follow a
path that leads close to the target word. In other words, b
does not have as significant an impact for this data set.

For L10, the lc value chosen contributes to a higher
probability of longer stories. As a result, the branching factor
b plays a crucial role. This is evident in the case of b ¼ 1,
where the excessively greedy strategy is often rendered
futile. As b increases, the chances of going down toward the
target word increases, and more stories are mined.

To study the effect of these parameters on the time
required to mine stories, we set b ¼ 5 as before for
understanding the role of lc. We computed the average
time taken to mine a story, for various story lengths, across
all pairs of words considered. Fig. 8 (second column) shows
plots of this average time against story lengths, for different
lc values. In these plots, we have normalized the time

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

measurements by calibrating the maximum time to have a
value of 1. The actual time taken to find stories ranges from
a few seconds to a few minutes (on a 2.3-GHz Apple Xserve
G5 computer with 4-GB RAM), depending on the para-
metric settings as well as the story length. (This holds for
the other studies as well.) The plots in Fig. 8 (second
column) show that the general behavior in the two graphs is
again quite similar. There is a near-linear increase in time
required, with steeper increases for lower lc values. This is
because the lower lc values cause an increase in the number
of possibilities (within the bound of b ¼ 5) which must be
explored before converging on the shortest path. Also,
observe the higher times for story lengths of 0, indicating it
takes longer to conclude that stories do not exist. Similar
linear trends are observed in time versus the role of b (Fig. 9,
second column). Here, steeper profiles are witnessed for
higher b values. Once again, this is due to the increase in the
number of possibilities, although as Fig. 9, second column
(bottom panel) shows, these increases appears to taper off
quickly. These figures clearly indicate the underlying
tradeoff in mining stories: time versus importance of
optimal story lengths.

Fig. 10 highlights the advantage of using the heuristic
function described in Table 2. Here, the top row corre-
sponds to plots for L5 with lc ¼ 3 and b ¼ 10, and the
bottom row corresponds to L10 with lc ¼ 5 and b ¼ 10. The
plot on the left for L5 shows the behavior of the effective
branching factor for both BFS and heuristic search. Here,
there is a vast difference in the branching factor initially but

this difference tends to decrease as the story length
increases. This behavior is primarily because as the story
length increases, we are more and more likely to encounter
nodes that have very few redescriptions (1 or 2) associated
with them. Our choice of lc being so high also ensures that
the number of redescriptions is low. The branching factor is
not binding in these cases. Correspondingly, the plot on the
right shows the time comparison of heuristic search against
BFS. It is important to note that the time taken for the
heuristic search also includes the time taken to compute the
heuristic. This plot shows that even though the effective
branching factor becomes quite similar for the two cases as
story length increases, there is still significant difference
between the time taken in mining stories with the heuristic
search requiring lesser time.

A more pronounced effect of the heuristic can be seen in
the plots from L10. Here, there is a vast difference between
the heuristic and BFS for both the effective branching factor
and time taken in searching for all story lengths. This is
because, for our choice of lc, we find stories that are not
very long. This also decreases the chances of encountering
nodes with very few redescriptions.

4.2 Gene Sets

In our second case study, we mine stories among descriptors
defined over gene sets in the budding yeast S. cerevisiae. We
draw our descriptors from various bioinformatics vocabul-
aries (e.g., the Gene Ontology (GO), microarray experiment
clusters, and experiment ranges) as done in previous work

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 11

Fig. 8. Word overlap study: (First column) Fraction of stories mined as a function of story length, for different values of lc. (Second column) Average

time required to mine stories as a function of story length, for different values of lc. (Top row) Five letter word vocabulary ðL5Þ. (Bottom row) Ten letter

word vocabulary ðL10Þ.

