
WebContext: Remote Access to Shared Context
Robert Capra, Manuel A. Pérez-Quiñones, Naren Ramakrishnan

Department of Computer Science
Virginia Tech

660 McBryde Hall (0106)
Blacksburg, VA 24061

rcapra@vt.edu, {perez, naren}@cs.vt.edu

ABSTRACT
In this paper, we describe a system and architecture for building
and remotely accessing shared context between a user and a
computer. The system is designed to allow a user to browse web
pages on a personal computer and then remotely make queries
about information seen on the web pages using a telephone-based
voice user interface.

Keywords
Shared context, voice user interfaces, information access,
telephone-based user interfaces, software architecture,
VoiceXML.

1. INTRODUCTION
Common ground refers to experiences and knowledge shared
among participants in an activity [19]. In his book, Arenas of
Language Use, Herbert Clark describes common ground in terms
of shared information:

Common ground is a type of shared information. The
common ground between Ann and Bob, for example,
is the sum of their mutual knowledge, mutual beliefs,
and mutual suppositions... [7]

In the book, Clark makes the argument that conversation between
two participants cannot occur without the accumulation and use
of common ground. In our work, shared context refers to the
accumulated common ground between the computer and the user
as a result of human-computer interaction.

In today’s world, people commonly spend several hours a day
interacting with personal computers (PCs), personal digital
assistants (PDAs), and cell phones. Despite hours of interaction,
current software makes use of very little context from interacting
with users. Additionally, context established on one computing
device is often difficult to make use of on a different device.
Remote access to context is also difficult. This increasing need
for portable, cross-platform, remotely accessible shared context

between users and computers is a central topic of our research.

We are especially interested in the portability and accessibility of
shared context. Shared context needs to be accessible from
different environments that have different input/output
modalities: personal computers with a keyboard, mouse and
large screen; PDAs with small screens and an input stylus;
cellular telephones with a small screen and buttons; and voice
interfaces for access from any telephone.

We have developed an architecture for capturing, storing,
accessing and using shared context across different computing
environments. This architecture allows context to be captured in
one environment (a personal computer) and then remotely
accessed from a different environment (a telephone-based voice
user interface).

Using this architecture, we have implemented a system called
WebContext. WebContext allows a user to browse web pages on
their personal computer and then make queries about information
viewed on those web pages using a voice user interface.

One of the interesting problems in creating such a system is that
the speech recognition component of the system must be
configured to understand spoken references to a dynamic set of
information. We will describe this problem in more detail in
section 5.2.3.

2. Existing Uses of Context
The primary two ways that current personal computer
applications and operating systems store context is by saving
documents and application preference settings. Recently,
personal computer operating systems have begun capturing and
using additional parts of a user’s interaction with the system.
For example, Microsoft Windows and the Apple Macintosh OS
both have introduced a feature that stores “recently used
documents” in a special location for easy access by users. For
many years Unix operating system command shells have had an
extensive interaction history tool (the “history” command) that
allows users to review and re-issue commands.

Most PDAs provide mechanisms for synchronizing data between
the PDA and other devices, but they are sometimes limited in the
types and amount of data they store and exchange. For example,
many PC applications must have special synchronization
software installed and configured to allow them to share data
with PDAs. For some applications, no such capability exists.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PUI 2001, Orlando FL, USA.
Copyright 2001 ACM 1-58113-448-7-11/14/01 ...$5.00.

 2

Many cell phones retain information about interaction histories
by saving phone numbers. They store the phone numbers of
people who you recently called, of people who recently called
you, of calls you missed, etc. However, cell phones too are
limited in the types and amount of data they utilize and exchange
with other devices.

Much of the interaction history and context that is captured on
these devices (PCs, PDAs, and cell phones) is used only at a
surface level. Ordered lists of recent events such as phone calls,
documents opened, and preference settings can be useful and do
not require much analysis to construct. However, we believe that
more robust approaches may lead to more streamlined user
interactions and increased usability.

To create more robust user interfaces that make use of a high
degree of shared context with users, interfaces need to capture
contextual information, integrate multiple sources of information,
and perform analysis on available information. Rich models of
context and content are required. For example, instead of just
placing recently dialed phone numbers on a “ recently called” list,
a cell phone interface could consider additional factors such as:
Was the call completed? How long did the call last? What time
of day was this call placed? Is this a phone number that is called
frequently? Is this phone number in the user’s dialing directory?

The work we present here on the WebContext system is part of
our initial efforts to develop systems that make robust and
integrated use of shared context to improve user interfaces. In
this work, we have focused on using the content of web pages
browsed by the user to build a model of shared context. The idea
here is that the computer “observes” everything that the user sees
in the browser window. This collaborative experience between
the user and computer builds shared context. In future work, we
plan to extend this approach to integrate contextual information
from multiple applications.

