CS 5614: (Big) Data Management Systems

B. Aditya Prakash
Lecture #12: Frequent Itemsets

Substitute Lecture by: Vanessa Cedeno
Refer

- Chapter 6. MMDS book.
Association Rule Discovery

Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers

- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items

- **A classic rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- A large set of **items**
 - e.g., things sold in a supermarket
- A **large set of baskets**
- Each basket is a **small subset of items**
 - e.g., the things one customer buys on one day
- Want to discover **assocation rules**
 - People who bought \{x,y,z\} tend to buy \{v,w\}
 - Amazon!

Input:

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Output:

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store

- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items
 - Suggests tie-in “tricks”, e.g., run sale on diapers and raise the price of beer
 - Need the rule to occur frequently, or no $$’s

- **Amazon’s people who bought X also bought Y**
Applications – (2)

- **Baskets** = sentences; **Items** = documents containing those sentences
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension:** Absence of an item needs to be observed as well as presence
More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”

- For example:
 - Finding communities in graphs (e.g., Twitter)
Example:

- Finding communities in graphs (e.g., Twitter)
- **Baskets** = nodes; **Items** = outgoing neighbors
 - Searching for complete bipartite subgraphs $K_{s,t}$ of a big graph

 ▪ **How?**
 - View each node i as a basket B_i of nodes i it points to
 - $K_{s,t} = \text{a set } Y \text{ of size } t \text{ that occurs in } s \text{ buckets } B_i$
 - Looking for $K_{s,t} \rightarrow \text{set of support } s \text{ and look at layer } t$ – all frequent sets of size t
Outline

- **First: Define**
 - Frequent itemsets
 - Association rules:
 - Confidence, Support, Interestingness

- **Then: Algorithms for finding frequent itemsets**
 - Finding frequent pairs
 - A-Priori algorithm
 - PCY algorithm + 2 refinements
Frequent Itemsets

- **Simplest question**: Find sets of items that appear together “frequently” in baskets

- **Support** for itemset I: Number of baskets containing all items in I

 – (Often expressed as a fraction of the total number of baskets)

- Given a **support threshold** s, then sets of items that appear in at least s baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Support threshold** = 3 baskets
 - \(B_1 = \{m, c, b\}\)
 - \(B_2 = \{m, p, j\}\)
 - \(B_3 = \{m, b\}\)
 - \(B_4 = \{c, j\}\)
 - \(B_5 = \{m, p, b\}\)
 - \(B_6 = \{m, c, b, j\}\)
 - \(B_7 = \{c, b, j\}\)
 - \(B_8 = \{b, c\}\)
- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m,b\}, \{b,c\}, \{c,j\}.

Prakash 2014
Association Rules

- **Association Rules:**
 If-then rules about the contents of baskets

- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is ***likely*** to contain \(j \)”

- In practice there are many rules, want to find significant/interesting ones!

- **Confidence** of this association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Interesting Association Rules

- Not all high-confidence rules are interesting
 - The rule \(X \rightarrow \text{milk} \) may have high confidence for many itemsets \(X \), because milk is just purchased very often (independent of \(X \)) and the confidence will be high

- **Interest** of an association rule \(I \rightarrow j \): difference between its confidence and the fraction of baskets that contain \(j \)

 \[
 \text{Interest}(I \rightarrow j) = \text{conf}(I \rightarrow j) - \Pr[j]
 \]

 - Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Association rule**: \{m, b\} → c
 - **Confidence** = \(\frac{2}{4} = 0.5 \)
 - **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8} \)
 - Item c appears in \(\frac{5}{8} \) of the baskets
 - Rule is not very interesting!
Finding Association Rules

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$
 - **Note:** Support of an association rule is the support of the set of items on the left side

- **Hard part:** Finding the frequent itemsets!
 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

$$\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}$$
Mining Association Rules

- **Step 1:** Find all frequent itemsets \(I \)
 - (we will explain this next)

- **Step 2:** Rule generation
 - For every subset \(A \) of \(I \), generate a rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - confidence\((A,B \rightarrow C,D) = \text{support}(A,B,C,D) / \text{support}(A,B)\)
 - **Variant 2:**
 - **Observation:** If \(A,B,C \rightarrow D \) is below confidence, so is \(A,B \rightarrow C,D \)
 - Can generate “bigger” rules from smaller ones!
 - **Output the rules above the confidence threshold**
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- Support threshold \(s = 3 \), confidence \(c = 0.75 \)

1) Frequent itemsets:
 - \{b,m\} \{b,c\} \{c,m\} \{c,j\} \{m,c,b\}

2) Generate rules:
 - \(b \rightarrow m: c = \frac{4}{6} \quad b \rightarrow c: c = \frac{5}{6} \quad b,c \rightarrow m: c = \frac{3}{5} \)
 - \(m \rightarrow b: c = \frac{4}{5} \quad ... \quad b,m \rightarrow c: c = \frac{3}{4} \)
 - \(b \rightarrow c,m: c = \frac{3}{6} \)
Compacting the Output

