CS 5614: (Big) Data Management Systems

B. Aditya Prakash

Lecture #13: Finding Similar Items
Scene Completion Problem

Hays and Efros, SIGGRAPH 2007

Prakash 2014
Scene Completion Problem
Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images
Scene Completion Problem

10 nearest neighbors from a collection of 2 million images
A Common Metaphor

- Many problems can be expressed as finding “similar” sets:
 - Find near-neighbors in high-dimensional space

- Examples:
 - Pages with similar words
 • For duplicate detection, classification by topic
 - Customers who purchased similar products
 • Products with similar customer sets
 - Images with similar features
 • Users who visited similar websites
Problem for Today’s Lecture

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors
 \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 2 & 1 \\
 0 & 1 & 0
 \end{bmatrix}
 \rightarrow
 [1
 2
 1
 0
 2
 1
 0
 1
 0]
 \]

- And some distance function $d(x_1, x_2)$
 - Which quantifies the “distance” between x_1 and x_2

- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \leq s$

- Note: Naïve solution would take $O(N^2)$ 😞
 where N is the number of data points

- MAGIC: This can be done in $O(N)$!! How?
Last time: Finding frequent pairs

Naïve solution:
Single pass but requires space quadratic in the number of items

N ... number of distinct items
K ... number of items with support ≥ s

A-Priori:
First pass: Find frequent singletons
For a pair to be a frequent pair candidate, its singletons have to be frequent!
Second pass:
Count only candidate pairs!
Relation to Previous Lecture

- **Last time:** Finding frequent pairs
- **Further improvement:** PCY

 - **Pass 1:**
 - Count exact frequency of each item:
 - Take pairs of items \(\{i,j\} \), hash them into \(B \) buckets and count of the number of pairs that hashed to each bucket:
Relation to Previous Lecture

- **Last time:** Finding frequent pairs
- **Further improvement:** PCY

- **Pass 1:**
 - Count exact frequency of each item:
 - Take pairs of items \(\{i,j\} \), hash them into \(B \) buckets and count of the number of pairs that hashed to each bucket:

- **Pass 2:**
 - For a pair \(\{i,j\} \) to be a **candidate for a frequent pair**, its singletons \(\{i\}, \{j\} \) have to be frequent and the pair has to hash to a frequent bucket!
Relation to Previous Lecture

- Last time: Finding frequent pairs
 - Previous lecture: A-Priori
 - Main idea: Candidates
 - Instead of keeping a count of each pair, only keep a count of candidate pairs!
 - Today’s lecture: Find pairs of similar docs
 - Main idea: Candidates
 - **Pass 1:** Take documents and hash them to buckets such that documents that are similar hash to the same bucket
 - **Pass 2:** Only compare documents that are candidates (i.e., they hashed to a same bucket)
 - Benefits: Instead of $O(N^2)$ comparisons, we need $O(N)$ comparisons to find similar documents to a frequent bucket!

Items 1…N

Basket 1:
- {1,2,3}
 - Pairs:
 - {1,2} {1,3} {2,3}
Basket 2:
- {1,2,4}
 - Pairs:
 - {1,2} {1,4} {2,4}

VT CS 5614
FINDING SIMILAR ITEMS
Distance Measures

- **Goal:** Find near-neighbors in high-dim. space
 - We formally define “near neighbors” as points that are a “small distance” apart
- For each application, we first need to define what “distance” means
- **Today:** Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 \[
 \text{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]
 - Jaccard distance: \[
 d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]

Prakash 2014
Task: Finding Similar Documents

- **Goal:** Given a large number (in the millions or billions) of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors
 - Don’t want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by “same story”

- **Problems:**
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory
3 Essential Steps for Similar Docs

1. **Shingling**: Convert documents to sets

2. **Min-Hashing**: Convert large sets to short signatures, while preserving similarity

3. **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents
 - **Candidate pairs!**
The Big Picture

- **Shingling**: The set of strings of length k that appear in the document.

- **Min Hashing**: Signatures: short integer vectors that represent the sets, and reflect their similarity.

- **Locality-Sensitive Hashing**: Candidate pairs: those pairs of signatures that we need to test for similarity.

Prakash 2014

VT CS 5614
Shingling

Step 1: **Shingling**: Convert documents to sets

The set of strings of length k that appear in the document
Documents as High-Dim Data

- **Step 1:** *Shingling:* Convert documents to sets

- **Simple approaches:**
 - Document = set of words appearing in document
 - Document = set of “important” words
 - Don’t work well for this application. *Why?*

- **Need to account for ordering of words!**

- **A different way:** *Shingles!*

Prakash 2014
Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document.
 - Tokens can be characters, words, or something else, depending on the application.
 - Assume tokens = characters for examples.