3. Usage Scenario
To illustrate the architecture and use of WebContext we will use
the following scenario throughout the paper. Although this
scenario contains fictitious places and names, the current version

of the WebContext system performs similarly on actual web
pages.

Anytown Hotel Scenar io

Mary decides to plan a short vacation for the upcoming
weekend. Using her home computer and web browser, she
decides on a destination for her trip and makes a hotel
reservation on-line. (The home page for the hotel she selected is
shown in Figure 1.)

Later, Mary decides to call the hotel to check the reservation.
Instead of logging back onto the Internet to find the phone
number of the hotel, Mary calls into the WebContext system
using her cell phone:

[1] Mary: <calls into the WebContext system>
[2] System: Welcome to the WebContext system.

Please say some words to help identify the
pages to search.

[3] Mary: <remembering the name of the hotel and
that it has a seafood restaurant> “Anytown
hotel and seafood”

[4] System: What piece of information are you looking
for?

[5] Mary: “the phone number”
[6] System: Looking for phone numbers on web pages

with Anytown Hotel and seafood. Is this
correct?

[7] Mary: “Yes”
[8] System: Now looking for matches. <pause>
 I found a total of two phone numbers on

one page. On the page titled “Anytown
Hotel Home Page,” the first result is
“phone, eight hundred, five five five, one
two three four.” The next result on this
page is “fax, eight hundred, five five five,
five six seven eight”. That is the end of the
results.

Figure 2. WebContext Sample Dialog.

The current implementation of the WebContext system supports
dialogues such as the one shown in Figure 2. It allows users to
make queries – using a voice user interface – about pieces of
information such as phone numbers and addresses that they have
seen on previously browsed web pages. In Section 6, we present
a step-by-step description of how the WebContext system
processes the Anytown Hotel Scenario sample dialog.

4. Related Work
In this section, we discuss several areas of related work: web
companions, voice interfaces to the web, and computer access by
phone.

4.1 Web Companions
Web companions are programs that monitor a user’s or group of
users’ browsing habits and try to use this information to make
recommendations of other web sites of interest to the user.
Lawrence [14] gives descriptions of many projects that have
attempted to incorporate contextual information into web
searching.

Anytown Hotel Home Page

1234 Main Street
Anytown, USA 12345
Phone: (800) 555-1234
Fax: (800) 555-5678

The Anytown Hotel is a charming 50 room hotel
located in the heart of downtown Anytown, USA.
The hotel is known for the seafood restaurant on
the lower level.

Home | Reservations | Rooms | Directions

Figure 1. Anytown Hotel Web Page.

 3

Many of these systems observe users’ behaviors and/or
environment and use this information to help recommend or
predict web pages of interest (WebWatcher [12], Personal
WebWatcher [20], Letiza [15], “Let’s Browse” [16], WebMate
[5]). Some systems use contextual information to automatically
fetch (Watson [4]) or index (Vistabar [17]) web pages for users.

The Haystack project at MIT has focused on creating
personalized information repositories for individuals. Haystack
automatically gathers information, adapts to its user, and tries to
use information gathered to help organize and find data [1].

Our work shares concepts of these projects in observing and
trying to make use of a user’s web browsing context. In the
current implementation of WebContext, we have focused on
exploring the use of shared context in a different environment
(remote access over a telephone) and the use of a different
interface modality for access (a voice user interface).

Browser supported bookmarks (favorites) and on-line bookmark
managers such as Backflip1, Blink2, Yahoo! Bookmarks3, (as
well as other bookmark services) attempt to help users create
indexes of web pages they wish to “ remember” and possibly
share with other people or access from other computers.
However, these tools often require users to perform explicit
actions to add a site to their bookmark list and may require
additional effort to classify and maintain the list of bookmarks.

4.2 Voice Interfaces to the Internet
A number of voice interfaces to Internet content and web
browsing have been developed in recent years. Current voice
interfaces to the web fall into two main categories: 1) voice
interfaces to screen displays and 2) voice-only interfaces
(typically using a telephone as an input and output device).
Christian, Kules, Shneiderman, and Youssef provide a good
summary of a number of these systems in their comparison of
using voice versus mouse to control web browsing [6]. Another
source of information about voice web browsers is the web site of
the 1998 W3C Workshop on Voice Browsers [24].

PhoneBrowser is a system developed at Lucent Technologies for
browsing unmodified HTML web pages using only a telephone.
It uses text-to-speech to read page content to users and uses
speech recognition to allow users to control the browser [3].

Conversa Web is a voice-controlled web browser that was created
through extensions to Internet Explorer. It allows users to speak
the text of links and use navigation commands (such as “go
back”) to browse web pages [21]. Charles Hemphill conducted
earlier work on a voice-controlled web browser at Texas
Insturments [10].