- To reduce the number of rules we can post-process them and only output:
 - **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning

 or

 - **Closed itemsets:**
 No immediate superset has the same count (> 0)
 - Stores not only frequent information, but exact counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th>Support</th>
<th>Support</th>
<th>Maximal(s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Frequent, but superset BC also frequent.**
- **Frequent, and its only superset, ABC, not freq.**
- **Superset BC has same count.**
- **Its only superset, ABC, has smaller count.**

Prakash 2014
FINDING FREQUENT ITEMSETS
Itemsets: Computation Model

- **Back to finding frequent itemsets**
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are **small** but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to generate them.
Computation Model

- The true cost of mining disk-resident data is usually the number of disk I/Os

- In practice, association-rule algorithms read the data in passes – all baskets read in turn

- We measure the cost by the number of passes an algorithm makes over the data
Main-Memory Bottleneck

- For many frequent-itemset algorithms, **main-memory** is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster (*why?*)
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent pairs of items \(\{i_1, i_2\} \)
 - Why? Freq. pairs are common, freq. triples are rare
 - Why? Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

- Let’s first concentrate on pairs, then extend to larger sets

- The approach:
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of n items, generate its $n(n-1)/2$ pairs by two nested loops
- Fails if $(\#\text{items})^2$ exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 = 5*10^9$
 - Therefore, $2*10^{10}$ (20 gigabytes) of memory needed
Counting Pairs in Memory

Two approaches:

- **Approach 1:** Count all pairs using a matrix
- **Approach 2:** Keep a table of triples \([i, j, c]\) = “the count of the pair of items \{i, j\} is c.”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable

Note:

- **Approach 1** only requires 4 bytes per pair
- **Approach 2** uses 12 bytes per pair
 (but only for pairs with count > 0)
Comparing the 2 Approaches

4 bytes per pair

Triangular Matrix

12 per occurring pair

Triples
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number items
 - Count pair of items \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots , \{1,n\}, \{2,3\}, \{2,4\}, \ldots , \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position \((i-1)(n-i/2) + j - 1 \)
 - Total number of pairs \(n(n - 1)/2 \); total bytes = \(2n^2 \)
 - **Triangular Matrix** requires 4 bytes per pair

- **Approach 2** uses **12 bytes** per occurring pair *(but only for pairs with count > 0)*
 - Beats Approach 1 if less than \(\frac{1}{3} \) of possible pairs actually occur
Comparing the two approaches

- **Approach 1: Triangular Matrix**
 - \(n = \) total number of items
 - Count pair of items \(\{i,j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i,j\} \) is at position \((i-1)(n-i)/2 + j - 1 \)
 - Total number of pairs \(n(n-1)/2 \);
 total bytes = \(2n^2 \)
 - Triangular Matrix requires 4 bytes per pair

- **Approach 2** uses 12 bytes per pair (but only for pairs with count > 0)
 - Beats Approach 1 if less than \(1/3 \) of possible pairs actually occur

Problem is if we have too many items so the pairs do not fit into memory.

Can we do better?
A-PRIORI ALGORITHM
A-Priori Algorithm – (1)

- A **two-pass** approach called **A-Priori** limits the need for main memory

- **Key idea: monotonicity**
 - If a set of items \(I \) appears at least \(s \) times, so does every **subset** \(J \) of \(I \)

- **Contrapositive for pairs:**
 If item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets

- **So, how does A-Priori find freq. pairs?**
A-Priori Algorithm – (2)

- **Pass 1:** Read baskets and count in main memory the occurrences of each *individual item*
 - Requires only memory proportional to #items

- **Items that appear** $\geq s$ **times are the frequent items**

- **Pass 2:** Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Pass 1

Item counts

Pass 2

Frequent items

Counts of pairs of frequent items (candidate pairs)

Main memory
You can use the triangular matrix method with $n =$ number of frequent items
- May save space compared with storing triples

Trick: re-number frequent items 1, 2, ... and keep a table relating new numbers to original item numbers
Frequent Triples, Etc.

- For each k, we construct two sets of k-tuples (sets of size k):
 - $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s\text{) based on information from the pass for } k-1$
 - $L_k = \text{the set of truly frequent } k\text{-tuples}$
Example

Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C_1
- Prune non-frequent: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C_2
- Prune non-frequent: $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C_3
- Prune non-frequent: $L_3 = \{ \{b,c,m\} \}$

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1. But that one can be more careful with candidate generation. For example, in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent **
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k-tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

- Many possible extensions:
 - Association rules with intervals:
 - For example: Men over 65 have 2 cars
 - Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods
 - Lower the support s as itemset gets bigger
PCY (PARK-CHEN-YU) ALGORITHM
PCY (Park-Chen-Yu) Algorithm

- **Observation:**
 In pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
 - **Can we use the idle memory to reduce memory required in pass 2?**

- **Pass 1 of PCY:** In addition to item counts, maintain a hash table with as many buckets as fit in memory
 - Keep a **count** for each bucket into which **pairs** of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!
PCY Algorithm – First Pass

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Few things to note:
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least \(s \) (support) times
Observations about Buckets

- Observation: If a bucket contains a frequent pair, then the bucket is surely frequent.
 - However, even without any frequent pair, a bucket can still be frequent 😞
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket.