Example: $k=2$; document $D_1 = abcab$
- Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$
Compressing Shingles

- To **compress long shingles**, we can **hash** them to (say) 4 bytes
- **Represent a document by the set of hash values of its** k-shingles
 - **Idea:** Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- **Example:** $k=2$; document $D_1 = \text{abcab}$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Hash the singles: $h(D_1) = \{1, 5, 7\}$
Similarity Metric for Shingles

- Document D_1 is a set of its k-shingles $C_1 = S(D_1)$
- Equivalently, each document is a $0/1$ vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

$$\text{sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

Prakash 2014
Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order

- **Caveat:** You must pick k large enough, or most documents will have most shingles
 - $k = 5$ is OK for short documents
 - $k = 10$ is better for long documents
Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among $N=1$ million documents.

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs.
 - $N(N-1)/2 \approx 5 \times 10^{11}$ comparisons
 - At 10^5 secs/day and 10^6 comparisons/sec, it would take 5 days.

- For $N=10$ million, it takes more than a year...
MinHashing

Step 2: **Minhashing:** Convert large sets to short signatures, while preserving similarity
Many similarity problems can be formalized as **finding subsets that have significant intersection**.

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**

Example: $C_1 = 10111$; $C_2 = 10011$
- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = $3/4$
- Distance: $d(C_1, C_2) = 1 – \text{(Jaccard similarity)} = 1/4$
From Sets to Boolean Matrices

- **Rows** = elements (shingles)
- **Columns** = sets (documents)
 - 1 in row \(e\) and column \(s\) if and only if \(e\) is a member of \(s\)
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- **Each document is a column:**
 - Example: \(\text{sim}(C_1, C_2) = ?\)
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - \(d(C_1, C_2) = 1 - \text{(Jaccard similarity)} = 3/6\)
Outline: Finding Similar Columns

- **So far:**
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix

- **Next goal:** Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures
Outline: Finding Similar Columns

- **Next Goal:** Find similar columns, Small signatures

- **Naïve approach:**
 - 1) **Signatures of columns**: small summaries of columns
 - 2) **Examine pairs of signatures** to find similar columns
 - **Essential**: Similarities of signatures and columns are related
 - 3) **Optional**: Check that columns with similar signatures are really similar

- **Warnings:**
 - Comparing all pairs may take too much time: **Job for LSH**
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Hashing Columns (Signatures)

- **Key idea:** “hash” each column C to a small *signature* $h(C)$, such that:
 - (1) $h(C)$ is small enough that the signature fits in RAM
 - (2) $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Min-Hashing

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function

- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation \(\pi \).
- Define a “hash” function \(h_\pi(C) \) = the index of the first (in the permuted order \(\pi \)) row in which column \(C \) has value 1:
 \[
 h_\pi(C) = \min_\pi \pi(C)
 \]
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column.
Min-Hashing Example

Permutation π

2nd element of the permutation is the first to map to a 1

Input matrix (Shingles x Documents)

4th element of the permutation is the first to map to a 1

Signature matrix M
The Min-Hash Property

- Choose a random permutation \(\pi \)
- **Claim:** \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = sim(C_1, C_2) \)
- **Why?**
 - Let \(X \) be a doc (set of shingles), \(y \in X \) is a shingle
 - **Then:** \(\Pr[\pi(y) = \min(\pi(X))] = 1/|X| \)
 - It is equally likely that any \(y \in X \) is mapped to the \(\min \) element
 - Let \(y \) be s.t. \(\pi(y) = \min(\pi(C_1 \cup C_2)) \)
 - **Then either:** \(\pi(y) = \min(\pi(C_1)) \) if \(y \in C_1 \), or \(\pi(y) = \min(\pi(C_2)) \) if \(y \in C_2 \)
 - So the prob. that both are true is the prob. \(y \in C_1 \cap C_2 \)
 - \(\Pr[\min(\pi(C_1))=\min(\pi(C_2))] = |C_1 \cap C_2|/|C_1 \cup C_2| = sim(C_1, C_2) \)

One of the two cols had to have 1 at position \(y \)
Similarity for Signatures

- We know: \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = sim(C_1, C_2) \)
- Now generalize to multiple hash functions

- The *similarity of two signatures* is the fraction of the hash functions in which they agree