Our WebContext system provides access to information extracted
from web pages. However, it does not attempt to support full
web browsing by voice. Instead, it focuses on helping users
quickly retrieve pieces of information they have previously
viewed on web pages.

1 http://www.backflip.com
2 http://www.blink.com
3 http://bookmarks.yahoo.com/

VoiceXML [23] is an XML-based language that was developed
by the VoiceXML Forum and submitted to the World Wide Web
Consortium (W3C). VoiceXML provides a standard language
for developing voice-enabled Internet content and applications.
It is a language similar to HTML that can be browsed using
VoiceXML voice browsers. The WebContext system currently
uses VoiceXML to implement the part of the interface that
allows users to make remote queries by voice.

4.3 Computer Access by Phone
Several projects have focused on creating telephone-based
interfaces to computer resources. Phoneshell is a system
developed at MIT that supports “ remote voice access to personal
desktop databases such as voice mail, email, calendar, and
rolodex” [22] using a touch-tone telephone interface. Chatter
(described with Phoneshell in [18]) provides functionality similar
to Phoneshell and uses speech recognition to support a voice user
interface.

SpeechActs is a system developed by Sun Microsystems’ Speech
Applications Group that allows users to use a telephone-based
voice user interface to interact with desktop applications such as
Sun’s Mail Tool and Sun’s Calendar Manager. The SpeechActs
system was designed with shared context and conversational
principals in mind [25].

Personal Assistant services such as Wildfire4 and General
Magic’s Portico5 allow subscribers to remotely access voice
mail, email, and schedule information using a telephone-based
voice user interface.

Our work on WebContext is related to this previous work on
remote access to computer resources. We have focused on
developing interfaces to access shared context built from
previous dialogs. Initially, we are exploring telephone-based
access to context built from web browsing sessions on a PC. In
this respect, our voice interface is a complement to the shared
experience of the user and the web browser.

5. WebContext Implementation
In this section we will describe the query model and details of
how the WebContext system was implemented (including the
architecture we developed for making shared context remotely
accessible). We also describe the query application component
that can be used to allow users to access their shared context
from any telephone using a voice user interface.

5.1 Query Model
WebContext uses a simple model for building context and for its
query capabilities. In our current version, shared context is built
exclusively from the content of web pages viewed by users. A
web page, P, is viewed as consisting of two parts: 1) a set I of
extractable information pieces and 2) a set C of context
indicators.

Extractable information pieces are logical groups of information

4 http://www.wildfire.com
5 http://www.genmagic.com/products/portico.shtml

 4

or HTML text that can be extracted from the page. These are
items that a user might wish to refer back to at a future time.
Initially, we have implemented simple extraction modules for
three types of information: phone numbers, addresses, and dates.
We intentionally selected these information types because it is
possible to construct simple, yet usable, extraction modules for
them. In our initial work, we wanted to focus on developing an
architecture for capturing and using shared context. The next
step is to investigate particular algorithms, tailored to specific
types of information resources.

Context indicators help identify a particular context. Currently,
context is being modeled by the textual content of the web pages,
so the context indicators are taken from the HTML of the web
page. In other words, we are using some of the text on a web
page as an indicator of context. The details of this process are
described in section 5.2. In the future, we plan to investigate
including additional indicators such as how long and how many
times the user viewed this page, what link brought the user to
this page, and what other pages were also viewed around the
same time as this page. It is interesting to note that I C is not
necessarily null, meaning that information pieces can be context
indicators and vice-versa.

A well-formed query consists of at least one context indicator
and one extractable information piece. In the Anytown Hotel
scenario sample dialog (see Figure 2), Mary provides two context
indicators, “Anytown Hotel” and “seafood” (line 3). The system
explicitly asks for what information piece should be retrieved
within the stated context (line 4). Mary requests one extractable
information piece, “ the phone number” (line 5). The context
indicators help establish common ground for the query between
Mary and the system. They indicate to the system that the she is
interested in talking about web pages that meet the criteria

specified by the context indicators (in this case, pages that
contain the phrases “Anytown Hotel” and “seafood”). By asking
for the information piece “ the phone number,” Mary is
requesting that the system return any information about phone
numbers on web pages that meet the criteria of the context
indicators.

In many ways, this is similar to what a person might do in asking
another person for a piece of information. Consider the
following fictitious dialogue between two people:

[1] R: Do you remember the poster we saw about the jazz

concert?
[2] P: Yes.
[3] R: What date was it?

In order for a successful collaboration to take place, the requestor
(R) tries to establish common ground with the provider (P) by
saying the phrases “poster” and “ jazz concert” to help the
provider recall the correct context for the query (line 1). Then,
after establishing common ground in line 2, the requestor can
make information requests within that context in line 3.

Although this query model is fairly simple, it provides a good
starting point for investigating user interfaces that incorporate
shared context built in different environments. Expanding the
query model is one of our goals for future work.