(see [2] and [3]). An example of significant story, between the

GO categories protein modification and hexokinase, mined

for � ¼ 0:5, b ¼ 5, and d ¼ 2 is shown in Fig. 11. Observe that

the second descriptor in the story involves a set intersection

performed by CARTwheels. A unifying feature that links the

genes in this story is their common role in nutrient control

and carbohydrate metabolism, particularly metabolism of

glucose-phosphate. Considering the three genes in the first

descriptor, YKL035W is involved in the reversible conver-

sion of glucose-1-phosphate to UDP-glucose via UTP;

YJL164C is a cyclic adenosine monophosphate (cAMP)-

dependent kinase and binds both YFL033C (glucose re-

pressed, nutrient control) and YIL033C (glycogen accumula-

tion); and YGL158W is a kinase that binds YGL115W (release

from glucose repression). Two new genes enter the story

with the first redescription, namely, YCL040W (involved in

phosphorylation of glucose) and YFR053C (a hexokinase

also involved in the phosphorylation of glucose in the

glycolysis pathway). In traversing the second redescription,

two additional genes appear: YDR516C is involved in

phosphorylation of glucose and, most importantly, also

binds YCL040W (which is present in earlier redescriptions).

YGR052W is a mitochondrial serine/threonine kinase of

unknown function. Through the thread of the story, we

predict that YGR052W may also be involved in an aspect of

glucose metabolism and/or nutrient control.

4.3 PubMed Abstracts

For our final case study, we consider the more than
140,000 publications about yeast in the PubMed index and
focus on finding stories between publication abstracts. Each
abstract is, hence, a descriptor over terms/keywords. We
restrict our CARTs to be of depth 1 and also adopt the
weighted Jaccard’s measure, as defined in (1), that is more
suited to measuring similarity between bags.

To generate keywords, we focused on the 3,756 abstracts
containing the keywords “yeast AND stress”. For each of
these papers, we used the corresponding title and abstract
and split the text into words delimited by space. We
removed completely numeric or special character words as
well as a set of stop words from these words. We used
Porter’s stemming and manual inspection to group words
that share similarity together. We calculated the IDF values
for each word ðwÞ that appears in any document as the log2

of the ratio of the total number of documents to the number
of documents in which w appears. Next, we computed the
TFw:IDFw for each word that appears in a paper for each of
the papers and eliminated 95 percent of these values by
setting a threshold of 7 on this value. The words that have
TFw:IDFw values above 7 were retained for each paper
along with their frequency values. This resulted in a total of
6,821 unique words in our study.

For document Zi, the vector VZi ½w� in the definition of
weighted Jaccard’s in (1) is given by VZi ½w� ¼ TFw:IDFw.
Two examples of significant stories we mined using this

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 9. Word overlap study: (First column) Fraction of stories mined as a function of story length, for different values of b. (Second column) Average

time required to mine stories as a function of story length, for different values of b. (Top row) Five letter word vocabulary ðL5Þ. (Bottom row) Ten letter

word vocabulary ðL10Þ.

function are given in Figs. 12 and 13 (the PubMed IDs and
publication dates are given alongside).

The first story (see Fig. 12), mined with � ¼ 0:2, b ¼ 5,
begins with a high-throughput experiment that links
chemical stress to gene expression in Saccharomyces cerevi-
siae, and ends with heat stress transcription factors in
tomato. The “story line” was initiated through comparisons
between oxidative and heavy metal stresses. This led to a
paper identifying a gene from Candida sp. that was
expressed when the cells are exposed to cadmium but not
copper, mercury, lead, or manganese. Interestingly, a
BLAST search for the encoded protein sequence indicates
that the protein is novel. The link between tomato heat
stress transcription factors and a cadmium-specific gene

with no known match in the current databases was through
work with the fission yeast Schizosaccharomyces pombe,
where a study looked specifically at heat and cadmium
stress responses. This story, hence, illustrates the key
players in the systems biology of related chemical stresses.

For our next example, we mined for stories that follow a
strict sequential order of publication year. One example
here is shown in Fig. 13, with settings � ¼ 0:4, b ¼ 5. The
featured compound in this story—cAMP—is a signaling
molecule found in all forms of life. In yeast, it serves as a
relay for glucose levels, effecting distinct responses in
accord with nutrient need and availability. This story,
presented “backward in time” in Fig. 13, starts with a paper
that addresses specific changes in gene transcription

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 13

Fig. 10. Word overlap study: Comparison of the behavior of heuristic-based search with BFS for (top) L5, with lc ¼ 3 and b ¼ 10 and (bottom) L10,

with lc ¼ 5 and b ¼ 10. The plots on the left compare the average value of the effective branching factor for various story lengths. The plots on the

right compare the time taken using the two search strategies.