- But, for a bucket with total count less than \(s \), none of its pairs can be frequent 😊
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items).

- Pass 2:
 Only count pairs that hash to frequent buckets.
PCY Algorithm – Between Passes

- **Replace the buckets by a bit-vector:**
 - 1 means the bucket count exceeded the support \(s \) (call it a frequent bucket); 0 means it did not

- 4-byte integer counts are replaced by bits, so the bit-vector requires \(1/32 \) of memory

- Also, decide which items are frequent and list them for the second pass
Count all pairs \(\{i, j\} \) that meet the conditions for being a **candidate pair**:

1. Both \(i \) and \(j \) are frequent items
2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a **frequent bucket**)

Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

Prakash 2014

VT CS 5614
Main-Memory Details

- **Buckets require a few bytes each:**
 - **Note:** we do not have to count past s
 - #buckets is $O(\text{main-memory size})$

- On second pass, a table of (item, item, count) triples is essential (we cannot use triangular matrix approach, *why*)
 - Thus, hash table must eliminate approx. 2/3 of the candidate pairs for PCY to beat A-Priori

Prakash 2014
Refinement: Multistage Algorithm

- **Limit the number of candidates to be counted**
 - **Remember:** Memory is the bottleneck
 - Still need to generate all the itemsets but we only want to count/keep track of the ones that are frequent

- **Key idea:** After Pass 1 of PCY, rehash only those pairs that qualify for Pass 2 of PCY
 - i and j are frequent, and
 - $\{i, j\}$ hashes to a frequent bucket from **Pass 1**

- On middle pass, fewer pairs contribute to buckets, so fewer *false positives*

- **Requires 3 passes over the data**
Main-Memory: Multistage

Pass 1
Count items
Hash pairs \{i,j\}

Pass 2
Hash pairs \{i,j\} into Hash2 iff:
i,j are frequent,
\{i,j\} hashes to
freq. bucket in B1

Pass 3
Count pairs \{i,j\} iff:
i,j are frequent,
\{i,j\} hashes to
freq. bucket in B1
\{i,j\} hashes to
freq. bucket in B2
Multistage – Pass 3

- Count only those pairs \(\{i, j\} \) that satisfy these candidate pair conditions:
 1. Both \(i \) and \(j \) are frequent items
 2. Using the first hash function, the pair hashes to a bucket whose bit in the first bit-vector is 1
 3. Using the second hash function, the pair hashes to a bucket whose bit in the second bit-vector is 1
Important Points

1. The two hash functions have to be independent

2. We need to check both hashes on the third pass
 - If not, we would end up counting pairs of frequent items that hashed first to an infrequent bucket but happened to hash second to a frequent bucket
Refinement: Multihash

- **Key idea:** Use several independent hash tables on the first pass
- **Risk:** Halving the number of buckets doubles the average count
 - We have to be sure most buckets will still not reach count s

- If so, we can get a benefit like multistage, but in only 2 passes
Main-Memory: Multihash

Pass 1
- Item counts
- First hash table
- Second hash table

Pass 2
- Freq. items
- Bitmap 1
- Bitmap 2
- Counts of candidate pairs
PCY: Extensions

- Either **multistage** or **multihash** can use more than two hash functions.

- In **multistage**, there is a point of diminishing returns, since the bit-vectors eventually consume all of main memory.

- For **multihash**, the bit-vectors occupy exactly what one PCY bitmap does, but too many hash functions makes all counts $\geq s$.

FREQUENT ITEMSETS IN ≤ 2 PASSES
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- Can we use fewer passes?

- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen (see textbook)
Random Sampling (1)

- Take a random sample of the market baskets

- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size
Random Sampling (2)

- Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass (avoid false positives)

- But you don’t catch sets frequent in the whole but not in the sample
 - Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets
 - But requires more space
SON Algorithm – (1)

- Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - Note: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a candidate if it is found to be frequent in any one or more subsets of the baskets.
SON Algorithm – (2)

- On a *second pass*, count all the candidate itemsets and determine which are frequent in the entire set.

- Key “monotonicity” idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
SON – Distributed Version

- SON lends itself to distributed data mining

- Baskets distributed among many nodes
 - Compute frequent itemsets at each node
 - Distribute candidates to all nodes
 - Accumulate the counts of all candidates
SON: Map/Reduce

- **Phase 1:** Find candidate itemsets
 - Map?
 - Reduce?

- **Phase 2:** Find true frequent itemsets
 - Map?
 - Reduce?