To help evaluate the user interface to WebContext, we conducted
some informal usability testing with members of our research
group. Based on this testing, we have observed that users may
not make a distinction between context indicators and
information types. Because of this, we are re-designing the user
interface of the query application to remove this distinction from

Browser

Proxy

Archived
Pages

Internet

Personal
Context
Server

Context Builder
Process (extractor)

(if possible, send browser events)

proxy events

SCRML
pages

Context Builder
Process (combiner)

S
�

A | B;
A � a;
B � [0-9]* ;

.scrml

.vxml

VoiceXML pages

Grammar files

Voice
Browser

Telephone
Network

Browser

Proxy

Archived
Pages

InternetInternet

Personal
Context
Server

Context Builder
Process (extractor)

(if possible, send browser events)

proxy events

SCRML
pages

Context Builder
Process (combiner)

S � A | B;
A � a;
B � [0-9]* ;

.scrml

.vxml

VoiceXML pages

Grammar files

Voice
Browser

Telephone
Network

Telephone
Network

Figure 3. WebContext Architecture for Building and Accessing Shared Context

 5

the user’s perspective (the system still uses this distinction).
Additionally, we are trying to make the interface more of a
collaborator in the process by allowing users to say as much or as
little input as they wish at the initial prompt. If the system needs
additional information to fulfill a request or refine a search, the
interface will then take a more active part in moving toward a
shared context with the user.

5.2 System Architecture
Figure 3 gives an overview of the system architecture for the
WebContext system with four major parts identified: 1)
capturing context, 2) building context models through
information extraction, 3) combining context from multiple
sources, and 4) using context in a different environment.

Currently, we have accomplished Part 1 by archiving web pages
by hand. Parts 2 and 3 are central parts of the WebContext
system, can be run on a user’s computer, and are what make the
shared context available to other applications. Part 4 is the query

application that provides a voice user interface to make remote
queries about information in the shared context. In the following
sections, we will describe each of these components.

5.2.1 Capturing Context (1)
The first part of the architecture deals with capturing and
archiving events as the user interacts with the web browser. As
the user browses web pages, a proxy server can be used to
archive all the pages viewed and requested by the user. This
proxy server could be local to the user’s machine (in order to
build and store the context locally), or could be located
elsewhere.

In our current view, context would be stored locally on the user’s
machine in order to give the user greater control over the context.
This requires that the user’s machine be connected to the Internet
and have sufficient disk space to store the shared context.
Recent estimates of the average size of web pages range from
about 10 to 60 kilobytes [9],[2]. Based on these estimates, it is
not unreasonable to imagine current personal computers
archiving all the web pages a person views. If we assume a 100k
average web page size (larger than these estimates) and estimate
40 page views per day, it would take about 13.7 years to fill a
20Gb hard disk. That’s a lot of context!

For the shared context models that we build in the current
WebContext system, only textual information from the web
pages is stored. Disk space is not required to store pictures and
graphics on the pages. Archived pages could be stored in a
database and indexed at periodic intervals, such as overnight. In
the initial version of WebContext, we simulated this part of the
system by saving web pages by hand into a common directory
and then running the context building routines on all the HTML
files saved.

There are many valuable pieces of information about the context
in which a user is browsing that cannot be determined from
looking only at the web page requests as recorded by a proxy
server. To gain additional context information, a web browser
could be configured to send browser events to the context
building components of the system through the use of browser
plug-ins or extensions. Several recent projects have used or
proposed using measures such as length of time to view a web
page [17] and estimates of mouse movements [11] to help give
feedback to a system that is trying to learn user browsing
preferences. Our initial version of the WebContext system does
not make use of any “browser events” , but we plan to explore
including them in future work.

5.2.2 Building Context Models (2)
The second part of the WebContext architecture is focused on
building models of context based on the archived web pages that
the user browsed (i.e. the pages collected by the proxy server).

Currently, we model context by extracting information out of the
archived HTML pages. An extractor program (written in Perl)
with modules for extracting various information pieces is run on
each HTML page in the set of archived pages. For each page,
the extractor produces a counterpart XML document that
represents context indicators and information pieces found on
that page. The XML document is stored in a simple XML-based