Fig. 11. A significant story among gene sets from protein modification to hexokinase.

modulated by cAMP levels in Schizosaccharomyces cerevisiae.
It was connected with a paper that also addressed the
relationship between nutrients and cAMP, but with a
different yeast (Saccharomyces cerevisiae) and with a different
emphasis (partners upstream and downstream of where
cAMP intersects the pathway). The third paper in the story
describes the relationship between a serine/threonine
protein kinase (Snf1) and nutrient levels, and how it is
related to AMP concentrations (the degradation product of
cAMP), while the fourth paper links catalase gene expres-
sion to cAMP. Together these four papers provide a
continual story line on how yeast responds to changes in
nutrient levels. Interestingly (at the time of this writing),
Paper #4 has been cited 82 times, Paper #3 114 times, and
Paper #2 182 times (Paper #1 is too new to be heavily cited).
However, the only connection between them in the citation
indices is that Paper #2 has referenced Paper #4.

5 RELATED RESEARCH

We survey related work in various categories.
In information visualization (e.g., see [17]), storytelling has

been viewed not as a data mining tool but as an information
organization tool based on narrative structures from real
life. The emphasis of software developed here is to provide
templates and diagrammatic semantics that make the
manual process of constructing stories easier, whereas we
focus on automated approaches to mine stories.

In topic tracking [18], the goal is to postprocess search
results into story lines by analyzing bipartite graphs of
document-term relationships. Here, a story is a thread of
related documents with temporal as well as semantic
coherence. These works are focused on unsupervised
discovery of all threads, whereas we focus on directed
(but not necessarily temporal) stories between given start
and end points.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

Fig. 12. An example of significant story among PubMed abstracts relating chemical stresses.

Link mining [19] begins with data that can be modeled as
a collection of links and, in this sense, storytelling can be
approached as a problem of analyzing overlap relationships
expressed as a graph. However, as stated earlier, such
graphs are hard to materialize in entirety and, hence,
storytelling must multiplex the task of positing intermedi-
aries with focused search toward the end point of the story.

Storytelling is closest in spirit to literature-based discovery
systems such as Swanson’s Arrowsmith [20]. In 1985, Don
Swanson, quite by accident, connected two different pieces
of information across medical literature that led him to the
hypothesis that magnesium deficiency may play a role in
certain types of migraine, a result since subsequently
proven. The Arrowsmith project aims to automate this
process by looking for relationships among articles in
biomedical literature. In storytelling, we extend this idea to
find longer chains of relationships by bringing set-theoretic
constructions into the mining process.

Finally, in language modeling research such as the “one
story one flow” hypothesis [21], a story is a hidden Markov
model (HMM) that helps identify segments of news stories
that follow each other. Our goal is to present a generalized
framework for storytelling in generalized set systems, not
just documents. Nevertheless, new similarity functions
based on language modeling can be utilized in our frame-
work, besides the standard (weighted) Jaccard’s coefficient.

6 DISCUSSION

By defining stories as chains of redescriptions, we have
been able to design a storytelling algorithm as A� search
around the outputs of a redescription mining algorithm. We
have demonstrated the scalability of this approach using the
Word overlaps case study and showcased its potential for
knowledge discovery using the gene sets and PubMed
abstracts case studies.

Storytelling can serve multiple uses besides data mining
from set systems. It can be used as an information
exploration tool for large document collections, as a

postprocessing approach for search results, and to chain
together research results from multiple publications. All of
these next-generation applications can be viewed as forms

of “combinatorial information integration,” and storytelling
promises to be a valuable algorithmic engine behind such
applications.