- **Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] = \text{according to the } i\text{-th permutation, the index of the first row that has a 1 in column } C$

 $$\text{sig}(C)[i] = \min (\pi_i(C))$$

- **Note:** The sketch (signature) of document C is small bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick \(K = 100 \) hash functions \(k_i \)
 - Ordering under \(k_i \) gives a random row permutation!
- One-pass implementation
 - For each column \(C \) and hash-func. \(k_i \) keep a “slot” for the min-hash value
 - Initialize all \(\text{sig}(C)[i] = \infty \)
 - Scan rows looking for 1s
 - Suppose row \(j \) has 1 in column \(C \)
 - Then for each \(k_i \):
 - If \(k_i(j) < \text{sig}(C)[i] \), then \(\text{sig}(C)[i] \leftarrow k_i(j) \)

How to pick a random hash function \(h(x) \)?
Universal hashing:
\[
h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N
\]
where:
- \(a,b \) … random integers
- \(p \) … prime number (\(p > N \))
Locality Sensitive Hashing

Step 3: **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents.
LSH: First Cut

- **Goal:** Find documents with Jaccard similarity at least \(s \) (for some similarity threshold, e.g., \(s=0.8 \))

- **LSH – General idea:** Use a function \(f(x,y) \) that tells whether \(x \) and \(y \) is a *candidate pair*: a pair of elements whose similarity must be evaluated

- **For Min-Hash matrices:**
 - Hash columns of signature matrix \(M \) to many buckets
 - Each pair of documents that hashes into the same bucket is a *candidate pair*
LSH: First cut

Let’s say you get the following signature matrix after minhashing:

```
<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Candidates from Min-Hash

- Pick a similarity threshold s ($0 < s < 1$)

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

$$M(i, x) = M(i, y)$$

for at least frac. s values of i

- We expect documents x and y to have the same (Jaccard) similarity as their signatures
LSH for Min-Hash

- **Big idea**: Hash columns of signature matrix M several times

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

- **Candidate pairs** are those that hash to the same bucket
Partition M into b Bands

Signature matrix M

r rows per band

One signature

b bands
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible

- **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band

- Tune b and r to catch most similar pairs, but few non-similar pairs
Hashing Bands

Columns 2 and 6 are probably identical (candidate pair).

Columns 6 and 7 are surely different.

<table>
<thead>
<tr>
<th>Matrix M</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>CS</td>
</tr>
<tr>
<td>5614</td>
<td>45</td>
</tr>
</tbody>
</table>

Prakash 2014

VT CS 5614

45
Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

- Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

- Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

- **Goal:** Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- **Find pairs of** \(\geq s = 0.8 \) similarity, **set** \(b = 20, \ r = 5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a **candidate pair:** We want them to hash to at least 1 common bucket (at least one band is identical)

- **Probability** \(C₁, C₂ \) identical in one particular band: \((0.8)^5 = 0.328\)

- **Probability** \(C₁, C₂ \) are **not** similar in all of the 20 bands: \((1 - 0.328)^{20} = 0.00035\)
 - i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
 - We would find 99.965% pairs of truly similar documents
C₁, C₂ are 30% Similar

- **Find pairs of** \(\geq s = 0.8 \) **similarity, set** \(b = 20, \ r = 5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.3 \)
 - Since \(\text{sim}(C₁, C₂) < s \) we want \(C₁, C₂ \) to hash to **NO common buckets** (all bands should be different)

- **Probability** \(C₁, C₂ \) **identical in one particular band:** \((0.3)^5 = 0.00243 \)

- **Probability** \(C₁, C₂ \) **identical in at least 1 of 20 bands:** \(1 - (1 - 0.00243)^{20} = 0.0474 \)
 - In other words, approximately **4.74%** pairs of docs with similarity 0.3% end up becoming **candidate pairs**
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold \(s \)
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

- **Probability of sharing a bucket**
 - No chance if $t < s$
 - Probability $= 1$ if $t > s$

Prakash 2014
What 1 Band of 1 Row Gives You

Remember: Probability of equal hash-values = similarity

Probability of sharing a bucket

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
b bands, r rows/band

- Columns C_1 and C_2 have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 - t^r$

- Prob. that no band identical = $(1 - t^r)^b$
- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$
What b Bands of r Rows Gives You

Probability of sharing a bucket

$S \sim (1/b)^{1/r}$

At least one band identical

No bands identical

$1 -(1-t^r)^b$

Some row of a band unequal

All rows of a band are equal

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

Prakash 2014
Example: $b = 20; r = 5$

- **Similarity threshold s**
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5, b=10$)

Red area: False Negative rate
Purple area: False Positive rate
LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

- Check in main memory that candidate pairs really do have similar signatures.

- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Summary: 3 Steps

- **Shingling:** Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations

- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity $\geq s$