Figure 4 – Sample SCRML file

01 <?xml version="1.0"?>
02 <scrml version="0.1">
03
04 <contextobject type="html"
05 name="anytown.html"/>
06
07 <referingobject name="unknown"/>
08
09 <group name="H1">
10 <H1> Anytown Hotel Home Page </H1>
11 </group>
12
13 <group name="title">
14 <title> Anytown Hotel Home Page</title>
15 </group>
16
17 <group name="bold">
18 <bold> Phone: (800) 555-1234 </bold>
19 <bold> Fax: (800) 555-5678 </bold>
20 <bold> heart of downtown </bold>
21 </group>
22
23 <infogroup name="phone">
24 <phone> Phone: (800) 555-1234 </phone>
25 <phone> Fax: (800) 555-5678 </phone>
26 </infogroup>
27
28 <infogroup name="address">
29 <address> 1234 Main St </address>
30 </infogroup>
31
32 <group name="bodytext">
33 <bodytext>
34 Anytown Hotel Home Page Anytown Hotel
35 Home Page 1234 Main Street Anytown, USA
36 12345 Phone: (800) 555-1234 Fax:
37 (800) 555-5678 The Anytown Hotel is a
38 charming 50-room hotel located in the
39 heart of downtown Anytown, USA. The hotel
40 is known for the seafood restaurant on the
41 lower level. Home | Reservations | Rooms
42 | Directions
43 </bodytext>
44 </group>
45 </scrml>

 6

specification language we have been developing to help represent
context. For convenience in this paper, we will refer to this as
the Shared Context Representation Markup Language (SCRML).
This representation is in the early development stages and is still
evolving.

The extractor program looks for two major types of data in the
HTML pages: extractable information pieces and context
indicators. Information pieces are things like phone numbers,
addresses, and dates that the extractor has a module to identify
and extract. Context indicators are items on the page that help
identify it and related pages. The title of the page, words that
appear in links or in bold type, and headings can all be used as
context indicators. The body text of the page is also treated as a
context indicator and is used in later processing stages to help
build a language model to allow the user to speak about words
and phrases they saw on the page.

The SCRML page contains information pieces found by the
extractor modules, context indicators found by the extractor main
program, and additional information that can be determined
about the page or that has been provided by the proxy server or
browser. Figure 4 shows an example of the SCRML generated
from the Anytown Hotel web page example (Figure 1).

5.2.3 Combining Context from Multiple Sources (3)
The Combiner module is at the heart of the third part of the
WebContext architecture. The role of this module is to combine
information contained in a set of SCRML pages into a grammar
that can be used by another application (in our case the
VoiceXML query interface). This grammar helps provide access
to the shared context for other applications. In future work, the
combiner may provide additional “views” to access the shared
context. For example, the combiner might use the
<referringobject> information in the SCRML pages to create a
graph of how pages were browsed or to group related web pages
together.

To make use of the shared context in the voice interface, users
need to be able to talk about items they saw on the web pages.
To accomplish this, the speech recognition component of the
system must be configured to be able to recognize spoken
references to items that were on the web pages. The initial
version of WebContext was implemented using a speech
recognizer that is configured using a context-free grammar (CFG)
as the language model. The use of a CFG-configured speech
recognizer presents some limitations about the how the language
model can be constructed and presented to the recognizer. We
are aware of limitations in the use of CFGs for our application.
Nonetheless, in our initial implementation, we chose to use a
speech recognizer configured by CFGs because they are easily
accessible, are supported by current VoiceXML interpreters, and
we had existing expertise in using these types of recognizers.

Statistical language models (such as N-grams) can provide a
great deal more flexibility and power for recognition tasks such
as the one that we are attempting to address in the WebContext
system. We are investigating several options for incorporating a
speech recognition system that will meet our telephony needs as
well as provide an ability to be configured using statistical
language models. This may require moving our interface

implementation away from VoiceXML (to the best of our
knowledge, current VoiceXML systems all use recognizers
configured by CFGs).

There are two parts to the CFG grammar we are currently using:
a fixed part that contains elements that do not change, and a
dynamic part that is created by the Combiner module based on
the contents of the SCRML files. The format used for the
grammar is the Java Speech Grammar Format version 1.0 [13].

The Grammar Inclusion Problem

Determining what terms and combinations of terms from the web
pages to include in the dynamic part of the grammar is a tricky
problem. We call this the “Grammar Inclusion Problem.” It is
important to have good coverage of the terms that users will
expect to be able to say, or else the system will not be as useful
(or as usable). However, if all the terms and combinations are
included, the grammars may become prohibitively large.
Statistically based language models should help overcome
aspects of this problem, but we are also exploring techniques for
determining what items are important to include in the
grammar/language model and what items are not as important to
include.

In our current prototype, we use a fairly simple approach – we
include in the grammar all unigrams, bigrams, and trigrams of
words from the titles, headings, and bold words on the pages.
Unigrams are all the single words, bigrams are all the two-word
sequences, and trigrams are all the three word sequences. We
also include all unigrams from the text of all the pages (after
filtering out HTML tags and stop words).

This simple approach can require tradeoffs when trying to scale
up to larger numbers of pages. In one sample of 15 web pages,
when we included the unigrams, bigrams, and trigrams from all
the non-HTML text on the page, the resulting grammar contained
approximately 11,500 phrases. For the same set of pages, when
only the unigrams, bigrams, and trigrams from the text in the
titles, headings, and bold words were used, the resulting
grammar had approximately 250 phrases. However, this
reduction in the grammar size also greatly reduces the percentage
of items on each page to which the user can make references.