In future work, we aim to investigate other metrics for
evaluating stories besides story length, e.g., based on the

number of objects temporarily brought into the story, the
story’s conformance to prior background knowledge, or
using overlap metrics that better mirror a domain scientist’s
conception of set similarity. We also aim to explore

connections to works that characterize the structure of
partitions [22], [23] and investigate whether story lines can
be designed around paths in such discrete structures. We
also intend to generalize from propositional to predicate

vocabularies and cast storytelling in the context of relational
redescriptions. This will help provide structured stories that
follow a template of connections. Our eventual goal is to
establish storytelling as an important tool for reasoning

with data and domain theories.

ACKNOWLEDGMENTS

A preliminary version of this paper appeared as a short
paper in the Proceedings of the 12th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD ’06). This
work was done while D. Kumar was with the Department

of Computer Science at Virginia Polytechnic Institute and
State University.

REFERENCES

[1] L. Parida and N. Ramakrishnan, “Redescription Mining: Structure
Theory and Algorithms,” Proc. 20th Nat’l Conf. Artificial Intelligence
(AAAI ’05), pp. 837-844, 2005.

[2] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. Helm,
“Turning CARTwheels: An Alternating Algorithm for Mining
Redescriptions,” Proc. 10th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’04), pp. 266-275, 2004.

KUMAR ET AL.: ALGORITHMS FOR STORYTELLING 15

Fig. 13. An example of significant story among PubMed abstracts around cAMP levels.

[3] M. Zaki and N. Ramakrishnan, “Reasoning About Sets Using
Redescription Mining,” Proc. 11th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’05), pp. 364-373, 2005.

[4] D. Kumar, N. Ramakrishnan, M. Potts, and R. Helm, “Algorithms
for Storytelling,” Proc. 12th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD ’06), pp. 604-610, 2006.

[5] D. Grossman and O. Frieder, Information Retrieval: Algorithms and
Heuristics. Springer, 2004.

[6] R. López de Mántaras, “A Distance-Based Attribute Selection
Measure for Decision Tree Induction,” Machine Learning, vol. 6,
pp. 81-92, 1991.

[7] A. Nanopoulos and Y. Manolopoulos, “Efficient Similarity Search
for Market Basket Data,” The VLDB J., vol. 11, no. 2, pp. 138-152,
2002.

[8] S. Sarawagi and A. Kirpal, “Efficient Set Joins on Similarity
Predicates,” Proc. ACM SIGMOD ’04, pp. 743-754, June 2004.

[9] N. Mamoulis, D. Cheung, and W. Lian, “Similarity Search in Sets
and Categorical Data Using the Signature Tree,” Proc. Ninth IEEE
Int’l Conf. Data Eng. (ICDE ’03), pp. 75-86, 2003.

[10] M. Morzy, T. Morzy, A. Nanopoulos, and Y. Manolopoulos,
“Hierarchical Bitmap Index: An Efficient and Scalable Indexing
Technique for Set-Valued Data,” Proc. Seventh East-European Conf.
Advances in Databases and Information Systems (ADBIS ’03), pp. 236-
252, Sept. 2003.

[11] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High
Dimensions via Hashing,” Proc. 25th Int’l Conf. Very Large Data
Bases (VLDB ’99), pp. 518-529, Sept. 1999.

[12] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher, “Min-
Wise Independent Permutations,” J. Computer and System Sciences,
vol. 60, no. 3, pp. 630-659, June 2000.

[13] A. Moore and M. Lee, “Cached Sufficient Statistics for Efficient
Machine Learning with Large Datasets,” J. Artificial Intelligence
Research, vol. 8, pp. 67-91, 1998.

[14] C. Aggarwal, J. Wolf, and P. Yu, “A New Method for Similarity
Indexing of Market Basket Data,” Proc. ACM SIGMOD ’99,
pp. 407-418, 1999.

[15] S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church,
“Systematic Determination of Genetic Network Architecture,”
Nature Genetics, vol. 22, no. 3, pp. 213-215, 1999.

[16] J. Storey and R. Tibshirani, “Statistical Significance for Genome-
Wide Experiments,” Proc. Nat’l Academy of Sciences, vol. 100,
pp. 9440-9445, 2003.