Modern speech recognition systems can handle grammars with
thousands of phrases and retain good accuracy (less than 10%
error rates) [8]. However, more robust techniques are needed to
allow the system to construct grammars that can handle hundreds
of web pages. Again, this is where statistical language modeling
techniques should help.

We have considered several techniques to determine what items
to include in a CFG. We believe these techniques can also be
used to help influence a statistical language model. One
technique is to use information about how recently a page has
been accessed. For example, a user might preface a query with a
time frame such as, “web pages seen in the past week.” The
system could then dynamically adjust the grammar to include
only the terms relevant to that time frame. Alternatively, the
system could automatically adjust the grammar so that more
recent pages are always in the grammar, but for older pages, the
user must specify a time frame.

 7

Another approach is to use techniques such as term-weighting
and frequency counts to help decide what terms are the most
relevant to include in the grammar. These techniques have been
used in web page classification and information retrieval systems
(see [16]).

An important aspect of evaluating the effectiveness of any of
these approaches will be to compare the predicted terms against
what users actually remember and say from the web pages when
they make verbal references. We anticipate that users may not
remember the exact terms on the pages, so techniques to match
related terms may be needed to improve system performance. It
is also possible that users may wish to get access to certain
information that they do not remember enough context about to
form an initial query. In these cases, the user interface will need
to work in a collaborative fashion with the user to help establish
the shared context if possible.

5.2.4 Using Context in Different Environments (4)
The fourth part of the WebContext architecture is the access
mechanism for making the shared context available in other
applications. In this project, we focused on accessing shared
context through a voice user interface over a telephone.

VoiceXML is an emerging language for creating voice user
interfaces that can be accessed over the Internet [23]. It is based
on a client-server model similar to current web applications.
Like HTML pages, VoiceXML pages are made available on
standard HTTP web servers. Instead of web browsers on the
client side, VoiceXML pages are browsed using voice browsers.
There are voice browsers available that allow users to interact
with VoiceXML content in several different ways: 1) by calling
in on a telephone, 2) using a computer equipped with a sound
card, speakers and microphone, and 3) using a text interface
where the user types in their input on a keyboard and the browser
renders the VoiceXML output prompts in a textual format.

To provide users mobile access to shared context, we envision
users connecting to a “personal context server” running on a
computer that is always connected to the Internet. This computer
could be a computer at home or at work, or could be a shared
system that serves contexts for many users. In our current
WebContext system, this server requires access to four sets of
files: 1) VoiceXML pages that implement the user interface, 2)
CGI scripts that process the forms and implement the application
logic, 3) grammar files generated by the Combiner, and 4)
SCRML files generated by the Extractor. The VoiceXML files
and CGI scripts are part of the voice query application, while the
Grammar files and SCRML files are dynamically generated
based on the web pages the user has been browsing. The
SCRML files are used by the CGI scripts as a database of
information to be searched.

6. Step-by-Step System Interaction
Below is an explanation of the sequence of steps the system goes
through for the Anytown hotel scenario described in Section 3:

Step 1: Mary calls into the WebContext system
At this step Mary calls into a voice browser using a telephone.
This voice browser could be running on one of her computers if
she has the necessary telephone equipment installed on her

computer, but more likely it is a voice browser provided to many
users by some other entity. For example, businesses could
provide access through a toll-free number to a voice browser for
employees to access their information.

Access could also be achieved through a voice portal. Voice
portals are similar to web portal sites such as Yahoo! or Excite
except that instead of helping users find web content, they help
users access VoiceXML content. Several companies such as
TellMe (www.tellme.com) and BeVocal (www.bevocal.com) are
offering voice browsing services with toll-free access numbers.

We have obtained specialized telephony hardware and speech
recognition software for our lab that allows us to build voice user
interfaces that can be accessed through a telephone. However,
we do not yet have our telephony hardware and speech
recognition system working with a VoiceXML browser. Thus, in
the development of WebContext, we have simulated calling in on
a telephone by using a VoiceXML development kit that supports
voice browsing using a microphone and speakers attached to a
personal computer. This development kit allows us to write
applications in the same VoiceXML code that would be used to
run the application over the phone, but we can test them using
the built-in audio of a PC workstation.

To simulate the action of Mary accessing her personal context
server, we start the voice browser with the VoiceXML page of
the query application. This page is located on a server with
access to the shared context.

Step 2: The system plays a greeting and prompts Mary for some
words to help identify the pages to search.
The greeting and prompt are part of the instructions contained on
the initial VoiceXML page for the query application.

Step 3: Mary says “ Anytown hotel and seafood”
The voice browser acts on the code of the VoiceXML page and
attempts to recognize what Mary said based on the grammar that
was built by the Combiner module. Both these phrases are part
of the grammar since Mary visited a web site with these terms.
Our initial implementation does not support very robust error
handling, so if the utterance is not in the grammar, it will simply
re-prompt the user for the information.

Step 4: The system asks what type of information to return
This sequence of questions is part of the VoiceXML code and is
part of a VoiceXML form that is being filled.

Step 5: Mary responds, “ the phone number”
There is another grammar that is associated with the information
types that can be requested. This grammar includes phrases for
the information types currently processed by the system: phone
numbers, addresses, and dates.

Step 6: The system plays a prompt to verify the information it
has gathered so far.
This is a common practice at the end of requesting a series of
information from the user in a voice interface. The system
repeats information that it heard and asks the user if the
information is correct. If the user responds affirmatively, the
system proceeds to process the request. If the user gives a
negative response, the system will back up and re-prompt the
user for the information.

 8

Step 7: Mary responds affirmatively (“ yes”)
This response causes the VoiceXML code to branch to a section
of code that will play a prompt letting the user know that the
system will start the search.

Step 8: The system plays a prompt, “ Now searching”
After this prompt is played, the VoiceXML code submits the
responses it has gathered from the form fields (the information
type and the words to identify the pages to search) to a CGI script
on the server for processing. After submitting the form, the voice
browser waits for a response from the server.

Step 9: The system returns and plays the results
The CGI script on the server uses the information submitted by
the initial VoiceXML page to create and execute a query. In the
Anytown Hotel scenario, the terms “Anytown hotel” and
“seafood” are used to narrow the list of web pages to search.

Next, the CGI script looks for the requested pieces of information
(in this case, phone numbers) on these pages. The information
has already been extracted and stored in an organized form in the
SCRML pages, so instead of looking for the information on the
original HTML pages, it searches the counterpart SCRML pages.
This is one of the purposes of the SCRML pages – to make it
easier to find information in a specific context.

After finding the results of the search, the CGI script dynamically
creates a VoiceXML page to send back to the voice browser
based on the results found. Special cases are handled if no
results are found or if a long list of results is returned. The
VoiceXML page that is returned also includes an option for
returning to the starting VoiceXML page if the user wishes to
make another query.

7. Conclusions and Future Work
We have developed a system that is a functional starting point for
exploration of user interfaces that are able to build and utilize
shared context with users. Using the WebContext system, users
can remotely access information that was built while browsing
web pages on a desktop computer. We have demonstrated a
voice user interface for accessing and querying this shared
context.

While building the WebContext system, we have identified
several areas for future work:

• Automated techniques for gathering additional context
information. Our current system only uses the content (text)
of the web pages to build shared context. We would like to
incorporate additional information such as page view
duration, viewing history, and mouse activity into our
context models.

• More robust query capabilities. This version of
WebContext uses a very simple query model that only
allows users to request one piece of information based on
two context indicators. In addition to expanding the query
capabilities, we are examining how to characterize
applications in terms of the information types and context
indicators needed.

• Use of more robust language modeling. As mentioned in
section 5.2.3, speech recognition systems can be configured

using a statistical language model created from an input
corpus of text rather than from a context-free grammar (our
current system uses a CFG grammar). The use of CFGs for
WebContext presents some significant scalability problems.
Specifically, using the simple grammar construction
techniques presented here, the size of the grammar grows
quickly with the number of pages viewed. We believe this
recognition task is well suited to statistical language
techniques and plan to incorporate a statistical language
model into our next version of WebContext. We may also
explore the use of weighted-CFGs in which the transitions
in the grammar are each given a probability (or weight).

• Heuristics about what to include in the grammar. Even
with statistical language modeling, we plan to explore
techniques for deciding what terms and combinations of
terms to include (or techniques for how to weight such
terms) in the grammar/language model.

• Automatic inclusion of synonyms and related concepts. We
anticipate that users will not always remember the exact
words and phrases on web pages they viewed. For this
reason, we would like to extend the terms in the language
model to include words and phrases that are similar to or
related to terms that are actually on the web pages. We
have begun looking at the use of WordNet
(http://www.cogsci.princeton.edu/~wn) for this purpose.

8. Acknowledgments
This research was supported by the National Science Foundation
under grants IIS-9876167 and DGE-9553458. Seth Golub has
put together a system called autojot for archiving web pages that
helped form some of the concepts and architecture of
WebContext.

9. References
[1] Adar, E., Karger, D., and Stein L. A.. Haystack: Per-User

Information Environments. Proceedings of the Eighth
International Conference on Information Knowledge
Management, 413-422, Kansas City, MO, 1999.

[2] All Things Web (ATW). How Much Is Too Much? The
State of the Web Survey. Conducted May, 1999. Web page
accessed May 2, 2001: www.pantos.org/atw/35654.html

[3] Brown, M.K., Glinski, S.C., Goldman, B.P., and Schmult,
B.C. PhoneBrowser: A Web-Content-Programmable
Speech Processing Platform. The W3C Workshop on Voice
Browsers, Cambridge, MA, 1998.