[17] A. Kuchinsky, K. Graham, D. Moh, A. Adler, K. Babaria, and M.
Creech, “Biological Storytelling: A Software Tool for Biological
Information Organization Based Upon Narrative Structure,” ACM
SIGGROUP Bull., vol. 23, no. 2, pp. 4-5, Aug. 2002.

[18] R. Guha, R. Kumar, D. Sivakumar, and R. Sundaram, “Unweaving
a Web of Documents,” Proc. 11th ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’05), pp. 574-579, 2005.

[19] L. Getoor, “Link Mining: A New Data Mining Challenge,” ACM
SIGKDD Explorations Newsletter, vol. 5, no. 1, pp. 84-89, 2003.

[20] D. Swanson and N. Smalheiser, “An Interactive System for
Finding Complementary Literatures: A Stimulus to Scientific
Discovery,” Artificial Intelligence, vol. 91, no. 2, pp. 183-203, 1997.

[21] P. Fung and G. Ngai, “One Story, One Flow: Hidden Markov
Story Models for Multilingual Multidocument Summarization,”
ACM Trans. Speech and Language Processing, vol. 3, no. 2, pp. 1-16,
July 2006.

[22] M. Meila, “Comparing Clusterings by the Variation of Informa-
tion,” Proc. 16th Ann. Conf. Learning Theory (COLT ’03), pp. 173-
187, 2003.

[23] D. Simovici and S. Jaroszewicz, “An Axiomatization of Partition
Entropy,” IEEE Trans. Information Theory, vol. 48, no. 7, pp. 2138-
2142, 2002.

Deept Kumar received the BS degree in
chemical engineering from the Indian Institute
of Technology, Mumbai, in 1998 and the
MS degree in environmental engineering and
the PhD degree in computer science in 2007
from Virginia Polytechnic Institute and State
University, Blacksburg. After completion of his
undergraduate studies, he was with Infosys
Technologies Ltd., Bangalore, as a software
engineer for a year. He is currently a senior

data analyst for a start-up operating out of San Francisco.

Naren Ramakrishnan received the PhD de-
gree in computer science from Purdue Uni-
versity, in 1997. He is an associate professor
of computer science and a faculty fellow at
Virginia Polytechnic Institute and State Uni-
versity. He also serves as an adjunct profes-
sor at the Institute of Bioinformatics and
Applied Biotechnology (IBAB), Bangalore, In-
dia. His research interests include computa-
tional science, problem-solving environments,

mining scientific data, and information personalization. He currently
serves on the editorial board of Computer and is a member of the
IEEE Computer Society.

Richard F. Helm received the BS degree from
the College of Environmental Science and
Forestry, State University of New York, Syra-
cuse, in 1982 and the PhD degree from the
University of Wisconsin, in 1987. He was a
postdoctoral researcher at both Oregon State
University and the USDA-ARS Dairy Forage
Research Center (Madison, Wisconsin) prior to
becoming an assistant professor in the Depart-
ment of Wood Science and Forest Products,

Virginia Polytechnic Institute and State University (Virginia Tech) in
1992. In 2004, he transferred to the Department of Biochemistry,
Virginia Tech, where he is currently an associate professor. His research
interests include analytical tools to answer biochemical questions
(vigen.biochem.vt.edu). He is presently the director of the Virginia Tech
Mass Spectrometry Incubator (www.mass.biochem.vt.edu).

Malcolm Potts received the BSc degree (with
honors) in botany, the PhD degree in microbiol-
ogy, and the DSc degree from Durham Uni-
versity, United Kingdom, in 1995. He is currently
on leave as a lead scholar in the Department of
Biological and Environmental Sciences, Qatar
University, State of Qatar. He is a professor of
biochemistry and a codirector of the Virginia
Tech Center for Genomics, Virginia Polytechnic
Institute and State University, Blacksburg. He

completed his postdoctorals at Hadassah Medical School, Jerusalem;
the Heinz Steinitz Marine Biology Laboratory, Elat University, Israel; Karl
von Ossietsky University, Oldenburg, Germany; and Florida State
University. His research interests include structural, physiological, and
molecular basis for environmental stress tolerance—especially desicca-
tion tolerance of cyanobacteria.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 6, JUNE 2008