[4] Budzik, J., and Hammond, K.J. User Interactions with
Everyday Applications as Context for Just-in-time
Information Access. International Conference on Intelligent
User Interfaces 2000, 44-51, New Orleans, LA, 2000.

[5] Chen, L., and Sycara, K. WebMate: A Personal Agent for
Browsing and Searching. Proceedings of the 2nd
International Conference on Autonomous Agents and Multi
Agent Systems, Minneapolis, MN, 1998.

[6] Christian, K., Kules, B., Shneiderman, B., and Youssef, A.
A Comparison of Voice Controlled and Mouse Controlled
Web Browsing. ASSETS 2000, 72-79, Arlington, VA, 2000.

 9

[7] Clark, H. Arenas of Language Use. Chicago: University of
Chicago Press, 1992, p. 3.

[8] Cole, R., Mariani, J., Uszkoreit, H., Zaenen, A., and Zue,
V. Survey of the State of the Art in Human Language
Technology. Edited report, 1996. Web version accessed
October 1, 2001: http://cslu.cse.ogi.edu/HLTsurvey/
HLTsurvey.html

[9] Cyveillance, "Internet Exceeds 2 Billion Pages," Press
Release, July 10, 2000. Web page accessed October 1,
2001:
http://www.cyveillance.com/web/us/newsroom/releases/200
0/2000-07-10.htm

[10] Hemphill, C. and Thrift, P. Surfing the Web by Voice.
Proceedings of the Third ACM International Conference on
Multimedia, 215-222, San Francisco, CA, 1995.

[11] Goecks, J., and Shavlik, J. Learning Users’ Interests by
Unobtrusively Observing Their Normal Behavior.
Proceedings of the 2000 International Conference on
Intelligent User Interfaces, 129-132, New Orleans, 2000.

[12] Joachims, T., Freitag, D., and Mitchell, T. WebWatcher: A
Tour Guide for the World Wide Web. Proceedings of the
International Joint Conference on Artificial Intelligence,
1997.

[13] Java Speech Grammar Format Specification Version 1.0,
October 26, 1998. On-line document accessed on October 1,
2001: http://java.sun.com/products/java-media/speech/
forDevelopers/JSGF.ps.

[14] S. Lawrence. Context in Web Search. IEEE Data
Engineering Bulletin, vol. 23, pp. 25-32, 2000.

[15] H. Lieberman. Letizia: An Agent that Assists Web
Browsing. Proceedings of the International Joint
Conference on Artificial Intelligence 1995, Montreal, 1995.

[16] H. Lieberman, N. W. Van Dyke, and A. S. Vivacqua. Let’s
Browse: A Collaborative Web Browsing Agent.
International Conference on Intelligent User Interfaces
1999, 65-68, Redondo Beach, CA, 1999.

[17] Marais, H., and Bharat, K. Supporting Cooperative and
Personal Surfing with a Desktop Assistant. 10th Annual
Symposium on User Interface Software and Technology,
129-138, Banff, Alberta, Canada, 1997.

[18] Marx, M. and Schmandt, C. Putting People First:
Specifying Proper Names in Speech Interfaces. Proceedings
of the ACM Symposium on User Interface Software and
Technology, 29-37, 1994.

[19] McCarthy, J.C. and Monk, A.F. Channels, conversation,
cooperation and relevance: all you wanted to know about
communication but were afraid to ask. Collaborative
Computing, 1, 35-60, 1994.

[20] Mladenic, D. Machine learning used by Personal
WebWatcher. Proceedings of ACAI-99 Workshop on
Machine Learning and Intelligent Agents, Chania, Crete,
1999.

[21] Robin, M., and Hemphill, C. Considerations in Producing a
Commercial Voice Browser. The W3C Workshop on Voice
Browsers, Cambridge, MA, 1998.

[22] Schmandt, C. Phoneshell: the Telephone as Computer
Terminal. Proceedings of the First ACM International
Conference on Multimedia, 373-382, Anaheim, CA, 1993.

[23] VoiceXML Forum, "Voice eXtensible Markup Language
VoiceXML version 1.0." Specification, March 7, 2000. On-
line specification accessed on October 1, 2001:
http://www.voicexml.org/specs/VoiceXML-100.pdf

[24] World Wide Web Consortium. W3C Workshop on Voice
Browsers, Cambridge, MA, 1998. Workshop web site
accessed September 30, 2001: http://www.w3.org/Voice/
1998/Workshop/

[25] Yankelovich, N., Levow, G.A., and Marx, M. Designing
SpeechActs: Issues in Speech User Interfaces. Conference
Proceedings on Human Factors in Computing Systems, 369-
376, Denver, CO USA, 1995.

